




Lesson 01

Create an Azure Cosmos DB 

Database Built to Scale





Programming 

Models
AvailabilityPerformanceScalability

What is Azure Cosmos DB



Create an Azure 

Cosmos DB account.



If you don’t reserve enough request units, and you attempt to read 

or write more data than your provisioned throughput allows, your 

request will be rate-limited

Exceeding throughput limits

Azure Cosmos DB measures throughput using something called 

a request unit (RU). Request unit usage is measured per second, so the 

unit of measure is request units per second (RU/s). You must reserve the 

number of RU/s you want Azure Cosmos DB to provision in advance

What is a Request Unit

Database throughput is the number of reads and writes that your database 

can perform in a single secondDatabase throughput

Throughput is important to ensure you can handle the volume of transactions you need.

What are Request Units



Transactional 

Workloads

For write-heavy 

workloads, you'll 

need to 

understand the 

transactional 

needs of your 

workload

Review Queries

To determine 

the best 

partition key for 

a read-heavy 

workload, 

review the top 

three to five 

queries you 

plan on using

Range of 

Values

The more values 

your partition 

key has, the 

more scalability 

you have

Best Practice.

What is a Partition Key

A partition key is the value by which Azure 

organizes your data into logical divisions. 

Why have a Partition Strategy

Having a partition strategy ensures that 

when your database needs to grow, it 

can do so easily and continue to 

perform efficient queries and 

transactions

.

Choosing a Partition Key



Creating a Database 

and a Container in 

Cosmos DB





Lesson 02

Insert and Query Data in your 

Azure Cosmos DB Database





Create a product catalog 

documents in the Data 

Explorer.



Examples

SELECT * 
FROM Products p WHERE p.id ="1“

SELECT p.id, p.manufacturer, p.description 
FROM Products p WHERE p.id ="1“ 

SELECT p.price, p.description, p.productId 
FROM Products p ORDER BY p.price ASC

SELECT p.productId 
FROM Products p JOIN p.shipping

SELECT Query Basics

SELECT <select_list>
[FROM <optional_from_specification>]
[WHERE <optional_filter_condition>]
[ORDER BY <optional_sort_specification>]
[JOIN <optional_join_specification>]

Perform 

Azure Cosmos DB 

Queries.



User Defined Functions are 

used to extend the Azure 

Cosmos DB SQL query 

language grammar and 

implement custom business 

logic, such as calculations on 

properties and documents.

User Defined Functions

Stored procedures perform 

complex transactions on 

documents and properties. 

Stored procedures are 

written in JavaScript and are 

stored in a collection on 

Azure Cosmos DB.

Stored Procedures

Multiple documents in your database frequently need to be updated at the same time. 

The way to perform these transactions in Azure Cosmos DB is by using stored procedures 

and user-defined functions (UDFs)

Running complex operations on data



Working with Graph Data





Lesson 03

Build a .NET Core App for 

Azure Cosmos DB in VS Code





Creating Azure Cosmos DB in Visual Studio Code



DeleteDocument

Async

UpsertDocument

Async

ReplaceDocument

Async

ReadDocument

Async

CreateDocument

Async

Working with documents programmatically



Querying document 

programmatically

{
// Set some common query options
FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1, 
EnableCrossPartitionQuery = true };

// Here we find nelapin via their LastName
IQueryable<User> userQuery = 
this.client.CreateDocumentQuery<User>(
UriFactory.CreateDocumentCollectionUri(databaseName, 
collectionName), queryOptions)
.Where(u => u.LastName == "Pindakova");

// The query is executed synchronously here, but can also be 
executed asynchronously via the IDocumentQuery<T> interface
Console.WriteLine("Running LINQ query...");
foreach (User in userQuery)
{
Console.WriteLine("\tRead {0}", user);
}

// Now execute the same query via direct SQL
IQueryable<User> userQueryInSql = 
this.client.CreateDocumentQuery<User>(
UriFactory.CreateDocumentCollectionUri(databaseName, 
collectionName),
"SELECT * FROM User WHERE User.lastName = 'Pindakova'", 
queryOptions );

Console.WriteLine("Running direct SQL query...");
foreach (User in userQueryInSql)
{
Console.WriteLine("\tRead {0}", user);
}

Console.WriteLine("Press any key to continue ...");
Console.ReadKey();
}



Perform 

Azure Cosmos DB 

Queries.





Lesson 04

Distribute your data globally 

with Azure Cosmos DB





Benefits of writing and replicating data to multiple regions



Cosmos DB multi-master replication



If the affected region is the 

current write region and 

automatic fail-over is 

enabled, then the region is 

automatically marked as 

offline. Then, an alternative 

region is promoted as the 

write region

Write region outage

Azure Cosmos DB accounts 

with a read region in one of 

the affected regions are 

automatically disconnected 

from their write region and 

marked offline

Read region outage

Automated fail-over is a feature that comes into play when there's a disaster or other 

event that takes one of your read or write regions offline, and it redirects requests from 

the offline region to the next most prioritized region.

Cosmos DB failover management



Cosmos DB

Consistency Levels

Eventual

Consistent 

Prefix

Session

Bounded 

Staleness

Strong













Next steps
After the course, consider visiting the 

Microsoft Cosmos DB Whitepapers site to 

explore Azure Cosmos DB concepts at a 

deeper level.

Module Summary

In this module, you have learned about:

- Create an Azure Cosmos DB database built to scale.

- Insert and query data in your Azure Cosmos DB 

database.

- Build a .NET Core app for Azure Cosmos DB in 

Visual Studio Code.

- Distribute your data globally with Azure Cosmos 

DB.

https://docs.microsoft.com/en-us/azure/cosmos-db/whitepapers

