

DP-200T01: Enabling Team Based Data Science with Azure Databricks

Agenda

- L01 Describe Azure Databricks
- LO2 Provision Azure Databricks and Workspaces
- · L03 Read data using Azure Databricks
- · L04 Perform transformations with Azure Databricks

Lesson Objectives

- \cdot What is Azure Databricks
- What are Spark based analytics platform
- How Azure Databricks integrates with enterprise security
- How Azure Databricks integrates with other cloud services

What is Azure Databricks

Apache Spark-based analytics platform

Enterprise Security Integration with other Cloud Services

Simplifies the provisioning and collaboration of Apache Sparkbased analytical solutions

Utilizes the security capabilities of Azure.

Can integrate with a variety of Azure data platform services and Power BI

What is Apache Spark

Apache Spark emerged to provide a parallel processing framework that supports in-memory processing to boost the performance of big-data analytical applications on massive volumes of data.

Interactive Data Analysis Used by business analysts

or data engineers to analyze and prepare data

Streaming Analytics Ingest data from technologies such as Kafka

and Flume to ingest data in real-time

Machine Learning Contains a number of libraries that enables a Data Scientist to perform Machine Learning

Why use Azure Databricks

Azure Databricks is a wrapper around Apache Spark that simplifies the provisioning and configuration of a Spark cluster in a GUI interface

Azure Databricks components:

- Spark SQL and DataFrames •
- Streaming ٠
- Mlib •
- GraphX ٠
- Spark Core API

Review Questions

- Q01 Azure Databricks encapsulates which Apache technology?
- · A01 Apache Spark.
- Q02 Which security features does Azure Databricks not support?
- \cdot A02 Shared Access Keys.
- Q03 Which of the following Azure Databricks is used for support for R, SQL, Python, Scala, and Java?
- · A03 Spark Core API.

Lesson Objectives

- Create your own Azure Databricks workspace
- \cdot Create a cluster and notebook in Azure Databricks

Create an Azure Databricks Workspace.

Home > New > Azure Databricks > Azu	ure	Datal	bricks !	Servio	e
Azure Databricks Service		\times			
* Workspace name					
ds-mslearn	~	·			
* Subscription 🚯					
	~				
 Resource group Create new Use existing 					
cto_rg	~	•			
* Location					
West Europe	~				
* Pricing Tier (View full pricing details)					
Standard (Apache Spark, Secure with Azur	\sim				
Deploy Azure Databricks workspace in you Virtual Network (preview) Ves No	ur				

Create a Cluster and Notebook in Azure Databricks

Review Questions

- Q01 Which Notebook format is used in Databricks?
- A01 DBC.
- Q02 Which browsers are recommended for best use with Databricks Notebook?
- \cdot A02 Chrome and Firefox.

Lesson 03 Read Data using Azure Databricks

Lesson Objectives

- Use Azure Databricks to access data sources
- Reading Data in Azure Databricks

Use Azure Databricks to access data sources.

Reading Data in Azure Databricks.

DataFrame (Python)
df.select(col("col_1"))
df.printSchema()
$df.filter(col("col_1") > 0)$
groupBy(col("col_2"))
orderBy(col("col_2"))
filter(year(col("col_3")) > 1990)
df.limit(10)
df.show()
display(df)

Review Questions

- \cdot Q01 How do you connect your Spark cluster to the Azure Blob?
- \cdot A01 By mounting it
- Q02 How does Spark connect to databases like MySQL, Hive and other data stores?
- \cdot A02 JDBC
- \cdot Q03 How do you specify parameters when reading data?
- A03 Using .option() during your read allows you to pass key/value pairs specifying aspects of your read

Lesson Objectives

- Performing ETL to populate a data model
- Perform basic transformations
- Perform advanced transformations with user-defined functions

Performing ETL to populate a data model

The goal of transformation in Extract Transform Load (ETL) is to transform raw data to populate a data model.

Extraction	Data Validation	Transformation	Corrupt Record Handling	Loading Data
Connect to many data stores: • Postgres • SQL Server • Cassandra • Cosmos DB • CSV, Parquet • Many more	Validate that the data is what you expect.	Applying structure and schema to your data to transform it into the desired format.	Built-in functions of Databricks allow you to handle corrupt data such as missing and incomplete information.	Highly effective design pattern involves loading structured data back to DBFS as a parquet file.

Basic transformation

Normalizing Values

Missing/Null data

De-duplication

Pivoting Data frames

Advanced Transformations

Advanced data transformation using custom and advanced user-defined functions, managing complex tables and loading data into multiple databases simultaneously.

User-defined functions	This fulfils scenarios when you need to define logic specific to your use case and when you need to encapsulate that solution for reuse. UDFs provide custom, generalizable code that you can apply to ETL workloads when Spark's built-in functions won't suffice.	
Joins and lookup tables	A standard (or shuffle) join moves all the data on the cluster for each table to a given node on the cluster. This is an expensive operation. Broadcast joins remedy this situation when one DataFrame is sufficiently small enough to duplicate on each node of the cluster, avoiding the cost of shuffling a bigger DataFrame.	
Multiple databases	Loading transformed data to multiple target databases can be a time-consuming activity. Partitions and slots are options to get optimum performance from database connections. A partition refers to the distribution of data while a slot refers to the distribution of computation.	

Review Questions

- Q01 By default, how are corrupt records dealt with using spark.read.json()
- · A01 They appear in a column called "_corrupt_record"
- \cdot Q02 What is the recommended storage format to use with Spark?
- · A02 Apache Parquet

Lab: Enabling Team Based Data Science with Azure Databricks

Lab overview

In this lab, By the end of this lab the student will be able to explain why Azure Databricks can be used to help in Data Science projects. The students will provision and Azure Databricks instance and will then create a workspace that will be used to perform a simple data preparation task from a Data Lake Store Gen II store. Finally, the student will perform a walk-through of performing transformations using Azure Databricks.

Lab objectives

After completing this lab, you will be able to:

- 1. Explain Azure Databricks
- 2. Work with Azure Databricks
- 3. Read data with Azure Databricks
- 4. Perform transformations with Azure Databricks

Lab scenario

In response to the Information Services (IS) department, you will start the process of building a predictive analytics platform by listing out the benefits of using the technology. The department will be joined by data scientists and they want to ensure that there is a predictive analytics environment available to the new team members.

You will stand up and provision an Azure Databricks environment, and then test that this environment works by performing a simple data preparation routine on the service by ingesting data from a pre-existing Data Lake Storage Gen II account. As a data engineer, it has been indicated to you that you may be required to help the data scientists perform data preparation exercises. To that end you have been recommended to walk-through a notebook that can help you perform basic transformations.

At the end of this lad, you will have:

- 1. Explain Azure Databricks
- 2. Work with Azure Databricks
- 3. Read data with Azure Databricks
- 4. Perform transformations with Azure Databricks

Lab review

- Exercise 1 Why did you select the option to store the image files?
- Exercise 2 Apart from the Azure Portal, are there other methods to automate the deployment of storage accounts?
- Exercise 3 How is the storage structure of Data Lake Storage Gen II different to Storage Accounts?
- Exercise 4 Where in the Azure Portal would you find Microsoft Azure Storage Explorer?

Module Summary

In this module, you have learned about:

- Azure Databricks
- How to provision Azure Databricks and Workspaces
- How to read Data using Azure Databricks
- How to perform transformations with Azure Databricks

Next steps

After the course, consider watching <u>this video</u> with Yatharth Gupta that provides a deep dive into Azure Databricks deployment, networking and security.

