Brief on Hadoop

o TEEEEm

What is Hadoop?

* Hadoop is a distributed data storage and processing platform
- Stores massive amounts of data in a very resilient way

- Handles low-level distributed system details and enables your
developers to focus on the business problems

* Tools built around Hadoop (the ‘Hadoop ecosystem’) can be configured/
extended to handle many different tasks

- Extract Transform Load (ETL)
- Bl environment

- General data storage

- Predictive analytics

- Statistical analysis

- Machine learning

©Mohd_Arif

Core Hadoop is a File System and a Processing Framework

* The Hadoop Distributed File System (HDFS)
- Any type of file can be stored in HDFS
- Data is split into chunks and replicated as it is written
- Provides resiliency and high availability
- Handled automatically by Hadoop

* YARN (Yet Another Resource Negotiator)
- Manages the processing resources of the Hadoop cluster
- Schedules jobs
- Runs processing frameworks

* MapReduce
- A distributed processing framework

©Mohd_Arif

Hadoop is Scalable

* Adding nodes (machines) adds capacity proportionally

* Increasing load results in a graceful decline in performance
- Not failure of the system

Capacity

Number of Nodes

©Mohd_Arif

Hadoop is Fault Tolerance

* Node failure is inevitable

* What happens?
- System continues to function
- Master re-assigns work to a different node
- Data replication means there is no loss of data
- Nodes which recover rejoin the cluster automatically

©Mohd_Arif

The Hadoop Ecosystem (2)

* Examples of Hadoop ecosystem projects (all included in CDH):

What does it do?

HBase NoSQL database built on HDFS

Impala SQL query engine designed for Bl workloads
Data movement to/from RDBMSs

Powerful text search functionality

| Authorization tool, providing security for Hadoop

©Mohd_Arif

Why Do You Need Hadoop? (1)

* More data is coming
- Internet of things
- Sensor data
- Streaming

* More data means bigger questions
* More data means better answers
* Hadoop easily scales to store and handle all of your data

* Hadoop is cost-effective
- Typically provides a significant cost-per-terabyte saving over traditional,
legacy systems

* Hadoop integrates with your existing datacenter components

©Mohd_Arif

The Hadoop Distributed File System (HDFS)

* HDFS is the storage layer for Hadoop
* A filesystem which can store any type of data

* Provides inexpensive and reliable storage for massive amounts of data
- Data is replicated across computers

* HDFS performs best with a ‘modest’ number of large files
- Millions, rather than billions, of files
- Each file typically 100MB or more

* File in HDFS are ‘write once’
- Appends are permitted
- No random writes are allowed

©Mohd_Arif

HDFS Basic Concepts

* HDFS is a filesystem written in Java
» Sits on top of a native filesystem

* Scalable

* Fault tolerant

= Supports efficient processing with MapReduce, Spark, and other
frameworks

©Mohd_Arif

How Files are Stored (1)

* Data files are split into blocks and distributed to data nodes

Block 1

Block2

Block 3

I
gua

©Mohd_Arif

How Files are Stored (1)

* Data files are split into blocks and distributed to data nodes

i i

Very ﬂ
Large PI0CK £
Data File

ﬂ

©Mohd_Arif

How Files are Stored (1)

* Data files are split into blocks and distributed to data nodes

Very

Large

Data File

Block 1

Block 2

Block 3

©Mohd_Arif

How Files are Stored (2)

= Data files are split into blocks and distributed to data nodes

©Mohd_Arif

How Files are Stored (2)

* Data files are split into blocks and distributed to data nodes

Block 1
Very
Large Block 2
Data File '
Block 3

©Mohd_Arif

How Files are Stored (3)

* Data files are split into blocks and distributed to data nodes
* Each block is replicated on multiple nodes (default: 3x replication)

BlockLyf—

Block3

©Mohd_Arif

How Files are Stored (5)

* Data files are split into blocks and distributed to data nodes

* Each block is replicated on multiple nodes (default: three-fold replication)

* NameNode stores metadata / A
Name
. Node
Block 1
Metadata:
Very information
Large Block 2 about files
Data File and blocks
Block 3 ’@ & ;}

©Mohd_Arif

Getting Data In and Out of HDFS

* Hadoop

- Copies data between client (local)
and HDFS (cluster)

-~ APl or command line

* Ecosystem Projects
= Flume
- Collects data from network
sources (e.g., websites,
system logs)
- Sqoop
- Transfers data between
HDFS and RDBMSs

* Business Intelligence Tools

RDBMS: Relational Database Management System

put

Client

get

OO0
U \J

|
T
==
=

©Mohd_Arif

HDFS
Cluster

Example: Storing and Retrieving Files (1)

HDFS
Cluster

©Mohd_Arif

Example: Storing and Retrieving Files (2)

(Metadata Bl: A,B,D "\ NameNode
B2: B,D,E
B3: A,B,C
/10gs/150808.10g: B1,B2,B3 p4. 2 g g
\\/1098/150809.1@: B4,B5 B5: C,E,D) ’
Node A | (NodeD_)
' EDZI [al(s)
4 24
Node B) (| ‘

©Mohd_Arif

Example: Storing and Retrieving Files (2)

Pz
(Metadata BL: A,B,D) NameNode
B2: B'DlE
B3: A,B,C
/1ogs/150808.log: B1,B2,B3 B4: A,B,E
\\/1093/150809.109. B4,BS B5: C,E,D y
Node A 4) (NodeD_ 3)
i)
4
s > @ /
(Node B ',1\ (Node E_ "
oH R
4
@ 4 y - /

©Mohd_Arif

Example: Storing and Retrieving Files (2)

~
(Metadata Bl: A,B,D\ NameNodD
B2: B,D,E
B3: A,B,C
/logs/150808.1og: B1,B2,B3 pg. A,B,E
/logs/150809.1og: B4,B5 i
\\ 85- C'E’D))
Node A 4 | (NodeD_)
~|EYE
4
Nodesﬂ

©Mohd_Arif

Example: Storing and Retrieving Files (2)

cloudera

((Metadata Bl: A,B,D \ NameNode
B2: B,D,E
B3: A,B,C
o BB
ogs .10g: ’ x
\\ BS:: G, N,D) j
" Node A A T\Iodg D)
%@ (al(s]
4
| (2]
Node B_ 4 | (NodeE !
2] [2]s
Pom— w
4 v N Y,
w -

© Copyright 2010-2015 Cloudera. All rights reserved. Not to be reproduced without prior written consent.

©Mohd_Arif

Example: Storing and Retrieving Files (3)

\K

(Metadata

/logs/150808.1log: B1,B2,B3
/1logs/150809.1log: B4,B5

Bl

B3:
B4:
B5:

: A,B,D NameNodD
: B,D,E
A,B,C
|
C,E D

Node D

[a)(s)
(2]

/logs/ 150809 log?

B4,B5

\

©Mohd_Arif

Example: Storing and Retrieving Files (3)

(Metadata Bl: A,B,D) NameNode
B2: B,D,E
B3: A,B,C
/10gs/150808.1og: B1,B2,B3 p,. A: a',n
\/1093/150809.109: B4,B5 BS: C,E,D/
& \\ oy
E‘J]dﬂ &) /logs/150809.log?
5
Cl.J
Node E B4,B5
[2)s

©Mohd_Arif

Example: Storing and Retrieving Files (4)

\\

(Rﬁetadata

/logs/150808.1log: B1,B2,B3
/logs/150809.1log: B4,B5

Bl:
: B,D,E
B3:
B4:
BS:

A,B,D) NameNode

A,B,C
A,B'E

Node A 4)

EVEY
L]

7 A
‘r
/logs/150809.log?

,B5

\

C,E,D)/ y
B4

©Mohd_Arif

MapReduce: Key Features

* MapReduce is a programming model
- Neither platform- nor language-specific
- Record-oriented data processing (key and value)
- Facilitates task distribution across multiple nodes

* MapReduce was the original processing framework available on Hadoop

- Still widely used, although other frameworks are replacing it for many
types of workload

* MapReduce code is typically written in Java

©Mohd_Arif

The Motivation for YARN

* Originally, Hadoop only supported MapReduce as a processing framework
* MapReduce used all of the cluster’s processing resources

* Now, multiple frameworks may exist on a single cluster
- MapReduce
- Spark

» Each framework competes for compute and memory resources on the
nodes

* YARN (Yet Another Resource Negotiator) was developed to manage this
contention

- Allocates resources to different frameworks based on demand, and on
system administrator settings

©Mohd_Arif

Flume and Kafka: What Are They?

* Flume and Kafka are tools for ingesting event data into Hadoop as that
data is being generated

- Log files

- Sensor data

- Streaming data from social media such as Twitter
= Etc.

* Flume is typically easier to configure, but Kafka provides more
functionality

- Flume generally provides a path from a data source to HDFS or to a
streaming framework such as Spark

- Kafka uses a ‘Publish/Subscribe’ model

- Allows data to be consumed by many
different systems, including writing to HDFS

©Mohd_Arif

Example Flume Pipeline

*Collect data as it is produced

* Files, syslogs, stdout or
custom source

*Process in place
* e.g., encrypt, compress

*Pre-process data before storing
* e.g., transform, scrub, enrich

* Write in parallel
* Scalable throughput Agent(s)

+ Store in any format

* Text, compressed, binary, or
custom sink

©Mohd_Arif

Flume and Kafka: Why Should | Use Them?

* Flume and Kafka are ideal for aggregating event data from many sources
into a centralized location (HDFS)

* Well-suited for event driven data
- Network traffic
- Social-media-generated
- Email messages
- GPS tracking information
- Digital sensors
- Log files

= Allow you to process streaming data, as that data is being generated

- Vital for applications such as fraud prevention,
threat detection

©Mohd_Arif

Sqoop: What Is It?

* Sqoop rapidly moves large amounts of s
data between relational database
management systems (RDBMSs) and HDFS <:>
- Import tables (or partial tables) '

from an RDBMS into HDFS
- Export data from HDFS to a database table

* Uses JDBC to connect to the database
- Works with virtually all standard RDBMSs

* Custom ‘connectors’ for some RDBMSs provide much higher throughput
- e.g., Teradata, Oracle

OQLOR

©Mohd_Arif

Spark: What Is It?

* Apache Spark is large-scale data processing engine SP Q

* Supports a wide range of workloads
- Machine learning
- Interactive analytics
- Batch applications
- Iterative algorithms
- Business Intelligence
=Ete.

ik’

= Spark Streaming provides the ability to process data as that data is being
generated

- Typically in conjunction with Flume or Kafka

©Mohd_Arif

Spark: Why Should | Use It?

* Faster than MapReduce Spo

» Spark code can be written in Python, Scala, or Java
- Easier to develop for than MapReduce

ik’

* Spark is well-suited to iterative processing algorithms such as many of
those used in machine learning applications

* Spark Streaming provides real-time data processing features

* Spark is replacing MapReduce at many organizations
- Organizations new to Hadoop will typically start with Spark and never
write MapReduce code

©Mohd_Arif

Apache Hive: What Is It?

* Hive is an abstraction layer on top of Hadoop
- Hive uses a SQL-like language called HiveQL

* The Hive interpreter uses MapReduce or Spark to actually process
the data

= JDBC and ODBC drivers are available
- Allows Hive to integrate with Bl and other applications

SELECT zipcode, SUM(cost) AS total
FROM customers

JOIN orders

ON (customers.cust id = orders.cust_id)
WHERE zipcode LIKE '63%'

GROUP BY zipcode

ORDER BY total DESC;

©Mohd_Arif

Hive: Why Should | Use It?

* Data can be loaded before the table is defined
- Schema-on-Read
- You do not need to know the data’s structure prior to loading it

* Does not require a developer who knows Java, Scala, Python or
other traditional programming languages

- Anyone who knows SQL can process and analyze the data on the cluster

* Well suited for dealing with structured data, or data which can have a
structure applied to it

©Mohd_Arif

Comparing Hive to an RDBMS

Feature

Query language

Update and delete records
Transactions

Stored procedures

Index support

Latency

Scalability

Data format flexibility

Storage cost

RDBMS
sQL
Yes
Yes
Yes
Extensive
Very low
Low
Minimal

Very expensive

Hive
saL
Experimental
Experimental
No
Limited
High
Very high
Very high

Inexpensive

©Mohd_Arif

Hue: What Is It?

* Hue provides a Web front-end to a Hadoop
- Upload data
- Browse data
- Query tables in Impala and Hive

- Search

-~ And much more O Lo | W + =
. Department Location
* Provides access control O——

for the cluster by requiring Y | |

Customer Supgon (227)

users to log in before they T 222
Engneenng (218)

can use the system i

Yoar Hired

* Makes Hadoop easier to use S

2004 (9 ¢ P "
2013 (#92) ~ "\
2012 (70G) -t
2011 (489)
2010 (&01) Salary
Belote 2010 (376)

120,000

‘ Education Level $10.000

©Mohd_Arif

HBase: What Is It?

* HBase is a NoSQL distributed database A P R C HE

0
= Stores data in HDFS hEHSE

* Scales to support very high throughput for both reads and writes
- Millions of inserts or updates per second

* A table can have many thousands of columns
- Handles sparse data well

* Designed to store very large amounts of data (Petabytes+)

©Mohd_Arif

Comparing HBase to a Relational Database

Data layout Column Family-oriented Row- or column-oriented
Transactions Single row only Yes (ACID)
Query language get/put/scan SQL
Indexes Row-key only (limited support Yes
for secondary indexes
Max data size PB+ TBs

Read/write throughput Millions of queries/second 1000s of queries/second
limits

©Mohd_Arif

HBase: When Should | Used It?

* Use HBase if...
- You need random reads
- You need random writes

- You need to do thousands of operations per second on terabytes of
data

- Your access patterns are simple and well-known

* Don’t use HBase if...
- You only append to your dataset and typically read the entire table
- You primarily perform ad-hoc analytics (ill-defined access patterns)
- Your data easily fits on one large node

©Mohd_Arif

