

Introduction

MPP or Massive Parallel Processing

Storage & Data Distribution (Hash, Round-robin, Replicate)

Data types and Table types (Columstore, Heap, Clustered B-tree index)

Partitioning and Distribution key

Applications in Dimensional modeling

Demo – Table Analysis before Migration to Cloud

Azure Synapse MPP Architecture

Source: Microsoft

DWU Loading
3 Tables

Ran
Report

100 15 20

500 3 4

Azure Storage and Distribution

SQL DW charges separately for storage consumption

A distribution is the basic unit of storage and processing for parallel
queries

Rows are stored across 60 distributions which are run in parallel

Each compute node manages one or more of the 60 distribution

Sharding Patterns

Replicated Tables

Source: Microsoft

• Caches a full copy on each compute node.

• Used for small tables

CREATE TABLE [dbo].[BusinessHierarchies](
[BookId] [nvarchar](250) ,
[Division] [nvarchar](100) ,
[Cluster] [nvarchar](100) ,
[Desk] [nvarchar](100) ,
[Book] [nvarchar](100) ,
[Volcker] [nvarchar](100) ,
[Region] [nvarchar](100)

)
WITH
(

CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = REPLICATE
)
;

Round Robin tables

Source: Microsoft

• Generally use to load staging tables

• Distribute data evenly across the table without

additional optimization

• Joins are slow, because it requires to reshuffle data

• Default distribution type

CREATE TABLE [dbo].[Dates](
[Date] [datetime2](3) ,
[DateKey] [decimal](38, 0) ,
..
..
[WeekDay] [nvarchar](100) ,
[Day Of Month] [decimal](38, 0)

)

WITH
(

CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = ROUND_ROBIN
)
;

Hash Distribution Tables

Source: Microsoft

• Highest performance for large tables

• Each row belong to one particular distribution

• It is used mostly for larger tables

Hash Distribution Tables

Record Product Store

1 Soccer New York

2 Soccer Los Angeles

3 Football Phoenix

Hash Distribution Tables

Source: Microsoft

• Highest performance for large tables

• Each row belong to one particular

distribution

• It is used mostly for larger tables

CREATE TABLE [dbo].[EquityTimeSeriesData](
[Date] [varchar](30) ,
[BookId] [decimal](38, 0) ,
[P&L] [decimal](31, 7) ,
[VaRLower] [decimal](31, 7)

)
WITH
(

CLUSTERED COLUMNSTORE INDEX
, DISTRIBUTION = HASH([P&L])
)
;

Avoid Data Skew

Even Distribution

Determines the method in which Azure SQL Data Warehouse spreads the data
across multiple nodes.

Azure SQL Data Warehouse uses up to 60 distributions when loading data into the
system.

Good Hash Key

Distributes
Evenly

Used for
Grouping

Used as Join
condition

Is Not
Updated

Has more than
60 distinct

values

What Data Distribution to Use?

Type Great fit for Watch out if…

Replicated Small-dimension tables in a
star schema with less than
2GB of storage after
compression

• Many write transaction are on the table
(insert/update/delete)

• You change DWU provisioning frequently
• You use only 2-3 columns, but your table has

many columns
• You index a replicated table

Round-robin (default) • Temporary/Staging table
• No obvious joining key or

good candidate column.

Performance is slow due to data movement

hash • Fact tables
• Large dimension tables

The distribution key can’t be updated

Data types

Use the smallest data type which will support your data

Avoid defining all character columns to a large default
length

Define columns as VARCHAR rather than NVARCHAR if
you don’t need Unicode

Data types

The goal is to not only save space but also move data as efficiently as possible.

Data types

Some complex data types (XML, geography, etc)
are not supported on Azure SQL Data

Warehouse yet.

Table types

• Updateable primary storage method

• Great for read-only

Clustered
columnstore

• Data is not in any particular order.

• Use when data has no natural order.
Heap

• An index that is physically stored in the same
order as the data being indexed

Clustered Index

Default table type
High compression

ratio

Ideally segments of
1M rows

No Secondary
Indexes

Clustered
columnstore

No index on the data Fast Load

No compression
Allows secondary

indexes

Heap

Sorted index on the data Fast singleton lookup

No compression
Allows secondary

indexes

Clustered
B-Tree

Table Partitioning

Table

Partitioning

Table partitions enable you to divide your data into
smaller groups of data

Improve the efficiency and performance of loading data
by use of partition deletion, switching and merging

Usually data is partitioned on a date column tied to when
the data is loaded into the database

Can also be used to improve query performance

Why Partitioning?

Partitions best practices

Creating a table Too many partitions can hurt
performance under some circumstances

Usually a successful partitioning scheme has 10 or a few
hundred partitions

Clustered column store tables, it is important to consider
how many rows belong to each partition

Before partitions are created, SQL Data warehouse
already divides each table into 60 distributed databases

A highly granular partitioning scheme can work
in SQL Server but hurt performance in Azure

SQL Data Warehouse.

Example

60 Distributions 365 Partitions 21900 Data Buckets

21900 Data Buckets Ideal Segment
Size (1M Rows)

21 900 000 000 Rows

Lower Granularity (week, month)
can perform better depending on
how much data you have.

Fact Tables

Large ones are better as Columnstores

Distributed through Hash key as much as
possible as long as it is even

Partitioned only if the table is large
enough to fill up each segment

Dimension Tables

Can be Hash distributed or Round-Robin if there is no clear candidate join key

Columnstore for large dimensions

Heap or Clustered Index for small dimensions

Add secondary indexes for alternate join columns

Partitioning not recommended

DEMO

Analyse data distribution at On-premises Datawarehouse before migrating to
Azure Synapse Data Pool.

• We will use Microsoft’s AdventureworksDW database as on-premises data warehouse.

• We will analyse one dimension and one fact table.

• Same process can be repeated to other tables of on-premises database.

MPP or Massive Parallel Processing

Billing = Compute + Storage

Data Distribution (Hash, Round-robin, Replicate)

Data types and Table types

Partitioning Data

Best practice – Fact and Dimension table design

Demo – Analyse Data Distribution

Summary

