2% Microsoft

DP-200TO1:
Building Globally
Distributed
Databases with
Cosmos DB

Agenda

+ LOT — Create an Azure Cosmos DB database built to scale
- LO2 - Insert and query data in your Azure Cosmos DB database

- LO3 - Build a .NET Core app for Azure Cosmos DB in Visual Studio
Code

- LO4 - Distribute your data globally with Azure Cosmos DB

Lesson 01
Create an Azure Cosmos DB

Database Built to Scale

Lesson Objectives

- What is Cosmos DB

- Create an Azure Cosmos DB account

- What is a Request Unit

- Choose a partition key

- Create a database and container for NoSQL data in Azure Cosmos DB

What is Azure Cosmos DB

Scalability Performance Availability Programming
Models

Create an Azure
Cosmos DB account.

Home > Neyy > Create Azure Cosmos DB Account

Create Azure Cosmos DB Account

Basics Networking Tags Review + create

Azure Cosmos DB is a globally distributed, multi-model, fully managed database service, Try it for free, for 30 days with
unlimited renewals. Go to production starting at 324/month per database, multiple containers included. Learn more

Project Details

Select the subscription to manage deployed resources and costs. Use resource groups like folders 1o organize and manage all
your resources.

Subscription * | chtestao 7
Resource Group * | Select existing... v
Create new

Instance Details

Account Name * | Enter account name
API* O | Core (sQU) v
Apache Spark © -CNotebooks Notebaoks with Apache Spark MZ'
Sign up for Apache Spark preview
Location * | (US) West US v
Geo-Redundancy -CZ'
Multi-region Writes (0 {: Enable ;.

*Up to 33% off multi-region writes is available to qualifying new accounts only. Accounts must be created between December 1, 2019 and February 29, 2020. Offer
limited to accounts with both account loecations and geo-redundancy, and applies only to multi-region writes in those same regions. Both Geo-Redundancy and
MMulti-region Writes must be enabled in account settings. Actual discount will vary based on number of qualifying regions selected.

What are Request Units

Throughput is important to ensure you can handle the volume of transactions you need.

Database throughput is the number of reads and writes that your database
can perform in a single second

Database throughput

Azure Cosmos DB measures throughput using something called

a request unit (RU). Request unit usage is measured per second, so the
unit of measure is request units per second (RU/s). You must reserve the
number of RU/s you want Azure Cosmos DB to provision in advance

What is a Request Unit

If you don't reserve enough request units, and you attempt to read
or write more data than your provisioned throughput allows, your
request will be rate-limited

Exceeding throughput limits

Choosing a Partition Key

Why have a Partition Strategy

Having a partition strategy ensures that
when your database needs to grow, it
can do so easily and continue to
perform efficient queries and
transactions

What is a Partition Key

A partition key is the value by which Azure
organizes your data into logical divisions

Best Practice.

Range of
Values

The more values
your partition
key has, the
more scalability

you have

Review Queries

To determine
the best
partition key for

a read-heavy
workload,
review the top
three to five

queries you
plan on using

Transactional
Workloads

For write-heavy
workloads, you'll
need to
understand the
transactional
needs of your
workload

d Container

o per database, multiple containers included
More details

* Database id ©
) Create new () Use existing
ase id

Provision database throughput ©

* Throughput (400 - 100,000 RU/s) @

Creating a Database
and a Container in
Cosmos DB o

* Container id @

[] My partition key is larger than 100 bytes

Unigue keys &

—+ Add unique key

Review Questions

- Q01— You want to ensure that there is 99.999% availability for the
reading and writing of all your data. How can this be achieved?

- AO1 - By configuring reads and writes of data for multi-region
accounts with multi region writes

- Q02 - What are the three main advantages to using Cosmos DB?
- Cosmos DB offers global distribution capabilities out of the box.
- Cosmos DB provides a minimum of 99.99% availability.

- Cosmos DB response times of read/write operations are typically in the
order of 10s of milliseconds

Lesson 02
Insert and Query Data in your

Azure Cosmos DB Database

Lesson Objectives

- Create a product catalog document in the Data Explorer
- Add data

- Perform Azure Cosmos DB queries

- Query types
-+ Run queries

+ Running complex operations on your data
- Working with graph data

Create a product catalog
documents in the Data
Explorer.

Jol awcdbstudcto - Data Explorer

Azure Cosmos DB account

|/O Search (Ctrl+/)

|((

& Overview

Activity log

Access control (I1AM)

Tags

Diagnose and solve problems

E X 4

Quick start

* Notifications

©

Data Explorer

Settings
@ Replicate data globally
= Default consistency

“g Firewall and virtual networks

(R B v v
SQL AP O <

v # products
Scale
v Clothing
ltems
Settings
» Stored Procedures
» User Defined Functions
» Triggers

~ & ToDolist
4 Items

D New ltem

Items

=

? [x

SELECT * FROM ¢ Edit Filter

id 1.0

1 332..

2 332..

3 332..
Load more

W~ D R W N e

e O N e
0N R WM R ®

tid"r U1,
"productId™: "2
"category™: "Wc
"manufacturer”:
"description™:
"price™: "14.9¢
"shipping": {
"weight™: 1
"dimensions
"width'
"height
"depth’

bs
" rid": "PO1tAN
" self": "dbs/F
" _etag": "\"41e¢

SELECT Query Basics

SELECT <select list>

[FROM <optional from specification>]
[WHERE <optional filter_ condition>]
[ORDER BY <optional sort specification>]
[JOIN <optional join specification>]

Perform Examples

Azure Cosmos DB SELECT *
: FROM Products p WHERE p.id ="1“
Queries.

SELECT p.id, p.manufacturer, p.description
FROM Products p WHERE p.id ="1“

SELECT p.price, p.description, p.productid
FROM Products p ORDER BY p.price ASC

SELECT p.productid
FROM Products p JOIN p.shipping

Running complex operations on data

Multiple documents in your database frequently need to be updated at the same time.
The way to perform these transactions in Azure Cosmos DB is by using stored procedures

and user-defined functions (UDFs)

Stored Procedures

Stored procedures perform
complex transactions on
documents and properties.
Stored procedures are
written in JavaScript and are
stored in a collection on
Azure Cosmos DB.

User Defined Functions

User Defined Functions are
used to extend the Azure
Cosmos DB SQL query
language grammar and
implement custom business
logic, such as calculations on
properties and documents.

from gremlin python.driver import client,
serializer
import sys, traceback

CLEANUP_GRAPH = "g.V().dro

[T

"Yosemite').pr 'El Capitan’)”,

g.add

"p2") .property('name’, 'Joshua

ture”, "Yucca Brevifolia®)",
"g.addV("State').property('id",

Working with Graph Data

nerty('Location’, "USA")",

“— m

. proper name’, '

.addv("E stem').props
.property('name’, 'De 3,

.addv("E stem’).property("id",
.property('name’, ‘High Altitude’)"

3]
=

m
P
[

[|:|1:|-

i

L

[a—

STy

ex))
) -addE(

Review Questions

- Q01 - You are a data engineer wanting to make the data that is
currently stored in a Table Storage account located in the West US
region available globally. Which Cosmos DB model should you migrate
to?

- AO1 - Table API

- Q02 - What type of data model provides a traversal language that
enables connections and traversals across connected data?

- A02 — Gremlin API

Lesson 03
Build a .NET Core App for

Azure Cosmos DB in VS Code

Lesson Objectives

- Create an Azure Cosmos DB account, database, and container in Visual
Studio Code using the Azure Cosmos DB extension

- Create an application to store and query data in Azure Cosmos DB

- Use the Terminal in Visual Studio Code to quickly create a console
application

- Add Azure Cosmos DB functionality with the help of the Azure Cosmos
DB extension for Visual Studio Code

Creating Azure Cosmos DB in Visual Studio Code

q) File Edit Selection View Go Debug Terminal Help 1-cosmos-document.json - Visual Studio Code — O *
AZURE Retaill locumentjson ¥ @ [M -
4 COSMOS DB Press "Enter’ to confirm your input or 'Escape’ to cancel :

o 0 I3

d = o

b & adventbikes (MongoDE) 5 :'pr*cductld”: 1332188967, .
. 4 ‘category”: "Women's Clothing”,
* & ctocdo (5QL) 5 "manufacturer”: "Contoso Sport”,
4 @ Products 6 "description”: "Quick dry crew neck t-shirt
4 [ii] Clothing 7 “price™: "14.99",
4 [i7] Documents 8 "shipping": {
0] 1 9 "weight": 1,
b & Stored Procedures 18 "dimensions®: {
. 11 "width": 6,
* @ ToDolist 12 "height": 8
b & Attached Database Accounts 13 "depth”: 1 ’
14 ¥
15 }J
16 " rid": "QS19ALDRxXUBAAAAAAAAMA=="",
17 " _self”: "dbs/Q519AA==/colls/QS1SALDRxXU=/d:
18 " etag”: "\"13688b5a-B828-8708-0888-5C9b61%:
19 " attachments"”: "attachments/",
28 " ts": 1553686941

|

0 ¥,
o e,

\Iéf ~JReplaceDocument
! Async

| CreateDocument
Async

DeleteDocument
Async

UpsertDocument
Async

Querying document
programmatically

{

// Set some common query options
FeedOptions queryOptions = new FeedOptions { MaxItemCount
EnableCrossPartitionQuery = true };

// Here we find nelapin via their LastName
IQueryable<User> userQuery =
this.client.CreateDocumentQuery<User>(
UriFactory.CreateDocumentCollectionUri(databaseName,
collectionName), queryOptions)

.Where(u => u.LastName == "Pindakova");

// The query is executed synchronously here, but can also be
executed asynchronously via the IDocumentQuery<T> interface
Console.WriteLine("Running LINQ query...");

foreach (User in userQuery)

{
Console.WriteLine("\tRead {0}", user);

}

// Now execute the same query via direct SQL
IQueryable<User> userQueryInSql =
this.client.CreateDocumentQuery<User>(
UriFactory.CreateDocumentCollectionUri(databaseName,
collectionName),

"SELECT * FROM User WHERE User.lastName = 'Pindakova'",
queryOptions);

Console.WriteLine("Running direct SQL query...");
foreach (User in userQueryInSql)

{
Console.WriteLine("\tRead {©0}", user);

}

Console.WriteLine("Press any key to continue ...");
Console.ReadKey();

}

) File Edit Selection View Go Debug Terminal Help 2_6-stored-proced

dure 1D (Press "Enter' to confirm or 'E

Perform
Azure Cosmos DB
Queries.

Review Questions

- Q01— Suppose you are using Visual Studio Code to develop a .NET Core
application that accesses Azure Cosmos DB. You need to include the connection
string for your database in your application configuration. What is the most
convenient way to get this information into your project?

- AO1 - Directly from Visual Studio Code

-+ Q02 - When working with Azure Cosmos DB's SQL API, which of these can be
used to perform CRUD operations?

- AO02 — LINQ

-+ Q03 - When working with the Azure Cosmos DB Client SDK's DocumentClient
class, you use a NOSQL model. How would you use this class to change the
FirstName field of a Person Document from 'Ann' to 'Fran'?

- AO3 — Call ReplaceDocumentAsync with an updated Person object

Lesson 04
Distribute your data globally

with Azure Cosmos DB

Lesson Objectives

- Learn about the benefits of writing and replicating data to multiple
regions around the world

- Cosmos DB multi-master replication
- Cosmos DB failover management
- Change the consistency setting for your database

Benefits of writing and replicating data to multiple regions

Home > Resource groups > cto_rg > ctocdb > Replicate data globally

Replicate data globally

ctocdb

H Save 9 Discard

Click on a location to add or remove regions from your Azure Cosmos DB account. Configure regions

* Each region is billable based on the throughput and storage for the account. Learn more)) .))
Configure the regions available for reads and writes. + Add region

REGIONS READS ENABLED WRITES ENABLED
West US v v il
UK South v v 1]
Oa o Japan West v v [}
8 0008, ® i
020 19
Salo 8 _
& South Africa North v v 1]

Cosmos DB multi-master replication

Cosmos DB failover management

Automated fail-over is a feature that comes into play when there's a disaster or other
event that takes one of your read or write regions offline, and it redirects requests from
the offline region to the next most prioritized region.

Read region outage Write region outage

Azure Cosmos DB accounts If the affected region is the
with a read region in one of current write region and
the affected regions are automatic fail-over is
automatically disconnected enabled, then the region is
from their write region and automatically marked as
marked offline offline. Then, an alternative

region is promoted as the
write region

Bounded
Staleness

Cosmos DB
Consistency Levels

Consistent
Prefix

Review Questions

- Q01— You want to maximize the data integrity of data that is stored in
a Cosmos DB. Which consistency level should you choose?

- AOT - Strong

Lab: Building Globally Distributed Databases with Cosmos DB

Lab overview

In this lab, the students will be able to describe and demonstrate the capabilities that Azure
Cosmos DB can bring to an organization. They will be able to create a Cosmos DB instance
and show how to upload and query data through a portal and through a .Net application.
They will then be able to demonstrate how to enable global scale of the Cosmos DB

database.

Lab objectives
After completing this lab, you will be able to:

1. Create an Azure Cosmos DB database built to scale

2. Insert and query data in your Azure Cosmos DB database

3. Distribute your data globally with Azure Cosmos DB

4. (Optional) Build a .NET Core app for Azure Cosmos DB in Visual Studio Code

Lab scenario

The developers and Information Services department at AdventureWorks are aware that a new service known as
Cosmos DB recently released on Azure can provided planetary scale access to data in near real-time. They want to
understand the capability that the service can offer and how it can bring value to AdventureWorks, and in what
circumstances.

The Information Services department want to understand how the service can be setup and how data can be
uploaded. The developers would like to see an example of an application that can be used to upload data to the
Cosmos. Both would like to understand how the claim of planetary scale can be met.

At the end of this lad, you will have:

Create an Azure Cosmos DB database built to scale

Insert and query data in your Azure Cosmos DB database

Distribute your data globally with Azure Cosmos DB

(Optional) Build a .NET Core app for Azure Cosmos DB in Visual Studio Code

A w o~

Lab review

- Exercise 1— Can you think how Cosmos DB can help your
organization?

- Exercise 2 — Name the five programming models that is supported by
Cosmos DB?

- Exercise 3 — What NuGet packages is used to interact with Cosmos
DB?

- Exercise 4 — How could the distribution of data in Cosmos DB benefit
your organization?

v 4 LR &

b BRI

Module Summary)

In this module, you have learned about:
- Create an Azure Cosmos DB database built to scale.
- Insert and query data in your Azure Cosmos DB

" database.

* - Build a .NET Core app for Azure Cosmos DB in

¥ Visual Studio Code.

- Distribute your data globally with Azure Cosmos

» DB.

After the course, consider visiting the
Microsoft Cosmos DB Whitepapers site to

| explore Azure Cosmos DB concepts at a
h deeper level.

.-‘.A‘,

https://docs.microsoft.com/en-us/azure/cosmos-db/whitepapers

