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Foreword

Apache Hadoop 2 and the upcoming 3 were a major step forward in moving beyond
the paradigm of MapReduce. At the core of this is the new YARN (Yet Another 
Resource Negotiator) processing framework for creating APIs and processing engines 
on top of Hadoop and HDFS, including the original MapReduce paradigm. Hadoop 2 is 
a significant upgrade to Hadoop 1, requiring updates to how a cluster is set up, managed 
and administered. This book provides everything a developer, operator or administrator 
would need to manage a production Hadoop 2 cluster of any size.

While Hadoop 2 and 3 at the core are HDFS and YARN, there are many other projects 
that are included in a typical production Hadoop cluster. For example, Hive, Pig, Spark, 
Flume and Kafka are often paired with the core Hadoop infrastructure to provide addi-
tional functionality and features. This book includes coverage of many of these complemen-
tary projects with introductory materials good for developers and administrators alike.

Sam Alapati is the principal Hadoop administrator at Sabre Holdings and has been 
working with production Hadoop clusters for the last six years. He’s uniquely qualif ied 
to cover the administration of production clusters and has pulled everything together 
in this single resource. The depth of experience that Sam brings to this book has enabled 
him to write much more than a simple introduction to Hadoop and Spark. While it does 
provide that introductory material, it will be the go-to resource for administrators looking 
to spec, size, expand and secure their production Hadoop clusters.

—Paul Dix, Series Editor 
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Preface

Apache Hadoop is a popular open-source software framework for storing and process-
ing large sets of data on a platform consisting of clusters of commodity hardware. The 
main idea behind Hadoop is to move computation to the data, instead of the traditional 
way of moving data to computation. Scalability lies at the heart of Hadoop, and one of 
the big reasons for its considerable popularity in the big data world we live in today is 
its extreme cost effectiveness owing to the use of commodity servers and open-source 
software.

I started working on this book in the fall of 2014. Hadoop 2 had come out a few months 
earlier, and there were numerous interesting changes in the Hadoop architecture in the 
new release. There was one very good book on administering generic (without the use 
of a third-party vendor’s tools) Hadoop clusters (Hadoop Operations by Eric Sammer), but, 
over time, it became outdated in several areas (it was published in 2012). Tom White’s 
book Hadoop: The Definitive Guide of course is wonderful, and it contains several useful 
discussions pertaining to Hadoop administration, but it’s a book more geared toward 
developers and architects than cluster administrators. I decided to write this book to provide 
Hadoop users a comprehensive guide to administering, securing, and optimizing their 
Hadoop clusters.

As I progressed with the book, Spark became the most important processing framework 
for Hadoop. I therefore added four chapters to discuss the architecture of Spark, the nature 
of Spark applications and how to manage and optimize Spark jobs running in a Hadoop 
cluster. 

In this book, I explain how to manage, optimize, and secure Hadoop environments 
by working directly with the Hadoop configuration files. You may wonder if you really 
need to learn how to administer Hadoop from the ground level up. Like many of the 
people that manage Hadoop environments, I use third-party Hadoop distributions 
such as Cloudera and Hortonworks. Of course, using a tool such as Cloudera Manager or 
Apache Ambari to manage a Hadoop cluster makes your life really easy. However, I realized 
that in order to master Hadoop environments, and to get the most out of your Hadoop 
cluster, you must understand what actually happens behind the scenes when you work with 
a management tool to administer your cluster. This is possible only if you learn how to 
build a cluster from scratch and learn how to configure it for various purposes—high 
availability, performance, security, encryption—as you go along.

Hadoop comes with a large number of configurable properties. In order to take advan-
tage of Hadoop’s powerful capabilities, you must understand the critical performance, 
security, high-availability and other configuration parameters and know how to tune 



ptg18444370

xxx Preface

them. To this end, I’ve explained all of the key administration-related Hadoop config-
uration properties in this book, along with plenty of examples, so you can configure, 
secure, and optimize your cluster with confidence.

Hadoop is an exciting area to work in, with its interactions with software that fall under 
the umbrella of the “Hadoop ecosphere.” In this book, my main focus is on core Hadoop 
itself, specifically on HDFS, the Hadoop distributed file system, and YARN, the processing 
framework of Hadoop. I do discuss several members of the Hadoop—ecosphere, such as 
Apache Sqoop, Apache Flume and Apache Spark—but the emphasis is mostly on how to 
manage the Hadoop infrastructure itself. To this end, I spend quite a bit of time discussing 
the architecture of both HDFS and YARN in this book.

Who This Book Is For
I wrote this book with the Hadoop administrator in mind. However, you do not need 
to be a full-time Hadoop administrator to benefit from this book. If you’re a big data 
architect, developer, or analyst, there are several things in this book that’ll prove to be 
of use to you.

How This Book Is Structured and What It Covers
This book is divided into 5 parts, spread over 21 chapters. Following is a chapter-by-
chapter summary of what this book covers.

Part I: Introduction to Hadoop—Architecture and Hadoop Clusters

 n Chapter 1, “Introduction to Hadoop and Its Environment,” introduces you to 
Hadoop and big data in general. You learn how Hadoop differs from traditional 
databases and about the concept of a data lake. You also learn where Hadoop 
fits in with big data and data science. It also introduces the concept of a Hadoop 
cluster.

The chapter outlines the roles of the key Hadoop components and members of 
the Hadoop ecosphere, such as ZooKeeper, Apache Sqoop, Apache Flume and 
Apache Kafka.

Although Hadoop 1 belongs to history now, it offers a convenient means of tracing 
the evolution of Hadoop to its current incarnation, especially how it separates process-
ing and scheduling and allows multiple processing engines beyond just MapReduce. 
I therefore review the key differences between Hadoop 1 and Hadoop 2 to put things 
in perspective and to help you understand where Hadoop might be headed.

This chapter provides a very brief introduction to MapReduce and Apache Spark, 
the two main computational frameworks for Hadoop, as well Pig and Hive. The 
chapter also describes popular Hadoop data ingestion frameworks such as Apache 
Flume and Apache Kafka. The chapter wraps up with a review of the main areas 
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of focus for Hadoop administrators, such as resource allocation, job scheduling, 
performance tuning and security.

 n Chapter 2, “An Introduction to the Architecture of Hadoop,” introduces the 
architecture of Hadoop and explains how HDFS supports data storage and YARN, 
the other main component of Hadoop, provides the data processing capability.

 n Chapter 3, “Creating and Configuring a Simple Hadoop Cluster,” explains, step 
by step, how to create and configure a single node, pseudo-distributed cluster. 
While you can’t do a whole lot of big data processing with a single node cluster, 
I do this so you learn the installation procedures without worrying about setting 
up multiple nodes right at the beginning. Everything you learn in this chapter 
carries over to the installation and configuring of a “real,” multinode Hadoop 
cluster.

 n Chapter 4, “Planning for and Creating a Fully Distributed Cluster,” explains how 
to plan for a Hadoop cluster and how to size one. I show you the step-by-step 
procedures involved in creating a multinode Hadoop cluster. 

Once you learn how to create a Hadoop cluster, you need to know how to modify 
the default Hadoop configuration. Hadoop comes with a large number of configu-
rable properties for all its capabilities, such as storage, processing, resource allocation 
and security. 

One of the key functions of a Hadoop administrator is to know how to configure, 
tune and optimize their cluster by setting the correct values for a large number 
of configuration properties. This chapter shows you how you get started with 
the configuration of Hadoop. You’ll also learn about how to configure Hadoop 
services, its web interfaces and the various Hadoop ports.

Part II: Hadoop Application Frameworks

 n Chapter 5, “Running Applications in a Cluster—The MapReduce Framework (and 
Hive and Pig),” explains the main concepts of MapReduce, which for many years 
was the only major processing framework available in Hadoop. With Hadoop 2, 
MapReduce isn’t the only processing framework but is still used heavily in many 
Hadoop environments. The chapter shows the well-known WordCount program 
and how to run it in MapReduce.

The chapter also introduces you to Apache Hive and Apache Pig, two popular 
data processing frameworks in many Hadoop shops.

 n Chapter 6, “Running Applications in a Cluster—The Spark Framework,” intro-
duces Apache Spark, which is poised to take over from MapReduce as Hadoop’s 
main processing framework. This chapter focuses on the architecture and installation 
of Spark, as well as how to load data into Spark from various sources. 

 n Chapter 7, “Running Spark Applications,” explains what Spark resilient distributed 
datasets (RDDs) are and shows how to work with them. This chapter also shows 
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you how to run Spark jobs interactively, through the spark-submit command. 
You also learn the various ways to configure Spark applications and how to monitor 
Spark applications.

This chapter also introduces Spark Streaming, for handling streaming data, and 
Spark SQL, for handling structured data.

Part III: Managing and Protecting Hadoop Data and High Availability

 n Chapter 8, “The Role of the NameNode and How HDFS Works,” is a deep dive 
into how the NameNode and the DataNodes interact. You also learn how to 
configure rack awareness in your cluster. 

Data replication is the calling card of HDFS, and you’ll learn about how HDFS 
organizes its data and how data replication works. You’ll also learn how clients 
read data from HDFS and write data to HDFS. Finally, this chapter explains the 
HDFS recovery processes.

Centralized cache management in HDFS offers key benefits, and this chapter 
explains the concepts of centralized cache management, as well as how to config-
ure caching and manage it.

 n Chapter 9, “HDFS Commands, HDFS Permissions and HDFS Storage,” is about 
managing HDFS storage with HDFS shell commands. You’ll also learn about the 
dfsadmin utility, a key ally in managing HDFS. The chapter also shows how to 
manage HDFS file permissions and create HDFS users.

As a Hadoop administrator, one of your key tasks is to manage HDFS storage. 
The chapter shows how to check HDFS usage and how to allocate space quotas to 
HDFS users. The chapter also discusses when and how to rebalance HDFS data, 
as well as how you can reclaim HDFS space.

 n Chapter 10, “Data Protection, File Formats and Accessing HDFS,” focuses on 
safeguarding Hadoop data. In addition, the chapter discusses the compression 
of data and various Hadoop file formats. Finally, the chapter shows you how to 
access HDFS data through HTTP, using WebHDFS and HttpFS.

 n Chapter 11, “NameNode Operations, High Availability and Federation,” starts 
off with a detailed explanation of NameNode operations. You’ll also learn about 
the checkpointing process and how to configure it. The chapter explains how the 
NameNode enters and leaves the safe mode of operations. You’ll also learn how to 
back up the NameNode metadata, which is absolutely critical for the functioning 
of a Hadoop cluster.

The chapter explains how to configure HDFS high availability through setting up 
a Standby NameNode. 
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Part IV: Moving Data, Allocating Resources, Scheduling Jobs and Security

 n In Chapter 12, “Moving Data Into and Out of Hadoop,” you’ll learn how to move 
data through built-in HDFS file system commands, as well as through the DistCp 
utility, which enables you to move data between Hadoop clusters. 

The chapter shows you how to move data between a Hadoop cluster and a rela-
tional database through the Sqoop utility. You’ll also learn how to ingest data 
from various external sources through Apache Flume and Apache Kafka.

 n Chapter 13, “Resource Allocation in a Hadoop Cluster,” explains the topic of 
resource allocation in a Hadoop cluster. You’ll learn how to configure resource allo-
cation among users and groups through the two main Hadoop built-in schedulers—
the Capacity Scheduler and the Fair Scheduler.

 n Chapter 14, “Working with Oozie and Hue to Manage Job Workf lows,” shows you 
how to use two very important components of a typical Hadoop environment—
Apache Oozie and Apache Hue—to configure jobs and manage them, as well 
as to access HDFS, and to work with Hive, Pig, Impala and other processing 
frameworks.

 n Chapter 15, “Securing Hadoop,” is about securing Hadoop environments. The 
main thrust of this chapter is the setting up of authorization through Kerberos, an 
open-source security framework used widely in Hadoop environments. You’ll 
also learn how to set up role-based authentication through Apache Sentry.

This chapter also shows you how to audit Hadoop and YARN operations and how 
to secure Hadoop data through Hadoop’s HDFS Transparent Encryption feature.

Part V: Monitoring, Optimization and Troubleshooting

 n Chapter 16, “Managing Jobs, Using Hue and Performing Routine Tasks,” shows 
you how to use the yarn command to monitor and manage jobs. The chapter 
explains how to perform various routine management tasks such as decommis-
sioning and recommissioning nodes.

The chapter also shows how to set up ResourceManager high availability.
 n Chapter 17, “Monitoring, Metrics and Hadoop Logging,” introduces Hadoop 

metrics and how to make the most of them. There’s a brief review of how to use 
Ganglia to monitor Hadoop. The chapter discusses the basics of Linux system 
monitoring.

The chapter reviews the most frequently used Hadoop web UIs to monitor 
your cluster. Hadoop logging is an important and complex topic, and the chap-
ter shows you how to view various Hadoop-related logs and how to administer 
logging.

 n Chapter 18, “Tuning the Cluster Resources, Optimizing MapReduce Jobs and 
Benchmarking,” shows how to benchmark the performance of a Hadoop cluster 
with the TeraSort and the TestDFSIO testing tools. 
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The chapter’s main focus is on configuring a cluster for optimal performance 
through setting memory and storage parameters in an efficient manner. The chapter 
shows how to tune the performance of MapReduce jobs, as well as offers pointers 
for optimizing Hive and Pig jobs.

 n Chapter 19, “Configuring and Tuning Apache Spark on YARN,” and the next chapter 
are dedicated to the configuration and tuning of Apache Spark running on YARN.
The chapter also shows how to configure resources for Spark and how to monitor 
Spark applications. 

 n Chapter 20, “Optimizing Spark Applications,” discusses the Spark execution model 
in detail. The chapter explains key aspects of Spark performance such as partitioning, 
parallelism, data serialization, compression and caching. You’ll learn about shuff le 
operations and how to minimize them.

 n Chapter 21, “Troubleshooting Hadoop—A Sampler,” is a brief review of Hadoop 
troubleshooting. It discusses space- and memory-related issues, such as JVM garage 
collection strategies, and common failures that occur in a Hadoop cluster.

Hadoop is an exciting environment to work in, with new processing frameworks 
and tools coming on board continuously, keeping you on your toes all the time. It’s, 
indeed, quite an exhilarating journey! I’ve thoroughly enjoyed writing this book, just 
as I do administering Hadoop clusters. I hope you enjoy reading and using the book as 
much as I’ve enjoyed writing it!

Register your copy of Expert Hadoop® Administration at informit.com for convenient 
access to downloads, updates, and corrections as they become available.  To start the 
registration process, go to informit.com/register and log in or create an account. 
Enter the product ISBN (9780134597195) and click Submit. Once the process is 
complete, you will find any available bonus content under “Registered Products.”
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1
Introduction to Hadoop 

and Its Environment

Welcome to the fascinating subject of managing Apache Hadoop! Hadoop is the
leading platform for processing massive sets of data, usually referred to as big data. 
Hadoop, an open-source project, was introduced roughly around 2005, and over the past 
few years, Hadoop has become the de facto standard for processing big amounts of data 
using parallel processing algorithms and simple data processing models that underlie a 
highly efficient and reliable computing architecture. Hadoop is exciting and powerful, 
and it’s a great time, indeed, to be a Hadoop administrator!

Hadoop has been clearly designed with the challenges of big data in mind. Companies 
desperately want to make sense out of the overwhelmingly large data f lows generated 
by online clickstreams, server logs, social media, weather and other sensor data, email and 
cellphone data. Many organizations today use Hadoop to handle their big data needs.

In this first chapter, I

 n Introduce the Hadoop framework
 n Explain how Hadoop fits into the “big data” world
 n Introduce cluster computing and Hadoop clusters
 n Describe Hadoop components and the Hadoop “ecosphere”
 n Explain the nature of the Hadoop administrator’s work
 n Explain distributed data processing with MapReduce and Spark 
 n Introduce data integration with Apache Sqoop, Apache Flume and Apache Kafka
 n Introduce the key areas of Hadoop administration

As you can tell from the title of this book, our focus is entirely on administering 
Hadoop. The topics I discuss in the book benefit the folks who’re tasked with admin-
istering Hadoop environments, as well as other groups such as Hadoop developers who 
may sometimes need to install and manage their own development environments. 
Linux administrators tasked with managing Hadoop systems will also find the contents 
of the book useful in their day-to-day work.
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Hadoop environments mostly run on Linux (and UNIX) systems, although you can 
run them on Windows systems as well. They can be run both on premises and cloud, such 
as the Amazon Web Service’s (AWS) Hadoop-based big data offering named Amazon EMR 
(Elastic MapReduce). This book deals with managing Hadoop on Linux-based systems. 
The basic principles of management, however, are the same regardless of the operating 
system.

While you can install the Apache Hadoop modules directly and set up your own fully 
functional Hadoop environment (as explained in Chapter 3, “Creating and Configuring a 
Simple Hadoop 2 Cluster,” and Chapter 4, “Planning for and Creating a Fully Distributed 
Cluster”), it’s more common for organizations to deploy a vendor-supported Hadoop 
distribution, such as Cloudera, HortonWorks, Pivotal or MapR. However, this book 
doesn’t discuss the proprietary vendor-related products for a simple reason: This book’s 
goal is to show you how to become a good Hadoop administrator, and I believe that 
the best way to do so is to learn Hadoop cluster administration from the ground up, by 
understanding how to work directly with the core Apache product set. 

By learning things this way, you gain an enormous amount of understanding and 
confidence in your capability to troubleshoot, without having to merely click some buttons 
in a vendor-provided cluster manager without really knowing what is happening underneath. 
Having said this, I’m fully in support of using a vendor-provided Hadoop distribution, 
and I think all the leading vendors offer a good product. The best one for you is what 
works well for you in your environment.

Hadoop—An Introduction
Apache Hadoop (to be referred to simply as Hadoop in this text) is, in the words of its 
developers, “a project that develops open-source software for reliable, scalable, distributed 
computing.” Distributed computing in this context involves the processing of data sets 
distributed over a large number of machines. 

Hadoop has been explicitly architected to deal with very large sets of data, and it’s 
helping transform the way organizations harness their data. A good example is the recent 
(2015) case of the national plebiscite held in Scotland to determine if the Scots should 
separate from the United Kingdom to become an independent entity. The proponents 
of Scottish independence relied on Hadoop-based data analysis to drive their efforts. 
Similarly, companies are using Hadoop to optimize websites that drive customer loyalty 
programs. Well-known marketing strategies such as product recommendations, customiza-
tion and dynamic pricing (used heavily in the airline industry) can be effectively supported 
by Hadoop’s capability to churn through massive amounts of data in a very short time.

Hadoop is both fascinating and very complex, due to the large number of products 
you work with in a Hadoop environment. Administering Hadoop requires you to 
understand not only the core Hadoop system, which involves data storage called HDFS 
(Hadoop distributed file system) and a processing framework called YARN (Yet Another 
Resource Negotiator), but also a dizzying array of components that work with the core 
Hadoop system. These components provide various services such as high availability, 
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management of high volume data f lows into and out of the Hadoop system, scheduling 
Hadoop jobs, providing security and others.

Note

As the Preface explains, this book deals with Hadoop 2. To be more specific, the book uses 
Hadoop 2, release 2.6.0. I occasionally explain some new features that are available only 
in the 2.7 release.

Unique Features of Hadoop
Following are the main ways in which Hadoop stands apart as a unique platform for big 
data analysis.

 n Capability to handle large data sets: Hadoop is explicitly designed to handle large 
amounts of data, which can easily run into many petabytes and even exabytes. 
Hadoop file sizes are usually very large, ranging from gigabytes to terabytes, and 
large Hadoop clusters store millions of these files.

 n Fault tolerance: Everything in Hadoop is based on the assumption that hardware 
fails. Hadoop depends on large numbers of servers so it can parallelize work across 
them. Server and storage failures are to be expected, and the system isn’t affected 
by non-functioning storage units or even failed server. (As you’ll learn soon, data 
is by default replicated three times in Hadoop systems.)

Hadoop is highly fault reliant: Both YARN and HDFS will continue their process-
ing unimpeded when one or more disks go bad, or even when one or more servers 
go down. This is the beauty of the built-in data replication capability of Hadoop.

 n Streaming access to data: Traditional databases are geared mostly for fast access 
to data and not for batch processing. Hadoop was originally designed for batch 
processing such as the indexing of millions of web pages and provides streaming 
access to data sets. (Newer developments have enabled other processing paradigms 
such as interactive SQL, iterative processing, search and stream processing.)

 n Simple data consistency model: Unlike traditional databases, Hadoop data files 
employ a write-once-read-many access model. Data consistency issues that may 
arise in an updatable database aren’t an issue with Hadoop file systems, because 
only a single writer can write to a file at any time.

Big Data and Hadoop 
Modern data types and new forms of data f lows need a sophisticated data-processing 
system to harness them. Hadoop’s modern data storage and processing framework stores 
large amounts of diverse types of data in a cost-effective fashion. More importantly, it’ll also 
let you process the huge amounts of data it stores to help you derive business insights and 
make predictions, all of which would be beyond the capabilities offered by traditional types 
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of data stores (such as relational databases, operational data marts and enterprise data 
warehouses) that businesses have counted on for years. 

One of the key requirements in today’s big data environment is to develop the ability 
to ask complex questions of this data to attain sharper business insights, thus making big 
data cost-effective and a source of competitive strength for your organization.

Hadoop has been clearly designed with the challenges of big data in mind. Using 
massive streams of data that are f lowing into their systems to create more effective business 
strategies and thus gain completive advantage is, if not the most important challenge 
facing organizations, definitely near the top of the list. Companies desperately want to 
make sense out of the large data f lows generated by online clickstreams, server logs, social 
media, weather and other sensor data, email and cellphone data, GPS data and so on.

Hadoop is typically used by organizations to handle large volumes of the following 
types of data:

 n Clickstream data: This is data emanating from user clicks through their website 
visits. Companies analyze clickstream logs for customer segmentation, customer 
personalization, tracking customer activity and so on, in order to inf luence and 
modify customer decision-making.

 n Call center data: These are the typed notes collected from call center operators.
 n E-mail and instant messaging: E-mail and instant messaging repositories hold

information critical to security and compliance.
 n Server logs: This is the data relating to customer website login activity and plays 

a critical role in security.
 n Sentiment data: This refers to the data from social media such as Twitter, which 

helps organizations garner crucial information regarding their customer behaviors 
and preferences.

 n Sensor data: This is data captured from sensors embedded in machines, instruments 
and servers to predict and reduce failures and improve design.

 n Unstructured data: This refers to data and pictures that help identify patterns and 
anticipate future activity such as criminal behavior, which can be forecast based on 
data relating to facial expressions (image classification).

 n Geographic data: This category includes data from Global Positioning Systems (GPS) 
and radio-frequency identification (RID), which helps plan efficient routes for 
work such as designing highways and locating cell towers, as well as optimizing 
the layout of offices and commercial establishments.

The key to Hadoop’s capability to process data so efficiently is the feature known as 
data locality, meaning Hadoop brings processing to where the data is stored, rather than 
doing things the old fashioned way, which involves moving data through the network. 
That tends to be far slower, due to the network/bandwidth bottleneck. Hadoop stores 
its data in a distributed file system called HDFS, and it moves computation such as 
MapReduce processing to the cluster’s nodes using YARN, which is Hadoop’s resource 
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management system. As I explain later in this chapter, a distributed file system in this 
context means a file system that stores and manages data across a network of machines.

MapReduce is the most common processing framework used in Hadoop environments, 
although newer frameworks such as Spark are fast gaining ground, as I explain later in 
this chapter. 

A Typical Scenario for Using Hadoop
Let’s take one of the most popular uses of Hadoop—log data analysis—to show how 
Hadoop helps organizations that deal with large volumes of data that can’t really be 
analyzed in any other way. Let’s see how MapReduce helps process web clickstream 
data to derive useful conclusions about users’ behavior on a company’s website. 

Typically, users access a company’s website and look through the site, to see which 
items they may want to purchase. Once the users select an item they want to buy, they 
add the item to their shopping cart and pay for the purchase on the checkout page. 
However, users sometimes abandon their shopping carts before completing the purchase, 
and companies are naturally interested in finding out more about the nature of these 
abandoned purchases, since it is potential revenue they have lost.

MapReduce uses keys and values as the basis for sorting and aggregating data and, 
in this case, the key is the IP address and the value is the timestamp and URL. Using 
MapReduce processing, a company can gather detailed information about the abandoned 
shopping carts. MapReduce consists of two phases—map and reduce. During the map 
phase, the processing gets you the following information:

 n The final pages visited by the users
 n The contents of the abandoned shopping carts
 n The user session’s transaction state

The reduce phase then does the following:

 n It gathers together all the data emitted by the map phase.
 n It aggregates the data to figure out the total number of weekly (or monthly) 

abandoned carts and the total value of the items that were abandoned. 
 n It shows the most common final page visited by the users when they ended their 

website visit, abandoning their shopping carts.

This is a simple example that shows how companies use Hadoop and its processing 
frameworks such as MapReduce to derive useful conclusions from the vast amounts of 
data they own, such as the clickstream data in this example.

Traditional Database Systems
For a number of years now, businesses have relied on online transactional databases, 
data marts and data warehouses to store and analyze business data, which is also called 
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structured data because it adheres to standard methods for organizing itself. All these 
traditional types of data stores are still immensely useful and will retain most of their 
functions even today when big data has become a pervasive phenomenon. However, 
several new developments over the past 10 to 15 years have made the need for a new data 
storage and processing framework imperative. I summarize these developments here:

 n New types of data such as unstructured data and semi-structured data (e.g., Twitter 
feeds, server logs, video and audio) require a new way to store these types of data 
and to effectively make use of the information contained in the data.

 n Increasingly large amounts of data f lowing into organizations through websites 
and other sources overwhelm the storage and processing capabilities of traditional 
data warehouses.

 n New computational paradigms use non-traditional NoSQL databases to rapidly 
mine and analyze very large data sets.

 n There is an increasing cost of storing and analyzing the large amounts of data f lowing 
into company systems.

 n There is an increasing use of data analytics, which requires significant storage and 
processing capabilities.

A huge problem with traditional databases when it comes to dealing with big data is 
that traditional systems use a scale up architecture, which means that you add more CPU 
cores, RAM and disk storage to existing servers in order to process ever growing mounds 
of data. Scaling up with the help of ever more powerful computers is extremely expensive. 
With very high volumes, you also have to worry about the fact that moving the data from 
storage to the CPUs for processing becomes the bottleneck. Hadoop’s HDFS file system 
lets you adopt a scale out architecture by letting you grow total storage capacity by con-
tinually adding more (small, commodity) servers as the data sizes grow. 

Note

Two factors are behind Hadoop’s capability to easily process large sets of data. The first is 
the framework’s capability to harness a large number of computers, thereby making short 
work of processing humongous chunks of data that could extend to hundreds of petabytes. 
The second is the built-in fault tolerance.

Hadoop provides a way to solve all (or at least, most) of the problems posed by the 
new developments I listed above with respect to the usage of organizational data. Four key 
factors—cost effectiveness, easy scalability, high reliability and powerful processing 
capabilities—underlie Hadoop’s success in harnessing enormous amounts of data. Here, 
brief ly, is how Hadoop provides solutions to the problems I listed here:

 n Hadoop can store and process traditional structured data as well as semi-structured 
and unstructured data.

 n Hadoop can store virtually unlimited amounts of data and supports multiple pro-
cessing frameworks that can analyze that data.
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 n Hadoop can handle SQL- and NoSQL-based computational frameworks and uses 
a computational strategy of parallel processing to efficiently process the large data 
sets it stores.

 n Hadoop is extremely cost-effective, since it uses commodity servers and almost 
all of the components in the Hadoop environment are open-source software.

 n Hadoop is tailor made for data analytics—it’s designed for the storage and pro-
cessing of vast data sets.

While we’re on this topic, we might also want to note that while Hadoop (especially 
MapReduce) is ideal for analyzing large datasets and relational databases are optimized 
for speedy retrieval and updates, the differences between the two types of data stores are 
diminishing a bit. For example, Hive, which helps users impose a relational database–like 
abstraction over HDFS data, is adding features well known in the relational database world, 
such as indexes and transactions, although the transactions may be more limited than in 
relational databases (no support for Commit and Rollback, for example). However, Hadoop 
is inherently quite different from traditional databases and will remain so. Just to take 
one example, web server logs and other logs are popular Hadoop data sources. These logs 
are not normalized, and therefore they’re ideal for use with Hadoop—whereas relational 
databases usually require you to normalize your data.

One of the biggest issues with traditional databases and data warehouses is scalability. 
Once your data reaches a few terabytes, queries take an extremely long time to finish. 
Scalability (and reliability) is Hadoop’s calling card—the size of your data set is really 
irrelevant if you’ve the processing capacity. If you triple the number of nodes in a cluster, 
you can get the job done in a third of the time—simple as that!

Hadoop has been widely recognized as an established platform for handling big data. 
There are areas such as fraud detection that have been transformed due to the use of Hadoop, 
since you can now process entire data sets instead of having to sample portions of it, 
which helps with more accurate fraud modeling. More and more companies are not only 
adopting Hadoop but making it the centerpiece of their big data strategy. Hadoop makes it 
possible for you to not just query samples of large data sets but query all your data at once 
and reveal insights that were previously unattainable using traditional data-processing and 
analytical techniques. The natural outcome of this evolution is the concept of a data lake.

Data Lake
The concept of a data lake is relatively new and alludes to a central location to store all 
of an organization’s data, irrespective of the source of the data as well as the analytical 
frameworks that utilize this data. The data lake serves as a data ingestion and analytical 
grid for the organization. 

You can use the data lake as a landing place for all data arriving into a company’s systems 
as well as to store data you wish to off load from data warehouses and other data stores. The 
key idea is that you maintain one big central repository for all your data—structured, 
semi-structured and unstructured—and use it in myriad ways for analysis. 



ptg18444370

10 Chapter 1 Introduction to Hadoop and Its Environment

Figure 1.1 shows a typical data lake that gathers data from a variety of sources and 
feeds into Hadoop. The Hadoop platform is generally used to extract data that’s sent to 
downstream ETL (extract, transform and load) tools or to BI (business intelligence) 
tools. Note that there may be a two-way interaction between the Hadoop platform and 
the BI and ETL components.

By its very design, a data lake lets you adapt to new types of data and lets you use a 
multitude of data-processing and analytical techniques to benefit from the vast troves 
of data stored therein.

Hadoop is at the center of a data lake, by providing a landing zone for all data f lowing 
into an organization’s systems. Hadoop is an excellent venue for the long-term retention 
of data and also serves as a powerful ETL platform. Due to its cost-effectiveness, it costs 
much less to store data in a Hadoop cluster than in traditional data warehouses. In addi-
tion to serving as a landing zone for data, Hadoop also stores the data so you can do the 
following:

Capture All Data

Classic Data
Integration
and ETL

Process and
Structure

Distribute
Results

Feedback
and Retain

Logs and Text Data

Hadoop
Platform

Sentiment Data

Sensor Data

Geo and Tracking 
Data

Clickstream Data

Structured
DB Data

Business Transactions
and Interactions (Web, Mobile,

CRM, ERP, POS)

Business Intelligence
and Analytics (Dashboards,

Reports, Visualizations)

Figure 1.1 A Hadoop-based data lake architecture, with data from a variety of sources 
flowing into Hadoop, which processes the data and sends it to ETL and BI components
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 n Query the data directly with tools such as Apache Hive and Apache Pig
 n Preprocess and transform data before sending those data along to data warehouses 

for analysis

Big Data, Data Science and Hadoop
Data science involves the use of advanced statistical techniques and data mining (machine 
learning) algorithms to derive predictive and inferential insights using domain-specific 
data sets. While data science (usually in the form of old-fashioned statistical techniques 
such as regression, for example) has been around for a very long time, it’s only in the past 
few years that data science at scale has become all the rage. Hadoop is the foundation for a 
lot of data science work, due to its ability to support the storage and analysis of humongous 
amounts of data in a reliable fashion, while using plain commodity servers.

Data products are the target of many data science projects. A data product in this context 
is the combination of data and statistical/data mining algorithms that lets you predict the 
future and make sound statistical inferences. Amazon’s well-known product recommen-
dations are a good example of a data product. As you know, this data product recommends 
books and other items to you based on your past purchases as well as the purchases made by 
users that have profiles similar to yours. 

Data products are increasingly becoming a key part of various businesses and serve as 
the underpinning for many business decisions. 

The typical analytical workf low for a data science project involves the following 
components, in the form of an interconnected data pipeline:

 n Data ingestion
 n Data wrangling
 n Data modeling
 n Visualization
 n Reporting

Large Datasets and Hadoop
The vast outpouring of data over the past decade demanded a better approach to data analysis 
than the traditional statistical analysis strategies that relied on sampling large data sets. 

Dealing with massive data sets generated by the avalanche of personal and shopping 
data generated non-stop by the Internet is out of the question for traditional data ware-
houses. It’s Hadoop that’s uniquely placed to handle these big data workf lows. While 
Hadoop is certainly not the first distributed computing system, its arrival was perfectly 
timed: It came on the scene just as folks were casting around for a powerful platform 
for performing data analytics at scale. 

Hadoop is unique in that not only does it offer cost-effective (cheap!) storage for 
large amounts of data but it also serves as a great platform for a whole set of ancillary 
tools that complement the storage and help provide various services such as integration 
with relational databases (Apache Sqoop), job scheduling (Apache Oozie) and others.
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Why Hadoop Is Easy to Adopt
You don’t have to be a behemoth of a company like Google or Facebook to use Hadoop 
as the foundation of your data science projects. Many companies begin with a small cluster, 
such as a 6 to 12 node cluster, and use it as a POC (proof of concept) and a starting point 
for growth. You can also jump onto the Hadoop bandwagon with minimal outlays, by 
simply using a cloud-computing model such as Amazon EC2 or the Google Compute 
Engine. The cloud-computing model especially makes Hadoop easily affordable and 
accessible for organizations with little money to spend and not many technical resources 
to lean on.

Cluster Computing and Hadoop Clusters
Hadoop is all about managing large-scale data processing over a large number of computing 
nodes, which together provide both efficient and fault-tolerant processing of large data 
sets. Let’s quickly review what cluster computing involves in the following section.

Cluster Computing
Traditionally, when organizations sought to perform parallel processing, they used massive 
parallel computers with numerous processors and expensive specialized hardware. The 
f lourishing of the Internet and web-based services has, however, resulted in companies 
using thousands of computing nodes that use commodity hardware. These massive sys-
tems provide the power of parallelism, while taking care of the reliability problems due 
to the spreading of the work among thousands of nodes, each of which is susceptible to 
failure but also avoids the problem of a single point of failure.

Note

The capability of big data infrastructures such as Hadoop to efficiently crunch through vast 
amounts of data is based on the application of what’s called “embarrassingly parallel” com-
puting algorithms that break up large workloads into small chunks that can be processed by 
an individual member of a cluster of machines.

The parallel computing architecture based on a large number of computing nodes 
is referred to as cluster computing. The commodity hardware is grouped into multiple 
racks, with each rack holding anywhere between 6 to 64 nodes on average. The nodes 
running in each rack are usually connected by Gigabit Ethernet (GbE), with multiple 
racks being connected to a network switch. 

In a cluster-computing model, it’s not uncommon at all to encounter server failures, 
which can result from the failure of a single node, or the failure of an entire rack of servers. 
Since the purpose of using this model of computing is to perform very large computa-
tions, it’s not feasible to simply restart long-running jobs after each failure. The model 
uses two simple but highly effective strategies to guard against the loss of a single disk 
or an entire node. First, it makes use of redundant copies of the data blocks, making sure 
to store the copies on servers located in different racks. The data blocks divide a file into 
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multiple chunks and replicate them (default Hadoop/HDFS replication factor is 3, but 
you can change it) across the cluster. Second, each large job is divided into tasks, and 
any failed task can easily be restarted independently from the other running tasks. 

Cluster computing uses a distributed file system (DFS) that uses large files, ranging 
from hundreds of megabytes to terabytes. This is why you won’t need Hadoop if you 
don’t deal with large data sets. Further, to be amenable to the cluster-computing model, 
you must want to perform some type of analytical work with the data. This means that 
even though you have a very large data set in a database, you won’t need Hadoop if all 
you want to do is perform simple lookups of data or perform insertions and deletions of 
data, as is the case in an online transaction processing (OLTP) system. The data model for 
cluster computing essentially deals with a write-once, read-often style of data processing. 
Mostly, data is written to the file system and is rarely updated after the initial write.

Hadoop Clusters
Throughout this chapter and the rest of the book, you’ll often come across the term 
Hadoop cluster. A Hadoop cluster consists of a set of machines and the operating system 
daemons and software processes that run on those machines to store and process data. 
Hadoop clusters are easily scalable—all you have to do is add servers to increase both 
the storage and the processing capacities. A Hadoop 2 cluster can support over 10,000 
servers. 

A typical Hadoop cluster consists of the following entities:

 n A set of master nodes (servers) where the daemons supporting key Hadoop frame-
works run 

 n A set of worker nodes that host the storage (HDFS) and computing (YARN) work
 n One or more edge servers (so called because they really don’t run any Hadoop 

processes but can access the cluster), which are used for accessing the Hadoop cluster 
to launch applications

 n One or more relational databases such as MySQL or PostGres for storing the 
metadata repositories for frameworks such as Hive, Sqoop, Oozie and Hue

 n Dedicated servers for special frameworks such as Kafka and Storm

Figure 1.2 shows the basic architecture of a Hadoop cluster.
Although, technically speaking, Hadoop consists of just HDFS and YARN, it’s very 

common to use a number of other frameworks and software such as Hive, Pig, Oozie, 
Spark and Flume in production Hadoop clusters. Therefore, your cluster, realistically 
speaking, will actually consist of the entire set of servers where the supporting cast of 
characters runs.

Mining of large sets of data is a primary goal for many large companies today. Ranking 
web pages and searching social-networking sites are two examples where you deal with 
pretty regular data f lows, which makes it easy to mine them using data parallelism. In order 
to efficiently process these types of large data sets, a new programming paradigm using a 
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different type of software stack has evolved. Whereas traditional data processing has focused 
on larger and larger computers, leading to the birth of supercomputers, this newer approach 
employs clusters of inexpensive computers connected by inexpensive switches or Ethernet 
cables. 

The new software stack, as represented by Hadoop, has a distributed file system as its 
foundation. Unlike traditional databases, this file system typically uses very large data 
blocks in order to quickly process vast chunks of data. Another key feature is built-in 
redundancy of data, since the file system uses inexpensive computing nodes, each of 
which may fail at any time. The redundancy is provided by replicating all data across 
multiple servers, usually three in number. 

While the distributed file system is the foundational layer designed for data storage, 
the new software stack started out providing the processing capability through a pro-
gramming model called MapReduce. By combining the distributed file system with the 
MapReduce programming model, you can perform large-scale computations across a 
vast cluster, all the while being protected against intermittent hardware failures through 
the built-in data redundancy.

An important reason for the popularity of Hadoop is the fact that when you combine 
MapReduce with the Hadoop HDFS file system the economics of the combined system 
make sense to most organizations. You can use inexpensive servers, and you don’t need 

YARN
(Yet Another Resource Negotiator)

HDFS
(Hadoop Distributed File System)

MapReduce
(Batch)

Spark
(In-Memory)

Spark
(Streaming)

Hive
(SQL)

Figure 1.2 The basic architecture of a Hadoop cluster
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to use storage area networks or fancy network configurations. If you don’t want to set 
up your data center, you can always use a cloud-based Hadoop environment, such as 
Amazon’s EC2 storage.

A big factor in the efficiency of Hadoop is avoiding the moving of data. You do the 
computing where the data is stored, instead of moving the data to a node where you 
perform the computations. You can schedule the MapReduce jobs on the same nodes 
where the HDFS data is stored, reducing the network load and limiting I/O to mostly 
local disks or within the same rack.

Hadoop Components and the Hadoop Ecosphere
Hadoop itself consists of several components and on top of that, you typically employ 
additional components such as Hive, Pig, Kafka and Sqoop, for example, to process 
the data you store in a Hadoop system and to integrate that data with other data 
stores.

New Hadoop users are somewhat bewildered by the large number of products they 
come across, including Hive, Pig, HBase, Spark, ZooKeeper and several other esoterically 
named products. Apache itself classifies the Hadoop framework simply as follows:

 n Hadoop common: The base utilities that support the rest of the modules in the 
Hadoop environment, including:

 n Essential services for the Hadoop cluster, such as authentication of the operating 
system and its file system

 n Cluster startup scripts and the necessary Java files for those scripts
 n Documentation
 n Source code for the Hadoop Framework

 n HDFS: A file system to provide high throughput access to data
 n Hadoop YARN: A framework for scheduling jobs and managing resources
 n Hadoop MapReduce: A framework for the parallel processing of large data sets

The best way to get a good handle on the vast Hadoop environment is to use the 
following informal classification to group the various Hadoop-related projects.

 n Hadoop common: As mentioned above, these are the base utilities that support 
the rest of the modules in the Hadoop environment. 

 n Data storage: This is provided by HDFS. HBase provides structured data storage 
for large tables (see the Note on the next page). 

 n Operating system: The Hadoop “operating system,” known as YARN, is Hadoop 2, 
which sits on the server operating system (such as Linux) and provides job scheduling 
and resource management capabilities.
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 n Data processing: This refers to distributed data processing of large data sets, 
offered by projects such as Hadoop’s MapReduce, Apache Tez and the Apache 
Spark computing engine.

 n Management tools and coordinator services: Ambari is Apache’s Hadoop manage-
ment and monitoring tool. ZooKeeper is the Apache component that coordinates 
the work of distributed applications.

Figure 1.3 shows a typical Hadoop ecosphere—just remember that the ecosphere is 
continually evolving, with newer and more efficient components supplanting or com-
plementing existing components. 

Note

Although this book doesn’t go into its details, Hadoop does offer its own distributed, 
column-oriented database named HBase (Hadoop Database), which uses HDFS for its 
storage. HBase helps you perform batch-mode computations using MapReduce as well as 
random queries. HBase consists of an HBase Master that manages the cluster state and 
Region Servers, which run on all the nodes hosting HBase tables and are responsible for 
processing the I/O requests.

Batch, Interactive and Real-Time Data Access with Hadoop

YARN: Operating System for Hadoop
(Hadoop Cluster Resource Management)

HDFS
(Hadoop Distributed File System)

Script

Pig

SQL

Hive
Spark SQL

Java
Scala

Cascading

Stream

Spark
Streaming

In-Memory

Spark

Search

Solr

NoSQL

HBase
Accumulo

Machine
Learning

Spark ML
Spark R

Figure 1.3 The Hadoop ecosphere, showing the Hadoop 
core components and commonly used tools
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The Hadoop ecosystem consists of several related projects, which work very well 
together to sustain highly efficient and reliable large-scale distributed data processing. 
Most of these projects are supported by the Apache Software Foundation. 

Table 1.1 lists the key Hadoop-related projects that constitute the Hadoop ecosystem—
just remember that Hadoop and big data are fast-moving areas and new projects come 
online all the time!

As a Hadoop administrator, you most likely won’t be expected to be an expert in all 
of these areas. Fortunately, there are other folks in a typical organization who architect 
and develop the data processing, data f lows and data integration mechanisms in order to 
work with Hadoop. For example, data scientists are the experts in using Apache Mahout, 
which is Apache’s machine learning tool. 

As an administrator, your job is not so much to code MapReduce and Hive or Pig 
data extraction jobs, but to schedule jobs, load data and perform similar administrative 
tasks. To that end, this book explains how to work with the components that are most 

Table 1.1 The Hadoop Ecosphere

Component Description 

Avro Framework for transforming data into a compact binary format

Flume Data-flow tool for moving streaming data into Hadoop

HBase A columnar database that uses HDFS for its storage

HCatalog A service that provides a relational view of data you store in HDFS

Hive A distributed data warehouse for HDFS data that provides a SQL-like layer to 
this data

Hue A user and administrative interface that lets you browse HDFS files, run Pig 
and Hive queries and schedule workflows through Oozie

Kafka A message-queuing framework that handles large amounts of real-time data 
traffic

Mahout A library of machine-learning algorithms implemented in MapReduce

Oozie A job-scheduling tool

Pig A framework for analyzing large data sets that let you create data pipelines

Sqoop A data movement tool that moves data between HDFS and relational 
databases

Storm An object-relational mapping library that supports real-time stream 
processing

Tez A data-processing framework for batch processing that also provides 
interactive querying capabilities

ZooKeeper A coordination service used by distributed applications such as Hadoop, 
HBase, Storm, Hive and Kafka
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important for administrators, such as Apache Oozie, which you must master in order to 
efficiently schedule Hadoop-related jobs. Similarly, learning how to use Apache Sqoop 
lets you move data into and out of your cluster.

Just remember that even though Hadoop environments have a plethora of components, 
the only component that must be present is HDFS—the storage layer. You can select 
the components you need for your particular case from the set of available components.

What Do Hadoop Administrators Do?
Now that you have a bird’s eye view of Hadoop and its role in big data environments, 
it’s time to turn to the main focus of this book, which is the administering of Hadoop 
environments. So, what is Hadoop administration, and what do Hadoop administrators 
actually do? The functions of a Hadoop administrator are remarkably similar to those 
of a traditional database administrator in many ways. An Oracle or Microsoft SQL 
Server administrator will find the typical Hadoop administrator’s responsibilities quite 
familiar. I worked as an Oracle database administrator for a long time before switching 
to Hadoop, and I found the transition easy, although there are significant differences 
between traditional database management and Hadoop-based systems.

One of the interesting aspects of Hadoop is the way the components in the Hadoop 
ecosystem are used with the base Hadoop framework of YARN and HDFS. As an adminis-
trator, you can’t be expected to master the use of every one of these components—there 
are simply too many of them, and new ones keep springing up all the time! However, 
you need to know some of them, such as the ZooKeeper service that supports high 
availability, in great depth. As regards other components such as Pig and Hive, you need 
to know at least enough to understand how they work—your main responsibility is to 
support others that use these and other processing frameworks.

 Let’s quickly review the essential Hadoop administration functions in the following 
sections.

Hadoop Administration—A New Paradigm 
A striking feature of Hadoop administration is that you’re dealing with an inherently 
fault-tolerant system. Let me take a simple example of how this impacts management. 
If you’re an Oracle (or any other relational database) administrator, you know that any 
space-related alerts could mean a potential issue on a production system. If you’re getting 
alerts stating that tablespace or a file system is quickly filling up, you must quickly add 
space to that file system or to that tablespace ASAP. Otherwise, you’re looking at a potential 
job failure because it will run out of space to write its data. 

Of course, jobs will fail in a Hadoop environment if you don’t have sufficient free 
storage space to accommodate new data. However, the failure of a single disk or even 
an entire server won’t doom your job, because a task that fails due to the storage issues 
will automatically be restarted by Hadoop on a different node.

Since you’re dealing with not one or two but potentially dozens and hundreds (even 
thousands) of data nodes in a cluster, it’s good to know that you’re not continually scurrying 
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around attending to failed disks and downed servers. Of course, the failed entities must 
be revived, but there’s no rush at all—you do so when you can.

Here’s a short list of the most essential tasks performed by most Hadoop administrators, 
which I cover in the following sections:

 n Installation and upgrades
 n Assisting developers
 n Performance tuning
 n Monitoring and troubleshooting
 n Backups and disaster recovery

Installation and Upgrades
Installing and configuring a Hadoop cluster is one of the basic tasks that a Hadoop 
administrator is expected to know well. Installing a single-node Hadoop environment, 
also called a pseudo-distributed system, is useful for initial forays into the Hadoop 
world and is pretty straightforward. Installing and configuring Hadoop across multiple 
computing nodes in a real cluster is definitely more complex and requires a comfort level 
with system administration.

In addition to installing Hadoop, you must also configure it for efficient and trouble-free 
performance. Typical databases such as Oracle have only a few configuration parameters 
that you need to set. Hadoop, as you’ll soon find, has numerous “knobs” that you can 
tinker with. A Hadoop administrator will spend lots of time learning about and experiment-
ing with numerous configuration parameters in order to fine tune the system.

Hadoop administration differs significantly from typical database administration, where 
your installation and configuration is really limited to just the database and a couple 
of additional tools. Hadoop environments utilize a large number of products, and an 
administrator is responsible for installing and configuring all of these products. Of course, 
as is the case with other types of system administrators, in addition to installing new 
Hadoop software, a Hadoop administrator spends a lot of time upgrading the various 
components, as and when necessary.

Assisting Developers
A typical Hadoop administrator will support multiple developers and analysts who work 
with data. The administrator sets up the identities for these users so they can work with 
Hadoop and ensures that the users have sufficient storage allocated for their HDFS directories. 
The administrator also usually helps the developers, analysts and other users overcome 
common issues such as connectivity, privileges and the troubleshooting of slow-running 
or failed jobs.

Performance Tuning
Performance tuning (or optimization) is a key responsibility of the Hadoop administrator. 
While developers are expected to understand and implement optimizations such as using 
combiners as part of their MapReduce programs and know the theory behind partitioning 
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and parallelization of Spark jobs, there’s much more to Hadoop performance tuning 
than writing more efficient MapReduce code. Other duties include the optimization 
of Pig (a data pipelining tool) and Hive (an abstraction over MapReduce that helps perform 
data warehousing—related analysis) jobs, which use the MapReduce execution engine 
underneath.

There are multiple areas that need the administrator’s involvement. You must be adept 
at figuring out any server-level performance issues, including memory and CPU utili-
zation. You must also know how to look for network-related issues in your cluster. Once 
you get past the server level and get to the actual Hadoop level, there are several areas you 
must focus on, in order to optimize the cluster’s resources. These include the setting of 
appropriate values for several configuration parameters. 

Monitoring and Troubleshooting
While Hadoop offers you several ways to monitor your system with its built-in interfaces, 
such as the NameNode and ResourceManager UIs, they can take you only so far in 
managing your cluster. Remember that the Hadoop cluster itself runs on the underlying 
operating system, typically a Linux-based system. Tools such as Nagios and Ganglia help 
you manage and monitor the entire cluster, including the operating system, storage and 
network.

Backups and Disaster Recovery
Unlike traditional databases, there’s no concept of backing up the entire database in 
Hadoop, because, first of all, there’s no one database in which all the data is stored. 
Rather, the data is stored in files in HDFS. Since Hadoop data is usually very large, backing 
up data isn’t a very feasible or practical idea. In some cases, you can simply reproduce the 
data by going to the source. If you think some of the data is critical, you can certainly 
copy that data to a different cluster for protection. You can also use Hadoop's snapshot 
capability to protect key data, as explained in Chapter 12, “Moving Data Into and Out 
of Hadoop.” In any case, know that you aren’t really that vulnerable to the failure of 
a server or even an entire rack of servers. All bets are off, of course, if the whole data 
center is wiped out due to a natural calamity.

What You Need to Know to Administer Hadoop
One of the most common questions would-be Hadoop administrators ask is: “Do I need 
to know Java?” The simple answer is: No Java required. MapReduce, and for that matter 
HDFS and all Hadoop code, is written in Java. If you already know Java, that’s great, but 
it’s not a requirement by any means. 

While you may get by without having even a basic understanding of Java, it sure helps to 
pick up some Java programming skills on the side while you’re working with Hadoop. 
Any such Java knowledge you acquire is going to come in handy during troubleshooting 
and performance tuning. At the least, you should learn how to dig through Java stack 
traces. With Hadoop being written entirely in Java, you’ll be digging through a lot of 
Java stack traces!



ptg18444370

21Key Differences between Hadoop 1 and Hadoop 2 

Apache Spark, which is becoming increasingly popular in Hadoop environments, can be 
programmed in Scala, Python or Java. However, Scala offers far more benefits and is quite 
popular. So, picking up a bit of Scala will come in handy when working with Spark applica-
tions, as well as for troubleshooting their performance in your cluster.

SQL knowledge is a different kettle of fish. If you are a Hadoop administrator, 
chances are you won’t be spending your time solely on such issues as hardware maintenance 
and software upgrades. Whether you like it or not (I happen to enjoy it!), you’ll most 
likely be called upon to help developers and analysts who run into various types of 
performance-related issues. These issues may range from things like users being unable to 
use the system at all due to some configuration issues to analyzing the reasons for poor 
performance of simple-looking queries. 

Luckily for all involved, almost all your SQL skills acquired in a previous incarnation 
as a database (say, Oracle or MySQL) administrator are fully usable in a Hadoop environ-
ment. Remember that programming frameworks such as Hive use a SQL abstraction 
over MapReduce. So, you’ll find yourself in situations where you can carry the day purely 
on the basis of your SQL background, despite not knowing a lick of Java!

The Hadoop Administrator’s Toolset
Most Hadoop installations are being run on Linux systems. Thus, strong Linux administra-
tion skills are definitely very handy to have when administering Hadoop. It’s also the 
case that in several organizations, the Hadoop environment is entirely managed by a 
Hadoop administrator with Linux skills or a Linux administrator who knows Hadoop.

It’s a fair guess to say that the overwhelming majority of Hadoop environments use a 
third-party vendor-supported installation, such as Cloudera or Hortonworks or MapR. 
If your organization happens to be one of these companies, you’ll be using management 
tools provided by the vendors, such as the highly popular Cloudera Manager or Ambari. 

Using a vendor-supported distribution such as CDH (Cloudera) or HDP (Hortonworks) 
will undoubtedly make your life easy—these and other vendor distributions of Hadoop 
have proven themselves over the last few years in many organizations.

Key Differences between Hadoop 1 and Hadoop 2 
Hadoop 2 was introduced in October 2013 to address the two main concerns with Hadoop 1 
environments—scalability and availability. You may be curious about how Hadoop 2 is 
an advance over its predecessor, Hadoop 1. Also, by comparing the main features of the 
two releases, you gain an appreciation for how Hadoop has evolved over time, by providing 
new capabilities to meet new demands. For these reasons, I summarize the differences 
between the two architectures in the following sections.

 The big difference between Hadoop 1 and Hadoop 2 is YARN. YARN is an 
abbreviation for the self-deprecating term “Yet Another Resource Negotiator.” Hadoop 1 
is merely a combination of HDFS and Java-based MapReduce programs. In Hadoop 2, as 
we’ve seen, YARN sits between the HDFS layer (which in turn rests on native server storage) 
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and processing frameworks such as MapReduce and Spark. YARN is in charge of cluster 
resource management and scheduling. In Hadoop 1, MapReduce is really the only 
processing framework you could use and it interacted directly with HDFS. In Hadoop 2, 
MapReduce performs data processing in a fashion similar to that in Hadoop 1. So, which 
Hadoop component performed the cluster resource management and scheduling tasks 
in Hadoop 1? MapReduce performed the double duty of both data processing and cluster 
resource management.

Architectural Differences
Hadoop 1 used MRv1 and Hadoop 2 uses MRv2 (aka YARN). In Hadoop 2, there’s a 
single global ResourceManager process that manages resources across the cluster, and it 
runs on a master node. The worker nodes will all have individual NodeManagers that 
perform data processing tasks.

In Hadoop 1, there was a single JobTracker process that managed jobs. Each worker 
node ran a node-specific TaskTracker process that actually executed the jobs. The 
JobTracker in Hadoop 1 performed both scheduling and task management functions. 
In Hadoop 2, the JobTracker functions have been broken into two—scheduling and 
resource management—with the ResourceManager handling the scheduling portion 
and the application-specific ApplicationMaster taking care of resource management.

The ResourceManager in Hadoop 2 manages several key functions previously 
performed by the JobTracker in Hadoop 1. To be more precise, the ResourceManager 
performs some of the old JobTracker’s tasks and the new application-specific Application-
Master takes care of the rest of the JobTracker’s duties. In Hadoop 1, the JobTracker was 
overwhelmed in a busy cluster, because of its heavy workload in managing both resource 
management and job scheduling. The separation of the twin key functionalities of the 
JobTracker—resource management and job scheduling/monitoring—lets dedicated 
daemons relieve this workload pressure.

The NodeManager in Hadoop 2 performs all the tasks previously taken care of by the 
TaskTrackers running on each node in a Hadoop 1 system. The NodeManager processes 
run on the worker nodes in a cluster and serves as an agent that monitors the processing 
performed on the nodes.

The ResourceManager is a pure scheduler in Hadoop 2 and there’s no special linkage 
between it and MapReduce jobs, whereas in Hadoop 1, the JobTracker and MapReduce 
were tightly coupled. 

High-Availability Features
Hadoop 2 has strong high-availability features and lets you run both a Standby NameNode 
as well as a Standby ResourceManager, both of which are critical to the functioning of 
a cluster.

 In Hadoop 1, the NameNode was a single point of failure. If the NameNode server 
became unavailable, the whole cluster would become inoperable as all access to HDFS 
would be cut off. 
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Multiple Processing Engines
In Hadoop 1, you could use just MapReduce as the processing engine, regardless of 
whether you used Java-based MapReduce programs, Pig, Hive or a streaming model 
using Python, Ruby and so on. There simply was no alternative execution engine available. 
Hadoop 2 offers a wide variety of processing engines, such as MapReduce, Apache Spark, 
Apache Tez and others.

Instead of being able to support only batch processing, Hadoop 2 supports a wide variety 
of applications, as summarized here:

 n Batch processing—MapReduce and Hive/Pig, Apache Tez
 n Interactive SQL—Apache Tez
 n Online database—HBase
 n Streaming—Apache Storm, Apache Spark and Apache Samza
 n In-memory (iterative applications)—Apache Spark
 n Graph processing—Giraph and Spark GraphX 
 n HPC MPI—OpenMPI
 n Scalable search—Apache Solr
 n HBase on YARN—HOYA

MapReduce, while it performs several types of work admirably, isn’t ideal for all types of 
big data use cases. One of the big complaints about MapReduce is the high latency of jobs. 
Hadoop 2 lets you choose an appropriate processing engine for specific types of use cases.

Hadoop 1 was limited by its batch-processing orientation, where time latency wasn’t 
an issue and where you needed vast amounts of data to be processed. While Hadoop 1 
was very good at processing large unstructured data sets containing even petabytes of 
information, it wasn’t deemed to be very useful in the real-time analysis of live data sets. 
Hadoop 2 overcomes this batch-centric orientation of Hadoop 1. 

Separation of Processing and Scheduling
YARN (MapReduce NextGen aka YARN aka MRv2) in Hadoop 2 marks a fundamental 
difference in how Hadoop performs its essential work. YARN is designed as a general-
purpose, distributed application management framework and not as an all-in-one resource 
manager and performance engine as MapReduce was in Hadoop 1. In fact, quite frequently, 
YARN is referred to as the “operating system for Hadoop” because it performs functions 
such as the following:

 n Maintaining a multitenant environment by running batch, interactive and real-
time processing engines that can all simultaneously access the same HDFS data

 n Managing and monitoring application workloads

Apache Hadoop MapReduce (aka MRv2) in Hadoop 2 retains its processing capa-
bilities and becomes a pure distributed computation framework.
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Resource Allocation in Hadoop 1 and Hadoop 2
Initially, Hadoop didn’t have a very sophisticated way of allocating resources among 
the various jobs running simultaneously in a cluster. It used a first in, first out (FIFO) 
model of resource allocation by default, which meant that long running jobs, by hogging 
the cluster’s resources, could potentially keep small but critical jobs from starting, even 
when the long-running jobs were non-critical in nature.

Hadoop in later versions has introduced much more sophisticated job schedulers, named 
the Fair Scheduler and the Capacity Scheduler. You’ll learn about these two types of 
schedulers in Chapter 13, “Resource Allocation in a Hadoop Cluster.”

Hadoop 1 uses slots to manage resource allocation, instead of using resource containers 
as Hadoop 2 does. 

Finally, a key difference in terms of capability between a Hadoop 1 and a Hadoop 2 
cluster is that while a Hadoop 1 cluster could scale “only” up to around 5,000 nodes, a 
Hadoop 2 cluster can scale up to around 10,000 nodes.

 Distributed Data Processing: MapReduce and 
Spark, Hive and Pig
As a Hadoop administrator, you’ll be responsible for managing several types of data-
processing work in your Hadoop cluster. While MapReduce is the most common pro-
cessing framework in many Hadoop clusters, Apache Spark is coming into being as a 
viable alternative to MapReduce. Hive and Pig are abstractions that use MapReduce 
as their underlying processing model. Understanding how these processing frameworks 
function is critical to your success as a Hadoop administrator. Let’s brief ly review the 
alternative Hadoop processing frameworks in the following sections.

MapReduce
MapReduce is a distributed processing framework that lets you write Java programs to 
process data you store in HDFS. The MapReduce framework simplifies the complex 
work involved in writing parallel distributed applications by taking care of all the processing 
logic except for the map and reduce functions. MapReduce is the most well-known of 
Hadoop’s data-processing engines, and until the release of Hadoop 2, it was the only 
framework for processing data in a Hadoop system.

 MapReduce has been a powerful presence in processing large data sets, by enabling 
you to write programs that a large cluster consisting of hundreds or even thousands of 
nodes can process in parallel. MapReduce offers a virtually linear level of scalability, 
because you can add more processing in the form of computing nodes as your data sets 
get larger. Since MapReduce breaks up huge processing tasks into smaller tasks, the model 
gracefully handles task failures.

 MapReduce is named as it is because it consists of two primary phases—the map phase 
and the reduce phase. The map function’s job is to map the input data to sets of key/value 
pairs. The reduce function then takes these key/value pairs and produces the output you 
seek by applying its own algorithms.
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Developers don’t have to deal with the problems of scheduling, resource management, 
failure handling and so on.

Alternatives to MapReduce

MapReduce is a batch processing system and hence not amenable for interactive 
analysis. However, YARN in Hadoop 2 lets you use alternative frameworks that offer 
you different processing paradigms. The following list isn’t by any means exhaustive, 
but it gives you an idea of these alternative processing paradigms.

 n Iterative computing: Apache Spark is great for performing iterative processing 
required by many machine learning programs

 n Interactive SQL: Both Impala and Hive on Tez offer interactive SQL query capability

 n Stream processing: Apache Storm, Apache Spark Streaming, Apache Samza and 
Apache Flink all let you run real-time distributed computations on streaming data

 n Search: Apache Solr is a great search platform that can serve search queries on 
data stored in Hadoop clusters 

Apache Spark
Apache Spark is a high-performance distributed computing framework that has evolved 
into the most active Apache project. Spark has received quite a bit of attention over the 
past couple of years, and some have wondered if it’ll replace Hadoop. Well, Hadoop 
and Spark aren’t alternatives to each other. Hadoop 2’s YARN processing framework 
supports several processing frameworks, including Spark and MapReduce. Spark is 
becoming increasingly popular and is viewed as the eventual successor to MapReduce 
for data processing. Many companies still rely on MapReduce to process their workloads, 
but a lot of them are migrating their applications to Spark.

Unlike its predecessor Hadoop 1, Hadoop 2 isn’t synonymous with MapReduce. 
As explained earlier, in Hadoop 2, MapReduce is now merely one more application 
framework and no more important than the other computing frameworks, all of which 
are supported by the underlying Hadoop processing entity, the YARN framework.

Spark enables you to process very large amounts of data, with high-level, easy-to-use 
APIs. High performance is Spark’s calling card. Using Spark, you can write data trans-
formation logic and machine learning algorithms in a parallelizable fashion, regardless 
of the underlying system. Hadoop, with its HDFS storage system, is uniquely qualified to 
run Spark jobs, and that’s our focus in this book. Although you can run Spark on other 
computing frameworks, such as Mesos, I focus on how to work with Spark in a Hadoop 
cluster, with HDFS serving as the data storage and YARN as the computing framework. 
Often, organizations use several data sources to ingest data that become the source of most 
of their analytical work. By running Spark on Hadoop, you can use the same Hadoop 
cluster and the same data for running both MapReduce and Spark jobs.

MapReduce has well-known problems with processing iterative algorithms that require 
multiple passes over the same data. MapReduce is also not suitable for interactive 
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computational work. Spark is designed to overcome both of these issues with MapReduce 
processing—it is designed for both fast interactive queries, as well as iterative algorithms. 
What’s the nature of that design? Spark relies on an in-memory storage mode and efficient 
fault recovery.

   Apache Hive
Apache Hive provides a SQL interface that enables you to use HDFS data without having 
to write programs using MapReduce. It’s important to understand that unlike Apache 
HBase, Hive is not a database—it simply provides a mechanism to project a database 
structure on data you store in HDFS and lets you query that data using HiveQL, a SQL-like 
language. Hive uses a type of SQL that lets you query HDFS data in ways that are similar 
to how you query data stored in a relational database. 

While Hive’s SQL (HiveQL) doesn’t have the full range of features available in SQL, 
it offers more than enough SQL capabilities for you to efficiently work with HDFS data. 
When you use a Hive query, Hive parses the SQL query and generates a MapReduce 
job to process the data to get you the query results. 

It’s important to understand that Hive, while it lets you use SQL type queries to process 
HDFS data, isn’t a database itself, although it does use the concept of database tables. Hive 
simply maps HDFS directories to tables. If you’ve been using SQL to process data stored in 
relational databases, you can make a quick transition to Hive and start working with HDFS, 
without having to learn any MapReduce programming. Be forewarned that unlike the 
lightning quick results from SQL queries you may be used to, Hive is indeed quite 
plodding. Even for small queries, a Hive job needs to set the MapReduce engine in 
motion and the startup overhead takes some time.

When you write a query using HiveQL, internally, the Hive engine will transform 
the query into a MapReduce job. Hive offers several built-in functions to facilitate working 
with data warehouses, and users can also add their own user-defined functions (UDFs) 
in Java, to enhance Hive’s functions. Hive’s data types, tables and partitions are quite 
similar to what you deal with in the context of traditional relational databases.

Latency is usually an issue when dealing with test queries and small data sets. Hive is most 
definitely not practical for online transaction processing and real-time queries and updates.

Apache Pig 
Pig is a high-level framework for data processing that enables you to use a scripting lan-
guage called Pig Latin to process data using MapReduce on a Hadoop cluster. Pig thus 
works as a wrapper for MapReduce code. It’s important to remember that, just as in the 
case of Hive, Pig doesn’t provide functionality beyond that offered by MapReduce. It 
certainly makes it a lot easier to use various types of data operations though.

Unlike Hive, which is a SQL-like declarative language, Pig is a procedural language 
that’s exceptionally suitable for data pipelining, by representing data analysis problems 
as data f lows. You can create your own functions in Pig and also have Pig invoke code 
in different languages such as Java, JPython and JRuby. It’s an ideal tool to use in typi-
cal ETL processing. 
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Data Integration: Apache Sqoop, Apache Flume 
and Apache Kafka
One of the most common use cases for Hadoop is the moving of data from a relational 
database into HDFS and vice versa. For example, a company may store its service call 
information in a relational database and would like to move the data to Hadoop to run Hive 
queries on the data. Apache Sqoop (short for “SQL to Hadoop”) is the most well-known 
tool employed in Hadoop environments to move data back and forth from relational 
databases to HDFS.

Another common use case is the moving of large volumes of log data from entities 
such as web servers into HDFS. Web servers typically transmit large volumes of data, 
including user activity events such as logins, page visits, clicks and social networking 
activities such as likes and comments. Web servers also send a heavy amount of opera-
tional and system-related metric data. 

Traditional logging mechanisms that use log aggregation can handle the high throughput 
of the web servers and send the logging data to Hadoop for off line analysis. Mining the 
logging data could lead to recommendations based on popularity or sentiment analysis and 
the appropriate targeting of advertising to the consumers. However, the large volume 
of logging data that’s collected creates problems in the real-time processing of the data. 
Frameworks such as Apache Flume and Apache Kafka enable you to overcome this problem.

Apache Flume and Apache Kafka let a Hadoop cluster manage sporadic bursts of log 
data even though the cluster may not be able to handle the data f lows on a continuous 
basis. By acting as a buffer between the data producers (say, web servers) and the data 
consumers (HDFS), these types of systems enable a steady f low of data into Hadoop. 

Another problem when dealing with large amounts of log data is that the sources 
of the log data, such as various web servers, aren’t near the Hadoop cluster. Flume and 
Kafka let you overcome this issue, by collecting and transmitting distributed log data 
from multiple sources. A brief description of Flume and Kafka follows:

 n Apache Flume: Flume is a system for the collection, aggregation and moving of 
large amounts of streaming data from multiple sources to a data store such as HDFS. 
Although originally Flume was designed for aggregating log data, you can use it 
to move large amounts of event data or just about any type of data from any data 
source. 

 n Apache Kafka: Kafka, which started out at LinkedIn, is explicitly distributed and 
resembles a publish-subscribe system. Kafka lets you combine off line and online 
processing of streaming data by enabling parallel loading into the Hadoop system 
and the partitioning of real-time data consumption over the cluster. Architecturally, 
it’s a system that’s similar to well-known messaging systems such as ActiveMQ 
and RabbitMQ.

Besides Flume and Kafka, there are several other systems for log analysis. For example, 
the Elasticsearch/Logstash/Kibana (ELK) stack is useful for low latency log analytics as 
well as for search analysis. In addition to the open source log ingestion systems we’ve 
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seen here (Flume and Kafka), there are also commercial systems such as Splunk, for 
example. The choice of which to use depends on the predominant type of use cases in 
your organization, types of data sources and the volume and velocity of data ingestion. 
Latency requirements are another key determining factor in the choice of the appropriate 
log ingestion tool.

Key Areas of Hadoop Administration
This book is all about administering Hadoop environments. I think it’s a good idea to 
get a f lavor of what the administration entails, by reviewing some of the key aspects 
of Hadoop administration that you’ll be dealing with on a daily basis when managing 
Hadoop clusters.

In the following sections, I brief ly explain

 n Managing the cluster storage
 n Allocating the cluster resources
 n Scheduling Hadoop jobs
 n Securing Hadoop data

Managing the Cluster Storage
Hadoop data is stored in HDFS. As an administrator, you’ll be allocating space quotas to 
users of the cluster so they can store their Hadoop data. You’ll also be performing tasks such 
as balancing the cluster data using Hadoop’s balancer tool. To protect and secure (through 
encryption zones) the HDFS data, you’ll most likely be creating HDFS snapshots.

As an administrator, it’s your responsibility to add storage capacity to your cluster by 
adding more computing nodes to the cluster. In addition, you’ll be taking care of any 
issues such as servers that are unreachable or get hit with software or hardware issues. 
You may need to decommission the bad nodes and recommission them after the server 
issues are resolved.

Allocating the Cluster Resources 
The Fair Scheduler lets all applications get equal shares of resources over time. Memory is 
the key resource the Fair Scheduler uses to base its resource allocation decisions. However, 
a newer scheduling scheme, named Dominant Resource Fairness (DRF), goes beyond just 
the memory criterion, by using both memory and CPU as the resources to be allocated. 
If there’s just a single application running in the cluster, it uses all the cluster’s resources 
(or, to put it more precisely, it potentially could use all the resources). As new applications 
start running, resources freed up by the first application are assigned to the new applications, 
until each running application is allocated approximately the same amount of resources. 

The idea behind the Fair Scheduler is to allow multiple jobs to run simultaneously. 
When the first job in a cluster, named Job 1, starts, the Fair Scheduler will let it consume 
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all the resources available in the cluster. When new jobs such as Job 2 and Job 3 are submit-
ted, the cluster won’t keep them waiting behind Job 1. It allocates every new job some 
resources, while the first job, Job 1, runs with fewer resources. Fair scheduling essen-
tially means that each job gets a “fair” or an even amount of resources.

The Fair Scheduler’s resource allocation algorithm lets short-running applications 
finish quickly while not denying the long-running applications the resources they need. 
Fair scheduling also works with applications priorities, which are weights that determine 
what fraction of resources each application is allocated. Further, the scheduler also utilizes 
resource queues and shares resources among the queues. If you create a queue and assign 
an application to that queue, the request for the resources that the application needs 
is submitted to the queue. You can create a hierarchy of queues in order to divide the 
resources and configure the hierarchy with weights. 

You can use the Fair Scheduler to assign guaranteed minimum shares to queues, thus 
letting users and applications always get the resources they need. When a queue doesn’t 
need to use its allocated share of resources, those resources aren’t tied up uselessly. 
Rather, the unused resources allocated to the queue are reassigned across all the running 
applications in the cluster.

 The Capacity Scheduler is an alternative to the Fair Scheduler and was designed for 
managing a cluster’s capacity by using job queues to enable systematic sharing of the cluster 
resources. Job queues are assigned both a guaranteed capacity and a maximum capacity, 
which is the upper limit on the resources the queues can utilize beyond their guaranteed 
capacity levels. The Capacity Scheduler optimizes cluster utilization by guaranteeing 
capacity levels for each of the job queues and using any unused capacity for queues that 
have bumped up against their capacity limits.

Scheduling Jobs 
Scheduling Hadoop jobs (Spark, MapReduce, etc.) is a key part of any administrator’s 
job. Oozie is a special workf low scheduler system designed to work with Hadoop, 
MapReduce and Pig. Oozie workf lows are collections of Spark/MapReduce/Hive/Pig 
jobs arranged in a control dependency directed acyclic graph (DAG). The Oozie server 
starts the workf lows and tracks the job status and attends to failures.

Organizations typically use MapReduce, Pig and Hive jobs to process the large 
amounts of data they store in HDFS. An interesting pattern here is that often, a single 
MapReduce, Pig or Hive job isn’t sufficient to completely process the data to get what 
you need out of it. Often, you need to run a series of MapReduce, Pig or Hive jobs to 
get to the end result. That is, you must chain multiple jobs together, with the later jobs 
consuming the intermediate data produced by the earlier running jobs. This means that 
you need to coordinate the f low of execution of the chained jobs. This is where Oozie 
comes into the picture.

You may wonder why you can’t schedule the series of Hadoop jobs one after the 
other, using traditional cron jobs. The problem with cronning the jobs is that, most of 
the time, Hadoop jobs are interdependent. Oozie offers an easy-to-use scheduling 
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framework that lets you run interdependent Hadoop jobs and lets you recover easily when 
the jobs fail for any reason. Oozie is highly scalable and can handle thousands of jobs.

Securing Hadoop Data
Securing Hadoop and its environment is an important (and complex) topic for many 
administrators. Hadoop is inherently insecure, despite its built-in authorization features, 
which are quite strong. In the following sections, I'll quickly review Hadoop’s security-
related issues and how you’re going to deal with them. Chapter 15, “Securing 
Hadoop,” deals exclusively with securing Hadoop.

Default Security
Security was never a priority during Hadoop’s evolution—rather, it was data processing 
that was the main concern. Hadoop assumes a trusted environment for the cluster, 
but as you know, this isn’t appropriate for enterprise-level use, where you need true 
security for protecting sensitive business data. Unlike traditional client-server systems, 
in Hadoop there’s no central server to authenticate users and there’s no security gateway 
or authentication mechanism either. A user that’s given access to the NameNode can, 
theoretically speaking, delete that data or impersonate other users and access data they 
aren’t supposed to access. Hadoop doesn’t contain any mechanism for assigning role-based 
or object-level access. 

Since data is distributed across all DataNodes, you also have to worry about the poten-
tial for unauthorized users accessing these nodes and attacking your cluster. The default 
unencrypted and unsecured HTTP communications between web consoles and the 
NameNode and the DataNode let a user access the cluster metadata.

Kerberos
The primary security requirement is authentication, which determines that a user is 
legitimate before allowing that user access to the cluster. By default, Hadoop doesn’t 
authenticate users. Kerberos, an open-source authentication mechanism, is the accepted 
way to secure Hadoop environments. When you implement Kerberos security, users 
attempting to log into a Hadoop cluster will query the Key Distribution Center (KDC) 
to validate their credentials. If the credentials are good, KDC will then provide the access 
requested by the user. Chapter 15, “Securing Hadoop,” shows how to install and config-
ure Kerberos authentication in a Hadoop cluster.

Apache Sentry
Authorization is the next important security area after authentication. Hadoop supports 
fine-grained authorization through the use of Access Control Lists (ACLs). You can also 
use Apache Sentry to configure granular authorization for users. You can define parts 
of your data as tables within a database and let Sentry configure permissions. Sentry uses 
the concept of user groups and lets you define rules and roles to develop a role-based 
authorization system.
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Apache Ranger
Apache Ranger provides a comprehensive approach to securing Hadoop clusters, including 
components such as Apache Hive and HBase. Ranger provides centralized security policy 
administration pertaining to all aspects of enterprise security, such as authorization, 
accounting and data protection. Users can manage security policies through an admin-
istration console and can also enable audit tracking and policy analytics for controlling 
their environment.

Apache Knox
Apache Knox (Apache Knox Gateway) provides perimeter security so you can ensure 
that you’re maintaining compliance with your security policies when enabling user access 
a Hadoop cluster. Knox integrates with centralized identity management systems and 
allows identities from those systems to be used for secure access to Hadoop clusters.

Summary
Here’s what you learned in this chapter:

 n Hadoop is the leading technology for efficiently processing vast amounts of data.
 n Managing Hadoop environments is in many ways similar to how you manage 

relational databases, but you must also learn how to work with the common 
Hadoop-related processing frameworks and components. 

 n Hadoop 2 is architected quite differently from Hadoop 1, its predecessor.
 n Hadoop consists of two major components—HDFS for storing data and YARN 

for processing it.
 n Spark is increasingly becoming the main processing engine used in Hadoop 

environments.
 n Key components in the Hadoop ecosphere include Pig, Hive, Sqoop and Oozie.

With this initial background behind us, let’s move on to learning the basics of the 
architecture of a Hadoop cluster.
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An Introduction to the 

Architecture of Hadoop

This chapter covers the following:

 n The architecture of Hadoop
 n Distributed clusters
 n The architecture of HDFS
 n The architecture of YARN

This chapter introduces you to the architecture of Hadoop. Before you can start 
learning how to administer Hadoop, it’s a good idea to understand its basic architecture. 
The two foundational layers of Hadoop are its storage system, HDFS, and the processing 
framework, YARN.

This is a key chapter as it introduces several key terms, as well as the daemons and processes 
that work together to perform the storage and computational tasks in a Hadoop database.

Distributed Computing and Hadoop
As I explained in Chapter 1, “Introduction to Hadoop and Its Environment,” Hadoop 
follows a distributed computation model—it distributes computations involving humongous 
chunks of data sets to a set of nodes, each of which works on a portion of the data set. 
Before I get into the nitty gritty of the Hadoop architecture itself, let me take a moment 
to explain the challenges posed by distributed computation and how Hadoop meets them.

At its core, distributed computing seeks to meet the following requirements:

 n Scalability: Increasing the number of machines should result in a linear increase 
in processing capacity and storage.

 n Fault tolerance: If one of the nodes in a distributed cluster fails, the main compu-
tational process itself shouldn’t fail or be adversely affected.

 n Recoverability: If a job or a part of it fails, you shouldn’t lose any data.
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Hadoop has been explicitly and carefully designed to meet these fundamental 
requirements of distributed computing. It meets the challenges of distributed computing 
through the following strategies and principles that underlie its architecture:

 n Data is stored on all or most of the cluster’s nodes. Bringing code to the data 
and not the other way around, Hadoop efficiently processes large amounts of data.

 n Developers focus on the data and their algorithms, with Hadoop taking care 
of the low-level details of distributed programming.

 n Jobs are highly tolerant of failures. If one or more nodes of a cluster fail 
or a component of a job (called a task) fails, the job itself will continue to 
completion.

Hadoop Architecture
In order to work well with Hadoop, it’s important to understand its key components, 
HDFS, which is the storage component, and YARN, which is the processing 
component.

Ranking web pages and searching social networks and social-networking sites are two 
examples where you deal with pretty regular data f lows, which makes it easy to mine 
the data through data parallelism. In order to efficiently process these types of large data 
sets, a new programming paradigm using a different type of software stack has evolved. 
Whereas traditional data processing has focused on larger and larger computers, leading 
to the birth of supercomputers, this newer approach employs clusters of interconnected 
inexpensive computers. 

The new software stack, as represented by Hadoop, has a distributed file system as its 
foundation. Unlike traditional databases, this f ile system typically uses very large data 
blocks in order to quickly process vast chunks of data. Another key feature is built-in 
redundancy of data, since the file system uses inexpensive computing nodes, each of which 
may fail anytime. The redundancy is provided by replicating all data across multiple 
servers, usually three in number. Figure 2.1 shows Hadoop’s distributed computational 
architecture.

In the following sections, we discuss the two main building blocks of Hadoop—data 
storage (HDFS) and the operating system (YARN). HDFS provides the underlying 
storage for all Hadoop operations. Data that you store in a Hadoop system is stored 
in HDFS, which happens to sit on the underlying Linux (or Windows) file system. 
YARN provides the processing framework for running not only MapReduce but also 
other frameworks such as Tez and Spark.

 Before I plunge into a discussion of Hadoop in earnest, it’s a good idea to clarify 
what a Hadoop cluster is, the different types of nodes in a cluster and the types of services 
that run in a cluster.
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A Hadoop Cluster
In Chapter 1, I explained what a Hadoop cluster means. To summarize, a Hadoop cluster 
is a collection of machines that uses the Hadoop software on the foundations of a distrib-
uted file system (HDFS) and a cluster resource manager (YARN). Anything more than 
a single machine will technically constitute a cluster. You can run small clusters with just a 
few nodes and there are very large clusters maintained by organizations such as Yahoo, 
whose largest Hadoop clusters range over 10,000 nodes. Regardless of its size, everything 
works the same in every Hadoop cluster. 

In practical terms, Hadoop implements storage and processing through a set of daemon 
processes that run in the background. Users aren’t concerned with these processes, as they 
perform input/output over the network without any intervention from users. On a Linux 
system, each of these daemons (processes) runs within a separate Java Virtual Machine (JVM). 

Distributed Storage

Distributed Computation

Everything rests on a foundation
of a bunch of commodity servers.

YARN is a distributed scheduler that
supports multiple processing frameworks.

built-in distributed storage system.

Figure 2.1 Hadoop and distributed computing, showing 
how computation and storage are distributed
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Master and Worker Nodes
The nodes in a Hadoop cluster are classified into two basic types:

 n Master nodes: These nodes run the services that coordinate the cluster’s work. 
Clients contact the master nodes in order to perform computations. In each cluster, 
there are a handful of master nodes, ranging from three to six, depending on the 
size of the cluster.

 n Worker nodes: These nodes perform under the direction of processes running on 
the master nodes. Most of a cluster’s nodes are worker nodes. The worker nodes are 
where the data is stored and computations are performed.

Hadoop Services
There are several key Hadoop services that you need to be familiar with. These services, 
working together, perform the actual work in a cluster. There is a set of HDFS-related 
services that take care of the storage-related work, and there’s a separate set of services 
dedicated to the computational tasks. The following sections brief ly introduce the various 
Hadoop services.

HDFS Services
The HDFS services manage HDFS storage:

 n NameNode: The NameNode service runs on a master node and maintains the 
metadata pertaining to HDFS storage, such as the file system directory tree and the 
locations of the files. When a client seeks to read or write to HDFS, it contacts 
the NameNode service, which provides the client information about the location 
of the files in HDFS.

 n Secondary NameNode and Standby NameNode: You need to run one of these 
master services on each cluster. These services relieve the burden of the critical 
NameNode by performing tasks such as checkpointing (updating) the metadata file.

 n DataNodes: These are worker nodes that store the HDFS data blocks on the 
Linux file system. The DataNodes keep in contact with the NameNode and update 
the latter with all the changes that occur in the file system.

YARN Services
As with HDFS, there are several services that run on both the master and worker nodes:

 n ResourceManager: This is a single service for the entire cluster that runs on one of 
the master nodes and is responsible for allocating the cluster’s resources and the 
scheduling of jobs on the worker nodes.

 n ApplicationMaster: This is a master service, and there’s one for each application 
you run in the cluster. The ApplicationMaster coordinates the execution of the 
application in the cluster and negotiates with the ResourceManager for resources 
for the application.
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 n NodeManager: There is one of these services running on each of the worker 
nodes. The NodeManager service runs and manages tasks (components of the appli-
cation or job) on the worker nodes. They remain in touch with the ResourceManager 
and update it with their health, as well as the status of the tasks they’re running.

With this initial exploration of a Hadoop cluster behind us, it’s time to learn about 
the two pillars of Hadoop—HDFS and YARN. It is important to understand how the 
two entities work together to perform complex distributed computational tasks. I start 
with a discussion of HDFS.

Data Storage—The Hadoop Distributed File System
HDFS is a distributed file system that sits on the underlying server storage and has many 
similarities to the base storage system. A distributed storage system stores large amounts 
of data over a network of computers with built-in redundancy to protect data. HDFS is 
designed for fast, fault-tolerant processing, thus enabling the use of inexpensive storage 
hardware. Server storage, say on a Linux system, adheres to the POSIX requirements, 
some of which aren’t met by HDFS. This is so by design, to enable streaming access to 
large chunks of data.

The MapReduce programming model was originally the only programming engine 
that Hadoop could use and is quite popular even now in Hadoop environments. 
MapReduce deals with large data volumes. It avoids slowdowns due to storage and network 
I/O that will be incurred if you use a storage system such as NFS. The large volume of 
data is spread out over the cluster’s nodes, but MapReduce sees it as a single file system. 
So, each disk reads all of its data from local disks (HDFS, not the local file system), avoiding 
the need to transmit data through the network. 

In a small Hadoop cluster, there may be just a handful of servers. Larger clusters have hun-
dreds and even thousands of servers. Regardless of the size, Hadoop stores its data on all of the 
cluster’s file system, with each of the cluster’s nodes storing a small amount of the data. 

HDFS Unique Features
HDFS has several unique features that make it ideal for large-scale distributed processing. 
In the following sections, I brief ly review how HDFS supports the efficient processing of 
large data sets. 

Handling Large Data Sets
Typically, non-Hadoop databases are small, with at most a few terabytes of data and a 
few data files. Hadoop deals with petabytes of data and thousands of data files.

Fault Tolerance
Hadoop depends on large numbers of servers so it can parallelize work across them. 
Server and storage failures are to be expected, and the system isn’t affected by the 
non-functioning storage units—or even failed servers. Data is, by default, replicated 
thrice in Hadoop, meaning that each data block in HDFS is stored on three different 
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nodes. You can decrease or increase the default “replication factor.” You can also employ 
different replication levels for different sets of data, as replication is applied at the file level.

Streaming Access to Data
Traditional databases are geared mostly for fast access to data and not for batch processing. 
Hadoop was originally designed for batch processing (although newer developments 
have enabled other processing paradigms such as interactive SQL, iterative processing, 
search processing and stream processing) and provides streaming access to data sets.

Simple Data Consistency Model
Unlike traditional databases, Hadoop data files employ a write-once-read-many access 
model. Data consistency issues that may arise in an updateable database aren’t an issue 
with Hadoop file systems because only a single writer can write to a file at any time.

HDFS Architecture
HDFS enables users to store data in files, which are split into multiple blocks. Since Hadoop 
is designed to work with massive amounts of data, HDFS block sizes are much larger 
than those used by typical relational databases. The default block size is 128MB, and 
you can configure the size to as high as 512MB. 

Note

It’s common to use the term NameNode to refer to both the NameNode daemon and the 
cluster node where the NameNode is configured to run. This is also the case with the term 
DataNode, which can refer alternatively to the DataNode daemon or the server on which 
the DataNode daemon runs.

Master Nodes and DataNodes
In a Hadoop cluster, which consists of multiple nodes, one or more of the nodes will act as 
master nodes. The master nodes run key Hadoop services such as the NameNode (manages 
the HDFS metadata among other things) and the ResourceManager (manages jobs and 
tasks). The rest of the servers in a Hadoop cluster are worker nodes, commonly referred 
to as DataNodes. It’s these nodes that actually store the data blocks. Worker nodes also run 
NodeManagers (YARN). You don’t need to run a NodeManager on every node, but you 
do most of the time. Figure 2.2 shows how the master and the worker nodes are connected 
together in a Hadoop cluster. The solid lines represent keyless SSH logins.

The worker nodes are where you actually store the cluster’s data in the HDFS file 
system. The HDFS data is distributed among the cluster’s nodes but appears to you as 
a single unified file system that you can access from any of the cluster’s nodes. You can 
run a cluster with a single NameNode whose job is to maintain and store metadata pertain-
ing to the HDFS file system. In production clusters, you’ll usually use two NameNodes, 
one serving as the active NameNode and the other playing the role of a standby ready 
to take over as the active NameNode when the active NameNode fails for any reason. 
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The NameNode and the DataNodes work in tandem to take care of all data writes and 
reads using HDFS, as summarized in the following sections.

NameNode Functions
The NameNode manages the file system namespace by performing the following tasks:

 n Maintaining the metadata pertaining to the file system, such as the file hierarchy 
and the block locations for each file

 n Managing user access to the data files
 n Mapping the data blocks to the DataNodes in the cluster
 n Performing file system operations such as opening and closing the files and 

directories
 n Providing registration services for DataNode cluster membership and handling 

periodic heartbeats from the DataNodes
 n Determining on which nodes data should be replicated, and deleting over replicated 

blocks
 n Processing the block reports sent by the DataNodes and maintaining the location 

where data blocks live

Master Nodes Worker Nodes

Master Node 1

NameNode Worker Node 1

DataNode
NodeManager

Worker Node 2

DataNode
NodeManagerMaster Node 2

Standby NameNode
ResourceManager
JobHistoryServer

Figure 2.2 The relationship between the master nodes and the worker nodes 
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While the NameNode is aware of all the DataNodes that store the data blocks for 
any HDFS file, it doesn’t store the block locations—it simply reconstructs them from 
information sent by the DataNodes when you start up the cluster. Following this, it retains 
the information in memory for fast access to it.

DataNode Functions
The DataNodes perform the following functions, based on directives sent by the 
NameNode:

 n Providing the block storage by storing blocks on the local file system.
 n Fulfilling the read/write requests from the clients who want to work with the 

data stored on the DataNodes.
 n Creating and deleting the data blocks. 
 n Replicating data across the cluster.
 n Keeping in touch with the NameNode by sending periodic block reports and 

heartbeats. A heartbeat confirms the DataNode is alive and healthy, and a block 
report shows the blocks being managed by the DataNode.

Note

The key thing to understand is that at no point does actual HDFS data travel through the 
NameNode. Clients always access the file system (HDFS) that resides on the DataNodes. 
The NameNode facilitates and enables that data access. This is as it should be, because 
there’s a single NameNode (there may be a Standby NameNode as well, but at any given point 
in time, only one NameNode is in operation), and that NameNode could be overwhelmed if it 
had to handle the enormous data transfers that occur in a Hadoop system. In addition, a 
key operational aspect of HDFS is data localization, wherein the client applications try to 
process on the nodes where the data is located, for operational efficiency.

The HDFS File System 
Hadoop is all about the efficient processing of large chunks of data. It’s therefore important 
to understand how Hadoop stores its data. 

HDFS organizes its file system differently from the underlying file system such as 
the Linux ext3 or ext4 file system. HDFS employs a block-based file system, wherein 
files are broken up into blocks. 

A file and a server in the cluster don’t have a one-to-one relationship. This means 
that a file can consist of multiple blocks, all of which most likely won't be stored on the 
same machine. 

A file’s blocks are spread throughout the cluster on a random basis. This lets Hadoop 
support files that are larger than the size of a single disk drive. If you store a file’s blocks 
across multiple servers, what happens when one of the machines is unavailable? You’ll 
be fine, since Hadoop replicates each block three times by default. 
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Note

The key to understanding the logic behind the architecture of the Hadoop file system is to 
keep in mind that Hadoop wasn’t designed to be a general purpose file system. Rather, it was 
designed for large batch jobs, where the jobs would typically sequentially read very large 
files, from start to finish. This is in contrast to seeking a specific value or range of values, 
which is common for most OLTP applications.

HDFS enables users to store data in files, which are split into multiple blocks. Since 
Hadoop is designed to work with massive amounts of data, HDFS block sizes are much 
larger than those used by a typical relational database.

Unlike blocks in a relational regular database, which are sized anywhere from 4MB 
to 16MB (typically), Hadoop uses a minimum block size of 64MB, and it’s common to 
use a block size of 128MB or 256MB. Large block sizes provide the following benefits:

 n The file system metadata is smaller when you use very large block sizes as 
opposed to small block sizes.

 n Since large chunks of data can be read sequentially, fast streaming reads of data are 
easier to perform.

Larger and fewer blocks mean longer running tasks, which in turn may not gain max-
imum parallelism. The point here is that we don’t want jobs with thousands of tasks, nor do 
we want too few, as that would keep us from completely utilizing our processing capacity.

Figure 2.3 shows how Hadoop breaks up a large file into multiple chunks. The size of 
each of the chunks is determined by the Hadoop block size, but it is 128MB by default. 

Big
Data File NameNode

DataNode DataNode DataNode DataNode DataNode

Chunk 2
Chunk 3

Chunk 1

Figure 2.3 How Hadoop breaks up large files into smaller 
chunks to enable parallel processing of the data
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Each of the 128MB (or larger) data chunks is replicated three times and distributed 
among the nodes. It’s this ability to partition the data into easily digestible chunks that 
helps Hadoop process humongous data files in parallel using an array of nodes, each of 
which processes one of the chunks of data at a time.

I brief ly review the key features of HDFS in the following sections. 

File System Organization
The files in HDFS are organized in a fashion similar to files in a Linux or UNIX system, 
wherein there’s a tree-based directory and file hierarchy. You can perform many common 
Linux/UNIX file system operations using analogous commands within HDFS.

Since HDFS employs a write-once-read-many access model, once you write a file 
to HDFS, you can’t modify its contents. You also can’t overwrite a file with an existing 
name. You can perform the following operations, since they’re merely metadata opera-
tions and don’t touch the contents of the file itself:

 n Move a file
 n Delete a file
 n Rename a file 

HDFS Data Formats
HDFS needs to work with massive amounts of data stored in very large files. When 
dealing with large HDFS files, MapReduce splits the files into multiple pieces at record 
boundaries, so it can read data from the large file simultaneously by starting multiple 
mapper processes. A splittable data format lets a file be correctly split into pieces at the 
record boundaries. 

Hadoop environments prefer to use binary formats rather than text formats when 
dealing with HDFS, because binary formats prevent incomplete records being written 
to files, by catching and ignoring incorrect records that may be created due to data corruption 
or incompleteness. This type of issue can occur, for example, when a cluster accidentally 
runs out of space during a write. Data compression capability is also a key requirement 
for a good HDFS file format.

A popular binary format used by many is the Avro container file format, which is splitt-
able and can also be compressed. Another common HDFS data format is a SequenceFile, 
which is a splittable file format represented as a list of keys and values. Users can also 
customize the data format by using serializers, which let them write data in any format 
they choose. 

Writing to an HDFS File
When client applications need to write data to HDFS, they perform an initial write to a 
local file on the client machine, in a temporary file. When the client finishes the write 
and closes it, or when the temporary f ile’s size crosses a block boundary, Hadoop will 
create a file and assign data blocks to the file. The temporary file’s contents are then 
written to the new HDFS file, block by block. After the first block is written, two other 
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replicas (based on the default replication factor of three) are written to two other DataNodes 
in the cluster, one after the other. The write operation will succeed only if Hadoop 
successfully places all data block replicas in all the target nodes.

Data Replication
Data replication is one of the pillars of Hadoop, since it provides fault tolerance. Since 
Hadoop maintains multiple copies of data, it’s quite hard to lose data stored in a cluster. 

Tip

HDFS automatically replicates any under-replicated data blocks. If you lose a disk or even 
a server, no need to lose sleep over it. Hadoop will automatically do what is needed!

Hadoop optimizes data reads by choosing to read the replica that’s stored on the same 
node where the read request originates or at least on the same rack. It also prefers read-
ing from a rack in a local data center to reading a replica from a remote rack.

Using Hadoop’s native libraries, you can access data in HDFS. It’s common for applications 
to want to access HDFS and move data in and out of the Hadoop cluster, using client-side 
native libraries instead of Hadoop’s native libraries. WebHDFS helps in these situations by 
letting you use a HTTP REST API to access HDFS data. Using WebHDFS, you can access 
Hadoop through multiple languages without installing Hadoop. You can use tools such as curl 
and wget to download HDFS data as well, using WebHDFS. WebHDFS provides both read 
and write access and supports all HDFS operations. Chapter 10, “Data Protection, File 
Formats and Accessing HDFS,” discusses WebHDFS in detail.

NameNode Operations
Each Hadoop cluster has a NameNode (as noted previously, there may be two of these in 
a high-availability environment—an active and a Standby NameNode). The NameNode 
holds all the metadata (such as the HDFS directory structure and file permissions) in 
memory for fast access but also persists the same information to disk. The following 
information is stored by the NameNode on disk in the fsimage file:

 n The names of all the files in HDFS
 n The HDFS directory structure
 n The file permissions of all the files in HDFS 

The namespace contains the directory and files listed in a hierarchical fashion. Each 
namespace has a unique namespace ID that’s stored on all the cluster nodes, in order to 
prevent DataNodes with a different namespace ID from accidentally joining the wrong 
cluster.

Anytime there’s a change in the metadata due to operations such as a file creation or 
deletion, it doesn’t prompt the immediate revision of the fsimage file. Instead, the change 
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information is recorded in the edits file on disk. By default, every hour, the Secondary 
NameNode merges the edits and fsimage files and writes the consolidated information 
as a fresh fsimage file. The NameNode truncates the old edits file at this point and starts 
writing new stuff to it.

Figure 2.4 shows how the NameNode relates to the DataNodes, as well as how HDFS 
clients communicate with the NameNode and the DataNodes. When HDFS clients 

DataNode 1

Block C

Block B

Block A

DataNode 1

DataNode 3

DataNode 2

DataNode 4

The NameNode

Block A

Block B
/users/test.txt

Client Apps
HDFS Client

DataNode 2

Block D

Block C

Block A

DataNode 3

Block B

Block D

Block C

Figure 2.4 How HDFS clients communicate with the NameNode and DataNodes 
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want to read or write files stored on the DataNodes, they contact the NameNode, 
which has the file metadata. The NameNode uses the HDFS metadata to determine 
which DataNode is storing the data blocks for the HDFS file /users/test.txt.

The data files are made of blocks and data is replicated—by default there are three 
copies for each data block.

The only reason the NameNode keeps the HDFS metadata in RAM is for easily 
accessing that data when clients require access to HDFS data (reads and writes). A client can’t 
access the DataNodes directly—clients don’t have any idea which DataNode might be 
hosting the data that they need. Clients access the NameNode instead, which acts as the 
intermediary between the clients and the DataNodes. The NameNode passes along to the 
client information such as the file block numbers and data location (DataNode). 

Initially, file metadata is stored in the fsimage file on disk. When the metadata changes 
due to actions such as file creation or deletion, the change information is written to a 
transaction log on disk named edits. It’s the Secondary NameNode that periodically 
coalesces the fsimage and edits files, writing out a fresh fsimage file. The NameNode 
can delete the edits file after this.

When a client application writes data to an HDFS file, the NameNode updates the HDFS 
metadata in RAM, and the changes are also written simultaneously to the edits file. 
The reason the changes are written out to the edits file is to preserve the modifications 
to the namespace—if the NameNode crashes, the information stored in RAM is lost.

If your cluster’s NameNode ceases functioning for any reason, HDFS becomes unavail-
able to you and the applications that are running. You must restore the NameNode in 
order to makes HDFS available to the users again. Of course, if you’re using a Standby 
NameNode, the loss of the active NameNode will bring up the Standby NameNode 
automatically. In such a setup, losing the server on which the NameNode is running 
really won’t affect anything, since the cluster will function uninterrupted in every way. 

In order for a map process from a MapReduce job to read data from HDFS, it first 
contacts the NameNode. The NameNode will send the map client the block names and 
locations (DataNodes) for the first few blocks in the file. 

Similarly, a reduce process that writes its results to HDFS will contact the NameNode, 
which will then supply the block names and the locations of the DataNodes where the 
reducer process should write its file. 

It’s thus the NameNode that determines where the client writes, by sending it a list of 
“approved” DataNodes to which the client should write. The NameNode itself never sees 
any of the data—it acts as the facilitator for the actual data access by the client on the 
DataNodes, where the data is stored. As you can see, both the read and write processes 
initiate their work by first touching base with the NameNode—hence, unavailability 
of the NameNode means that the cluster is basically unavailable. 

While the Secondary NameNode performs housekeeping duties such as periodi-
cally checkpointing the fsimage file, it by no means can step in when the NameNode 
becomes unavailable. You need to set up a Standby NameNode (explained in Chapter 11, 
“NameNode Operations, High Availability and Federation”) for that purpose.
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The Secondary NameNode
NameNodes aren’t supposed to be frequently restarted—when a NameNode isn’t available, 
there is, in effect, a cluster outage, and, of course, you’d want to keep those types of out-
ages to a bare minimum. 

Without a NameNode, there’s no way to know to which files the blocks stored on the 
DataNodes correspond to, and, in essence, all files in HDFS are lost. Also, the edits file (the 
transactions log for the NameNode metadata file, which is named the fsimage file) will 
grow to quite a large size over time. When you restart a NameNode with this large edits 
file, it’ll take a very long time to start its operations. 

In order to avoid this problem, Hadoop employs a Secondary NameNode. The Second-
ary NameNode performs a checkpoint of the fsimage file periodically—the checkpointing 
really means that the Secondary NameNode merges the fsimage and edits files. The Sec-
ondary NameNode is also called the checkpoint node because it performs checkpoint services 
for the NameNode. Since this NameNode also stores the file system namespace in memory 
and syncs it to the NameNode’s namespace, it’s also called a backup NameNode. However, 
it really doesn’t provide any real backup functionality for the NameNode.

You can run a Hadoop cluster without a Secondary NameNode, but you don’t want 
to do this! If you don’t have a Secondary NameNode running, there’s no way to per-
form a checkpoint. Let’s say your cluster runs uninterrupted for six months and then the 
NameNode stops because it runs out of space for its logs. Restarting the cluster now 
will take you days, and your cluster is completely unavailable during this time.

When a client (such as a mapper process) needs to read a file on HDFS, it needs the 
block IDs that are part of that file. The client contacts the NameNode for those block IDs. 
The NameNode doesn’t actually have to look up the fsimage file on disk for that infor-
mation. It reads the block IDs from its memory (where it stores the fsimage file upon 
starting up) and sends that information over to the client. 

Figure 2.5 shows how the Secondary NameNode performs the checkpointing of the 
fsimage file and sends it back to the NameNode so the NameNode doesn’t have to worry 
about doing the checkpointing itself. The Secondary NameNode periodically queries the 
NameNode for edit logs. These logs record changes in the HDFS metadata. The Secondary 
NameNode updates its own fsimage with the edit logs from the NameNode. The Second-
ary NameNode copies the updated (checkpointed) fsimage to the NameNode.

When a data block is written to HDFS, it contains only data from the file. A file is split 
into multiple blocks before being written into HDFS. Each block consists of a portion of the 
data file, and the metadata file associated with the data block contains the checksum data 
confirming the block integrity when it’s read. The DataNode itself has no idea as to what par-
ticular file a specific block is a part of—that information is part of the NameNode’s metadata.

HDFS High Availability and the Standby NameNode
The NameNode, due to its responsibility for maintaining the file system name space and 
metadata, is indispensable for the cluster. Hadoop 2 overcomes a major drawback of 
Hadoop 1 by offering NameNode High Availability (HA). In Hadoop 2, you can create a 
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Standby NameNode to provide high availability. When using a Standby NameNode for 
high availability, you don’t need to run the Secondary NameNode. 

NameNode high availability permits the running of two NameNodes in a cluster, with 
one of them in the role of the active NameNode and the other a standby role. The dual 
NameNode setup keeps the all-important NameNode from being a single point of failure in 
your cluster. Using the standby capability means that your cluster remains operational when 
one of the NameNodes is down, either due to a machine crash or due to a planned mainte-
nance event such as a software or hardware upgrade on the node hosting the NameNode. 

Apache ZooKeeper

Apache ZooKeeper is a centralized service that provides distributed synchronization and 
group services for Hadoop’s HDFS, which itself is distributed and highly reliable. For exam-
ple, the NameNode HA feature relies on the ZooKeeper service. Besides HDFS, several 
components such as HBase require the ZooKeeper services to be running in the cluster. 
The point behind the deployment of the ZooKeeper service is to make it unnecessary for 
distributed applications to have to implement distributed and reliable consensus, group 
management and presence protocols.

Zookeeper is deployed as an ensemble of servers. An ensemble here means that the servers 
are in a cluster and as long as a majority of the members are up, the service is available.

fsimage
Stored on the

Secondary
NameNode

fsimage
Stored
on the

NameNode

NameNodeSecondary
NameNode

Figure 2.5 How the Secondary NameNode updates the 
fsimage file and sends it back to the NameNode
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Potential for Unbalanced Data
While HDFS spreads data around all DataNodes that are part of a cluster, the data spread isn’t 
automatic. When you create a cluster and load data for the first time, or when you add new 
data to it, say on a daily basis, the incoming data (including the replicas) does get automatically 
spread out through the cluster, so that all DataNodes have roughly the same amount of data.

Over time, however, the data distribution may not and most likely won’t remain balanced. 
Some nodes will end up with a higher percent of used space compared to others. Also, 
when you add new nodes to a cluster, HDFS doesn’t automatically move some of the 
data onto the new node’s storage disks. Those disks will get data written to them, but 
that’ll be only for new data arriving into HDFS. If you don’t do anything, the new disks 
will always continue to have a lower percentage of their storage system in use.

However, if continuous balancing of data is a concern, there’s nothing to worry about 
here, as Hadoop provides a handy data balancing tool called the balancer. You can run the 
rebalancing command anytime you want, to make Hadoop move data around from the 
disks with a high percentage of use to the relatively unused nodes. You’ll learn much more 
about the balancer in Chapter 4, “Planning for and Creating a Fully Distributed Cluster.”

Data Processing with YARN, the Hadoop 
Operating System
HDFS is one of the two foundation stones of Hadoop. YARN is the other one. If HDFS is 
the storage layer, YARN is the processing layer of Hadoop. Simply put, YARN is a framework 
for managing distributed applications executed on multiple machines within a network). 
YARN manages all resources in a Hadoop cluster. Note that YARN supports other distrib-
uted processing frameworks such as Impala, Spark and Giraph, besides MapReduce v2. All 
applications running in a Hadoop environment, including MapReduce, Spark, Tez and the 
rest, use YARN to perform their work.

YARN is the Hadoop processing layer, and it contains a resource manager as well as 
a job scheduler. It’s YARN that makes it possible for multiple processing frameworks to 
run on the same Hadoop cluster, such as

 n Batch programs (such as Spark or MapReduce)
 n Interactive SQL (such as Impala)
 n Advanced analytics (Spark SQL, Spark ML, or Impala)
 n Streaming (Spark Streaming)

Before we delve into the intricacies of YARN, first a clarification regarding the 
nomenclature—all the following are equivalent:

 n MapReduce 2.0
 n MRv2
 n YARN
 n Apache Hadoop NextGen MapReduce
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Architecture of YARN
YARN depends on a cluster-wide ResourceManager, which is the authoritative arbitrator 
of resources among all the applications running in a  Hadoop cluster. The ResourceManager 
works together with a NodeManager (NM) that runs on every worker node (DataNode) 
in the cluster. Together, the single ResourceManager and the per-node NodeManagers 
form the data computation framework.

Each of the applications that run on YARN has an ApplicationMaster (AM) associated 
with it. The ApplicationMaster’s main purpose is to negotiate with the ResourceManager 
for resources and work with the NodeManagers to execute the tasks that are part of each 
application.

Before you dive into the architecture of YARN itself, it’s helpful to understand the 
following terms:

 n A client is the program that submits YARN jobs to the cluster. Sometimes a client 
also refers to the gateway machine on which the client program runs.

 n A job, also called an application (for example, a MapReduce job will include 
mappers, optional reducers and the list of inputs they process), contains one 
or more tasks. 

 n When running a MapReduce job, a task can be either a mapper or a reducer task. 
There are some applications that use both mappers and reducers and some that just 
use mappers and no reducers.

 n Each mapper and reducer task runs within its own container. The administrator 
configures the size of the containers. The job determines the number of mappers 
and reducers. 

Figure 2.6 shows the high-level architecture of YARN and how its core components work 
together to process data. The ResourceManager, ApplicationMaster, and NodeManager 

Clients ResourceManager

ApplicationMaster Containers

NodeManager

Figure 2.6 YARN clients, the ResourceManager and the NodeManager
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are the key actors in performing the computational work. YARN clients create the apps 
and launch them. The RM is in charge of scheduling and managing resources. A 
NodeManager daemon runs on each DataNode and launches and manages containers. 
There’s a single AM for each job. The AM is created by the RM and it makes all the 
requests for the containers needed to complete a job. Containers are abstractions that 
refer to resources such as RAM and CPU.

I look at the key components of YARN in more detail in the following sections.

YARN Containers—How YARN Allocates Resources
YARN uses containers, which are logical constructs that represent a specific amount 
of memory and other resources, such as the processing cores (CPU), to process its appli-
cations. For example, a container can represent 2GB memory and 2 processing cores. A 
container could be a set of physical resources such as memory, CPU, disk and network—
right now only memory and CPU are used in sizing a container. All of your YARN 
application tasks run in containers. Each Hadoop job contains multiple tasks and each 
of the tasks runs in its own container. A container comes into being when the task 
starts. When the task completes, the container is killed and its resources allocated to 
other tasks. 

You can configure the containers to suit your resource availability and processing needs. 
As with everything, Hadoop has default values for configuring the containers (such as 
8GB RAM per container), and you can configure them to suit your resource availability 
and processing needs.

The ResourceManager allocates the containers for each application. The NodeManager 
manages the containers’ lifecycles and the ResourceManager schedules the containers. 

Each YARN application runs in one or more containers. By default, each container 
has a set amount of memory, and you can customize it. It’s customary to use a size ranging 
from 1-4 GB for the map and reduce containers, but you can configure more memory if 
you need. As an administrator, you really can’t specify or even predict where the individ-
ual containers for a job will run—that is managed entirely at the application layer.

If a job is allocated, let’s say, 200 containers, each performing a task such as a map 
or reduce, it means that the containers will be distributed among the cluster nodes, 
with a bunch of containers running on each node. As each map or reduce task com-
pletes, the container will be terminated, and if there are pending map or reduce tasks, 
new containers will be started up to re-run the pending tasks that are part of the appli-
cation. The application-specific ApplicationMaster launches the jobs in the containers 
that are allocated on various nodes for a specific job.

The number of tasks, and therefore the number of YARN applications you can run 
at any one time, is limited by the number of containers your cluster can spawn. The 
total number of containers is limited by the total amount of memory you allocated to 
YARN, as well as the total number of processors you assigned to YARN. Later in this 
chapter, I explain how to configure the amount of memory to allocate for YARN in 
your cluster.



ptg18444370

51Data Processing with YARN, the Hadoop Operating System

The ResourceManager
There’s one ResourceManager per cluster, and it does the following:

 n Initiates the startup of all YARN applications
 n Manages job scheduling and execution
 n Allocates resources globally on all the DataNodes

The ResourceManager consists of two key components, the Scheduler and the 
ApplicationsManager (not to be confused with the per-application ApplicationMaster). 
The Scheduler allocates resources to running applications within the limits of capacities 
and queues. In order to allocate resources, the Scheduler uses resource containers. The 
ApplicationsManager accepts job requests submitted by clients and starts the first con-
tainer for execution of a new ApplicationMaster. It also restarts an ApplicationMaster 
container upon its failure.

Following are the key functions of the ResourceManager:

 n Creates the first container for an application. This is the container in which the 
ApplicationMaster for the application will run.

 n Tracks the heartbeats from the NodeManagers to manage the DataNodes.
 n Runs a Scheduler to determine resource allocation among the clusters. 
 n Manages cluster level security.
 n Manages the resource requests from the ApplicationMasters.
 n Monitors the status of the ApplicationMaster and restarts that container upon its failure.
 n Deallocates the containers when the application completes or after they expire.

The scheduling algorithms that are part of the Scheduler component of the 
ResourceManager perform the following functions:

 n Let users share a cluster in a predictable fashion, guided by a preset policy
 n Support the implementation of multiple SLAs for which users are responsible
 n Let short-running, small jobs run even when they’re started after huge, 

resource-intensive, long-running jobs
 n Reduce job latencies where you have different-sized jobs running together 

The ResourceManager allocates cluster resources among the applications running in 
a cluster and in the process optimizes the cluster resource usage. The ResourceManager 
optimizes cluster utilization while following constraints imposed by capacity guarantees 
and SLAs, using a pluggable scheduler that incorporates capacity guarantees and fair 
scheduling features.

It’s important to realize that that the ResourceManager is a pure scheduler—it doesn’t 
care about the type of application or framework. It doesn’t understand anything about 
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MapReduce or Spark per se—it simply assigns resources to applications that request them, 
regardless of the type of application or framework.

The NodeManager
Each DataNode in a Hadoop 2 cluster runs a NodeManager daemon for performing 
YARN functions (the DataNodes also run a DataNode daemon for performing HDFS 
functions). The per-node NodeManager agent performs the following functions:

 n Communicates with the global ResourceManager through health heartbeats and 
container status notifications.

 n Registers and starts the application processes.
 n Launches both the ApplicationMaster and the rest of an application’s resource 

containers (that is, the map and reduce tasks that run in the containers) on request 
from the ApplicationsManager.

 n Oversees the lifecycle of the application containers.
 n Monitors, manages and provides information regarding the resource consumption 

(CPU/memory) by the containers.
 n Tracks the health of the DataNodes.
 n Monitors container resource usage and kills runaway processes.
 n Handles log management by aggregating the job logs and saving them to HDFS.
 n Provides auxiliary services to YARN applications. Auxiliary services are appli-

cations that provide services to applications and are used by the MapReduce 
framework for its shuff le and sort operations.

 n Maintains security at the node level.

Figure 2.7 shows how the NodeManager interacts with the ResourceManager to 
manage container resources. The NodeManager process coordinates the resource usage on 
the DataNodes where it runs and also reports the usage information to the ResourceManager. 
It starts and manages the application containers. The ResourceManager manages job 
scheduling and execution on the worker nodes.

The ApplicationMaster
There’s a single, dedicated ApplicationMaster for each YARN application (same as a job). 
The ApplicationMaster’s main functions are:

 n Managing task scheduling and execution
 n Allocating resources locally for the application’s tasks

Unlike the ResourceManager and the NodeManager, the ApplicationMaster is specific 
to an application and serves the resource requirements of that application. While the 
ResourceManager and the NodeManager are always running, the ApplicationMaster is 
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only associated with running applications—if there are no currently running applications, 
there won’t be an ApplicationMaster process running. It’s important to remember that 
the ApplicationMaster tracks job progress for a specific application. Each time a new 
application starts, the ResourceManager deploys a container running the ApplicationMaster 
on one of the cluster’s nodes.

Note

The ApplicationMaster isn’t a continuously running daemon (unlike the ResourceManager 
and NodeManager daemons)—rather, it’s application specific. Each application that runs in 
the cluster is associated with a single ApplicationMaster, which starts when the application 
is started and is terminated when that application completes. The ApplicationMaster is 
in charge of the entire lifecycle of an application, from requesting the necessary containers 
from the ResourceManager to submitting lease requests to NodeManagers for those 
containers.

How the ApplicationMaster Works with the ResourceManager to 
Allocate Resources
The ApplicationMaster, like all YARN processes, runs within a YARN container—
in fact it runs inside the first container when an application starts. Once the Application-
Master starts running in the application’s very f irst container, it negotiates with the 

Master Node

ResourceManager

Worker Node 1

NodeManager
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RAM

Worker Node 2

NodeManager

CPU
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Figure 2.7 How the NodeManagers manage the resources on the nodes and 
interact with the ResourceManager to oversee application containers
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ResourceManager for containers to process the mappers and reducers in the application. 
It then presents those containers to the NodeManagers running on each of the DataNodes 
where the ResourceManager has assigned resources for the containers. 

The ApplicationMaster is in charge of requesting resources in the form of resource 
containers from the ResourceManager to support the application. It coordinates its work 
with that of the NodeManager service running on each DataNode to execute the resource 
containers and monitor how they’re using the resources allocated to them. 

One of the primary responsibilities of the ApplicationMaster is to provide fault tolerance 
for resources.

When the ApplicationMaster makes a resource request to the ResourceManager for 
running its map and reduce tasks, it’s very specific. Each resource request specifies the 
following:

 n The file blocks needed to process the job
 n The amount of the resource, in terms of the number of containers to create for 

the application
 n The size of the containers (for example, 1GB RAM and 1 Virtual Core)
 n The location where the resources should be assigned (for example, 4 containers 

on Node 10, Rack 1 and 8 containers on Node 20, Rack 2) based on the infor-
mation it gets from the NameNode as to the locations (nodes) where the data 
blocks are stored

 n Priority of the resource request

If the resources requested by the ApplicationMaster are available, the ResourceManager 
grants the ApplicationMaster’s resource requests. The ApplicationMaster will then allocate 
the map and reduce task containers to the NodeManagers running on the DataNodes.

Note

The ApplicationMaster is framework specific. For example, MRAppMaster is the name of 
the ApplicationMaster for MapReduce applications. For Spark, it’s the SparkAppMaster.

The JobHistoryServer
There’s a single JobHistoryServer for the entire cluster. The JobHistoryServer archives 
all YARN job metrics and their metadata and is exposed through the JobHistoryServer 
web UI. The cluster will run fine without the JobHistoryServer, but you won’t be able 
to easily access the job logs and job history without it.

How YARN Components Work Together
The ResourceManager, NodeManager and ApplicationMaster work together to service 
application requests for resources. Figure 2.8 shows the basic YARN architecture and 
illustrates how they do so.
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Following is the sequence of events that occurs when a MapReduce application is 
started in a YARN-based cluster.

1. Client submits the MapReduce v2 (MRv2) application request, such as the fol-
lowing, to the ResourceManager.

$ hadoop jar wordcount.jar  WordCount  testdata output

2. The ApplicationManager component of the ResourceManager directs a NodeManager
(there’s one of these running on each worker node) to start a new ApplicationMaster
instance for the application. This is Container 0 for that application. Containers
created later on to run the mapper and reducer processes will be named 01, 02, 03
and so on.

3. The ApplicationMaster initializes itself by registering with the ResourceManager.

4. The ApplicationMaster calculates the processing resources necessary to complete
the application. The ApplicationMaster determines the number of map tasks that
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AppMaster
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AppMaster
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Figure 2.8 How YARN components work together
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should be started up, based on the input splits. It calculates the input splits by request-
ing the names and locations of the input files and data blocks required by the 
application. Using this information, the ApplicationMaster calculates how many 
map tasks are required to process the input data.

5. The ApplicationMaster requests the ResourceManager to assign the necessary con-
tainers for the map tasks. It stays in contact with the ResourceManager throughout
the lifecycle of the application, assuring that its list of required resources is being
honored by the ResourceManager and also sending any necessary kill requests for
killing tasks.

6. The Scheduler component of the ResourceManager determines on which nodes to
run the map tasks. Key factors in the determination include data locality and available
memory to support the new containers to be created on the nodes for the tasks to run
in. The ResourceManager queues the resource requests from the ApplicationMaster
and grants it leases for containers on specific nodes as resources become available on
those nodes.

7. The ApplicationMaster directs the NodeManager, on the nodes where the con-
tainers have been assigned, to create the containers.

8. The NodeManager creates the requested containers and starts them. Containers
send MapReduce status to the ApplicationMaster. (There’s only one of these
per job.)

9. The ApplicationMaster requests the ResourceManager for reducer tasks (if the
MapReduce application contains reducers—some don’t).

10. The ApplicationMaster requests the NodeManager to launch the reduce tasks on
nodes where the ResourceManager allocates resources for the Reduce tasks.

11. The reduce tasks perform the shuff le and sort with the mapper’s intermediate
data and store the output in HDFS (outdir).

12. The NodeManager sends status and health reports to the ResourceManager.
Once all tasks are completed, the ApplicationMaster sends the results to the client
application. It also sends the job information and logs to the JobHistoryServer.
Task containers clean up their state and the intermediate output is deleted from
the local file system.

13. Once an application completes running, the ApplicationMaster informs the
ResourceManager that the job has successfully completed and deregisters itself
from the ResourceManager and shuts down.

14. The ResourceManager releases all the resources (containers) held by the applica-
tion for reuse by the cluster.

As you’ll see later in this book, MapReduce jobs typically involve a map and a 
reduce phase. If a map task on a node hangs while running a MapReduce job, the 
ApplicationMaster will eventually mark the map task attempt as failed and request 
the Node Manager to terminate the map task container.
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Summary
Here’s what you learned in this chapter:

 n HDFS, the storage component, and YARN, the processing engine, work 
together to perform complex distributed computing tasks.

 n HDFS uses the principle of redundancy to protect data.
 n The NameNode manages HDFS and the DataNodes store the actual data.
 n YARN is a general-purpose computing engine that contains both resource man-

agement and scheduling capabilities and supports diverse processing frameworks.
 n YARN uses containers, which are logical entities, to allocate computing 

resources.
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3
Creating and Configuring 
a Simple Hadoop Cluster

This chapter covers the following:

 n Creating a simple pseudo-distributed (single node) Hadoop cluster
 n Performing an initial Hadoop configuration
 n Operating the new cluster
 n Running a test program

Many people find the configuration of a well-running Hadoop cluster somewhat 
of a mystery, especially so because of the new architecture introduced by Hadoop 2. In 
this chapter, I show how to install and configure a pseudo-distributed Hadoop cluster, 
which is a Hadoop cluster that looks and functions the same as any real Hadoop cluster but 
uses just a single node. Understanding how to install and configure a Hadoop cluster 
properly helps a great deal in efficiently administering and optimizing your cluster. 

There are a couple of important reasons why I chose to dedicate two separate chapters 
to installing a cluster—this chapter for a simple single-node cluster and the next chapter 
for a multinode, much more realistic cluster. First, setting up a full-f ledged, production-
grade Hadoop cluster involves a much more elaborate configuration when compared to 
that of a simple one-node pseudo-distributed cluster. I didn’t want users to be overwhelmed 
at the outset with all the installation and configuration details involved in setting up a 
multinode cluster. The goal of this chapter is simply to get you familiar with a basic Hadoop 
cluster and how to install it on a single node. You take the baby steps first, learn a bit 
about HDFS and YARN, the two major components of Hadoop, and get yourself in a 
good place for dealing with the configuration of a real Hadoop cluster running on 
multiple nodes.

The other reason why I chose to start with a simple one-node cluster is that it enables 
you to get going with running Spark, MapReduce, Pig and Hive jobs in quick order, by 
simply using your laptop to download, install and configure Hadoop and its components. 
You’re free to skip this chapter and move on to Chapter 4, “Planning for and Creating a 
Fully Distributed Cluster,” if you’re already familiar with Hadoop. 
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One of the key goals of this chapter is to help you master the configuration of Hadoop 
systems. Starting with configuring a parameter or two in each of Hadoop’s key config-
uration files will let you get over any potential fear of “mucking with” configuration 
files—it’s really straightforward to work with these files! 

  Hadoop Distributions and Installation Types
The only Hadoop product that’s officially a release of Apache Hadoop is the distribution 
offered by the Apache Foundation (www.apache.org). Several companies and organiza-
tions release or sell Hadoop products that contain the official Apache Hadoop release 
files and tack on their own additions and other tools on top of it. Of course, support for 
these extended or modified Hadoop distributions is also provided by the respective com-
panies that release those Hadoop products. 

Hadoop Distributions
Here are some of the well-known products that Apache Hadoop Foundation lists on its 
website.

 n Amazon Web Services: Amazon uses a version of Apache Hadoop based on their 
proprietary EC2 storage system.

 n Apache Bigtop: This is a project for developing the packaging and testing of the 
Apache Hadoop ecosystem.

 n Cloudera: This company distributes a Hadoop-based platform called Cloudera’s 
Distribution Including Apache Hadoop (CDH).

 n Hortonworks: Hortonworks provides a 100 percent open-source big data platform 
named Hortonworks Data Platform Powered by Apache (HDP). HDP is offered 
free of charge to users, with Hortonworks deriving most of its revenues from 
annual support subscriptions.

 n IBM: IBM provides the BigInsights Enterprise Edition that builds on Apache 
Hadoop.

 n MapR: MapR provides a MapReduce framework based on Apache Hadoop and 
offers higher performance due to its reengineering of several MapReduce compo-
nents, including HDFS, the storage system for Hadoop.

 n Pivotal HD: Pivotal offers Pivotal HD, geared toward advanced real-time 
analytics.

 n VMware: VMware provides a product named Serengeti that enables the rapid 
deployment of a Hadoop cluster.

 n WANdisco: WANdisco provides an advanced replication technology for Hadoop 
called Non-Stop Hadoop to provide continuous availability.

http://www.apache.org
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Note

One of the easiest ways to get started with a pseudo-distributed cluster is to install a virtual 
Hadoop distribution provided by a Hadoop vendor such as Cloudera’s Quickstart VM, Horton-
works’ sandbox or MapR’s sandbox for Hadoop. However, I show how to install, configure 
and manage a Hadoop system that you create yourself—the goal is to learn how things 
work behind the scenes, so you can be a better administrator of Hadoop systems.

The list of Hadoop products is by no means exhaustive. This book uses the Hadoop 
distribution offered by Apache (www.apache.org). If you’re using any of the aforemen-
tioned products, your administration procedures and tools may vary, but in every one 
of these products, Hadoop works exactly the same under the hood.

Hadoop Installation Types
You can install Hadoop 2 in the following three ways:

 n Standalone: All Hadoop services run in a single JVM, and there are no daemons 
(a daemon is a UNIX or Linux long-running background process that answers 
requests for services). In this mode, Hadoop uses the local file system and not 
HDFS for storing its data, and MapReduce jobs run with a single mapper and 
a single reducer. This deployment model is best suited for developers to run 
their code.

 n Pseudo-distributed: This is a simulation of a real multinode cluster. You config-
ure all the services just as in the case of a fully distributed cluster, but all daemons 
(such as the DataNode, NameNode and ResourceManager processes) run on a 
single server. However, you can’t use this in a real production environment—
there’s no way to configure data replication or high availability when all you’ve 
got is a single node! 

 n Fully distributed: This is the real deal. You configure Hadoop with data replication—
and possibly high availability if you wish—because you’ll install Hadoop over a 
set of servers and not on a single node. You have daemons for each process and 
the daemons run on multiple servers.

Figure 3.1 shows the three installation modes for Hadoop. The standalone method is 
quite simple to implement, but it really isn’t useful for administrators since there are no 
daemons for the individual Hadoop services such as YARN and HDFS. This chapter 
shows you how to install and configure a single-node pseudo-distributed Hadoop 
system (the second of the three installation types I described). In Chapter 4, I describe 
how to install and configure a real-life, full-blown Hadoop cluster over multiple nodes, 
with all the bells and whistles. 

http://www.apache.org
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Setting Up a Pseudo-Distributed Hadoop Cluster
A pseudo-distributed cluster is a fancy name for a cluster that has a single node. You won’t 
have any data protection, since you can’t replicate data. Similarly, you can’t take advantage 
of the parallel processing capabilities of Hadoop. 

Starting off a Hadoop installation with a pseudo-distributed cluster isn’t a waste of time 
though. Many of the steps for installing the simple pseudo-distributed cluster are the same 
as those you’ll need to perform when installing a distributed cluster. Doing it this way 
lets you test the waters yet not have to deal with a full-blown cluster until you learn how to 
work with the basic configuration files and so forth.

Note that when you complete installation of Hadoop as shown here, you’ll have just 
HDFS and YARN. You can run any MapReduce application you want at this point. If 
you want to use Spark, Hive, Pig or any other component, you must install them separately. 
One of the big advantages of using a vendor-based (e.g., Cloudera, Hortonworks) installa-
tion setup is that you can quickly and effortlessly set up the entire Hadoop environment. 
However, manually installing each of those components isn’t rocket science either!

Standalone Mode

Node A

Pseudo-Distributed Mode

Node A

Fully Distributed Mode

Node 1 Node 2 Node 3

Figure 3.1 The standalone, pseudo-distributed and fully distributed modes of installation
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In this chapter, I show how to install and configure Hadoop on a server running 
Oracle Linux (Release 6.5), which is fully compatible with Red Hat Linux. If you’re 
using an alternative Linux distribution such as Ubuntu or something else, no need to 
panic, as the procedures are very similar and the differences really superficial. 

Before you can actually install your pseudo-distributed Hadoop cluster, first you’ll need to 
ensure that you meet all the Linux operating system prerequisites. Note that you must 
satisfy the same requirements as shown here when you install a real life multinode cluster, 
as well.

Meeting the Operating System Requirements 
You can install Hadoop on various f lavors of Linux such as Red Hat Enterprise Linux, 
CentOS 5/6 or SUSE Linux Enterprise Server 11, SP1. Make sure that you have the 64-bit 
version of the operating system.

Useful Utilities

It’s good to check that you have the following utilities working in all your cluster servers. 
Later on, I do show how to install and use the pdsh utility, which is very handy for perform-
ing remote commands across the cluster.

 n yum is the tool you use for getting, installing, deleting, querying and managing Red 
Hat Enterprise Linux RPM software packages from official Red Hat software reposi-
tories, as well as other third-party repositories. For other Linux distributions such as 
Ubuntu Linux, for example, the apt-get utility does the same things as the yum utility.

 n rpm is a package manager for Red Hat, SUSE and Fedora Linux systems. You use 
rpm to build, install, query, verify, update and remove software packages. A package 
is an archive of files and package information such as the name and version.

 n The scp command lets you securely copy files and directories between hosts with-
out having to start an FTP session or logging into the remote system. Since scp 
uses SSH (secure shell) to transfer data, you need a password for authentication.

 n curl is a command line tool that lets you send and get files using a URL syntax.

 n wget is a non-interactive network utility that helps you retrieve files from the web 
using the popular HTTP and FTP protocols.

 n pdsh is a parallel remote shell utility that lets you execute remote commands.

For my installation examples in this book, I use the pdsh tool to send files across the 
cluster nodes. Instead of pdsh, you can also use an automated deployment tool such 
as Red Hat’s KickStart or Dell Crowbar.

Before you can install the Hadoop binaries, you must ensure that the Linux kernel 
has the appropriate settings for several parameters, as well as perform other actions such 
as disabling SELinux and IP tables. The following sections explain all the changes you 
need to make to the Linux system.
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Modifying Kernel Parameters  
It’s fairly common for administrators to leave default Linux server kernel settings in 
place, but it's a bad mistake to do so, since it adversely affects your cluster’s performance! 
Table 3.1 shows the recommended values for the Linux kernel parameters you should 
modify in a production Hadoop cluster.

Increasing the File Limits
In order to avoid any file descriptor errors in the cluster, increase the limits on the number 
of files a single user or process can have open at a time. The default is only 128. You can 
check the current limits with the following commands (the first one reveals the soft limits 
and the second, the hard limits):
 [root@hadoop1 ~]# ulimit -Sn
1024
[root@hadoop1 ~]# ulimit -Hn
4096
[root@hadoop1 ~]# 

You must raise the ulimits value to at least 4,096 (Hortonworks and others recom-
mend 10,000, or even more). You can do this by editing the /etc/security/limits.conf 
file as shown here:

 n Soft nofile 4096
 n Hard nofile 4096

Once you change the kernel settings, you can dynamically load the new settings by 
executing the following command.
# sysctl –p

You can confirm the new kernel settings by issuing the following command.
# sysctl –a

Table 3.1 The Modified Linux Kernel Parameters

fs.file-mx=6815744 /* total number of file descriptors

fs.aio-max-nr=1048576 /* maximum number of concurrent 
I/O requests

net.core.rmem_default=262144 /* default OS receive buffer size

net.core.wmem_default=262144 /* default OS send buffer size

net.core.rmem_max=16777216 /* max OS receive buffer size

net.core.wmem_max=16777216 /* max OS send buffer size

net.ipv4.tcp_rmem=4096 262144 16777216 /* minimum, default and maximum receive 
window size

net.ipv4.tcp_wmem=4096 262144 16777216 /* minimum, default and maximum send 
window size
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Setting noatime for Disks
Make sure that you mount all disks with noatime and all directories with nodira-
time. By doing this, you avoid unnecessary write operations for each read access to a file 
or a directory in the Linux file system, thus improving the cluster performance.

Testing Disk I/O Speed
Test your disk speed with the hdparm –t command, as shown here:

$ hdparm –t /dev/sda1

If you don’t see a speed of 70MB/second or higher, it’s sign of a potential problem.

Check the Server BIOS Settings
Make sure the server BIOS settings are configured for optimal performance by making 
sure that features such as IDE emulation by the disk drives aren’t enabled. Your storage 
and system administrators can take care of this for you.

Note

Change the file permissions on all Hadoop directories to 700 before mounting the disk drives, 
so any processes writing to these drives won’t fill up the OS mount when you dismount the 
drives.

NIC Bonding
In order to increase throughput and resilience, it’s a best practice to combine network 
interfaces by performing NIC bonding. 

Enabling NTP
Ensure that the clocks of all cluster nodes are synchronized with each other. You must 
set up one of the cluster’s servers as an NTP server if your cluster doesn’t have access to 
the Internet. Synchronize the network time on all the cluster’s nodes by enabling the NTP 
daemon by editing the /etc/sysconfig/ntpd file. 

Synchronizing the network time on all cluster nodes is critical for applications such 
as ZooKeeper, Kerberos and HBase. It’s also important to use a synchronized time across 
the cluster when going through log files to troubleshoot your cluster.

Note

Although not required, it’s a best practice to dedicate a switching infrastructure for Hadoop 
using a separate virtual local area network (VLAN).

Checking DNS
Use hostnames and not IP addresses to identify the cluster nodes. Ideally, all nodes in your 
cluster must be configured for both DNS and reverse DNS. Make sure to set all hostnames 
to their fully qualified domain names (FQDNs). Here’s an example:

# hostname --fqdn
hadoop1.localdomain
#
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If you are unable to configure DNS for some reason, make sure to edit the /etc/hosts 
file on all nodes with the list of all the cluster’s nodes. Each of the hosts must be able to 
perform both a forward lookup (of its hostname) and a reverse lookup (with its IP address). 
The host command helps you verify the forward and reverse lookups, as shown here:

# host hadoop1
hadoop1.localdomain has address 10.192.2.29
# host 10.192.2.29
29.2.192.10.in-addr.arpa domain name pointer hadoop1.localdomain.
#

Since Hadoop makes heavy use of network-based services such as DNS, it’s a good 
idea to enable the name server cache daemon (nscd) to lower the name resolution delays.

Disabling Swap
Ideally, none of your servers should swap, especially the DataNodes. You can disable 
swap completely on these servers by issuing the following command.

# swapoff –a

You can check the status of swap on a server by issuing the following command.

# swapon –s

By default, most Linux operating systems come with a swappiness setting of 60. If 
swappiness is set to zero, Linux will avoid using the disk unless it runs out of memory, 
whereas a setting of 100 means that the OS will instantly swap programs to disk. As 
you can tell, a setting of 60 means that the OS will use the swap file on disk fairly often, 
starting from the time when the memory usage reaches around half the OS RAM 
allocation. If you turn swappiness down to 10, for example, the OS will use the swap 
file on disk only when the RAM usage is around 90 percent.

The Linux administrator can change the system swappiness value by adding the following 
to the /etc/sysctl.conf file:

vm.swappiness=10

The administrator must reboot the server for the new swappiness setting to take effect. 
There’s no hard and fast rule on how low you must set the swappiness level. Cloudera 
experts recommend setting it to 1. 

Disabling SELinux
Although this isn’t an absolute requirement, SELinux is sometimes known to interfere 
with the installation of Hadoop, so it’s a good idea to disable it before you start installing 
Hadoop. In addition, SELinux imposes a 7-10 percent performance penalty on your 
cluster. You can get the current SELinux status by executing the following command.

# getenforce

If the value for the current mode is enforcing, SELinux is enabled. Disable it by changing 
the status to permissive, as shown here:

# setenforce 0
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Disabling IPv6
As you’ll learn later in this chapter, you’ll be setting the value 0.0.0.0 for some  network-
 related Hadoop configuration parameters, with Hadoop binding to the server’s IPv6 
addresses as a result. If you aren’t connected to an IPv6 network, you can simply disable 
IPv6 on the cluster nodes.

You can disable IPv6 by editing the /etc/sysctl.conf file and adding the following lines 
at the end of the file:

net.ipv6.conf.all.disable_ipv6  = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

You must reboot the server after making the changes to the sysctl.conf file. After the 
reboot, issue the following command to check that the change was made successfully:

$ cat /proc/sys/net/ipv6/conf/all/disable_ipv6

You should see an output of 1 if IPv6 is disabled and 0 otherwise.
You can alternatively disable IPv6 just for Hadoop by adding the following value for the 

environment variable HADOOP_OPTS. You add this line to your cluster’s hadoop-env.sh file:

export HADOOP_OPTS=-Djava.net.preferIPv4Stack=true

Disabling the IP Tables
During the installation of Hadoop, it’s a good idea to turn off the network firewall (and 
check it), as shown here:

# service iptables stop
# service iptables status

You can always re-enable IP tables once the installation is completed.

Setting the Ulimits
Limit the cluster resources that users can utilize by setting shell limits. You can do this 
by editing the /etc/security/limits.conf file, which dictates the limits on how users can 
use resources. The limits.conf file is used to configure “soft” and “hard” limits on 
important operating system properties such as file sizes, the stack size and the priority 
levels (niceness) of processes, as shown in Figure 3.2.

Add the following lines to your /etc/security/limits.conf file.

 n soft nofile    32768
 n hard nofile    32768
 n soft nproc     32768
 n soft nproc     32768

The nofile attribute limits the number of open file descriptors per user process and 
nproc specifies the maximum number of processes. The soft limit settings connote 
warnings and the hard limit settings are the actual resource limits.
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Turning Off Transparent Huge Pages (THP) Compaction
According to Cloudera and Hortonworks experts, THP compaction can degrade Hadoop 
performance. So, it’s a good practice to disable defragmenting as shown here (add this line 
to the /etc/rc.local file):

$ echo 'never'; defrag_file_pathname

Checking Connectivity
Check the passwordless connectivity among the nodes to make sure you’ve configured SSH 
correctly.

With the Linux operating system prerequisites out of our way, it’s on to the actual instal-
lation of the Hadoop software. As mentioned earlier, I show you how to set up a one-node, 
pseudo-distributed cluster in this chapter. Chapter 4 shows how to create a full-f ledged, 
multinode cluster.

Setting Up SSH
Before getting started with the Hadoop software installation, you’ll first need to set up a pass-
wordless connection (SSH) on the cluster. Although you have just a single node for now, the 
SSH daemon is required for using the Hadoop scripts that manage the Hadoop daemons. 

Setting up SSH on the server is an optional step, as you may already have this config-
ured. You can find out if SSH is enabled by attempting a passwordless login, through 
secure shell:

# ssh localhost

If this works, you have SSH and you’re good to go. If not, perform the following steps 
to set up SSH:

$ ssh -keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized_keys

Figure 3.2 The limits.conf file showing the various operating system 
resources for which you can set soft and hard limits
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Figure 3.3 shows the generation of the SSH key with the help of the ssh-keygen utility.

Java Requirements
Hadoop 2 requires at least Oracle JDK 1.6 (Update 31). Here’s how to install Java.

1. Check the current version of Java. Figure 3.4 shows how to check the Java version
with the java –version command.
# java –version

2. Remove any older versions of Java.
# yum remove {java-1.*}

3. Download the latest Oracle 64-bit JDK.

$ wget
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase6-419409.html#jdk-6u31-oth-JPR

4. Change the directory to the location on the server where you want to install the JDK.
# cd /usr

5. Unpack the tarball and install the JDK.
# tar -xvzf jdk-6u<version>-linux-x64.tar.gz

Figure 3.3 Generating the SSH key with the ssh-keygen 
utility so you can log in without a password

Figure 3.4 Checking the Java version with the java –version command.

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html#jdk-6u31-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html#jdk-6u31-oth-JPR
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6. Test that you’ve correctly installed Java by issuing the following command:
# rpm -qa|grep jdk
java-1.6.0-openjdk-devel-1.6.0.0-1.62.1.11.11.90.el6_4.x86_64
java-1.6.0-openjdk-1.6.0.0-1.62.1.11.11.90.el6_4.x86_64

7. Create the necessary symbolic links.
# ln -s /usr/jdk1.6.0_31/jdk1.6.0_31 /usr/java/default
# ln -s /usr/java/default/bin/java /usr/bin/java

Once you install Java, you can set up the JAVA_HOME environment variable and include 
it in the /etc/profile.d directory, as shown here.

# echo "export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/" > /etc/ 
profile.d/java.sh

To avoid having to define the JAVA_HOME environment variable after every login, define 
the variable by sourcing the java.sh script as follows:

# source /etc/profile.d/java.sh

Installing the Hadoop Software
Installing Hadoop is remarkably easy. As mentioned earlier in this chapter, I use the 
Hadoop distribution provided by Apache, specifically the Hadoop 2.6.0 version. Follow 
these steps to install a pseudo-distributed Hadoop cluster.

1. Download the Hadoop distribution (Hadoop 2.6.0):
http://apache.mirrors.tds.net/hadoop/common/
$ cd /root
# wget http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.6.0/
hadoop-2.6.0.tar.gz

If you wish, you can make sure that the zip file is complete by running the following
command:
# md5sum .tmp/ hadoop-2.6.0.tar.gz

2. Unzip the downloaded Hadoop zip file into a directory as shown here:
# mkdir –p /opt/yarn
# cd /opt/yarn
# tar -xvzf /root/hadoop-2.6.0.tar.gz

Once you install the Hadoop software, you need to create the necessary Hadoop 
users to run the Hadoop daemons, as well as create some required directories, as explained 
in the following sections.

Creating the Necessary Hadoop Users
Each of the key Hadoop daemons must run under a separate user. You’ll need three 
Hadoop users to be set up: 

 n yarn for managing the ResourceManager
 n mapred for managing MapReduce services
 n hdfs for managing the HDFS file system 

http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz
http://mirrors.ibiblio.org/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz
http://apache.mirrors.tds.net/hadoop/common/
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Place all three users in the same group, hadoop. First create this group and then add 
the three users, as shown here.

# groupadd hadoop
# useradd –g hadoop yarn # yarn owns the YARN related services
# useradd –g hadoop hdfs # hdfs owns the HDFS services
# useradd –g hadoop mapred # mapred owns the MapReduce Services

For now, these are all the service users you’ll need. In a real-life cluster, you can also create 
other service users such hive, pig, hcatalog, hbase, zookeeper and oozie and place them 
all in the same group, hadoop.

Creating the Necessary Directories
Even though you’re creating a basic single-server cluster, it’s good to create appropriate data 
directories and log directories, so everything isn’t created in a default directory by Hadoop.

The following commands will create directories for storing the NameNode (nn) and 
Standby NameNode (snn) data. It’s in the /hdfs/nn (first line below) and /hdfs/snn (second 
line below) directories that the NameNode and the Standby NameNode will save their data. 
The Hadoop data you’ll be using will be stored in the HDFS system and accessed by the 
DataNodes. The /hdfs/dn directory (third line) indicates where Hadoop should store 
the HDFS data.

# mkdir –p /var/data/hadoop/hdfs/nn
# mkdir –p /var/data/hadoop/hdfs/snn
# mkdir /var/data/hadoop/hdfs/dn

Make sure you change the ownership of the directories, as shown here:

# chown hdfs:hadoop /var/data/hadoop/hdfs

Individual users that run jobs in the cluster don’t need to be granted access to these directo-
ries. It’s enough to provide access to the user hadoop. Now that you’ve created the data direc-
tories for the NameNodes and the DataNode, it’s time to create the YARN log directory:

# mkdir /var/log/hadoop-2.6.0/logs

Grant necessary permissions and change the ownership of the log directory:

# chmod 755 logs
# chown yarn:hadoop . –R

Now that the Hadoop software has been installed, it’s time to configure Hadoop so you 
can start using it to analyze data.

Performing the Initial Hadoop Configuration
Hadoop uses a multitude of configuration files, and each of these configuration files will affect 
different aspects of a cluster’s operation, such as HDFS operations, YARN operations and so 
on. Each of a cluster’s nodes has its own copy of these configuration files, most of which are in 
the XML format. When the Hadoop daemons start up on each node, they read the appro-
priate configuration file for them. For example, when you start the DataNode daemon on a 
worker node, it looks up the hdfs-site.xml file for HDFS-related configuration settings. 
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Note

You need to restart the appropriate Hadoop daemon after modifying its configuration file. If 
you change some NameNode-related parameters, you don’t restart the DataNodes, although 
they both use the same configuration file, hdfs-site.xml, for their configuration.

Hadoop has numerous configuration parameters. If you don’t customize the Hadoop 
configuration, Hadoop uses default properties. As you progress through this book, I explain 
all the important configuration parameters in the appropriate setting—for example, the 
security chapter contains explanation of all the security-related configuration parameters. 
For now, let’s set the basic configuration parameters in order to get going with the startup 
of our pseudo-distributed cluster, by editing the Hadoop configuration files. 

There are several types of configuration files for a Hadoop cluster:

 n Environment configuration files
 n Default configuration files
 n Site-specific configuration files. 

Figure 3.5 shows the various types of Hadoop configuration files. The following sections 
describe how to configure these files.

Environment
Configuration

Files

Default
Configuration

Files

Configuration
Files That

You Customize

hadoop-env.sh mapred-env.sh

yarn-env.sh

mapred-default.
xml

hdfs-default.
xml

core-default.
xml

yarn-default.
xml

mapred-site.xml

core-site.xml hdfs-site.xml

yarn-site.xml

Figure 3.5 Hadoop Core, HDFS, Yarn and MapReduce configuration files
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Environment Configuration Files
The environment configuration files help set up the environment in which various 
Hadoop daemons execute. Hadoop has several types of daemons that perform various 
services in the cluster:

 n HDFS daemons: The NameNode, the Secondary NameNode and the DataNodes
 n YARN daemons: The ResourceManager, the NodeManager and the JobHistoryServer

There’s only one of each of the HDFS and YARN daemons, except the DataNode 
and the NodeManager—there’s one of these two daemons running on every worker node.

Figure 3.6 shows the two main types of Hadoop daemons that run in a pseudo-distributed, 
as a well as a fully distributed, cluster.

The read-only default configuration files and the site-specific configuration files together 
help you configure the daemons themselves. Hadoop provides you several scripts (located in 
the $HADOOP_HOME/sbin directory) for starting and stopping the Hadoop 2 daemons. 
The environment files hadoop-env.sh, mapred-env.sh and yarn-env.sh enable you to con-
trol these Hadoop scripts. The hadoop-env.sh file, for example, sets up the environment for 
Hadoop to run and usually includes values for the following environment variables:

 n JAVA_HOME

 n HADOOP_CLASSPATH

 n HADOOP_HEAPSIZE

 n HADOOP_LOG_DIR

 n HADOOP_PID_DIR 

HDFS
Daemons

NameNode
Secondary
NameNode

ResourceManager
NodeManager

JobHistoryServerDataNode

Manage Data
Storage in HDFS

Manage the 
Job Processing
in YARN

YARN
Daemons

Figure 3.6 The two types of Hadoop daemons: HDFS daemons 
handle data storage and YARN daemons process the jobs.
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You can source the values in the hadoop-env.sh file. Similarly, the yarn-env.sh file 
specifies values for the environment variables used by YARN and the mapred-env.sh file 
specifies values for environment files used by MapReduce.

Read-Only Default Configuration Files
The read-only default configuration files provide the default configuration for core 
Hadoop, YARN, HDFS and mapred. You can’t edit these files—these files provide default 
configuration if you don’t, for some reason, make the change in the corresponding 
site-specific configuration file. For example, don’t modify the yarn-default.xml file 
if your goal is to configure YARN. Instead, use the yarn-site.xml file for this purpose. 
Here are the four default read-only Hadoop configuration files:

 n core-default.xml: Core Hadoop settings, overridden by values you specify in 
the core-site.xml file.

 n hdfs-default.xml: Default settings for HDFS related services. Override this file 
with settings in the hdfs-site.xml.

 n yarn-default.xml: Default settings for YARN. Override the settings in this file 
with settings in the yarn-site.xml file.

 n mapred-default.xml: MapReduce v2 default settings. Override this file with 
settings in the mapred-site.xml file.

All the xxxx-default.xml files serve the following two purposes:

 n They document all available configuration parameters.
 n They specify default values for the available configuration parameters.

Site-Specific Configuration Files
The site-specific configuration files are the most important set of configuration parameter 
files for any Hadoop environment, since they contain a large number of configurable 
parameters that you can modify to control the working of the cluster. Here are the names 
of the environment and site-specific configuration files you’ll be working with:

 n core-site.xml: Core Hadoop configuration
 n mapred-site.xml: Configuring MapReduce
 n hdfs-site.xml: Configuring HDFS
 n yarn-site.xml: Configuring YARN

Other Hadoop-Related Configuration Files
In addition to the environment configuration files and the default and site-specific 
configuration files, it’s common to use some or all of the following Hadoop-related 
configuration files:
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 n log4j.properties: For configuring logging
 n hadoop-metric.properties (and hadoop-metric2.properties): For configuring 

Hadoop metrics
 n allocations.xml: For configuring the Fair Scheduler 
 n capacity-scheduler.xml: For configuring the Capacity Scheduler
 n include and exclude files: Used for specifying which hosts to include or 

exclude from a Hadoop cluster

Figure 3.7 shows the log4j.properties file, which you use to configure Hadoop logging. 
Chapter 17, “Monitoring, Metrics and Hadoop Logging,” provides details about configur-
ing Hadoop logging. Several of the Hadoop configuration files, especially the site-specific 
files, contain a large number of configuration parameters that you can set. For now, you 
only need to set one or two parameters to get your pseudo-distributed cluster going.

In the following sections, I review the nature of the configuration files you’ll be 
working with. I make no attempt to list and explain all the Hadoop configuration 
parameters in this chapter—there are simply too many of them! But rest assured that 
as you proceed forward through the various chapters in this book, you’ll encounter all the 
important configuration parameters you need to understand.

Tip

Properly configuring the Hadoop components such as HDFS and YARN is the single biggest 
factor that affects a cluster’s performance and stability. Often, administrators leave the default 
settings on for various parameters, which results in poor performance and cluster instability.

Figure 3.7 The default log4j.properties file. Set properties 
in this file to configure Hadoop logging.
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The following sections cover these topics:

 n Precedence among the configuration files
 n Configuring the Hadoop, MapReduce and YARN environment

Precedence among the Configuration Files
Files such as hdfs-site.xml and yarn-site.xml on the master nodes aren’t the only way to 
configure HDFS and YARN. You can specify configuration settings in multiple ways. 
You can specify them when initializing a MapReduce job, for example, or by including 
them in the JobConf or Job object. You can also specify them in a file such as yarn-site.xml 
or hdfs-site.xml on either the DataNodes or the client node. Which one of these will 
a MapReduce job take into account at runtime? Here’s the order of precedence among 
the configuration files, when configuring YARN settings:

1. The settings you specify in the JobConf or Job object take the highest
precedence.

2. Next in precedence are the values you specify on the client, within a configuration
file such as mapred-site.xml.

3. Next are any configuration parameter values you include in the configuration
files on the DataNodes.

4. If you don’t configure the value for a parameter in any of the aforementioned
methods, the settings in the mapred-default.xml file will come into play.

The settings for HDFS and MapReduce work in a similar fashion. As an administrator, 
you can keep a program or the client from modifying certain configuration parameters 
by marking the parameters as final, as shown here:

<property>
  <name><attribute></name>
  <final>true</final>
</property>

For example, the following configuration marks the value you specify for the 
dfs.hosts.include parameter as final, thus ensuring that the parameter always points 
to the include file /etc/hadoop/conf/hosts.include.

<property>
   <name>dfs.hosts.include</name>
   <value>/etc/hadoop/conf/hosts.include</value>
   <final>true</final>
</property>

As an administrator, you may want to keep applications or client configurations from 
overriding some key configurations settings such as the HDFS block size, for example. 
The ability to mark those values as final gives you control over those system-wide settings. 
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Typically, administrators mark key parameters as final in the core-site.xml file, to keep 
applications or users from modifying them. 

Let’s say you’ve set the number of reducers per job to six in the mapred-site.xml file 
by setting the parameter mapreduce.job.reduces to 6. Let’s assume that a developer runs 
a job and specifies the number of reducers in the MapReduce application driver by 
including setNumReduceTasks(2). Finally, let’s say a user runs a job with the command-line 
argument -D mapreduce.job.reduces=8. How does Hadoop determine how many reduce 
tasks to spawn for this job? Hadoop will start two reducer tasks because the value set 
by the developer in the code will override the number of reducers set through the other 
means. Of course, if you set the mapreduce.job.reduces parameter as final, then the 
number of reducers will be six. Once again, the order of precedence in job execution is 
the following:

1. Application code

2. Code from the command line (run-time command line options)

3. Client-side XML files (such as mapred-site.xml)

4. Node-side XML files (such as mapred-site.xml)

5. Default XML files

Figure 3.8 shows how the issue of configuration property precedence is resolved 
when in Hadoop. Note how the precedence of the configuration properties accords the 
properties in the client code the highest precedence.

Caution!

If you don’t specify a value for a property the default values apply.

When you wish to change the configuration of all DataNodes in a cluster, you must 
first change the configuration files on the NameNode. The NameNode stores the master 
configuration files for all DataNodes in a cluster. Once you modify the configuration, 
restart all the DataNode daemons on the cluster in order to apply the changes to the 
DataNodes. Since you aren’t changing the NameNode’s configuration, there’s no need 
to restart the NameNode.

When discussing the precedence of Hadoop’s configuration files, it’s important to 
understand that some configuration parameters are client-side parameters, and the value 
you set for these types of parameters on a specific server will trump any values you set for 
the same parameter in the server running the NameNode. For example, if you set the 
value of the dfs.block.size parameter to 64MB in the hdfs-site.xml file on a client 
machine and set it to 128MB on the server hosting the cluster’s NameNode, Hadoop 
will use a block size of 128MB, not 64MB, when clients write files to HDFS on a server. 
This is true unless the client process writing the file to HDFS is running on the server 
hosting the NameNode.



ptg18444370

78 Chapter 3 Creating and Configuring a Simple Hadoop Cluster

Variable Expansion and Configuration Parameters
Configuration parameter value strings are always first evaluated for variable expansion. 
For example, let’s say I set the following property by including variables for the values 
and not the actual values.

  <property>
    <name>basedir</name>
    <value>/user/${user.name}</value>
  </property>

  <property>
    <name>tempdir</name>
    <value>${basedir}/tmp</value>
  </property>

The ${user.name} variable will be resolved to the value of the system property with 
the same name. Let’s say {user.name} evaluates to sam. Then the value of the configu-
ration property tempdir is dynamically determined as /user/sam/tmp.

Configuration
in Client Code

Configuration
Properties at the
Command Line

Client-Side
XML Files

Node-Side
XML Files

Default XML
Configuration Files

Figure 3.8 How Hadoop resolves the question of precedence when the 
same configuration property appears in different places
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Now that you’ve learned about the various types of Hadoop configuration files, it’s 
time to actually start configuring our pseudo-distributed Hadoop cluster. Configuring 
Hadoop involves configuring HDFS, YARN and MapReduce among other things.

The following sections explain how to configure HDFS, YARN and MapReduce.

Configuring the Hadoop Daemons Environment
The previous sections showed how to configure the Hadoop daemons such as YARN 
and HDFS. You can also customize the process environment for each of these key Hadoop 
daemons by configuring various environment variables in the following files.

 n hadoop-env.sh
 n mapred-env.sh
 n yarn-env.sh

By default, these files are located in the $HADOOP_HOME/etc/hadoop directory. 
You can configure each of the Hadoop daemons with the xxxx_xxx_OPTS parameters 
as shown here:

YARN_RESOURCEMANAGER_OPTS // ResourceManager daemon
HADOOP_NAMENODE_OPTS // NameNode daemon
HADOOP_DATANODE_OPTS // DataNode daemon
YARN_NODEMANAGER_OPTS // NodeManager daemon
HADOOP_SECONDARYNAMENODE_OPTS   // SecondaryNameNode daemon

In order to individually configure a Hadoop daemon, you must set the appropriate 
property for a daemon in the correct configuration file. For example, to configure the 
NameNode, you must use the HADOOP_NAMENODE_OPTS parameter in the hdfs-site.xml 
file, as shown in the following example:

HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC"

This example shows how to configure the NameNode to use parallel garbage collection for 
its JVM. Here’s another example that shows how to set the memory size for each of the 
daemons:

YARN_RESOURCEMANAGER_OPTS = -Xmx4g // ResourceManager daemon
HADOOP_NAMENODE_OPTS = -Xmx4g // NameNode daemon
HADOOP_DATANODE_OPTS = -Xmx4g // DataNode daemon
YARN_NODEMANAGER_OPTS = -Xmx1g // NodeManager daemon
HADOOP_SECONDARYNAMENODE_OPTS = -Xmx4g   // SecondaryNameNode daemon

Although you can get by for now without configuring any of the Hadoop environ-
ment files (mapred-env.sh, hadoop-env.sh and yarn-env.sh), since our main goal here is 
to acclimatize to Hadoop configuration, let’s go ahead and set values for the key environ-
ment variables in these files. If you don’t edit any of these files, Hadoop will automatically 
assign values to the environment variables, thus setting default values for things such as 
the memory size for the daemons and the locations for the daemon log files. 
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You can set the values for the following in the Hadoop environment files:

 n The Java home directory
 n JVM options for the DataNode, NameNode, ResourceManager and other 

Hadoop daemons
 n Locations of the various Hadoop log files

Let’s learn how to edit the environment files for hadoop, yarn and mapred in order 
to set appropriate values for the environment variables used by the Hadoop, YARN and 
MapReduce daemons. 

Co nfiguring the Hadoop Environment
You must set the Hadoop-specific environment variables in the hadoop-env.sh file. 
At the least, you must specify the value for the JAVA_HOME environment variable (same 
in the mapred-env.sh and yarn-env.sh files as well). In addition, it’s useful to set the fol-
lowing environment variables in the hadoop-env.sh file:

export HADOOP_HEAPSIZE=500
export HADOOP_LOG_DIR=/var/log/hadoop/hdfs
export HADOOP_CONF_DIR=/opt/yarn/hadoop-2.6.0
export HADOOP_LOG_DIR=/var/log/hadoop/hdfs

Configuring the YARN Environment
Hadoop 2 uses the parameter YARN_HEAPSIZE to determine the Java heap size for the YARN 
daemons. The default value of this parameter is 1,000MB. This heap size of 1GB applies 
to each of the YARN daemons, such as the ResourceManager and the NodeManager. The 
following two configuration parameters help you set the heap size of the ResourceManager 
and the NodeManager, respectively, within the yarn-env.sh file:

export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/
export YARN_HEAPSIZE=500
export YARN_RESOURCEMANAGER_HEAPSIZE=500
export YARN_NODEMANAGER_HEAPSIZE=500
export YARN_PID_DIR=/var/run/hadoop/yarn
export YARN_LOG_DIR=/var/log/hadoop/yarn

Configuring the MapReduce Environment
Edit the mapred-env.sh file as follows to set the environment for mapred:

export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/
export HADOOP_MAPRED_IDENT_STRING=mapred
export HADOOP_MAPRED_PID_DIR=/var/run/hadoop/mapred
export HADOOP_MAPRED_LOG_DIR==/var/log/hadoop/mapred
export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=250

Adjusting the Heap Size for the Simple Cluster
Wh en you’re running a pseudo-cluster on a small server such as your laptop, it’s a good 
idea to set the heap size for the individual daemons to a lower size, so the Hadoop, 
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YARN and MapReduce daemons can function properly. The default size for the heap 
size for the daemons is 1GB, which is fine in a real cluster. I’ll lower this to 500MB so 
the cluster has enough memory to do its work. Here’s how you configure the heap size 
separately for each individual daemon:

HADOOP_HEAPSIZE = 500 // in the hadoop-env.sh file
YARN_HEAPSIZE = 500 // in the yarn-env.sh file
HADOOP_JOB_HISTORYSERVER_HEAPSIZE= 250    // in the mapred-env.sh file

Configuring Core Hadoop Properties (with the core-site.xml File)
The core-site.xml file contains values for core Hadoop properties. You can use this file 
to override default parameter values stored in the core-default.xml file. Here’s where a 
lot of configuration errors occur. You haven’t explicitly set a parameter, and you’re surprised 
to see that it has an outdated or a suboptimal value, and you wonder how that happened. 
Well, if you don’t explicitly set a value for a configuration parameter, Hadoop doesn’t 
complain—it just uses the default values in the core-default.xml file.

Override a default value by setting a new value within the <configuration> tags, 
in the following format:

<property>
  <name>property_name</name>
  <value>property value </value>
  <description> </description>   //optional tag
</property>

Setting the Basic HDFS Parameters 
Start configuring the core Hadoop properties by editing the core-site.xml file, located 
in the /opt/yarn/hadoop-2.6.0/etc/hadoop directory. You’ll find this to be an empty 
file when you open it. Set the following two parameters in this file:

 n fs.defaultFS specifies the name of the default file system and the host and port 
information for the NameNode service.

  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://hadoop1:8020</value>
  </property>

The fs.defaultFS parameter specifies the name of the default file system for the 
cluster. Here, the value I specified is hdfs. The value is actually a URI whose schema 
and authority determine which file system is implemented.

 n The parameter hadoop.http.staticuser.user specifies hdfs as the default user name

 <property>
    <name>hadoop.http.staticuser.user</name>
    <value>hdfs</value>
 </property>

The default value for the hadoop.http.staticuser.user property is dr.who.
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A Couple More Useful Parameters
While these two parameters will let you get going, it’s probably a good idea to include 
the following two configuration parameters at this stage as well:

 n The fs.trash.interval parameter specifies how long Hadoop should store a deleted 
HDFS file in the trash directory in HDFS. Since the default value for this parameter 
is 0, Hadoop will permanently remove all files you delete, without giving you a 
chance to reclaim files you or a user accidently deleted. In the following example, 
I specified 1,440 minutes (1 day) for this parameter. Once 24 hours elapse after 
deleting a file, Hadoop permanently removes it from HDFS storage.
<property>
  <name>fs.trash.interval</name>
  <value>1440</value>
</property>

 n The hadoop.tmp.dir parameter specifies the base temporary directory both on 
the local file system and in HDFS. The default value for this parameter is /tmp/
hadoop-${user.name}. Make sure you set it to a directory other than under /tmp, 
since some environments regularly run scripts to clean up everything under the /tmp 
directory!

Hadoop uses the hadoop.tmp.dir parameter’s value to derive the default values for 
many other Hadoop configuration parameters, such as dfs.namenode.data.dir. 
This parameter’s default value is defined as follows in the hdfs-site.xml file:

file://${hadoop.tmp.dir} /
dfs/name

Configuring MapReduce (with the mapred-site.xml File)
You configure MapReduce by setting properties in the mapred-site.xml file. Figure 3.9 
shows the location of the mapred-site.xml file, which is located under the /opt/yarn/
hadoop-2.6.0/etc/hadoop directory in our case. Edit the mapred-site.xml file by adding 
YARN as the value for the mapreduce.framework.name configuration parameter. As 
you can probably tell, this parameter lets the cluster know that you want YARN as the 
framework for executing MapReduce. 

You won’t see a mapred-site.xml file initially when you install Hadoop 2. The cluster 
will use the mapred-default.xml file unless you create a mapred-site.xml file. Any values 
you specify in the mapred-site.xml file will override the values for the same parameters in 
the mapred-default.xml file. Create the mapred-site.xml from the file template provided 
by Hadoop, as shown here:

# cp mapred-site.xml.template mapred-site.xml

Once you have your mapred-site.xml file, edit it as follows.

<property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
</property>
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The mapreduce.framework.name property sets the runtime framework for executing 
MapReduce jobs, and it can take one of three values: local, classic or yarn. The default 
value is local.

Note

All cluster nodes, including the client nodes, must have a copy of the configuration files.

Configuring YARN (with the yarn-site.xml File)
Next up is the configuring of YARN, which requires you to set configuration parameters 
in the yarn-site.xml file located in the /opt/yarn/hadoop-2.6.0/etc/hadoop directory. 
Add the following two parameters to this file:

 n yarn.nodemanager.aux-services: Set this property to inform the NodeManager 
that it needs to implement the auxiliary service named mapreduce.shuffle. The 
property lets the NodeManager know that the MapReduce containers will need 
to perform a shuff le from the map tasks to the reduce tasks. Since this shuff le is an 
auxiliary service and not part of the NodeManager, you must explicitly set its value 
here. This property can include a list of multiple auxiliary services to support dif-
ferent application frameworks running under YARN. In this example, I specified 
mapreduce.shuffle as the value since I’m running only MapReduce-based jobs 
in the cluster.

Figure 3.9 The file system locations where the mapred.xml file 
and other Hadoop configuration files are stored
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 n yarn.nodemanager.aux-services.mapreduce.shuffle.class: This parameter 
instructs MapReduce how to perform shuff le operations. The value I specified for 
this parameter, org.apache.hadoop.mapredShulfflehandler, instructs YARN 
to use this class to perform the shuff le. The class name is provided to instruct exactly 
how it must implement the value you set for the property yarn.nodemanager
.aux-services.

To add the two parameters described here, edit the /opt/yarn/hadoop-2.6.0/etc/
hadoop/yarn-site.xml file as shown in Figure 3.10.

Although at this point we can get by with using the default Hadoop values for memory 
usage, it’s probably a good idea to start getting acquainted with some key YARN-re-
lated configuration parameters. One of the key Hadoop configuration parameters for 
a Hadoop administrator is yarn.nodemanager.resource.memory-mb. This parameter 
specifies the total memory that YARN can consume on each node. Let’s say you set this 
parameter to 40,960MB, as shown here:

<property>
  <name>yarn.nodemanager.resource.memory-mb</name>
  <value>40960</value>
</property>

If you want YARN to launch a maximum of 10 containers per node, you can do so by 
specifying the yarn.scheduler.minimum-allocation-mb parameter, as shown here:

<property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>4096</value>
</property>

Since you have a maximum of 40GB on this node for YARN, the fact that you’ve speci-
fied the minimum memory per container as 4,096MB (4GB) means that you’ve restricted 
this node to running no more than 10 containers at any given time. Each container runs a 
single map or reduce task, and as tasks finish, new containers may be started and assigned 
to new tasks—however, at any given point in time, no more than 10 containers or tasks 
can run on this node. Note that the administrator sets the default number of reducers 
for MapReduce v2 jobs by configuring the mapreduce.job.reduces property in the 
mapred-site.xml file. The developer can override this default value either by setting the 
number of reducers in the driver or on the command line at runtime.

Figure 3.10 Editing the yarn-site.xml file to add the YARN auxiliary service parameters
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Configure HDFS (with the hdfs-site.xml File)
The hdfs-site.xml file controls the behavior of all HDFS-related Hadoop components, 
such as the NameNode, Secondary NameNode and the DataNodes. You need to con-
figure the following basic parameters to enable our single node cluster to function.

 n fs.default.name: This attribute lets you specify the URI for the cluster’s NameNode. 
DataNodes will use this URI to register with the NameNode, letting applications 
access the data stored on the DataNodes. Clients will also use this URI to retrieve 
the locations of the data blocks in HDFS. It’s common to specify 9000 as the port, 
but you can use a different port if you wish. 

 n dfs.replication: By default, Hadoop replicates each data block three times when 
writing a file. Both the default value and the typically recommended value is 3. 
However, in our case, since you’ve only a single node, you must change the value 
of this parameter to 1.

 n dfs.datanode.data.dir: This parameter determines exactly where on its local file 
system a DataNode stores its blocks. As you can see, you need to provide a normal 
Linux directory for storing HDFS data. Later, you’ll format the NameNode, which 
converts this directory into something managed by HDFS and not the local Linux 
file system. Note the following about this parameter:

 n You can list the local file system directories in a comma-separated list. Make sure 
there aren’t any spaces between a comma and the next directory path in the list.

 n You can specify different values for this parameter for each DataNode if you wish.
 n dfs.namenode.name.dir: This parameter tells Hadoop where to store the 

NameNode’s key metadata files, such as the fsimage and edits files. The value for this 
parameter points to a local file system, and only the NameNode service accesses it 
for reading and writing its metadata. In some ways, you can think of this param-
eter as the most important Hadoop configuration parameter of all, since losing 
the NameNode’s HDFS metadata really means you’ve effectively lost all of your 
HDFS data. You surely will have all the data blocks in the cluster, but without 
the metadata that describes those blocks, you can’t reconstruct the original files.

 n dfs.namenode.checkpoint.dir: Specifies the directory where the Standby 
NameNode stores its versions of the metadata-related files. The secondary NameNode 
uses the values you specify for this parameter to store the fsimage and the edit log 
( journal for the fsimage file).

Edit the /opt/yarn/hadoop-2.6.0/etc/hadoop/hdfs-site.xml file to add the appropriate 
values for the parameters listed here, as shown in Figure 3.11.

At this point, you’re all done with configuring Hadoop in a pseudo-distributed cluster. 
Just two steps remain for you to access HDFS and start running MapReduce applications 
in the shiny new Hadoop cluster! The next step is to format the newly created distributed 
file system (HDFS). The final step is to start up the Hadoop cluster.
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Op erating the New Hadoop Cluster
You’ve configured Hadoop services and also formatted the NameNode service. However, 
nothing is actually running in the cluster yet. In order to start the new Hadoop cluster, 
you must start the services that support the two primary components of Hadoop, which 
are the HDFS storage system and the YARN processing system. 

Before you can start the cluster services up, there’s one item of business you need to 
take care of—the formatting of HDFS.

Formatting the Distributed File System
Before you can start using HDFS for the very first time, you must format it. As you can 
probably guess, you do this only once. 

Note

Formatting an existing HDFS file system essentially wipes all data on it and sets up a new 
HDFS file system! Formatting HDFS really means you’re initializing where the NameNode 
stores its metadata.

As you may recall, the parameter dfs.namenode.name.dir in the hdfs-site.xml file 
specifies the location where the NameNode service stores its metadata. When you run 
the formatting command for the first time, it creates the necessary metadata files, and 
when you reformat it, it wipes out all the files in this directory. A real-life Hadoop admin-
istrator can’t really format a production file system to get around a technical problem—
one must persist and fix the problem!

Figure 3.11 Editing the hdfs-site.xml file to add HDFS-related configuration properties
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In order to format HDFS, you must login not as the root user, which you’ve been 
doing until now, but as the user hdfs.

# cd /opt/yarn/hadoop-2.6.0/bin
$ su hdfs
$ ./hdfs namenode -format 
INFO common.Storage: Storage directory /var/data/hadoop/hdfs/nn has been 
successfully formatted.
$

Setting the Environment Variables
Before you issue the start and stop commands to control the Hadoop daemons, make 
sure you export the following environment variables:

export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/
export HADOOP_HOME=/opt/yarn/hadoop-2.6.0
export HADOOP_PREFIX=/opt/yarn/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

You can also place these variables in the /etc/profile.d directory, within the 
hadoop.sh file, as shown here:

[root@hadoop1 hadoop]# cat /etc/profile.d/hadoop.sh
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/
export HADOOP_HOME=/opt/yarn/hadoop-2.6.0/etc/hadoop
export HADOOP_PREFIX=/opt/yarn/hadoop-2.6.0/etc/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
[root@hadoop1 hadoop]#

Now you’re ready to fire up the cluster daemons so you can finally start working 
with your pseudo-distributed cluster!

Starting the HDFS and YARN Services
In order to work with a Hadoop cluster, you must start up the HDFS- and YARN HDFS- 
related services. HDFS services are the NameNode and DataNode services. YARN 
services include the ResourceManager (one per cluster), the NodeManager (one on each 
worker node) and the JobHistoryServer services.

The following sections explain how to start the HDFS and YARN services in the 
pseudo-distributed cluster.

Starting the Hadoop Services
In our simple pseudo-distributed cluster, there are three HDFS services: 

 n NameNode
 n Secondary NameNode
 n DataNode

Tip

 If you configure a Standby NameNode, you don’t need the Secondary NameNode.



ptg18444370

88 Chapter 3 Creating and Configuring a Simple Hadoop Cluster

By default, when you create a new Hadoop 2 cluster, you’ll have a Secondary NameNode 
but not a Standby NameNode, which you’ll need to explicitly configure. A Secondary 
NameNode doesn’t help in failing over, so it can’t offer high availability. In our present 
case, since we’re dealing with a very simple cluster, we can use the default Secondary 
NameNode to perform the updates of the fsimage file. The recommended practice in a 
production Hadoop setup is to configure high availability for the NameNode by con-
figuring a Standby NameNode. When you do this, you don’t need to use the Secondary 
NameNode. In addition to the NameNode and the Secondary NameNode (or a Standby 
NameNode if you configure it), you’ll also have multiple DataNodes, one for each node 
in your cluster (unless you choose not to run a DataNode on the master nodes where you 
run key Hadoop services such as the NameNode and ResourceManager).   

Here are the steps to follow in order to start up all three of the HDFS services in our 
pseudo-distributed cluster:

$ su hdfs
$ cd /opt/yarn/hadoop2.6.0/sbin
$./hadoop-daemon.sh start namenode
starting namenode, logging to /opt/yarn/hadoop-2.6.0/logs/hadoop-hdfs-namenode-
limulus.out
[r oot@hadoop1 sbin]#

/*start this on the server where Secondary NameNode is configured to run
$ ./hadoop-daemon.sh start secondarynamenode
starting secondarynamenode, logging to /opt/yarn/hadoop-2.6.0/logs/hadoop-hdfs-
secondarynamenode-limulus.out
[root@hadoop1 sbin]# 

[root@hadoop1 sbin]# ./hadoop-daemon.sh start datanode
starting datanode, logging to /var/log/hadoop/hdfs/hadoop-root-datanode-hadoop1
.localdomain.out
[root@hadoop1 sbin]#

If the NameNode or the DataNodes fail to start, it’s easy to find out why. Just open 
the log file shown in the output (hadoop-root-datanode-hadoop1.localdomain.out 
shown for the DataNode) for the start command and check the reason. Usually it’s 
because you haven’t set the correct path for HADOOP_HOME or HADOOP_PREFIX. For example, 
to find out why the NameNode failed to start, view the file named /opt/yarn/hadoop-2.6.0/
logs/hadoop-hdfs-namenode-limulus.out. As mentioned earlier, startup problems are 
usually quite easy to fix!

Now that you have all your HDFS services successfully started, it’s time to start up 
the second Hadoop component, YARN.

Starting the YARN Services
Start the YARN services by logging in as the user yarn. There are three yarn services 
you must start:

 n ResourceManager
 n NodeManager
 n JobHistoryServer
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 There’s only one ResourceManager (later you’ll learn how to set up a high-availability 
system with an active and a Standby ResourceManager) and a single JobHistoryServer per 
cluster, and the NodeManager service runs on every node where you run a DataNode in 
your cluster.

# su – yarn
$ cd /opt/yarn/hadoop-2.6.0/sbin
$ ./yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /opt/yarn/hadoop-2.6.0/logs/yarn-yarn-
resourcemanager-limulus.out
$ ./yarn-daemon.sh start nodemanager
starting nodemanager, logging to /opt/yarn/hadoop-2.6.0/logs/yarn-yarn-
nodemanager-limulus.out
$ ./mr-jobhistory-daemon.sh start historyserver

As with the HDFS services, if you’re unable to start up one of the YARN services, 
go to the log directory shown in the output of the start command for the service. The 
log file will show you the reason why Hadoop was unable to start up the process. In a 
simple cluster like ours, mostly it’s because one hasn’t correctly configured something 
such as the home directory for Hadoop, for example.

Verifying the Service Startup
A quick and easy way to check whether all the HDFS and YARN services have started 
running is to run the jps (the Java Virtual Machine Process Status Tool) command as 
the root user. The jps command shows all running Java processes on your single server 
that hosts all the HDFS and YARN services.

[root@hadoop1 sbin]# jps
4180 NodeManager
9186 Jps
3833 NameNode
3940 DataNode
3772 SecondaryNameNode
4108 ResourceManager
[root@hadoop1 sbin]#

As you can tell, the jps command reveals that all the HDFS and YARN services, 
such as the ResourceManager and the NameNode that you’ve started earlier, are in fact 
running. You can alternatively use the jps command as shown here to find the process 
status for a specific Hadoop daemon:

$ /usr/jdk/latest/bin/jps | grep NameNode
3658 NameNode
$

You can also use normal Linux process commands to verify whether the Hadoop 
services are running, as shown here:

$ ps -ef|grep -i NameNode
$ ps -ef|grep DataNode
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Once you’ve verified that all services are running as expected, you can check out the 
HDFS file system by issuing the following command:

$ hdfs dfs –ls /

This is a basic HDFS command that’s quite similar to the Linux ls command and 
shows the directories under the HDFS root directory. As you’ll see later, the directory 
under the /user directory  in the HDFS hierarchy commonly serves as the “home directory” 
for services and users in your system. For example, Hive by default uses the /user/hive/
warehouse directory for storing data in its tables.

[root@hadoop2 sbin]# hdfs dfs -ls /
Found 4 items
drwxr-xr-x   - hdfs supergroup 0 2014-12-26 17:08 /system
drwxr-xr-x   - hdfs supergroup 0 2015-01-25 16:05 /test
drwx-wx-wx   - hdfs supergroup 0 2014-12-26 14:39 /tmp
drwxr-xr-x   - hdfs supergroup 0 2014-12-26 14:39 /user
[root@hadoop2 sbin]#

Shutting Down the Services
Now that you’ve satisfied yourself that the new Hadoop pseudo-distributed cluster is 
working correctly, you may want to shut down your new cluster. Use the following set 
of commands to shut the cluster down.

$ su -hdfs

$ ./hadoop-daemon.sh stop datanode
$ ./hadoop-daemon.sh stop secondarynamenode
$ ./hadoop-daemon.sh stop namenode

# su – yarn
$ cd /opt/yarn/hadoop-2.6.0/sbin

$ /yarn-daemon.sh stop resourceManager
$ /yarn-daemon.sh stop nodemanager
$ /yarn-daemon.sh stop historyserver

Su mmary
Here’s what you learned in this chapter:

 n Installing a simple pseudo distributed cluster takes only a single server and you can 
get going in a couple of hours.

 n Initial configuration of a simple cluster requires only a handful of parameters, so 
you can start running your applications very quickly.

 n You use separate start and stop commands to control the various Hadoop daemons 
that are part of a cluster.
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This chapter covers the following:

 n Planning your Hadoop cluster
 n Sizing your cluster
 n Installing a multinode, fully distributed Hadoop cluster
 n Configuring HDFS and YARN for production

Chapter 3, “Creating and Configuring a Simple Hadoop Cluster,” showed how to 
get going with Hadoop by creating a simple pseudo-distributed cluster that has essen-
tially the same functionality as a full-f ledged Hadoop cluster. This chapter takes things 
further by showing you how to create a multi-node cluster, as well as configure it for 
effective performance. Before I jump into the creation and configuration of a full-f ledged, 
multinode Hadoop cluster, I’ll discuss key factors in planning your cluster and how to 
size it. 

Creating a simple one-node cluster is easy. However, most people want to know how 
to create their own working Hadoop cluster on a set of simple servers or even on a 
(powerful) laptop. Or, some of you may want guidance on setting up a real-life, multi-
node Hadoop cluster in a production environment. I therefore explain how to create 
a multinode Hadoop 2 cluster, using a virtual environment to keep things simple. 
More precisely, I show you how to create your own three-node Hadoop cluster using 
Oracle’s VirtualBox to create multiple nodes on a single server. The book does include 
an appendix, Appendix A, “Installing VirtualBox and Linux and Cloning the Virtual 
Machines,” that shows the actual VirtualBox installation and cloning steps. 

Once you have a working multi-node cluster set up, you can follow the instructions in 
this book to create a Hadoop 2 cluster and configure it for operation. It’s my firm belief 
that creating a full-f ledged Hadoop cluster in this manner strengthens your understanding 
of the Hadoop architecture and gets you in the catbird seat for setting up a much larger 
real-life production cluster.
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As you’ll learn through this book, a large part of a Hadoop administrator’s job is to 
master the various dials and knobs that make Hadoop run—the configuration param-
eters for HDFS, YARN and other components. Incorrect configuration settings, or 
configuration properties left at their default values, are at the heart of a vast majority of 
Hadoop-related performance issues. Installing a Hadoop cluster from scratch, as shown 
in this chapter, will make you aware of how the configuration parameters are used by 
Hadoop and help you learn how to optimize your cluster’s operations. 

Planning Your Hadoop Cluster
When planning a cluster, you must begin by understanding your company’s data needs. 
You must also evaluate the type of data processing that’ll occur in the cluster. Doing 
this will let you figure out the HDFS storage you’ll need, as well as the throughput speed 
you must have in order to efficiently process the data. 

The type of work to which you’ll put the cluster has a huge bearing on how you con-
figure a cluster’s storage, network and CPU. If your expected workload is going to be 
CPU intensive, disk speed and network speed are less important. If your cluster is going 
to perform a large amount of heavy MapReduce processing, then network bandwidth 
becomes a significant factor. Maybe you’ll need to get multiple NICs for each node in 
such a case.

Many organizations get their feet wet by starting with a very small cluster of about 
half a dozen nodes or so and add more nodes as the data volumes increase. 

You can plan for the growth of the cluster in accordance with how your data grows. 
If your data is growing by 1TB daily, with Hadoop’s default replication of 3, that’s 90TB 
of additional storage required per month. If you allocate about 20-25 percent of the total 
storage to the local Linux file system (as you’ll see, Hadoop also needs space on the local file 
system, in addition to space it needs for storing HDFS files), you’ll need about 120TB 
of new storage per month. If you buy servers with 12 3TB size disks drives each, you’ll 
need roughly 4 new servers a month on average.

General Cluster Planning Considerations
In a single node “cluster,” also called a pseudo-distributed Hadoop installation, the single 
node will host all Hadoop services, such as the NameNode, the ResourceManager, the 
DataNode and the JobHistoryServer daemons. In a real-life production Hadoop cluster, 
the architecture will usually consist of one or more racks.

Each of the racks in a cluster will contain multiple server nodes within a cluster with 
a 1GbE switch. Each of the nodes is usually interconnected using a 1GbE switch. These 
rack-level switches are in turn connected to a set of larger (say, 10GbE) cluster-level 
switches, which may be connected to yet another level of switching infrastructure.

Figure 4.1 shows one way of architecting Hadoop, where all the key master services 
are located on dedicated master nodes. These are services such as the NameNode and 
ResourceManager, which are essential to the functioning of the cluster. However, in 
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many environments, it’s common to have the master nodes share a node with other 
services such as the DataNodes.

Figure 4.2 shows the typical architecture for a small Hadoop cluster. You have a single 
rack of nodes in which you have all the master services running on nodes separate from 
the nodes where the DataNodes are running. A pair of 10GbE networks supports the 
cluster. On each master node in this single-rack configuration, you can deploy the master 
services as shown in Figure 4.2.

The master services are the NameNode (active and Standby), the ResourceManager 
(active and Standby), the JournalNodes and the JobHistoryServer. The JournalNodes 
are needed only in high-availability architectures. The lightweight ZooKeeper service 
needs to run on at least three nodes for quorum purposes and to support NameNode 
high availability, so we have it running on the three master nodes.

Master Node Running
the NameNodes

Master Node Running
the ResourceManager

Master Node Running
the JobHistoryServer

Edge Node

Worker Node

Worker Node

Worker Node

Worker Node

Switch

Switch

Master nodes will run the 
NameNodes, ResourceManager and
JobHistoryServer.

The edge node is for clients who
are running Pig, Hive and other jobs
in your cluster.

A pair of 10GbE switches

Worker nodes store HDFS data 
and also process the Hadoop jobs.

Figure 4.1  The basic components of a Hadoop cluster 
showing the master nodes and the DataNodes
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Server Form Factors
You can choose between two different form factors for your cluster nodes:

n Blade servers are fitted inside blade enclosures, which provide storage, networking 
and power for the servers in the enclosures. A typical rack (72-inch f loor rack) of 
servers can fit somewhere around 42 blade servers because of their small footprint 
(each server takes up 1 RU, which is short for “a rack unit”). However, blade servers 
aren’t the best strategy for Hadoop installations, because they share resources with 
other servers and also have limited storage capacities.

n Rack servers are full-f ledged, stand-alone servers, which don’t share resources with 
other servers in a rack and also provide room for storage expansion. Rack servers 
have a larger footprint than blade servers, and usually about 18-20 of them will fit 
inside a standard server rack.

Criteria for Choosing the Nodes
While cost is definitely a key factor in choosing a specific type of server for your cluster, 
the initial cost of purchasing the servers is but one of the factors that determine the true 
long-term cost to an organization. In addition to the initial cost, you ought to consider 
other factors that add to the long-term total cost of managing your cluster, such as the 
power consumption and cooling factor of the servers, as well as the reliability and the main-
tenance costs for servicing the storage, CPUs and network. 

It’s not recommended that you use the most inexpensive desktop-class computers to 
build a Hadoop cluster. You should select a midrange Intel server, with a fairly large storage 
capacity—typically about 36-48TBs per server.

The term commodity server is commonly used to describe the class of servers a Hadoop 
cluster requires. A commodity server is usually an Intel server with some hard disk storage. 
A commodity server is considered an “average” level server, which means it is affordable 
but doesn’t imply low quality by any means. 

Master Node 1 Master Node 2 Master Node 3

Active
NameNode

ZooKeeper

JournalNode

Standby
NameNode

ZooKeeper

JournalNode

ResourceManager

ZooKeeper

JournalNode

Figure 4.2 Multiple master nodes with various master services running on each node
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Going from a Single Rack to Multiple Racks
The architecture described thus far is for a small cluster and uses a single rack consisting 
of several nodes. Figure 2.2 from the previous chapter shows that the rack uses a pair of 
10GbE switches. If you’re dealing with a larger cluster that needs to go beyond a single 
rack, you simply add the racks to your cluster and still continue to use a 10GbE switch 
pair for each rack. 

Figure 4.2 showed a single rack cluster with all the nodes—master and workers—
running in the same rack. Let’s say you’ve extended your single rack to a three-rack 
cluster. Now that you have three separate racks, you can take advantage of this to enhance 
high availability, by apportioning master nodes across the three racks—that is, you’ll have 
a single master node running on each of the three racks. Figure 4.3 shows a cluster with 
multiple racks. Notice how the master nodes (three in this example) are distributed across 

Master Node Running
the NameNode (Active)

Edge Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Master Node Running
the NameNode (Stdby)

Edge Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Master Node Running
the ResourceManager

Worker Node

Switch

Switch

Switch

Switch

Switch

Switch

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Worker Node

Figure 4.3 Multiple racks, each with a master node and several worker nodes—
an architecture that provides more resiliency for a cluster
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the three racks. This arrangement, with each rack with a master node and several worker 
nodes, is the most common architecture in practice.

As far as the configuration changes go when you move from a single rack to multiple 
racks, you simply change the appropriate parameters in your Hadoop configuration files 
to point to the new homes of the master services. The rest of the nodes in each rack will 
be just DataNodes.

Moving to a cluster using hundreds of nodes is fairly straightforward with this  architecture—
you simply add the nodes to your cluster configuration. For larger clusters, the network 
architecture could get pretty complex, and you may need to use a larger switch than the 
commonly used 10GbE-size switches.

Sizing a Hadoop Cluster
Sizing a Hadoop cluster involves sizing the storage, memory, network and other resources 
that are part of the cluster. Experience in various Hadoop environments suggests that a 
server with a 3TB disk size, 96GB RAM and 8-12 cores is common, but the disk storage 
size and the amount of RAM and the number of CPU cores vary widely across various 
environments, and there aren’t any hard and fast rules concerning these. 

Setting up a pilot cluster to get more insight into your potential data usage patterns 
is a good strategy before you actually start setting up a real production cluster. The pilot 
cluster will tell you if your data processing is going to be memory intensive or CPU or 
I/O bound.

General Principles Governing the Choice of CPU, Memory and 
Storage 
Choosing the amount and type of CPUs, disks and RAM for the individual nodes in a 
cluster is a crucial decision. The key principles guiding your choices here are the following:

 n Expected type of cluster workload: If you expect most of your workload to involve 
large amounts of data that require the sorting of data sets, you’ll most likely need 
a large amount of disk storage. You’d also want to configure a cluster with more 
disks per node. Also, the disk size can be larger than the average disk size. If your 
workload tends toward a highly compute-intensive work pattern, you’ll want to 
configure your cluster with smaller sized disks. 

Note

Most Hadoop applications are disk and network I/O bound, and therefore you don’t 
need to splurge on high-end CPUs.

 n Expected amount of data storage: You may have to store certain types of data for 
specific periods of time for compliance purposes. 

 n Expected growth patterns: You need to estimate approximately how fast the data 
ingest will grow over a period of time.
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Since extra performance on the DataNodes isn’t really justifiable in terms of the cost 
involved, most of the time, you can manage with medium clock speed processors with less 
than two sockets. If you’re configuring for a medium or large cluster, then the DataNodes 
ideally must use at least two quad-core or two six-core CPUs per server. 

Following are the arguments against using virtualization and blade servers in a Hadoop 
environment:

 n Although virtualization (using a virtual rather than a real set of servers, using 
VMWare, for example) is great for test and proof-of-concept clusters, network 
contention and the possibility of placing all replicas on the same physical host means 
that there could be a significant price to pay when you virtualize a Hadoop cluster.

 n Blade servers are also not advisable, because several DataNodes will become unavail-
able when a blade chassis fails. Not only are there potential network bottlenecks 
in the network connections between the chassis and the top-of-rack switch, the 
disk capacity and RAM of blades is too low to support significant amounts of 
processing.

Now that we’ve learned something about the general principles that govern the choice 
of CPU, memory and storage, in the following sections I review how to approach the 
sizing of the cluster, including storage and memory.

Disk Sizing and Configuration
Since HDFS runs on the native file system of the server, you could theoretically work with 
nodes that have different file systems. For example, in a Linux system some nodes could 
have an ext3 and others an ext4 file system. Furthermore, all DataNodes don’t have to 
have the same amount of storage. 

Consider purchasing rack servers that are explicitly designed for Hadoop. These servers 
are designed to be more compact than traditional servers, and hence more of them will 
fit into a standard chassis (rack). Instead of the usual 18-20 servers, you may get close to 
30 servers per rack with this design. In addition, since the servers are designed with 
Hadoop in mind, they also come with more disk drives than standard servers, offering 
greater density, which means your cluster will need less room.

As far as disk speed is concerned, you’ll be fine with 7,200 RPM SATA drives, and 
there’s no need to purchase the much more expensive 15,000 RPM disk drives. A key 
thing to remember here is that you’re better off with many smaller disk drives than a few 
large disk drives, because in Hadoop environments, data is distributed and your appli-
cation tasks will be seeking data spread out on multiple disks throughout the cluster. 

Tip

Experience shows that if you allocate more than 36TB of data per DataNode, you might 
encounter network traffic issues when DataNodes die and Hadoop is forced to replicate 
data to other DataNodes in the cluster.
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A key question is whether you can use disks configured in a JBOD (Just a Bunch of Disks) 
configuration or whether you must use RAID. Hadoop uses built-in data redundancy 
to protect against data loss. Hence, RAID is unnecessary—using RAID is overkill and 
reduces the storage available to HDFS.

For the all-important NameNode server, the recommendation is to use RAID. 
More specifically, you should use RAID-1 (mirroring) for the NameNode server, so it’s 
highly available. In addition to the NameNode, you should use RAID-based storage for 
all your master machines, due to the critical nature of those machines.

Ideally, you should try to set up each of a cluster’s nodes with about 12 disk drives, 
each with a 3TB disk. If you envisage your data storage needs growing at a high rate, 
you might be better served by purchasing disks with a larger capacity. Most commonly 
companies use 6-24 disk drives or more per DataNode.

As the number of disks per node increases, you’re going to run a higher risk of a disk 
failure. Therefore, you must think of using two disk controllers per server to share the I/O 
load. Although SFF (small form factor) disks are in use in some environments, the recom-
mendation here is to use either SATA or SAS interconnects.

Assuming that you’re using the default replication factor of three, you’ll be able to 
store data that’s equal to roughly a third of the storage you assign to HDFS. For example, 
if your cluster has 12 nodes and 36TB of raw disk space per node (12 disk drives each with 
3TB of storage), you’ll be able to store 144TB of data in your Hadoop cluster (144 is 
two-thirds of 432, which is the total raw disk space across the cluster). From this, it’s 
easy to figure out how many servers you need to add to your cluster over time to accom-
modate the data growth in your cluster. If the raw data that’s being added to the cluster 
is growing at the rate of 150TB a month, you will need to plan on adding about 24 nodes 
every year. 

Sizing the Memory 
As with any server that crunches data, the amount of memory plays a significant role in 
the processing speed of queries based on data stored in a Hadoop system. As you’ll learn 
soon, the amount of work you can perform on any node depends on the amount of total 
RAM allocated to that server. 

Each Hadoop job spawns child tasks, each of which runs as part of a logical entity 
called a container. The size of the container is specified in terms of RAM. Therefore, 
the number of containers you can have Hadoop create and deploy on each node—
and hence the amount of work a node performs—depends on two things: total RAM 
allocated to the server and the size of the containers. The more RAM you allocate to a 
DataNode, the more work you can perform simultaneously on that node.

It’s common for most large-scale, busy Hadoop environments to size the RAM for the 
DataNodes at 48-96GB. I recommend going for 256GB RAM if you can, because real-time 
Hadoop processes are indeed memory hungry, and more memory will serve you better 
as your cluster load ramps up. In addition, frameworks such as Impala and Spark are much 
more memory intensive than MapReduce. In environments with memory-intensive 
processing, you can even use 512GB of RAM per DataNode.



ptg18444370

99Going from a Single Rack to Multiple Racks

Network Considerations
The most important thing you need to be aware of regarding the network requirements 
is that Hadoop workloads could place high stress on a network. It’s important to ensure 
that the cluster nodes can communicate among themselves at good speeds. Typically, 
large Hadoop clusters use a dual 1GB link for all nodes in a rack (20 nodes). If your cluster 
stores a very large amount of data (multiple petabytes) and if your MapReduce jobs are 
expected to create large amounts of intermediate data, you’ll need very high bandwidth, 
and therefore, you may seek 10GB/second connection speeds in such cases. The clusters 
also use a 2*10GB interconnect link per rack and could even have a pair of central switches. 

Using a pair of bonded network connections helps you both improve throughput and 
gain redundancy at the same time.

Since the Hadoop cluster’s network load is going to impact other users of a switch, 
it’s optimal to dedicate a switch for the cluster rather than allocating a virtual circuit (VC) 
in another switch. When deciding on the type of switch, look for something that provides 
deep buffering, in preference to a low-latency switch. 

Each rack in a cluster will be well served by a pair of top-of-rack (ToR) switches, 
which provide higher performance while ensuring redundancy. A 10GbE ToR switch 
is the recommended size in most cases. If you have more than two or three racks in your 
cluster, you also need to put in a pair of core switches to handle the high traffic, usually 
40GbE switches.

Using jumbo frames across your cluster will ensure higher bandwidth in addition to 
providing packet integrity.

Special Treatment for the Master Nodes
The master nodes are highly important in a Hadoop cluster because, unlike the DataNodes, 
they run services such as the ResourceManager and the NameNode service that are 
critical to the functioning of the cluster. Therefore, accord the master nodes special 
treatment by doing the following:

 n Invest in top-of-the-class hardware rather than commodity hardware.
 n Use SAS drives rather than the cheaper SATA drives. SAS drives are highly reliable 

and much faster than SATA drives, although their storage capacity is usually smaller.
 n Use hardware RAID or network storage.
 n Use on-site disk replacement service options in your support contracts for the 

RAID disks on the master nodes, to keep outages to the minimum.
 n Use a large number of CPU cores to handle the high amount of messaging traffic 

for the master nodes.
 n Configure high amounts of RAM, ranging from 64GB to 128GB at the least. The 

NameNode and the Standby NameNode rely on RAM to store the HDFS metadata 
while the cluster is running. The larger the amount of data you store, the greater 
the need for memory for the NameNodes.
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 n Provision multiple network ports and high bandwidth (10GbE) to the switch.
 n Use dual power supplies and bonded dual Ethernet cards to support failover.

Recommendations for Sizing the Servers
You can summarize the discussion in the previous sections to arrive at some broad recom-
mendations for the various types of servers in a typical Hadoop environment.

 n Master nodes

 n Processors: You need a single CPU with 6-8 cores. 
 n Memory: You need 24-96GB RAM.
 n Storage: You only need 1-2TB local storage, as no HDFS data is stored on 

these nodes. You can use SAS disks with RAID-1 configuration.
 n DataNodes

 n Processors: You need two CPUs with 4-8 cores each. If you’d like, you can have 
a single CPU with more cores, and you can add more cores later on. You must 
enable hyper-threading and quick-path interconnect (QPI). 

 n Memory: You need 24-96GB per node. The more map and reduce processes 
you plan to run on each DataNode, the higher the memory requirement for 
each of your DataNodes in the cluster.

 n Storage: For storing HDFS data, use 6-12 disks with 2TB or 3TB disks. You 
can use 4TB disks as well if you anticipate large data volumes. SATA drives with 
a JBOD configuration are all you need—no RAID systems are necessary. The 
greater the number of disks, the higher the I/O bandwidth. You also need a pair 
of 2TB or 3TB disks for the operating system files and for storing Hadoop daemon 
logs. You can configure this pair of disks with RAID-1.

 n Network: Within each rack of servers, use a 1GbE or 10GbE network for con-
nectivity within the rack.

Typically, a midrange configuration for a DataNode will look like the following:

 n 12 X 3TB SATA II disk drives (non-RAID)
 n 2 X 6-core 2.9 GHz CPUs
 n 64GB RAM
 n 2X1GbE

A more expensive configuration would look like this:

 n 24 X 1TB Nearline/MDL SAS disk drives (non-RAID)
 n 2 X 8-core 2.9 GHz CPUs
 n 128GB RAM
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As far as the operating system goes, there are no particular recommendations. 
Hadoop supports the mixing up of operating systems in the same cluster. In production 
systems, it’s therefore common to see CentOS, Ubuntu and SuSE being widely used for 
DataNodes and Red Hat Linux for the master nodes.

Growing a Cluster 
You can increase a cluster’s size by adding more nodes or entire server racks to the cluster. 
Since it’s sometimes difficult to anticipate future workloads, design your cluster in a 
somewhat loose fashion, by selecting hardware such as CPU and memory that is easily 
upgradeable over time.

If you’re running low on free space in your Hadoop cluster, you can add more storage 
to existing DataNodes. The more common way to increase your storage capacity, however, 
is to extend your cluster by adding nodes (DataNodes). 

Guidelines for Large Clusters
Apache Hadoop itself doesn’t require a specific layout for the various services that are part 
of a cluster. However, a smart layout will take into consideration the unique requirements 
of each of the key services and design the placement of those services with a view to 
minimizing contention and enhancing efficiency. Following are some guidelines regarding 
the placement of key services in a medium to large cluster.

 n ResourceManager: The ResourceManager is resource hungry! In the case of large 
clusters (over 50 nodes), you need to make sure you don’t run the ResourceManager 
service on nodes where the ZooKeeper service is running. Except in the case of 
small clusters, run the ResourceManager service on a dedicated node.

 n NameNode service: You should run this service on a dedicated node, for both 
performance and availability reasons. To enhance availability, as mentioned elsewhere 
in this chapter, it’s a good practice to use RAID-1 storage for the server running 
the NameNode service. 

Note

If you’re setting up NameNode high availability, you should configure the servers host-
ing the active and Standby NameNodes identically.

 n JournalNodes: You can run the JournalNodes on the same servers that are running 
the Hadoop master services such as the NameNode and the ResourceManager.

 n JobHistoryServer: As with the JournalNodes, you can run the JobHistoryServer 
on one of the master nodes.

 n DataNode and NodeManager services: The NodeManager runs on every DataNode. 
There are no special requirements for the NodeManager service location, except 
that you may want to minimize the amount of memory dedicated to it on servers 
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if you co-locate the NodeManager and the ZooKeeper services. The DataNode 
daemon, of course, runs on each of the DataNodes.

 n MySQL database: The MySQL database is commonly used for storing the metadata 
for Hive, Oozie and other components in most medium to large clusters. There’s 
no requirement that dictates that you must run the database on a cluster node. Since 
databases are usually resource hungry, consider setting up your MySQL database 
on a non-cluster node.

 n ZooKeeper: You need an odd number of ZooKeeper services running to support 
NameNode high availability, with the minimum being three instances. Since 
these are quite lightweight instances, they can run on the same nodes as the master 
nodes. 

Note

At a minimum, you’ll need three ZooKeeper instances in a Hadoop cluster, one of which 
acts as the leader of the set of ZooKeeper instances. When a client issues a write request, 
a majority of the nodes, called a quorum, must respond successfully to the request in order 
for the write request to succeed. A quorum is reflected by a strict majority of the nodes. 
There’s a good reason why you need at least three ZooKeeper instances: One node in the 
ZooKeeper ensemble doesn’t provide high availability, and if you have two instances, both 
need to be up since one out of two nodes isn’t a strict majority. If you configure three nodes 
in the ZooKeeper ensemble, even when one node goes down, you’ll have a functioning 
service, since two out of three instances provides a strict majority.

Creating a Multinode Cluster
Some readers might be thinking by this point that learning how to create and use the 
simple pseudo-distributed cluster as shown in Chapter 3 is all well and fine, but the set-
ting up of a fully distributed cluster must be a complex affair. Surely, this pseudo-distributed 
setup has got to be a Mickey Mouse affair, with no meaningful bearing on how you do 
things in the real world! In reality, however, creating a fully distributed Hadoop cluster 
isn’t that different from creating a simple pseudo–distributed cluster. 

One difference, of course, between a pseudo-distributed and a multinode cluster 
is that since it’s a real cluster, HDFS data blocks can be replicated. Another difference 
you might find is that real-life clusters do need high availability in most cases, so that’s 
something that’ll be new.

How the Test Cluster Is Set Up
Our goal in this book is to learn how to administer a real-life Hadoop environment, 
and so we need to work with a multinode cluster, even if it’s quite small. You can’t learn 
how to work with replication if you only have a single node. You also can’t learn how to 
work with Hadoop’s high availability features, since a one-node pseudo-cluster doesn’t 
permit any high availability!
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I use a three-node cluster in this book, for the most part, to run the examples and 
demonstrate how various Hadoop components interact in a cluster. In this section, I show 
you how to quickly install and set up a three-node cluster using Oracle VM VirtualBox. 
You can do the same thing using VMware if you wish or even use three physical nodes 
for that matter. There’s no real difference in how you set up the actual cluster. 

Why three nodes? Well, you can use just two nodes, but that’ll keep us from demon-
strating how to use the ZooKeeper service for supporting HDFS high availability, which 
needs a quorum of an odd number of clusters. With three nodes being the smallest number 
to configure ZooKeeper, I chose to demonstrate the creation and setup of the three-node 
cluster. If you’re creating this cluster on your laptop for testing purposes, just make sure 
you have enough RAM! A three-node cluster on virtual servers will run fine if you have 
at least 16GB of RAM.

Setting up a Hadoop cluster, whether using multiple physical servers or by using virtual 
servers using VMware or Oracle VM VirtualBox, is really an easy affair. How easy? You 
can complete the entire process—starting from the installation of Oracle VM VirtualBox 
to the starting up of the full three-node cluster—in just four hours!

Appendix A shows how to set up a three-node Hadoop cluster using Oracle VMBox 
and Oracle Linux (very similar to Red Hat Enterprise Linux). Following are the steps 
you must follow to complete the setup of the 3-node cluster.

1. Install Oracle VirtualBox (explained in the Appendix)

2. Install Oracle Enterprise Linux on an Oracle VM VirtualBox (explained in the
Appendix)

3. Install Hadoop 2.6.0 on the virtual server (shown in Chapter 3)

4. Configure Hadoop 2.6.0 on the virtual server (shown in Chapters 3 and 4)

5. Clone the initial virtual server to create the other two virtual servers (explained
in the Appendix)

Once you clone the initial Linux server, you’ll have three nodes, all with Hadoop 
software already installed. If you followed all the steps presented in Appendix A, you’ll 
have three Oracle Linux servers running in your Oracle VMBox. You’re now ready to 
perform the tasks to get your multinode Hadoop 2 cluster going.

You use the same configuration files for setting up a multinode Hadoop cluster as 
you did earlier when setting up a pseudo-distributed cluster. However, now you have 
multiple servers, so you need to set up a few other things, such as passwordless SSH 
connectivity, and modify certain key important configuration parameters in various 
files, to enable a real Hadoop cluster.

In our three-node cluster, where the nodes are named hadoop1, hadoop2 and hadoop3, 
we use the first two nodes as our master nodes, and that’s where we run the following 
services:

 n Node 1 (hadoop1): NameNode, JobHistoryServer
 n Node 2 (hadoop2): Standby NameNode, ResourceManager
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That leaves us only one node (hadoop3) as a pure worker node. However, I want to 
show you how to replicate your data, so I use the two “master nodes” (hadoop1 and 
hadoop2) for running the services that are usually run on worker nodes. Figure 4.4 shows 
the services that typically run on the worker nodes. Note that there is an ApplicationMaster 
for each YARN job. Also note that a worker node may not run any ApplicationMaster 
services since there is only one of those per job. There is a single DataNode (HDFS 
service) on each worker node. You also run a NodeManager service on each of the worker 
nodes (DataNodes).

The next sections cover the following topics:

 n Installing pdsh
 n Configuring passwordless SSH
 n Editing the /etc/hosts file

Installing pdsh
You can make cluster administration easy by using pdsh to run commands on your entire 
cluster. The pdsh utility is a variant of the rsh command and is a high-performance 
parallel shell utility. Whereas rsh lets you run commands on a single remote host, pdsh 
lets you run commands on multiple remote servers simultaneously. So, if you need to issue 
the same command across all cluster nodes, you simply issue the command from a single 
server using pdsh, and that executes the command across the cluster. 

You can use pdsh by issuing commands at the command line or by running the tool 
interactively. When run interactively, pdsh prompts you for commands and executes them 
when a carriage return occurs. You can also specify your commands in a file.
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Figure 4.4 How the storage and processing services are 
typically deployed on the worker nodes
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Note

The pdsh distribution also includes a parallel remote copy utility named pdsh, which copies 
files from a local host to a group of remote hosts in parallel.

You can install pdsh in the following manner:

# rpm –Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8
.noarch.rpm
# yum install pdsh

You’ll need to install the pdsh utility on all the cluster nodes. Using pdsh to perform 
remote operations is straightforward. Here’s an example that shows you how to check the 
date on all nodes in a cluster with a single command from any node in your cluster.

# pdsh –w "all_nodes" date

The parameter all_nodes points to a file that lists all the nodes in the cluster. You 
can also exclude some servers when issuing a pdsh command if you wish.

Configuring Passwordless SSH among the Cluster Members
When you work with a multinode cluster, you need to configure a passwordless SSH 
connection among the cluster nodes. Setting up SSH enables you to run remote commands 
without being asked for a password. To set up the passwordless connection, you must 
first generate the public and private keys for a user. You can do this using the ssh-keygen 
commands shown here:

# ssh-keygen –t rsa

Just accept all the defaults and don’t specify a passphrase, so you or any tool that executes 
remote commands in the cluster won’t be prompted for a password when accessing the 
private key. Once you generate the keys, if your cluster consists of just a few nodes, as 
in our case, you can simply copy the public key to all the cluster nodes. However, in 
a large cluster, you can use the ssh-copy-id command to copy public keys to all hosts 
and add those hosts to the ssh_known_hosts file. Here’s an example:

#  ssh-copy-id -i /root/.ssh/id_rsa.pub <fqdn>

Editing the /etc/hosts File
On each of the three virtual nodes, edit the/etc/hosts file so they show the hostnames 
and IP addresses for all the nodes. The three nodes are named hadoop1, hadoop2 and 
hadoop3, and I used hadoop1 as the master node. When you’re done, the /etc/hosts 
file in each server should look like the following:

10.1.3.66     hadoop1
10.1.3.67     hadoop2
10.1.3.68     hadoop3

Figure 4.5 presents the /etc/hosts file, showing that all three nodes in our cluster are listed 
in this file on each of the nodes.

http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
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Modifying the Hadoop Configuration 
In our pseudo-distributed node, I was forced to use a replication factor of 1 since I had only 
a single node on which to store HDFS blocks. Now that I have three nodes, I can raise 
the replication factor in this fully distributed cluster by modifying the dfs.replication 
parameter in the hdfs-site.xml file. In addition to this dfs.replication parameter, let’s 
add some more parameters that you’d normally specify in a real-life production cluster 
to raise your cluster to production grade.

A word of caution here regarding the configuration parameters: In this section, I intro-
duce many key configuration parameters that determine how HDFS, MapReduce and 
YARN work. However, the configuration list isn’t by any means exhaustive. There are 
hundreds of these parameters, such as the parameters for scheduling jobs through the Fair 
Scheduler and for setting up Kerberos security, as well as a whole host of configuration 
properties that affect Hadoop performance, and you’ll run into them in the appropriate 
chapters.

The following sections show you how to

 n Change the HDFS configuration
 n Change the YARN configuration
 n Change the MapReduce configuration

Changing the HDFS Configuration (hdfs-site.xml file)
In order to move to a fully distributed cluster from our pseudo-distributed cluster, you 
need to make a few changes to the HDFS configuration.

Figure 4.5 The /etc/hosts file, showing the hostnames and 
IP addresses for all three nodes in the cluster
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dfs.block.size
In the pseudo-distributed cluster, as I explained in Chapter 3, I haven’t set the HDFS block 
size that Hadoop must use when creating a file, so it takes the default block size of 128MB 
(the default value is for the Hadoop 2.6 version—it may vary across the Hadoop releases). 
You can set the block size to a higher value, such as 256MB or 512MB, depending on 
the size of the input files your system is processing. You set the HDFS block size with 
the dfs.block.size parameter:

<property>
  <name>dfs.block.size</name>
  <value>134217728</value>
</property> 

The default block size for new files is in bytes (134,217,728, which is 128MB). You 
can also specify the size with a case-insensitive suffix such as k (kilo-), m (mega-), g (giga-), 
t (tera-) or e (exa-) to set the block size (128k, 512m, 1g, etc.). 

Note

When you change the block size, it applies only to new files—if you want to change the block 
size for existing data, you’ll need to reload the data after setting the new block size.

In this example, the dfs.block.size parameter specifies a block size of 128MB. 
Note that an application can override this by specifying a different value, as shown here:

$ hdfs dfs –fs  -D dfs.block.size=2684354568 -put local_name hdfs_location

dfs.datanode.du.reserved
The dfs.datenode.du.reserved parameter specifies the amount of space on each storage 
volume that can’t be used for HDFS file storage. By default, this parameter is set to 0, 
meaning all the space on a DataNode can be used for HDFS storage. It’s best to leave 
about 20 percent of the space on each volume to non-HDFS uses, with a minimum of 
10GB of space reserved for non-HDFS uses. Here’s how you set this parameter:

<property>
<name>dfs.datanode.du.reserved</name>
<value>20</value>
</property>

Updating the HDFS Parameters 
In addition to the new parameters, you’ll also want to update the following parameters 
in the hadoop-site.xml file, since you’re now working with a fully distributed “production” 
cluster.

 n dfs.replication: As mentioned earlier, let’s go ahead and change the value of 
the dfs.replication parameter from 1 to 3.

<property>
   <name>dfs.replication</name>
   <value>3</value>
</property>
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When you were working with a single-node cluster, you really had no choice but 
to set the replication factor to 1. Now that you have a three-node cluster, it’s time 
to set the HDFS block replication to the default value, which is 3. 

 n dfs.name.node.dir: This parameter specifies where in the local file system the 
NameNode stores the fsimage file. If you provide a comma-delimited list of directories, 
the fsimage file is replicated to all the directories you specify, providing redundancy 
for this important file. You must specify at least two disks or a RAID volume on the 
NameNode as the value for this parameter. You’ll expose the cluster to a catastrophic 
data loss by not setting the recommended multiple disks for this crucial parameter.

<property>
  <name>dfs.namenode.name.dir</name>
  <value>file:///u01/dfs/nn,file:///u02/dfs/nn</value>
</property>

Note that if one of the directories is filled up, the NameNode doesn’t crash—it 
continues to function normally and keeps writing to the other directory. If you 
specify only one directory, no such luck—the NameNode will stop. When you set 
the dfs.namenode.name.dir parameter, the NameNode writes synchronously to 
the edit log in all directories you specify for this parameter. You can choose to 
specify a separate path for the edit log directory with the dfs.namenode.edits.dir 
parameter, as shown here.

<property>
   <name>dfs.namenode.edits.dir</name>
   <value>file:///u01/dfs/nn/edits,file:///u02/dfs/nn/edits</value>
</property>

If you’re using a single NameNode and a Secondary NameNode, there’s no high 
availability for the NameNode, and that’s how I’ve set up my cluster at this initial point. 
In Chapter 8, “The Role of the NameNode and How HDFS Works,” I show you 
how to set up a high-availability HDFS NameNode, with an active and a Standby 
NameNode. 

 n dfs.datanode.data.dir: In our pseudo-distributed one-node cluster, you could 
avail yourself of storage on only a single node. Since you’re now using three nodes 
for HDFS storage, you must add the data directories for all three nodes for the 
dfs.datanode.data.dir parameter.

<property>
    <name>dfs.datanode.data.dir</name>
<value>file:///u12/hadoop/dfs,file:///u11/hadoop/dfs,file:///u10/hadoop/
dfs,file:///u09/hadoop/dfs,file:///u08/hadoop/dfs,file:///u07/hadoop/
dfs,file:///u06/hadoop/dfs,file:///u05/hadoop/dfs,file:///u04/hadoop/
dfs,file:///u03/hadoop/dfs,file:///u02/hadoop/dfs,file:///u01/hadoop/dfs
</value>
</property>

 n dfs.permissions.superusergroup: This parameter specifies the group that con-
tains HDFS super users. In Hadoop, whichever user you start the NameNode as is 
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deemed the super user for HDFS. In addition to this default super user of HDFS, you 
can specify a special super user group using this parameter (dfs.permissions
.superusergroup). If you set this parameter, any user that’s a member of this group 
will also be considered an HDFS super user. The default value of this parameter is 
supergroup. In our case, I name the group admingroup instead:

<property>
    <name>dfs.permissions.superusergroup</name>
    <value>admingroup</value>
</property>

Changing the YARN Configuration
In our simple YARN configuration for our pseudo cluster, we specified just two 
parameters in the yarn-site.xml file:

 n  yarn.nodemanager.aux-services: Our value for this parameter is 
"mapreduce_shuffle".

 n  yarn.nodemanager.aux-services.mapreduce.shuffle.class: Our value for 
this parameter is yarn.nodemanger.aux-services.mapreduce.shuffle.class. 
The default value is org.apache.hadoop.mapred.ShuffleHandler.

You really don’t need to specify the value for the second parameter if you’re using 
just the MapReduce framework, since the Java class for the MapReduce auxiliary ser-
vice is the default value for this parameter anyway. You do need to add the appropriate 
value(s) for this parameter if other application frameworks are running under YARN, 
though.

Configuring the Memory-Related Parameters
If you don’t set any memory-related configuration properties, the cluster will start up 
fine, but it may not perform efficiently, since it’ll be using Hadoop’s default values for 
all the memory related parameters. Thus, it’s important to tweak these parameters.

Specify the following additional (and optional, but highly recommended in produc-
tion settings) YARN parameters in the yarn.xml file.

 n yarn.nodemanager.resource.memory-mb: This parameter specifies the total 
amount of RAM in MB available on this node for the tasks that YARN manages. 
You must include other Hadoop memory usage such as the memory used by the 
DataNode daemon in the category “non-YARN-managed work.” So, if the 
node has a total RAM of 96GB, you can assign about 70 percent of it to YARN 
by assigning the value 68 (GB) for the yarn.nodemanager.resource.memory-mb 
parameter, as shown here.

<property>
   <name>yarn.nodemanager.resource.memory-mb</name>
   <value>68608</value>
</property>
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The default value for the yarn.nodemanager.resource.memory-mb parameter is 
8,192MB (8GB), which means that if your nodes have a large RAM capacity such 
as 64GB or 96GB you’ll be wasting most of the memory as the default value for 
this parameter limits memory allocation for YARN jobs to just 8GB. 

 n yarn.nodemanager.resource.cpu-vcores: The number of CPU cores that can 
be allocated to YARN containers. The default value for this parameter is 8, and 
you must set it to one less than the number of physical cores on the node. The example 
below shows how to set the number of CPU cores to 24. 

<property>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>24</value>
</property>

 n mapreduce.map.memory.mb and mapreduce.reduce.memory.mb: These two param-
eters specify the amount of memory to allocate for each map or reduce task 
(container size). The default for both parameters is 1GB and most clusters will need 
a higher value (between 2-4GB in most cases). The following examples show how 
to set the memory size for map and reduce tasks to 2GB each.

<property>
    <name>mapreduce.map.memory.mb</name>
    <value>2048</value>
</property>

<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>2048</value>
</property>

 n mapreduce.map.java.opts and mapreduce.reduce.java.opts: Mapper and reducer 
processes run within a JVM. Besides memory for the JVM, the memory (2GB) 
you allocated for each map and reduce must also accommodate other requests for 
memory—this memory usage is called the overhead for the process. Use up all of 
this memory and the task won’t have any memory for its overhead.

In order to avoid the JVM taking up all of a task’s memory allocation, you limit the 
size of the Java heap for mappers and reducers with the mapreduce.map.java.opts 
and the mapreduce.reduce.java.opts parameters:

<property>
   <name>mapreduce.map.java.opts</name>
   <value>1536</value>
</property>
<property>
   <name>mapreduce.reduce.java.opts</name>
   <value>-Xmx1536</value>
</property>

A good rule of thumb here is to allocate 70-75 percent of the value you set for the 
mapreduce.map.memory.mb and mapreduce.reduce.memory.mb parameters as the val-
ues for the mapreduce.map.java.opts and mapreduce.reduce.java.opts parameters. 
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The memory settings I describe here configure the upper limit of the physical RAM 
that map and reduce tasks will use. The upper limit for the virtual memory for each 
Map and Reduce task is determined by the virtual memory ratio that you configure for a 
YARN container with the yarn.nodemanager.vmem-pmem-ratio property. The default 
value is 2.1, and you can set a different value:

  <name>yarn.nodemanager.vmem-pmem-ratio</name>
  <value>3.0</value>

Users are often unsure of how the memory allocated for map and reduce processes is 
related to the requirements for the JVM memory. Figure 4.6 explains this relationship 
and shows how you leave aside a certain portion of the memory for the map/reduce 
processes for overhead as well. The size of the map container is determined by the 
parameter mapreduce.map.memory.mb. In our example this parameter is sized at 2GB. 
The size of the reduce container is determined by the parameter mapreduce.reduce
.memory.mb. In our example this parameter is sized the same as the map container, 
which is 2GB.

Configuring the Logging-Related Parameters
Hadoop produces voluminous logs, and they’re quite critical when you’re troubleshooting 
various types of issues. Following are the key parameters you must configure to get going 
with logging.

 n yarn.log.aggregation-enable: This property is used by the NodeManagers on 
each DataNode to aggregate the application logs. When you enable log aggregation, 
Hadoop collects the logs for each container that is part of an application and moves 
these files to HDFS once the application is completed. 

size = 2GB

size = 2GB

Map Container Reduce Container
Memory for
the Map and

Reduce JVMs

mapreduce.map.java.opt
=1536MB

overhead=
2GB-1536MB

mapreduce.reduce.java.opts
=1536MB

overhead=
2GB-1536MB

Figure 4.6 How you allocate memory to map and reduce containers, making sure that 
there’s some memory set apart for overhead, after accounting for JVM memory
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You can configure the yarn.nodemanager.remote-app-log-dir and yarn
.nodemanager.remote-app-log-dir-suffix configuration properties to specify 
the location for the aggregated logs in HDFS. Here’s how you enable log aggre-
gation in your cluster:

<property> 
   <name>yarn.log-aggregation-enable</name>
   <value>true</value>
</property>

 n log-aggregation.retain.seconds: This property specifies how long Hadoop will 
retain the application logs in HDFS.

<property>
   <name>yarn.log-aggregation.retain-seconds</name>
   <value>604800</value>
</property>

 n yarn-nodemanager.remote-apps-log-dir: This property specifies the directory 
in HDFS where the application log files are aggregated. The JobHistoryServer 
uses this directory to serve the application logs stored in HDFS. Here, I set this 
parameter to point to the /tmp/logs directory in HDFS:

<property>
   <name>yarn.nodemanager.remote-app-log-dir</name>
   <value>/tmp/logs</value>
</property>

 n yarn.nodemanager.log-dirs: This property specifies the directories on the Linux 
file system where YARN sends the application log files. Since I’ve enabled log aggre-
gation, once the application completes, YARN removes the local files and you can 
access them through the JobHistoryServer (from HDFS where the logs are aggregated). 
An example setting is /var/log/hadoop-yarn/container. Only the NodeManager uses 
these directories. 

<property>
   <name>yarn.nodemanager.log-dirs</name>
   <value>/var/log/hadoop-yarn/container</value>
</property>

 n yarn.nodemanager.local-dirs: YARN needs to store its local files such as 
intermediate output from MapReduce jobs somewhere on the local file system. 
This parameter specifies those local directories, as shown here:

<property>
    <name>yarn.nodemanager.local-dirs</name>
    <value>/u12/hadoop/yarn/nm,/u11/hadoop/yarn/nm,/u10/hadoop/yarn/nm,/u09/
hadoop/yarn/nm,/u08/hadoop/yarn/nm,/u07/hadoop/yarn/nm,/u06/hadoop/yarn/nm,/
u05/hadoop/yarn/nm,/u04/hadoop/yarn/nm,/u03/hadoop/yarn/nm,/u02/hadoop/yarn/
nm,/u01/hadoop/yarn/nm
</value>
</property>

YARN’s distributed cache uses these local resource files as well.
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 n yarn.application.classpath: This property specifies the locations on the local 
file system for storing the Hadoop, YARN and HDFS common JAR files necessary 
for executing applications in the cluster.

<property>
    <name>yarn.application.classpath</name>
    <value>$HADOOP_CLIENT_CONF_DIR,$HADOOP_CONF_DIR,$HADOOP_COMMON_
HOME/*,$HADOOP_COMMON_HOME/lib/*,$HADOOP_HDFS_HOME/*,$HADOOP_HDFS_HOME/
lib/*,$HADOOP_YARN_HOME/*,$HADOOP_YARN_HOME/lib/*,/usr/lib/avro/avro.jar,/
usr/lib/avro/avro-mapred.jar,/usr/lib/mahout/lib/commons-lang3-3.1.jar
</value>
</property>

Both the ApplicationMaster for an application and the clients running that applica-
tion need to know where on the local file system the various HDFS, YARN and 
Hadoop common JAR files are located. The yarn.application.classpath param-
eter specifies the values for all the locations needed by them to run the application.

Changing the MapReduce Configuration 
Earlier, in our simple pseudo-distributed cluster, I specified only a single MapReduce-
related configuration parameter in the mapred-site.xml file. This parameter was named 
mapred.framework.name, and the default value for this parameter is local. The parameter 
specifies the runtime framework for executing MapReduce jobs, and the possible values 
are local, classic or yarn. I had specified the value yarn for this parameter, to indicate that 
clients want to use the MapReduce execution framework. 

In a production-grade cluster, you need to add three additional parameters to the 
mapreduce-site.xml file, at a minimum. The first parameter specifies a staging directory 
in HDFS for application-related information. The other two parameters specify the server/
port information for the JobHistoryServer, which plays a huge role in troubleshooting and 
understanding how your applications performed.

 n yarn.app.mapreduce.am.staging-dir: This is the staging directory used for sub-
mitting jobs. This points to an HDFS directory under which YARN stores all the 
application-related information, such as the temporary files created by running 
jobs, the job counters and the job configuration. Typically, you set this parameter to 
the value of the directory under root where you create the user’s “home” directories. 
The common name used for this directory is /user (in HDFS), as shown here:
<property>
   <name>yarn.app.mapreduce.am.staging-dir</name>
   <value>/user</value>
 </property>

 n mapreduce.jobhistory.address: The JobHistoryServer uses the pair of address/
port you specify with this parameter for its internal communications. The default 
value for this parameter is 0.0.0.0:10020, and you can configure it as shown here:
  <property>
     <name>mapreduce.jobhistory.address</name>
     <value>hadoop03.localhost:10020</value>
  </property>
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 n mapreduce.jobhistory.webapp.address: The JobHistoryServer uses the server/
port combination you specify here for the JobHistoryServer web UI. Here’s how 
you set this parameter. The server name in this example (hadoop03.localhost) 
points to the server where I’m running the JobHistoryServer daemon.
  <property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop3.localhost:19888</value>
  </property>

The default value for this parameter is 0.0.0.0:19888. The server name is the server 
where you’re running the JobHistoryServer.

Note that when you set the first parameter (yarn.am.app.mapreduce.am.staging-dir), 
you also automatically set the location for two other directories in HDFS, which have 
to do with storing job-history files. Here are the two parameters, which by default (in the 
mapred-default.xml file) take their values from the yarn.am.app.mapreduce.am. staging-
dir parameter’s value:

 n mapreduce.jobhistory.intermediate-done-dir: This is the directory where 
MapReduce jobs write their history files. The default value is ${yarn.app.mapreduce
.am.staging-dir}/history/done.

 n mapreduce.jobhistory.done-dir: This is the directory where the JobHistory-
Server manages the history files. The default value for this parameter is ${yarn.app
.mapreduce.am.staging-dir}/history/done_intermediate.

For all three of these HDFS storage locations that you specify (one staging and two 
history file storage locations), you must ensure that you create the necessary HDFS 
directories, which are the following: 

 n /user
 n /user/history
 n /user/history/done
 n /user/history/done_intermediate

That’s it—these few changes to our initial single-node (pseudo-distributed cluster) 
configuration let you move your cluster into production mode.

Starting Up the Cluster
You start up the YARN and Hadoop services using the same commands as you did 
for a pseudo-distributed cluster. The key difference is that the NodeManager (YARN 
service) and the DataNode (HDFS service) services will be running on multiple nodes. 

As in the case of the single-node pseudo-distributed cluster, you must format the 
NameNode before using it for the first time in a new cluster. This step is identical to the 
one you performed on the single-node cluster, using the namenode –format command:

$ su - hdfs
$ /opt/yarn/hadoop2-6-0/bin/namenode -format
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Once you format the NameNode, you’re ready to start the Hadoop services. On server 
hadoop1, start the services as shown here:

$./hadoop-daemon.sh start namenode #1 
$./yarn-daemon.sh start resourcemanager #2

Figure 4.7 shows the DataNode startup command on one of the three worker nodes 
in our cluster.

On server hadoop2, start these services:

$./hadoop-daemon.sh start secondarynamenode #3
$./mr-jobhistory-daemon.sh start historyserver #4

Notes

#1 NameNode for managing HDFS

#2 ResourceManager for managing YARN resource allocation

#3 Secondary NameNode

#4 YARN JobHistoryServer service

On the servers hadoop1, hadoop2 and hadoop3, start the following services:

$./hadoop-daemon.sh start datanode #1
$./yarn-daemon.sh start nodemanager #2

Notes

#1 DataNode service

#2 NodeManager service—runs on all servers where you run a DataNode

When you’re all done starting up the HDFS and YARN services, issue the jps com-
mand to make sure the services started correctly and have stayed up. One of the problems 
with the startup commands is that when you issue them, the prompt may return, indi-
cating that everything went well, but the process may die unbeknownst to you! 

Figure 4.8 shows the results of issuing the jps command on the worker node hadoop2.

Figure 4.7 Starting the DataNode on a worker node

Figure 4.8 Making sure the Hadoop services are running 
with the help of the Linux jps command
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You’ve already seen how you can view the NameNode information by accessing the 
NameNode web UI. Similarly, you can access the Secondary NameNode information 
by going to the Secondary NameNode web UI, as shown in Figure 4.9. Note that the 
Secondary NameNode web UI shows the checkpoint information, but the NameNode 
web UI doesn’t. 

Note that the commands for starting up a multinode cluster are identical to those 
you’ve used earlier to start up the single-node pseudo-distributed cluster. The shutdown 
commands are identical as well. 

Note

There are two types of Hadoop log files you’ll be spending a lot of your time and energy 
dealing with. First, there are the daemon log files pertaining to the various Hadoop daemons 
you just started up. In addition, MapReduce produces voluminous log files for the applica-
tions and tasks it runs.

Starting Up and Shutting Down the Cluster with Scripts
As you’ve learned in the previous section, Hadoop requires you to start several processes 
for the cluster to become operational. In my cluster here, there are only three nodes, so 
it’s not really a big deal to start them manually one by one. But in a full-f ledged cluster, 
you’re going to have a large number of nodes and therefore a large number of processes 
to start up. Same goes for shutting down a cluster, where you’ll need to stop all those 
processes manually. The smart thing to do would be to create a pair of scripts to start up 
and shut down your cluster. 

Figure 4.9 Viewing details about the Secondary NameNode, including checkpointing 
information, which is exclusive to the Secondary NameNode
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First, create a simple script to start all cluster services, as shown here.

# vi startcluster.sh 
#!/bin/bash

ssh hdfs@hadoop1 'hadoop-daemon.sh start namenode' #1
ssh hdfs@hadoop2 'hadoop-daemon.sh start standbynamenode' #1
ssh hdfs@hadoop1 'hadoop-daemon.sh start datanode' #2
ssh hdfs@hadoop2 'hadoop-daemon.sh start datanode' #2
ssh hdfs@hadoop3 'hadoop-daemon.sh start datanode' #2
ssh yarn@hadoop2 'yarn-daemon.sh start resourcemanager' #3
ssh yarn@hadoop1 'yarn-daemon.sh start nodemanager' #4
ssh yarn@hadoop2 'yarn-daemon.sh start nodemanager' #4
ssh yarn@hadoop2 'yarn-daemon.sh start nodemanager' #4
ssh mapred@hadoop2 'mr-jobhistory-daemon.sh start historyserver'    #5

Notes

#1 Starts the NameNode and the Standby NameNode services

#2 Starts the three DataNodes on the three cluster nodes

#3 Starts the ResourceManager

#4 Starts the NodeManager service on all three cluster nodes

#5 Starts the JobHistoryServer on hadoop2

Next, create a script named something such as stopcluster.sh script, shown next, to 
stop all the cluster services:

$ vi stopcluster.sh 
ssh hdfs@hadoop1 'hadoop-daemon.sh stop namenode' #1
ssh hdfs@hadoop2 'hadoop-daemon.sh stop standbynamenode' #1
ssh hdfs@hadoop1 'hadoop-daemon.sh stop datanode' #2
ssh hdfs@hadoop2 'hadoop-daemon.sh stop datanode' #2
ssh hdfs@hadoop3 'hadoop-daemon.sh stop datanode' #2
ssh yarn@hadoop2 'yarn-daemon.sh stop resourcemanager' #3
ssh yarn@hadoop1 'yarn-daemon.sh stop nodemanager' #4
ssh yarn@hadoop2 'yarn-daemon.sh stop nodemanager' #4
ssh yarn@hadoop2 'yarn-daemon.sh stop nodemanager' #4
ssh mapred@hadoop2 'mr-jobhistory-daemon.sh stop historyserver'   #5

Notes

#1 Stops the NameNode and the Standby NameNode services

#2 Stops the three DataNodes on the three cluster nodes

#3 Stops the ResourceManager

#4 Stops the NodeManager service on all three cluster nodes

#5 Stops the JobHistoryServer on hadoop2
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Performing a Quick Check of the New Cluster’s File System
Once you’ve started up the new cluster, it’s a good idea to check its status with a pair 
of everyday Hadoop commands. One is the fsck command, which works similar to the 
fsck Linux command and verifies the health of the HDFS file system. Issue the hdfs fsck 
command on the HDFS root directory, as shown here:

[root@hadoop2 sbin]# hdfs fsck /

Tip

Don’t forget to specify hdfs while performing an HDFS file system sanity check. If you just 
execute fsck / and continue, you may corrupt the file system!

For now, this is good enough for us because HDFS is in a healthy state, essentially 
indicating that none of the HDFS blocks or files are corrupt. Chapter 10, “Data Protection, 
File Formats and Accessing HDFS,” explains how the fsck utility can tell you if there 
are any corrupt blocks or missing replicas and how to handle those situations. Similarly, you 
can quickly run the highly versatile hdfs dfsadmin command with the report option, to 
ensure that you see the configured capacity in your HDFS file system.

$ hdfs dfsadmin –report

The hdfs dfsadmin utility can do much more than show the capacity of the HDFS 
file system. You’ll learn all the capabilities of this useful utility in later chapters of this book.

Figure 4.10 The output of the fsck command, showing that 
HDFS is healthy, with no corrupted data blocks
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Configuring Hadoop Services, Web Interfaces and 
Ports
Hadoop provides great web UIs for accessing both HDFS and YARN services. For 
example, the ResourceManager web UI helps tremendously in tracking applications 
and jobs and accessing job logs from the web interface. 

In the following sections, I cover

 n  Service configuration and web interfaces
 n  Setting port numbers for Hadoop services
 n  Configuring Hadoop clients

Service Configuration and Web Interfaces
In the three-node Hadoop cluster, I designated the first two nodes, hadoop1 and hadoop2, 
as master nodes. Normally, you don’t run DataNode services on the master nodes, but 
since I have but three nodes, I use all three nodes for running the DataNodes. This way, 
I can use the default Hadoop replication factor of 3! The other two servers are the worker 
nodes (usually referred to as slave nodes). 

Here’s how I’ve set up the various services in the cluster:

 n hadoop1: NameNode, ResourceManager, DataNode
 n hadoop2: Standby NameNode, HistoryJobServer, DataNode
 n hadoop3: DataNode

So, in our case, the server hadoop1 runs the NameNode and ResourceManager 
services as well as a DataNode. In a real-life multinode production cluster, you may or 
may not run DataNodes on the master nodes, which are typically dedicated to the host-
ing of critical cluster services such as the NameNode and the ResourceManager. Most 
clusters have anywhere from two to four master servers. Since most production clusters run 
high-availability NameNode and ResourceManager services, you can host the active and 
standby instances on separate master nodes. 

Gateway Machines

It’s common practice to set apart one or more machines in a Hadoop environment 
as gateway machines. You use these servers to access the Hadoop cluster but don’t 
actually run DataNodes or other Hadoop services on them. You can install Pig and any 
other tools you need on the gateway server. Using a gateway server in this manner 
helps guard access to the Hadoop cluster. In a Hadoop cluster, you usually use gate-
way servers for Hadoop clients, Sqoop clients and Flume agents for staging data and 
for NFS gateway servers. An alternative name for a gateway server is edge server.
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Hadoop Web Interfaces
Hadoop comes with great web interfaces that let you monitor the cluster by allowing 
you to review things such as the HDFS storage and YARN jobs running in your cluster. 
Let’s review the key Hadoop web interfaces that you’ll be using every day as an adminis-
trator. Some of these interfaces are helpful to users as well, helping them track their jobs 
and review the logs of their jobs.

The DataNode Web Interface
You can monitor the status of the HDFS service, as well as browse through its file system, 
through the web server exposed by HDFS. By default, this is on the NameNode server, 
accessible via port 50070. Since our NameNode is running on server hadoop1, you can 
get to the DataNode web UI by going to the following URL:

http://hadoop1:50070

Figure 4.11 shows the HDFS overview page, including the health, configured capacity 
and current usage of HDFS storage by the cluster. You can change the default port and 
address by modifying the dfs.namenode.http-address parameter in the hadoop-site.xml 
configuration file. If you want the NameNode to accept requests on all ports, you can 
do so by setting 0.0.0.0 as the value for the port number. The default value for this parame-
ter is 0.0.0.0:50070.

The Secondary NameNode’s web UI shows you when it last performed a checkpoint 
operation of the HDFS metadata. You can’t get this information from the NameNode’s 
web UI. 

The DataNode Web Interface
While the NameNode interface shows you the overall HDFS file system usage and other 
details, each of the DataNodes in a cluster has its own web interface. These interfaces 

Figure 4.11 The NameNode web UI
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show you details of the HDFS file system on each server. You can access the DataNode 
web interface by going to

http://<datanode_server>:50075

You can change the port settings for this web interface by modifying the dfs.datanode
.http.address configuration parameter in the hdfs-site.xml file.

DataNode web interfaces help you quite a bit by providing easy access to log files 
generated by various Hadoop daemons, which, as you’ll learn, are highly useful when 
debugging and troubleshooting problems.

The YARN Web Interface
Like the NameNode and the DataNodes, the ResourceManager has its own web UI. 
You can access it by going to:

http://<host_name>:8088

The port number 8088 is the default for the ResourceManager web UI. You can change 
the default port by setting a new value for the parameter yarn.resourcemanager.webapp
.address in the yarn-site.xml file. If by mistake you use one of the other port numbers 
shown in the yarn-site.xml file, you’ll get the following error.

It looks like you are making an HTTP request to a Hadoop IPC port. This is not the 
correct port for the web interface on this daemon.

Figure 4.12 shows the ResourceManager web UI’s home page. This is a highly useful 
page, and it shows not only the number of applications running in the cluster but also 
the number of containers, current usage of memory and virtual cores. In Chapter 17, 
“Monitoring, Metrics and Hadoop Logging,” which deals with monitoring and managing 
YARN jobs, you’ll learn a lot more about how to effectively use the ResourceManager 
web UI for managing your jobs.

Figure 4.12 The ResourceManager YARN web UI
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Setting Port Numbers for Hadoop Services
As you might have realized by now, Hadoop uses various ports for its services, and 
determining the correct port for the various services might be confusing. Table 4.1 
shows the default port numbers for various Hadoop services. 

Table 4.1 Port Numbers for Common Hadoop Services

Service Default Port Protocol Description and Configuration Parameter 

ResourceManager 
web UI 

8088 http   Web UI for the ResourceManager 
yarn.resourcemanager.webapp.address

NodeManager web UI 8042 http  Web UI for the NodeManager
yarn.nodemanager.webapp.address

NodeManager 8040       http  TPC port for resource localization 
yarn.nodemanager.localizer.address

History Job Server UI 19888 http   Web UI for Job History  
mapreduce.jobhistory.webapp.address

JobHistoryServer 10020  http     RPC port for clients to query job history  
mapreduce.jobhistory.address

ResourceManager UI 8031 http YARN ResourceManager       
yarn.resourcemanager.resource-tracker.address

ResourceManager 
Admin

8033 http ResourceManager admin interface 
yarn.resourcemanager.admin.address

ResourceManager 8032  http Used by clients for app submission 
yarn.resourcemanager.address

ResourceManager 8030 http Scheduler RPC port for ApplicationMaster     
yarn.resourcemanager.scheduler.address

ShuffleHandler 
(MapReduce service)

13562 Port used to serve Shuffled map outputs 
mapreduce.shuffle.port

HiveServer2 10000 thrift  Service for connecting to Hive Environment 
variable HIVE_PORT

Hive metastore  9083    thrift   Service for accessing Metadata 
hive.metastore.uris

ZooKeeper Server 2888 Port for ZooKeeper service communication        
hbase.zookeeper.peerport

ZooKeeper Server 3888  Port for ZooKeeper service communication        
hbase.zookeeper.leaderport

WebHcat Server 50111 http Web API for Hcatalog and other Hadoop services      
templeton.port

MySQL 3306 http Port for the MySQL database
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You can change the port number for the services through the appropriate configuration 
parameter listed in Table 4.1.

I've listed the ports for important Hadoop services in Table 4.1. However, there are 
numerous other ports pertaining to services such as Hue, Kafka and Kerberos. A good 
resource for Hadoop ports is the following link from Hortonworks: https://docs
.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/
content/reference_chap2.html.

The HDFS service uses several ports for the various services such as the NameNode and 
the DataNodes. Table 4.2 summarizes the default port information for the HDFS services.

When connecting to certain ports, you might receive a bind exception error such as 
the following. 

java.net.BindException: Address already in use 

This usually occurs when the NameNode, DataNode or some other Hadoop service tries 
to use an already in-use port to listen for connections. Once you make sure that the 
hostname/IP address are correct, change the appropriate parameter for the service to point to 
a different, unused port. You can use the command netstat -a -t --numeric-ports -p 
to identify the ports in use on a server.

Table 4.2 Port Numbers for HDFS Services

Service Default Port Protocol Description and Configuration Parameter

NameNode web UI 50070 http    HDFS web UI
dfs.namenode.http.address

NameNode web UI 
(secure)   

50470 https  HDFS web UI (secure)     
dfs.namenode.https.address

NameNode 8020/9000      ipc File system embedded in URI 
fs.defaultFS

DataNode 50075  http  DataNode web UI      
dfs.datanode.http.address

DataNode (Secure) 50475 https  Secure HTTP service      
dfs.datanode.https.address

DataNode 50010  http  Data transfer      
dfs.datanode.address

DataNode 50020 Ipc Block metadata operations 
dfs.datanode.ipc.address

DataNode          0.0.0.0:8010        ipc    Metadata operations      
dfs.datanode.ipc.address

Secondary NameNode  50090 http    Secondary NameNode UI    
dfs.datanode.secondary.http-address

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/reference_chap2.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/reference_chap2.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/reference_chap2.html
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Deploying HDFS and YARN in a Multihomed Network

By default, you specify HDFS endpoints as a specific IP address or hostname, meaning 
HDFS daemons will bind to a single IP address. You can set up things so that the cluster 
nodes are connected to multiple network interfaces, for security or performance reasons. 
Setting up support for more than one network interface is called a multihomed network. 
You can also do this to provide redundancy by letting a node use multiple network adapters 
to protect against a network adapter failure.

You must not confuse a multihomed network with the use of NIC bonding, which presents 
only a single logical network to the clients. With a multihomed network, you can connect 
to the HDFS daemons from more than one network. In order to allow a multihomed 
network, you need to configure the following parameters in the hdfs-site.xml file, so 
they all have a value of 0.0.0.0:

 n dfs.namenode.rpc.bind-host

 n dfs.namenode.servicerpc-bind.host

 n dfs.namenode.http-bind-host

 n dfs.namenode.https-bind.host

You can configure YARN for a multihomed environment. You can force YARN services to 
listen on all ports of a multihomed host by setting the bind-host parameter to the all-
wildcard value 0.0.0.0. For example, if you set the value of the yarn.resourcemanager
.bind.host parameter to 0.0.0.0, and the yarn.resourcemanager.address is con-
figured as rm.prodcluster.internal:9999, the ResourceManager will listen on all host 
addresses on the port 9999.

By configuring the bind-host parameter (in the yarn-site.xml file) in the following way, 
you ensure that all ResourceManager services and web applications listen on all the 
interfaces in a multihomed network.

<property>
   <name>yarn.resourcemanager.bind-host</name>
   <value>0.0.0.0</value>
</property>. 

Similarly, you can configure the yarn.nodemanager.bind-host property, also in the 
yarn-site.xml file, and the mapreduce.jobhistory.bind-host parameter (mapred-site
.xml file) to the value 0.0.0.0 to ensure that the YARN and MapReduce daemons listen 
on all addresses and interfaces of a multihomed cluster.

Hadoop Clients
While the components of Hadoop such as HDFS and YARN run within the Hadoop 
cluster, users and applications need to access them from somewhere. A Hadoop client 
uses Hadoop APIs to access the storage and processing capabilities of the cluster. In order 
for a Hadoop client to work with the cluster components (HDFS and YARN), the client 
requires the Hadoop API, and you must also configure it so it can connect with the Hadoop 
components running in the cluster. 
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Figure 4.13 shows the current Hadoop client model, wherein clients can access 
HDFS and MapReduce (or other frameworks, now that we’re in Hadoop 2) Java APIs 
to work with HDFS and YARN. Users log into edge servers through SSH and run their 
commands from the Linux shell prompt. APIs are mostly used through gateway or edge 
nodes. These nodes are technically outside the Hadoop cluster. However, they are con-
sidered to be inside the cluster in practice.

Some Hadoop Clients
You can consider MapReduce map and reduce tasks as Hadoop clients, since they use the 
Hadoop API (hadoop-client) to access the cluster storage and processing components. There 
are also both command-line Hadoop clients and server daemons that act as clients.

Command-line clients include the following:

 n The Hadoop shell, also called hdfs dfs
 n Pig shell
 n Sqoop CLI

Server daemons include the following:

 n Oozie
 n Sqoop2 
 n Hiveserver2
 n Flume agents 

Configuring the Hadoop Clients
In order to connect to the HDFS storage component, a client needs to contact the 
NameNode service running in the cluster. Similarly, to process anything in the cluster, 
the client needs to contact the ResourceManager service. In order for the client to find 
the NodeManager and the ResourceManager services as well as any additional cluster 
services, you must provide the client with the Hadoop configuration files such as the 
hdfs-site.xml, mapred-site.xml and yarn-site.xml files. 

In some cases, you may only need some of the Hadoop configuration files to be stored 
on a client, but you might as well simply copy over all your Hadoop configuration 
files to the client machines. Note that some clients may need additional configuration 
files that specify special configuration properties that apply only to them, such as the 
hive-site.xml and the pig.properties configuration files.

SSH
Hadoop Users

Edge 
(Gateway) 

Node
Hadoop

Figure 4.13 How Hadoop clients can access the Hadoop cluster



ptg18444370

126 Chapter 4 Planning for and Creating a Fully Distributed Cluster

Where the Clients Are Deployed
End users can directly access a Hadoop cluster’s storage and processing components by 
executing commands from their own machines through a command line interface such 
as the Pig shell or the Sqoop CLI. It’s also common to denote one or more servers as 
gateway servers, also called edge nodes.

Figure 4.14 shows how you can have multiple edge nodes, each running a set of client 
applications such as Oozie, Sqoop and Pig, as well as management interfaces such as Hue. 
Users connect to the gateway servers and execute commands from there to access the 
Hadoop cluster. Users can access the gateway servers directly or through a browser. It is 
good to have dedicated edge servers since they ensure that your client apps and management 
tools aren’t competing for resources with HDFS and YARN.

Summary
Here’s what you learned in this chapter:

 n Planning and configuring a Hadoop cluster depends on your specific 
requirements.

 n Hadoop is highly f lexible and you can choose the storage, processing and memory 
to fit your needs.

 n Installing a fully distributed Hadoop cluster is only slightly more complex than 
installing the pseudo-distributed cluster.

Sqoop

Oozie

Hue

Ambari

Edge Node 1

Hive

Pig

Flume

Kafka

Edge Node 2

Figure 4.14 How you can deploy client applications and 
       management tools on edge nodes in a Hadoop cluster
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5
Running Applications 

in a Cluster—The 
MapReduce Framework 

(and Hive and Pig)

This chapter covers the following:

 n The MapReduce application framework
 n A brief introduction to Apache Hive
 n A brief introduction to Apache Pig

As a Hadoop administrator, you’ll be responsible for managing several types of data 
processing work in your Hadoop cluster. While MapReduce is on its way out and is fast 
being replaced by Apache Spark, I believe it’s still important to learn the essentials of 
this processing framework, as it happens to be the most common processing framework 
in many Hadoop clusters even now. Over the next few years, however, MapReduce 
may be completely replaced by alternative frameworks such as Spark. 

Hive and Pig are abstractions that use MapReduce as their underlying processing model. 
Understanding how these processing frameworks function is critical to your success as a 
Hadoop administrator, so I explain the basics of both Hive and Pig in this chapter.

The MapReduce Framework
Although MapReduce is eventually going to be supplanted by other processing frameworks 
such as Apache Spark, it’s instructive to learn a bit about how the MapReduce processing 
model works. Most Hadoop clusters have a lot of MapReduce and Pig/Hive code run-
ning and administrators still need to understand the basics of MapReduce.
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The MapReduce Model
A MapReduce job consists of two steps: map and reduce. Here’s what the two processes do:

 n Map: This step processes the original input file in a parallel fashion and transforms 
it into an intermediate output.

 n Reduce: This summarization step processes all relevant records together.

The application developer provides the following four classes (they don’t need to 
be coded in Java, but most MapReduce programming is Java-based) for enabling the 
MapReduce programming model:

 n A class to read the input file and transform the input records into a key/pair 
value per record

 n A mapper class
 n A reducer class
 n A class to transform the key/value pair generated by the reducer class into the 

final output records

Here’s how the map and reduce processes perform computations:

1. The map process breaks large input files into multiple chunks, processing each
chunk simultaneously with multiple mapper processes. The resulting output from
the different chunks is partitioned into sets, which are sorted.

2. The reducer tasks take each of the sorted chunks and process them, creating the
final output file.

When you initiate a MapReduce job, multiple mapper processes are simultaneously 
started on various nodes, with the number of mappers being dependent of the size of 
the input file. Each of the map tasks transforms a set of input records into key/value 
pairs, and the output of all map tasks is portioned and then sorted, with one partition 
per reduce task. The reducer tasks will then process each partition’s sorted keys and values. 
As with the mappers, you can have multiple reducer classes. Note that not all MapReduce 
jobs will have a reducer component. It’s possible to run jobs that use just the mapper 
processes and no reducers.

I admit that the preceding explanation may seem a bit confusing to readers who are 
new to the MapReduce programming model. In order to understand the model clearly, 
it also helps to break down a simple MapReduce program, such as the WordCount 
program, which is widely used to explain the MapReduce model. 

The WordCount program is pretty simple: It analyzes a text document and counts 
how many times each word occurs in the document. The elements of the MapReduce 
program in a Hadoop environment follow.
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1. Multiple map processes are needed to compute the distinct words in the document.
The number of map processes is based on the input size. Let’s assume that each
mapper will process a single file and that there are 100,000 files altogether. If you
have 10 DataNodes in your cluster, each node will process approximately 10,000 map
tasks each. How many map processes run simultaneously will depend on the memory
available on each node for MapReduce processing and the number of processors.
If we assume each DataNode can process 20 map processes simultaneously, then each
of these nodes will start with that number. As the first 20 mapper tasks finish, each
DataNode will start the next batch of 20 mappers and so on.

2. Each map task processes a single file and extracts the key/value pairs: <{word}. 1>,
as shown here:
<the, 1>
<the, 1>
<crux, 1>
<of, 1>
<the, 1>
<matter, 1>
<is, >
...

3. The reducer tasks will receive the <key,value> pairs in the following format:
<the, [1,1,1,1,1,...]
<crux, 1>
...

As you can see, the mappers and reducers don’t have a one-to-one relationship.
It’s usually a many-to-one relationship between the two. Thus, in our example,
the key/value pairs received from a reducer can come from multiple mappers.

4. The next step is the “shuff le and sort” process, which collects the 1s for each word
in the local file system where a reducer task will run. The shuff le and sort process
sends data from the mappers to the reducer processes.

5. The reducer adds all the occurrences of a word (the “1” in the key/value pair)
to get the total count of each word and sends the results to the output file as the
following key/value pairs:
<the, 21000>
<crux, 1>
<of, 10900>
...

How MapReduce Works
Following are the key concepts regarding how MapReduce works in the Hadoop 
environment.

 n Each mapper processes a single input split from the HDFS file system. Usually the 
input split is sized the same as a single HDFS block.

 n Hadoop sends one record at a time to the mapper, with each record containing a 
key and a value.
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 n Mappers work on one record at a time and write the intermediate data to disk.
 n The reducer aggregates the results, using the intermediate keys produced by the 

mapper.
 n All values associated with the same intermediate key are sent to the same reducer.
 n Reducers write the final output to the HDFS file system.

Although MapReduce may seem complex to beginners, it’s at its heart very simple. 
The process is similar to the following Linux pipeline that finds unique words in a file.

cat /test/log  | grep '\hadoop'  \ sort  |  uniq –c > /tmp/outfile.txt

In this example, here’s what the different commands in the Linux pipe do:

 n grep: This performs the map task.
 n sort: This performs the shuff le and sort.
 n uniq: This is the reducer.

Note

Hadoop refers to each unit of work it performs as a job (same as an application). A job may 
consist of multiple tasks, and tasks may sometimes be attempted multiple times if a task 
fails for some reason.

Inputs and Outputs
MapReduce works exclusively with <key, value> pairs. It views the job inputs as a set 
of <key, value> pairs and outputs a set of <key, value> pairs as well. The map and 
reduce functions in a MapReduce program have the following general form:

 n Map: (k1, v1) => list(k2, v2)
 n Reduce: (k2, list(v2) => list(k3, v3)

Normally, the map input key value types (k1 and v1) differ from the map output 
types (v2, k2). Reduce input types must have the same types as the output of the map 
process. Reduce output types may be different (k3, v3). 

Hadoop (MapReduce) Input and Output Processing
In order to understand how MapReduce processes vast amounts of data efficiently, you 
need to learn how MapReduce handles the I/O process. CPU-bound Hadoop systems 
aren’t common, and I/O remains the main bottleneck. Following is a simple outline of 
the I/O processes used by a MapReduce job.

1. HDFS files are read as input to the mapper processes.

2. During the map phase, the input is split into chunks (called input splits or just splits),
and Hadoop creates a separate map task to process each of these chunks of data.
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3. Each of the map tasks processes the key/value pairs from the data chunk (input split)
assigned to it and generates a set of intermediate key/value pairs.

4. The intermediate data is sorted by key, and the sorted data is partitioned into a
number of chunks that match the number of reducer tasks.

5. The nodes on which the reducer processes run will merge the data on local disk,
after sorting the data received from the mappers.

6. The reducers write their output to HDFS.

Note

A MapReduce job stores its intermediate data output from the map processes in the 
underlying file system of the local disk on the node on which the mapper runs.

Data Compression
Since I/O is the predominant operation in MapReduce, you need to focus on reducing 
both disk and network I/O to increase the cluster’s throughput. A basic strategy you can 
use here is to compress data at various levels by compressing the input files, the intermediate 
mapper output and, finally, the MapReduce job output.

Hadoop environments use specialized file formats when dealing with data. 
SequenceFiles are a binary format to store binary key/value pairs. Apache Avro is a pop-
ular data format in many Hadoop environments. It offers a compact, fast binary data 
format and uses a container file to store persistent data. You don’t need to generate code 
to read or write the data files or for using or implementing RPC protocols, since Avro 
is self-documenting. Note that sequence files support just the Java language, whereas 
you can use the Avro format with any language (so long as the Avro bindings exist).

A great advantage offered by MapReduce is that developers don’t need to set up the 
housekeeping chores, as the MapReduce framework handles all the work behind the scenes. 
Developers can just focus on developing their Map and Reduce functions. While MapReduce 
programs are usually written in Java, you can write them in other languages by using 
Hadoop Streaming. 

MapReduce Job Processing
When you run a MapReduce job, this is what happens:

1. Multiple map processes are started simultaneously, each of which reads an input
split (part of the full import data) from an HDFS directory and processes the data,
generating intermediate key/value pairs.

2. The reducer process swings into action next, by processing all key/value pairs
with identical intermediate keys.

3. The reducer process writes the final output as key/value pairs to an output directory.

Each MapReduce map task will process a single input split, which is calculated by the 
client before submitting a job to the cluster. You can specify how to calculate the input 
split in the program, with the HDFS block size being the most common split size. 
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MapReduce is designed to take advantage of the data distributed across a Hadoop 
cluster. A massive data set is thus split into bite-size pieces spread throughout the cluster’s 
DataNodes, and MapReduce processes this data in a parallel fashion. Here’s a summary 
of the MapReduce application phases:

1. Determine the input splits.

2. Process each record in an input split with the help of a map task.

3. Combine the output of each map task.

4. Group the sorted data from each mapper’s result set.

5. Use the reducer tasks (these are optional, and serve to aggregate the result sets of
the mapper processes into a single output to be stored in HDFS.

Figure 5.1 shows how map and reduce tasks process data. In YARN, each mapper 
process runs in a container, which is a logical entity containing a specific amount of CPU 
and memory. The ApplicationMaster for an application requests the ResourceManager 
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for the allocation of a container for each Mapper process. The ResourceManager will 
then schedule the necessary resources and inform the ApplicationMaster as to which 
nodes it can ask the NodeManagers to launch the containers.

A Simple MapReduce Program
Let’s use the well-known WordCount MapReduce program to understand how MapReduce 
does its work. The following program consists of a map class and a reduce class, which 
together process the data in the input file that’s provided to the MapReduce job.

public class WordCount {
 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}
    }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
context.write(key, new IntWritable(sum));

    }
 }

 public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();

    Job job = new Job(conf, "wordcount");

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);

    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.waitForCompletion(true);
 }
}
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In the following section, I explain exactly what the map and reduce classes do to 
process an input file and get you the output you’re after.

Hadoop doesn’t require you to specify the input and output directories on the command 
line. When you submit a job to the cluster, Hadoop places the job files in a temporary 
directory in the HDFS file system and the ResourceManager is made aware of this 
location. Hadoop also serializes the configuration of the job to an XML file and places 
that in an HDFS directory as well.

Understanding Hadoop’s Job Processing—Running a WordCount 
Program
Let’s understand how Hadoop processes a MapReduce job by running one of the example 
MapReduce programs that come with the Hadoop distribution. You can list the available 
examples by doing this:

$ hadoop jar $HADOOP_HOME/hadoop*examples.jar

It’s standard practice in a Hadoop environment to run the well-known WordCount 
program to put Hadoop through its paces. The WordCount program accepts a text file 
as input and counts the number of occurrences of each word in that file. Figure 5.2 shows 
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how the WordCount program uses map and reduce tasks to process data, sort it and store 
the results in HDFS.

For the following example, I chose to count the occurrences of each word in Shakespeare’s 
collected works, which I downloaded from here:

http://www.gutenberg.org/cache/epub/100/pg100.txt

I renamed the downloaded text file to shakespeare.txt and placed it in the /tmp directory.
Once you download the text file, you must upload it to HDFS so MapReduce can 

work on it. You can copy the file to an HDFS directory by following these steps:

1. Make a directory in HDFS in which to store the text file.

[root@hadoop2 sbin]# hdfs dfs -mkdir -p /input/shakes

2. Copy the text file shakespeare.txt from the /tmp directory to the new HDFS
directory, /input/shakes, using the Hadoop file system command –copyFromLocal,
which copies a file from the Linux file system to HDFS.

[root@hadoop2 sbin]# hdfs dfs -copyFromLocal /tmp/shakespeare.txt /input/
shakes/

3. Test that the file has been copied from the local directory to HDFS.

[root@hadoop2 sbin]# hdfs dfs -ls /input/shakes/

Found 1 items
-rw-r--r--   3 root supergroup    5589889 2016-05-24 10:02 /input/shakes/
shakespeare.txt
[root@hadoop2 sbin]# 

MapReduce Input and Output Directories
When you run a MapReduce job, the input directory must exist and it must contain the 
file you want MapReduce to process. There’s also an output directory that you must 
name when you run the MapReduce job, but that directory must not exist, or your job 
will fail immediately!

Now that I’ve gotten my input directory set up in HDFS, I can run the example 
WordCount program on our text file, which consists of Shakespeare’s collected works. 
Note that /input/shakes is the input directory and that’s all you need to specify. Hadoop 
will find the shakespeare.txt file you placed there and analyze it. The job will create 
the output directory that you specify (shake_output in our example) and place the job’s 
output in that directory.

How Hadoop Shows You the Job Details
Hadoop’s job logging is quite voluminous, for both its daemons and for the jobs you 
run on Hadoop. When you run a job, Hadoop emits a bunch of output, as shown in 
the following example. The output includes valuable information for a developer or 
administrator who wants to understand the job execution f low and troubleshoot it.

http://www.gutenberg.org/cache/epub/100/pg100.txt
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To execute our MapReduce job, I run the following on the command line:

[root@hadoop2 sbin]# hadoop jar /opt/yarn/hadoop-2.6.0/share/hadoop/mapreduce/
    hadoop-mapreduce-examples-2.6.0.jar wordcount /shakes shake_output #A
16/05/22 10:44:00 INFO input.FileInputFormat: Total input paths to process : 1 #B
16/05/22 10:44:01 INFO mapreduce.JobSubmitter: number of splits:1 #B
16/05/22 10:44:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1440603749764_0001 #C
16/05/22 10:44:03 INFO impl.YarnClientImpl: Submitted application   application_1440603749764_0001    #C
16/05/22 10:44:03 INFO mapreduce.Job: The url to track the job: http://hadoop1.localdomain:8081/
    proxy/application_1440603749764_0001/ #D
16/05/22 10:44:44 INFO mapreduce.Job: Job job_1440603749764_0001 running in uber mode : false
16/05/22 10:44:44 INFO mapreduce.Job:  map 0% reduce 0% #E
16/05/22 10:45:07 INFO mapreduce.Job:  map 67% reduce 0%
16/05/22 10:45:17 INFO mapreduce.Job:  map 100% reduce 0%
16/05/22 10:45:33 INFO mapreduce.Job:  map 100% reduce 100% #E
16/05/22 10:45:34 INFO mapreduce.Job: Job job_1440603749764_0001 completed successfully #F
16/05/22 10:45:36 INFO mapreduce.Job: Counters: 49 #G

File System Counters
FILE: Number of bytes read=983187
FILE: Number of bytes written=2178871
HDFS: Number of bytes read=5590008
HDFS: Number of bytes written=720972
HDFS: Number of read operations=6

HDFS: Number of write operations=2 #G
Job Counters 

Launched map tasks=1 #H
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=30479
Total time spent by all reduces in occupied slots (ms)=13064
Total time spent by all map tasks (ms)=30479
Total time spent by all reduce tasks (ms)=13064
Total vcore-seconds taken by all map tasks=30479
Total vcore-seconds taken by all reduce tasks=13064
Total megabyte-seconds taken by all map tasks=31210496
Total megabyte-seconds taken by all reduce tasks=13377536 #H

Map-Reduce Framework
Map input records=124787 #I
Map output records=904061
Map output bytes=8574733
Map output materialized bytes=983187
Input split bytes=119
Combine input records=904061
Combine output records=67779
Reduce input groups=67779
Reduce shuffle bytes=983187
Reduce input records=67779 #I
Reduce output records=67779
Spilled Records=135558 #J
Shuffled Maps =1

Merged Map outputs=1 #J
GC time elapsed (ms)=454 #K
CPU time spent (ms)=10520
Physical memory (bytes) snapshot=302411776 
Virtual memory (bytes) snapshot=1870229504
Total committed heap usage (bytes)=168497152 #K

File Input Format Counters #L
Bytes Read=5589889 #L

File Output Format Counters #M
Bytes Written=720972 #M

[root@hadoop2 sbin]#

http://hadoop1.localdomain:8081/
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Notes

#A Shows how to invoke the MapReduce job through Hadoop JAR files.

#B Shows the input paths and the number of splits—in this simple example, there’s 
only one split, but in real life, there could be tens of thousands of splits.

#C Shows the job and application name, which you’ll need to troubleshoot your job.

#D The URL for tracking the progress of this job.

#E Shows the progress of the job—when both maps and any reduces reach 
100 percent execution, you’re done!

#F Shows that the job finished successfully.

#G File system Hadoop counters, showing the bytes read and written and so on.

#H Hadoop job counters, showing the number of maps and reduces and the time 
taken for completing the map and reduce tasks.

#I Shows the number of input and output records.

#J Shows details about any spills (sorts) to disk and about the shuffles.

#K Shows CPU time spent by the job and the memory used by it.

#L Shows the number of total bytes read.

#M Shows the number of total bytes written.

Wow! That’s quite a bit of output to find out the number of times a word occurs in 
the text file you provided. However, the job’s output illustrates many key aspects of 
MapReduce programming, which you’ll encounter over and over, even when running 
Pig and Hive jobs, which, as you know by now, use the MapReduce framework underneath. 

You can check the job output by checking the output directory first, as shown here:

# hdfs dfs –ls /out/shake_output

You can copy the output files from HDFS to the Linux local file system, as shown here:

# hdfs dfs –get /out/shake_output

Use the Linux command cat, to view the output:

# cat shake_output

Alternatively, you can view the output files directly in HDFS, using the HDFS file 
system command, also called cat:

# hdfs dfs –cat /out/shake_output

You can view the results of your job in the ResourceManager (RM) web UI, by going to:

http://rm_host:8088/ 

Hadoop Streaming
Whether you use a MapReduce program or a Hive or Pig script, you’re essentially using 
Java-based MapReduce underneath. However, Java isn’t the only way to create 
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map and reduce jobs in your cluster. You can also use Hadoop Streaming, which is a 
utility that allows you to use any executable or script as a mapper or reducer. Following 
is a simple example that shows how to use common Linux utilities such as cat (lists the 
contents of a file) and wc (counts the words in a file) to perform a MapReduce task.

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper /bin/cat \
-reducer /bin/wc

As you can see, both the mapper and the reducer are represented by operating system 
executables and not any custom code. The two executables, cat and wc, read an input 
file and display the output on the terminal (stdout). 

How Hadoop Streaming Works
In our simple Hadoop streaming example, the job runs exactly as any Java-based 
MapReduce, with similar job progress output—in fact, there are no operational differ-
ences at all. Here’s what the mapper and reducer tasks do:

 n The mapper converts the input into lines and collects the output from standard 
output (stdout) and converts each of the lines into a key/value pair. This key/value 
pair is the output of the mapper process, just as in the case of the WordCount pro-
grams you’ve seen earlier in this chapter. 

 n The reducer task converts the key/value pair inputs into lines and sends them to 
standard input (stdin) of the reduce process. They then collect the output from 
the process’s stdout and convert them into key/value pairs and these become the 
reducer’s output.

Hadoop Streaming and Java Classes
When your mapper uses Hadoop streaming, it isn’t imperative that you use non-Java 
executables or code for both the mapper and the reducer—you can mix and match! The 
following example shows how you can supply a Java class just for the mapper and use the 
operating system executable (wc) for the reducer.

$HADOOP_HOME/bin/hadoop  jar $HADOOP_HOME/hadoop-streaming.jar \
-input myInputDirs \
-output myOutputDir \
-mapper org.apache.hadoop.mapred.lib.IdentityMapper \
-reducer /bin/wc

You could easily replace the Java mapper with a mapper written in Python, by  specifying 
-mapper myPythonScript.py. You can also use mappers and reducers written in other
programming languages such as Ruby and PHP just as easily as we did with the OS execut-
ables. For example, the following two lines use PHP-based mappers and reducers.

-mapper /usr/local/hadoop/scripts/wc_mapper.php
-reducer /user/local/hadoop/scripts/wc_reducer.php
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Now that you know how MapReduce works, let’s take a quick look at two popular 
processing tools—Apache Hive and Apache Pig, both of which are abstractions that use 
MapReduce to perform their computations.

    Apache Hive
Apache Hive provides a SQL interface that enables you to use HDFS data without having 
to write programs using MapReduce. It’s important to understand that unlike Apache 
HBase, Hive is not a database. It simply provides a mechanism to project a database structure 
on data you store in HDFS and lets you query that data using HiveQL, a SQL-like 
language. Hive uses a type of SQL that lets you query HDFS data in ways that are similar 
to how you query data stored in a relational database. 

While HiveQL doesn’t have the full range of features available in SQL, it offers 
more than enough SQL capabilities for you to efficiently work with HDFS data. When 
you use a Hive query, Hive parses the SQL query and generates a MapReduce job to 
process the data to get you the query results. The main rationale for Hive is to reduce 
effort by doing away with developing MapReduce programs. It also provides a data 
warehouse capability when handling large amounts of data, is analyst friendly and is ideal 
for making use of HDFS data for business intelligence (BI) analysis.

It’s important to understand that Hive, while it lets you use SQL-type queries to 
process HDFS data, isn’t a database itself, although it does use the concept of database 
tables. Hive simply maps HDFS directories to tables.

If you’ve been using SQL to process data stored in relational databases, you can make 
a quick transition to Hive and start working with HDFS without having to learn any 
MapReduce programming. 

Do note that you can’t update data with HiveQL, as Hive doesn’t support updates and 
deletes. Also, unlike the lightning quick results from SQL queries you may be used to, 
Hive seems to be plodding in comparison, often taking several minutes or hours to get the 
output you’re looking for. Even for small queries, a Hive job needs to set the MapReduce 
engine in motion and that startup overhead does takes some time.

Hive saves you quite a bit of time as you can write Hive queries much faster than 
you can write MapReduce code. A word count program that takes about 50 lines of 
code in MapReduce needs only 5 lines when you do the same thing in Hive. Also, since 
Hive supports SQL syntax, you can integrate Hive with your BI tools. Hive allows to 
perform classic SQL operations such as joins.

Hive is a data warehousing infrastructure built on top of Hadoop to take advantage 
of the scalability and fault tolerance offered by Hadoop. Hive is designed for quick 
summarization of data and ad-hoc querying and analysis of large data sets using HiveQL. 
MapReduce programmers can also plug in custom map and reduce processes for enhancing 
Hive’s capabilities.

It’s important to remember that since MapReduce is essentially a batch processing 
framework, Hive queries generally run a long time when you’re processing small amounts 
of data, due to the inherent overhead in submitting and scheduling MapReduce jobs. 
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As mentioned earlier in this book, Hive isn't a great tool when working with small data sets, 
as well as for OLTP queries.

Hive Data Organization
Hive uses a type of data organization that’s very similar to that of traditional relational 
databases. Following is how Hive organizes its data.

 n Databases: These are namespaces that demarcate different data units.
 n Tables: These are units of data that have an identical schema, meaning the same 

number and type of columns.
 n Partitions: Although not a requirement, you can subdivide a table into chunks 

using partition keys, to efficiently identify data that satisf ies specific criteria.
 n Buckets: As with partitions, buckets are also optional and let you subdivide a 

partition into smaller data units that share the same value of a hash function of 
a column in a table.

Working with Hive Tables
Hive lets you create two types of tables: external tables and managed tables. Managed 
tables are maintained by Hive itself. As mentioned earlier, when you use Hive, you store 
data in tables and, optionally, partitions and buckets. The following example shows how 
to create a simple Hive managed table:

CREATE TABLE page_view(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')

COMMENT 'This is the page view table'
PARTITIONED BY(dt STRING, country STRING)
STORED AS SEQUENCEFILE;

You can view existing Hive tables by issuing the following command:

SHOW TABLES;

To view a table’s partitions, issue the following command:

DESCRIBE page_view;

You can list the columns and column types in a table with the DESCRIBE EXTENDED 
command:

DESCRIBE EXTENDED page_view;

Loading Data into Hive
A common way to load data into Hive is to create an external table. You can create an 
external table that points to an HDFS directory. You can copy an external file into the 
HDFS location using either of the HDFS commands put or copy. Here, once I create 
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the table named PAGE_VIEW_STG, I use the HDFS put command to load the data 
into the table. 

CREATE EXTERNAL TABLE page_view_stg(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User',
country STRING COMMENT 'country of origination')

COMMENT 'This is the staging page view table'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '44' LINES TERMINATED BY '12'
STORED AS TEXTFILE
LOCATION '/user/data/staging/page_view';

hadoop dfs -put /tmp/pv_2016-03-09.txt /user/data/staging/page_view

Note that you can transform the initial data and load it into another Hive table, 
as shown in this example. The f ile /tmp/pv_2016-03-09.txt contains the page views 
served on 9 March 2016. These page views are loaded into the PAGE_VIEW table 
from the initial staging table named PAGE_VIEW_STG, using the following 
statement.

FROM page_view_stg pvs
INSERT OVERWRITE TABLE page_view PARTITION (dt='2016-03-09', country='US')
SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url, null, null, pvs.ip
WHERE pvs.country = 'US';

Querying with Hive
Let’s illustrate how you query the data you’ve just loaded, with a couple of examples. 
The first example shows how to insert data into a table by using a query on the PAGE_
VIEWS table.

INSERT OVERWRITE TABLE xyz_com_page_views
SELECT page_views.*
FROM page_views
WHERE page_views.date >= '2016-03-01' AND page_views.date <= '2016-03-09' AND

page_views.referrer_url like '%xyz.com';

This query gets you all the page views for a specific time period that were referred 
from the domain xyz.com. You’re able to successfully run this query using the DATE 
column because you had partitioned the table PAGE_VIEWS on that column.

The next query shows how to join two tables in Hive, which is a very common usage 
pattern. Often, the Hadoop administrator’s assistance is called for to assist with the opti-
mizing of Hive queries that involve complex joining of multiple tables.

INSERT OVERWRITE TABLE pv_users
SELECT pv.*, u.gender, u.age
FROM user u JOIN page_view pv ON (pv.userid = u.id)
WHERE pv.date = '2016-03-09';

The preceding query joins two tables, PAGE_VIEW and USER, to get you the break-
down of the page views by gender and age.
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Apache Pig 
Pig is a high-level framework for data processing that enables you to use a scripting lan-
guage called Pig Latin to process data using MapReduce. Pig thus works as a wrapper 
for MapReduce code. It’s important to remember that, just as in the case of Hive, Pig 
doesn’t provide functionality beyond that offered by MapReduce. It certainly makes it 
a lot easier to use various types of data operations though.

Pig, being a procedural language, is easy to use and quite expressive when perform-
ing the data transformation steps. Its conciseness resembles that of a language such as 
Python. 

Since Pig is procedural, you control the execution f low and it’s quite easy to incor-
porate custom functions into the pipeline. Pig’s lazy evaluation model, wherein the code 
doesn’t get evaluated until you generate the output, means that the query optimizer can 
come up with more efficient plans, since it can optimize the entire program from the 
beginning to the end. You can let Pig ingest data from various sources such as files or 
streams and then use it to transform that data and store the results in HDFS. Pig jobs 
are transformed transparently into MapReduce jobs and Pig performs optimizations to 
efficiently process the data in a Hadoop cluster.

Pig Execution Modes
You can run Pig in two modes: local and MapReduce. In the local mode, Pig doesn’t 
use the HDFS file system. It uses the local file system instead. Local mode is purely for 
development and prototyping purposes. It provides a shell called Grunt. Here’s how you 
invoke Pig in the local mode:

$ pig –x local
...
grunt>

To run a pig script named test.pig instead of using the Grunt shell interactively, you 
execute the following:

$ pig local –x test.pig

Grunt helps you execute both interactive commands and Pig scripts.
In order to access a hadoop cluster, you invoke Pig in the MapReduce mode as 

shown here:

$ pig –x mapreduce
grunt>

If you want to execute a Pig script on the Hadoop cluster, do the following:

$ pig –x mapreduce test.pig
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A Simple Pig Example
Let’s see how Pig uses Pig Latin to work with data, by using our familiar WordCount 
problem. Let’s say your input file is named input.txt, consisting of the following lines:

A =LOAD ' /input.txt';
B = FOREACH A generate FLATTEN (TOKENIZE(chararray)$0)) as word;
C = FOREACH C generate COUNT(b), GROUP;
STORE D into ' /wordcount';

You execute the script wordcount.pig across the cluster in the following way:

$ hdfs dfs copyFromLocal input.txt input/input.txt /
bin/pig –x mapreduce wordcount.pig

Here’s what happens when you execute this Pig script:

 n The LOAD parameter in the wordcount.pig script loads the data from the file system.
 n The FLATTEN operator eliminates nesting and the FOREACH operator transforms the 

data based on the columns. 
 n The COUNT function counts the number of elements in a bag and the GROUP operator 

groups rows that have identical key values. 
 n The STORE operator stores the output of the Pig job in HDFS. You can display the 

output in your terminal instead of storing it, by specifying the DUMP operator 
instead.

Pig will automatically generate parallel MapReduce tasks across the Hadoop cluster 
to count the number of words in the input file. Note how simple our Pig WordCount 
program is compared to the earlier program you’ve seen, which used MapReduce.  

Summary
 n Although MapReduce is increasingly being considered a legacy processing frame-

work, it’s important to understand how it works. 
 n Hive (and Pig) are often used for data processing of various types, but since it’s 

MapReduce that runs underneath in both cases, it’s useful to gain a thorough 
understanding of MapReduce processing.

 n It’s clear that Apache Spark is the future as of now, and the next two chapters 
introduce the Spark framework.
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Running Applications 

in a Cluster—The Spark 
Framework 

This chapter covers

 n An introduction to the Spark framework
 n The Spark stack
 n Installing Spark
 n Understanding cluster managers
 n Spark and data access (loading data into Spark)

Spark is the most active open-source project relating to big data and is widely considered 
the successor to the MapReduce framework for processing big data. MapReduce is on 
its way out in many places, with Spark increasingly becoming the go-to processing 
framework in Hadoop environments. Four things set Spark apart from its predecessor 
MapReduce: speed, ease of use, a general purpose framework and built-in sophisticated 
analytical capabilities.

Although Spark can be run independent of Hadoop, using the Mesos framework for 
example, Hadoop environments can continue to use YARN and HDFS to support new 
Spark applications to process data fast.

In this, the first of four chapters in this book that are dedicated to Apache Spark, 
I explain the main benefits offered by Spark and why it’s superior to MapReduce as a 
processing framework for big data environments. This chapter also shows how to install 
Spark and configure it.

I explain what a Spark stack is and discuss the key components, such as Spark Core, 
Spark Steaming and Spark SQL, that constitute the stack.

Spark works with more than one cluster manager, YARN being one of them. You’ll 
learn how to use Spark with Spark's own Standalone Cluster, as well as with Apache Mesos.
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Loading data into Spark is a key part of working with Spark, and this chapter explains 
how to load data from text files, HDFS and relational databases so you can process it 
with Spark.

What Is Spark?
Spark is an-open source computational framework that, like MapReduce, processes and 
analyzes huge amounts of data using commodity servers. Spark’s API lets developers create 
distributed applications that make use of a cluster’s resources without having to know 
all the low-level details about how to allocate the cluster’s resources among the various 
applications. 

Spark started as a research project in 2009, and its creators started the company 
named Databricks to promote and commercialize Spark. Spark is an open-source project 
(the fastest growing Apache project, in fact), and the project’s committers include folks 
from Databricks, UC Berkeley, Hortonworks and Cloudera.

Spark was explicitly designed to overcome the inefficiency of the MapReduce model 
in performing interactive and iterative computations.

Spark supports a wide variety of workloads, including batch processing, streaming, 
business intelligence, graphs and, last but not least, machine learning. 

You can run Spark on clusters of thousands of nodes (the largest known Spark cluster 
has 8,000 nodes). In large clusters, Spark has successfully worked with multiple petabytes 
of data.

In a Hadoop cluster, Spark and MapReduce can be used side-by-side to provide dis-
tributed data processing, as shown in Figure 6.1. You can run Spark on the same nodes as 
you run MapReduce, with YARN managing both processing frameworks, or you can 
dedicate some of the nodes in a Hadoop cluster exclusively to Spark. Hadoop’s HDFS 

Processing Frameworks
• MapReduce
• Spark

Resource Management
YARN

Cluster Storage
HDFS

Figure 6.1 The distributed data processing frameworks (MapReduce and Spark)
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storage and the YARN processing framework support both MapReduce and Spark in 
an identical fashion.

Languages such as Java and C++ aren’t very useful for exploratory analysis, because 
they lack a REPL (read-evaluate-print loop) environment for working interactively 
with data. Data scientists find that Spark enables them to perform easy interactive data 
analysis, using Python or Scala, through the Spark shell. You can also use Spark SQL, 
which is a separate SQL shell with which to run SQL-based queries, either interactively 
or within the Spark shell as part of a Spark program. 

Why Spark?
MapReduce has been justly famous for the past several years as the key  processing 
framework in Hadoop clusters. Spark offers several benefits when compared to MapReduce, 
leading organizations to migrate to Spark applications. Following are the drawbacks 
of MapReduce programming that gave impetus to the development of Spark as an 
alternative:

1. Programmability: MapReduce requires several chaining steps to perform certain
workloads. You also need specialized systems for different applications.

2. MapReduce writes intermediate data to disk between each computational step.
This makes it quite inefficient for applications such as interactive analytics and
iterative algorithms to reuse the data. Most machine learning algorithms tends
to be iterative by design, making multiple passes over the same data.

Following is a summary of the many benefits of Spark over the MapReduce framework.

Speed
Spark is fast—no two ways about it. Spark set the official record in large-scale sorting in 
November 2014, breaking the previous petabyte sort record. Spark won the Daytona 
GraySort contest in 2014. The contest is named after the revered database guru Jim Gray, 
and its benchmark workload is extremely resource intensive (very high disk and network I/O) 
and measures how fast a system can sort 100TB of data (1 trillion records).

Note

Spark offers a 100X improvement in performance over MapReduce, offering near real-time 
processing capabilities.

The previous world record for computation speed was set by MapReduce, which 
used 2,100 nodes (50,400 physical cores) to sort 100TB of data in 72 minutes. An 
Amazon EC2–based Spark system sorted the same 100TB of data in a mere 23 minutes, 
meaning it used 10X fewer nodes but processed the data 3 times faster! It’s noteworthy 
that Spark sorted all the data on disk (HDFS storage) and didn’t use Spark’s in-memory 
cache.
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Hadoop is based on the idea that processing should move to where the data is, and 
Spark adds more power to this basic idea by processing data in memory and using exe-
cution plans to organize its work.

Some of the reasons for Spark’s speed superiority over Hadoop MapReduce include 
the following:

 n Use of memory for data storage. (Unlike MapReduce, which uses memory purely 
for computation, Spark uses it for both computing and for data storage during 
application processing.)

 n Less expensive shuff le.
 n Fewer I/O synchronization barriers.

Like MapReduce, Spark transforms a job into a directed acyclic graph (DAG) of multiple 
stages. The more complex the directed acyclic graph (DAG), the more the performance 
improvement of Spark as compared to MapReduce.

Spark also enables you to parallelize massive production data processing applications 
across a Hadoop cluster, while keeping you from having to deal with the networks, 
distributed programming and fault tolerance. 

Spark can use memory-based computation. Regardless of whether data fits in memory, 
Spark is much faster than MapReduce. If data fits in memory it can be hundreds of times 
faster than MapReduce. Spark offers several features that MapReduce does, such as fault 
tolerance and scalability. However, two key factors account for the superiority of Spark: 
Spark’s advanced execution engine and its in-memory cluster computing.

Spark can connect at run time to different storage sources such as HDFS, Cassandra, 
Amazon S3 and Apache HBase.

You can write Spark applications in Scala, Python or Java. I focus on Scala in this chapter 
and the rest of the book wherever I discuss Spark, since it’s not only easier and more com-
pact than Java but also offers superior performance.

Spark’s Advanced Execution Engine
Spark uses a much more sophisticated job execution engine than MapReduce. MapReduce 
has limited optimization capabilities, as it always creates a DAG with the same two 
stages—map and reduce—for all jobs. If you want to perform advanced computation 
using complex algorithms, you need to split the job into multiple jobs and sequentially 
execute each of the jobs.

With Spark, unlike in MapReduce, you aren’t limited to two stages per job—you 
can have any number of stages you want. Instead of splitting complex algorithms into 
multiple jobs, you can run jobs with multiple stages. This is a huge difference, leading 
to several optimizations not possible with MapReduce. Since Spark is aware that a job 
has multiple stages it uses this information to optimize the job execution—for example, 
by minimizing the shuff ling of data and disk I/O. 

Spark represents the future (as far ahead as we can see it right now, anyway!). YARN 
libraries such as Mahout and Hive will be ported to Spark. Far from being a replacement 
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for Hadoop, Spark is poised to be a key part of the Hadoop ecosystem. MapReduce will 
continue to exist for quite a while—there’s too much MapReduce code running in the 
world’s Hadoop clusters for it to disappear anytime soon. 

Spark’s In-Memory Computation
I/O latency, which is the delay in transferring data from disk to memory, is always a 
significant component of the total job execution time. A MapReduce job often reads and 
writes data from and to disk multiple times in the course of its execution. You can 
implement the same job in Spark where it reads just once from disk. Once it reads the 
data, Spark caches the data in memory for further processing steps, thus minimizing 
disk I/O. Since reading from memory is at least 100 times faster than reading from disk, 
performance is increased dramatically.

Note

Persistence of data in memory means more efficient iteration for jobs such as machine 
learning.

Because Spark caches the data in memory, it doesn’t have to write to disk or read data 
from disk during various intermediate operations. That’s a key reason for the speed of 
Spark applications.

What happens when the data doesn’t fit in memory? After all, you’re processing 
terabytes of data while your server memory is limited to 128GB, 256GB, or 512GB in 
most cases. It’s important to understand that Spark doesn’t always decide to cache the data 
in memory. It determines when during the data processing pipeline it should cache and 
which data it should cache—sometimes it may not cache any data if it’s making just a single 
pass over the data.

Spark is built to run on a cluster of servers and works well with distributed storage 
(such as HDFS) by supporting data locality, which is the moving of code to where 
the data is.

Ease of Use and Accessibility
Spark programs are much simpler than corresponding MapReduce applications. Spark’s 
API is also much more wide ranging. You must break down every MapReduce job into 
map and reduce jobs, since MapReduce offers just the map and reduce operators. 

Note

Compared to MapReduce job, a Spark job means a 10:1 reduction in the lines of code.

Spark is highly accessible: You can use Python-, Java-, Scala- and SQL-based API’s 
to perform your processing. The efficacy and low cost of Spark has made it possible to 
perform computations that were previously deemed impractical or impossible.

Developers can be much more productive with Spark than with MapReduce. 
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Simplicity and Compactness
In earlier chapters, you’ve seen what the MapReduce code looks like—typically you’d 
need more than 50 lines of Java MR code to get the word count of a text. WordCount 
in Spark takes just three lines:

val f = sc.textFile(inputPath)
val w = f.flatMap(l => l.split(" ").map(word => (word, 1)).cache()
w.reduceByKey(_ + _).saveAsText(outputPath)

That’s it!
The Hadoop MapReduce model is quite restrictive, which makes most algorithms

harder to implement. Spark on the other hand uses fine-grained “combinators” for 
composing algorithms. 

Spark is a much higher-level programming framework than MapReduce, allowing 
developers to focus on the application logic rather than the plumbing.

General-Purpose Framework
MapReduce was designed for batch processing—nothing else. Spark is a true general-
purpose processing framework. You can use it for all the following types of processing:

 n Batch processing
 n Interactive analysis
 n Stream processing
 n Machine learning
 n Graph computing

When you use MapReduce, you’d need to use additional frameworks for performing 
tasks other than batch processing. This hinders developer productivity, whereas with 
Spark you can use the same framework for all the work. This also means that you don’t 
have to duplicate data by having to store it in multiple frameworks. For example, you can 
use MapReduce (batch processing) together with Storm (stream processing). However, this 
means that you need to set up and maintain a different cluster for each of the frameworks 
and maintain the code in both frameworks as well. 

Spark involves far less complexity since by learning this one framework, you can build 
complex data processing pipelines that perform various types of tasks. 

Spark can process data in any file format supported by Hadoop. It can process data in 
HDFS, HBase, Cassandra, Hive and any Hadoop InputFormat.

Spark is especially useful for running iterative data processing jobs and for interactive 
analysis. An iterative algorithm iterates over the same data multiple times, sometimes 
performing hundreds of iterations over the same data sets. Machine learning and graph 
processing are two well-known iterative algorithm-based applications. 
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Spark and Hadoop
Most places that use MapReduce have found that it works great for several types of 
batch processing, but they run into issues when handling iterative processing. In most 
clusters, you have both MapReduce and Spark running together, with MapReduce handling 
batch processing and Spark handling interactive processing (such as machine learning 
jobs). Figure 6.2 shows this type of architecture.

Note

Spark is not a replacement for or rival to Hadoop—it complements existing clusters and 
works side by side with MapReduce and other traditional processing frameworks.

Spark doesn’t require Hadoop. It happens to support several storage systems, includ-
ing HDFS. It supports text files, SequenceFiles, Avro, Parquet and other Hadoop 
InputFormat-based files.

The Spark Stack
Spark is unique among the processing engines supported by YARN, in the sense that it 
contains several closely integrated components, each of which specializes in handling a 
different type of workload, such as machine learning or SQL processing. This benefits 
an organization that has to perform different types of data processing, as it doesn’t need 
to run multiple software systems, one for each type of work. 

A big benefit of the tightly integrated architecture employed by Spark is that your 
applications can combine different types of processing without difficulty. For example, 
an application can ingest data from a streaming source and employ machine learning 
algorithms to analyze the data in real time. You can then analyze the data using SQL
 in real time as well. 

Figure 6.3 shows the basic architecture of the Spark stack when you run Spark on a 
Hadoop cluster.

MapReduce for both
Batch and Iterative Processing

YARN

HDFS HBase

MapReduce for
Batch Processing

Spark for
Iterative

Processing

YARN

HDFS HBase

Figure 6.2 MapReduce and Spark together in a Hadoop Cluster, with MapReduce 
handling batch processing and Spark handling iterative processing
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Following is what each of the components in the Spark stack does:

 n Spark Core is Spark’s main execution engine, and all of Spark’s functionality 
rests on this engine. It provides the main Spark functionality, such as scheduling, 
memory management, fault recovery and handling storage. Spark Core has the 
following features:

 n In-memory computing for speedy processing.
 n General execution model that supports a huge variety of use cases.
 n Ease of development. Unlike MapReduce ( Java only), you can use Scala, 

Python or Java to write the code.
 n Spark SQL works with structured data and lets you query data via SQL and Hive 

query language (HQL). You can intersperse Spark SQL with Spark’s resilient 
distributed datasets (RDDs), which are Spark’s programming abstractions and 
represent collections of items distributed across a cluster that you can process in 
parallel. You can create the RDDs using Java, Scala or Python. This capability to 
combine SQL with Spark’s native programmatic devices lets you combine SQL 
with analytics. This is what gives Spark a leg up on competing processing engines 
in a data warehouse setting. Note that you can create Spark RDDs not only from files 
in the HDFS file system but also from any storage system supported by Hadoop APIs, 
such as Amazon S3, Cassandra and Hive. 

Note

Since Spark supports storage systems implementing the Hadoop API, it doesn’t 
require Hadoop—it works with any storage system supported by the Hadoop APIs.

Spark Core

Spark
Streaming

Spark
SQL MLib GraphX SparkR

Impala HBase

Hive

MapReduce

etc.Solr
(Search)

HDFS YARN

Figure 6.3 The Spark stack when running Spark on a Hadoop cluster, and how 
Spark and Hadoop are complementary tools in a Hadoop cluster
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 n Spark streaming lets you process streaming data such as the log files generated by 
web servers while providing you a high degree of fault tolerance throughput, 
just as Spark Core does.

 n MLlib provides machine learning algorithms such as classification, clustering and 
collaborative filtering.

 n GraphX lets you manipulate graphs such as those contained in a social network.
 n Standalone scheduler, YARN and Mesos: Spark comes with a  simple cluster 

manager called the standalone scheduler, which is a way to get acclimatized to 
using Spark. However, in order to run on massive clusters, you need a full-f ledged 
cluster manager, such as Hadoop YARN or Apache Mesos. Spark will run on both 
YARN and Mesos.

As Figure 6.3 shows, the Spark ecosystem rests on a cluster at the bottom of the 
structure. In a development environment you don’t need the cluster, but in a production 
system you do. The cluster takes care of the storage part, which is HDFS in a Hadoop 
cluster. Spark Core comes next, and on top of it you have Spark SQL, Spark Streaming, 
GraphX and MLlib.

Installing Spark 
Installing Spark and getting it running is quite easy. In the following example, I use 
an Ubuntu server to install and configure Spark. Although you can build it from source 
code, I download the precompiled binaries from the Spark download site at http://spark
.apache.org.

While I used wget (I could also have used curl) to get the Apache Hadoop tarballs 
from an Apache software mirror location, I do things a bit differently for Spark, as you’ll 
see here.

1. First, make sure you have Java and Python in the path, and also set the $JAVA_HOME
environment variable.

2. Go to the Spark downloads page at http://spark.apache.org/downloads.html.

3. Select the latest Spark release and make sure to it’s a prebuilt package for Hadoop 2.4
or later. Download the package with the following command and then unpack the
binaries. Finally, rename the folder containing the binaries to just spark for the
sake of simplicity.

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-1.4.0-bin-hadoop2.4.tgz
$ tar –zxf spark-1.4.0-bin-hadoop2.4.tgz
$ sudo mv spark-1.4.0-bin.-hadoop2.4 spark

Note that the latest Spark binaries are developed with a recent and stable Hadoop release.

1. Make a directory specific to your organization as the installation directory under
the /opt directory (the/opt directory in Linux contains the add-on software

http://spark.apache.org
http://spark.apache.org
http://spark.apache.org/downloads.html
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binaries). Once you do this, move the spark directory with the binaries under this 
new directory.

$ sudo mkdir –p /opt/mycompany
$ sudo mv spark /opt/mycompany

2. Make root the owner of the spark home directory. Also change the file permissions
to 0755 (rwe, re, re).

$ sudo chown –R root:root /opt/mycompany/spark
$ sudo chmod –R 755 /opt/mycompany/spark

3. Do the following to set up a symbolic link to the Spark configuration directory:

$ cd /opt/mycompany/spark
$ sudo mv spark/conf/* /etc/spark
$ sudo ln –s /etc/spark conf

4. Add the spark path to the PATH variable in the .bashrc file.

$ echo "export PATH=$PATH:/opt/mycompany/spark/bin">> home/hduser/.bashrc

5. Create the log and tmp directories for Spark.

$ sudo mkdir –p /var/log/spark
$ sudo chown –R hduser:hduser /var/log/spark
$ sudo mkdir /tmp/spark

6. Finally, configure Spark to work with Hadoop and also to use its new log and
tmp directories that I’ve created in the previous step.

$ cd /etc/spark
$ echo "export HADOOP_CONF_DIR=/opt/mycompany/hadoop/etc/hadoop" >> spark-
env.sh
$ echo "export YARN_CONF_DIR=/opt/mycompany/hadoop/etc/hadoop" >> spark-
env.sh
$ echo "export SPARK_LOG_DIR=/var/log/spark" >> spark-env.sh
$ echo 'export SPARK_WORKER_DIR=/tmp/spark" >> spark-env.sh

 Now that the installation is complete, test it by running a local pyspark interpreter:

 $ pyspark
Python 2.7.10 (default, Jun 23 2015, 21:58:51)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
[... snip ...]
Welcome to

____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ '/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.5.2

/_/

Using Python version 2.7.10 (default, Jun 23 2015 21:58:51)
SparkContext available as sc, HiveContext available as sqlContext.
>>> 
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Spark Examples
Spark comes with a bunch of examples, and you can use some of them to take your 
new Spark installation for a spin. 

Spark’s sample programs based on Scala, Java, Python and R are located in the 
examples/src/main directory. To run one of the sample programs (Scala) use 
bin/run-example <class> [params] in the top-level directory. Here’s an example:

./bin/run-example SparkPi 10

Spark uses its spark-submit script (more about this in the next chapter) to run this
program for you. If you want to try a Spark Python program that does the same things 
(calculate the value of Pi), do the following:

./bin/spark-submit  examples/src/main/python/pi.py 10

Key Spark Files and Directories
Spark’s installation directories include the following:

 n bin contains the executable files such as the program that starts the Spark shell.
 n core, streaming and others contain the source code for the major Spark components.
 n examples contains useful Spark standalone jobs you can use to learn Spark.

Compiling the Spark Binaries
Earlier, I used the Spark binaries that I’ve downloaded to install and configure Spark. 
In some situations—for example, where you need to compile Spark for a specific Hadoop 
version or want to add YARN and Hive integration—compiling the Spark source code 
is the way to go.

To install Spark using compiled binaries from source code, follow the same steps as in the 
example for the binary installaion, but add the following step in between steps 2 and 3. 

$ mvn –Pyarn –Phadoop-2.4 –Dhadoop.version=2.4.0 –Phive –DskipTests clean package

The f lags I added here will enable YARN and Hive and skip the tests. Of course, you’ll 
need Maven on your server to do this. Everything else proceeds in the same fashion as before.

You’ve now installed and set up Spark to work on your test server (or laptop) in a 
“standalone mode.” You can run sample code in this mode. You can also execute the 
spark-submit command to submit jobs to the YARN ResourceManager running in 
a pseudo-distributed mode.

Spark offers several example applications such as WordCount and Pi. You’ll find the 
Scala- Java- Python- and R-based examples in the examples/src/main directory. You can 
run the Scala or Java example program to compute the value of Pi as follows:

./bin/run-example SparkPi 10

You can run the same job in Python like this:

./bin/spark-submit examples/src/main/python/pi.py 10
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Reducing Spark’s Verbosity
Since Spark and PySpark are quite verbose in their log messages, you can reduce the heavy 
output by editing the log4j settings as shown here:

   $ cp $SPARK_HOME/conf/log4j.properties.template \
$SPARK_HOME/conf/log4j.properties

In the log4j.properties file, replace all instances of INFO with WARN, in order to 
reduce the log output.   The next time you run a PySpark command, the log messages 
will be much smaller . 

Spark Run Modes
You can run Spark locally or on a cluster. When you want to run a distributed Spark 
application across a cluster, Spark needs a cluster manager. Spark comes with its own 
standalone cluster manager (also referred to as standalone scheduler and standalone 
mode), and using it is the easier way to set up your Spark cluster. In addition to the 
standalone cluster manager, Spark supports Hadoop’s YARN and Apache Mesos as a 
cluster manager. 

Just as you can learn Hadoop and YARN without ever installing a cluster (through 
a single-node pseudo-distributed cluster), you can use the standalone scheduler to get 
started with Spark without any cluster at all. You can upgrade to a distributed deployment 
such as Hadoop (or Mesos) later on. However, as with all the other stuff, our focus will 
be on using Spark in a Hadoop 2/YARN environment.

Local Mode
The local mode uses just a single server and so is a non-distributed mode. When run-
ning Spark locally you can run it with a single worker thread or with multiple worker 
threads. The local mode is really just for development and testing. 

Cluster Mode
In a production setting, you always use a cluster manager to run Spark applications. A 
cluster manager is an external service that helps acquire resources on a cluster. As alluded 
to previously, there are three types of clusters on which Spark can be run:

 n Spark standalone cluster: This comes with Spark. While it is quite easy to run, it 
has limited configuration options and isn’t very scalable. You use this primarily 
for testing and development. 

 n Apache Mesos: This is the original platform that was supported by Spark and is 
not as commonly used as the next alternative, YARN.

 n Hadoop YARN: Spark can be run side by side with other application frameworks 
such as MapReduce and Impala. 
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Regardless of which cluster manager you use, a Spark application works the same, 
since the applications don’t care about how you manage the cluster—the Spark API is 
quite independent of the cluster manger you choose to use. 

Understanding the Cluster Managers
This book is about administering Hadoop clusters, so I’m naturally interested in run-
ning Spark on YARN. However, it’s a good idea to understand both the standalone 
cluster manager and Mesos as well, so that’s what I do next—explain all three cluster 
managers.

The Standalone Cluster Manager
Spark can run on its own dedicated cluster, called a standalone Spark cluster. The 
standalone cluster manager is easy to set up out of the box after installing Spark.

In the following sections, I explain the architecture of the standalone cluster man-
ager and how you set it up.

Architecture of the Standalone Cluster Manager
The standalone cluster manager uses worker and master processes to perform computa-
tions. The worker process manages the computing resources such as CPU/RAM on 
each of a cluster’s nodes. The master node pools the resources and allocates them to 
competing applications.

A Spark application that you deploy on a standalone cluster manger uses the following 
entities:

 n Driver program: This is the main Spark application that consists of the data pro-
cessing logic.

 n Executor: This is a JVM process that runs on each worker node and processes the 
jobs that the driver program submits.

 n Task: A task is a subcomponent of a data processing job.

Note

A Spark application and the driver program are used as synonyms for each other.

Figure 6.4 shows the architecture of a standalone Spark cluster. The driver program 
uses a SparkContext object, which serves as the entry point into the Spark library, to 
connect to a cluster. The SparkContext object launches executors on the worker nodes 
and sends them the application code. The job is split into tasks and executed by the executor 
process in the worker nodes.

In a Spark standalone cluster, the Spark Master and Worker processes manage the Spark 
application processes. 
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How to Set Up a Standalone Spark Cluster
There really isn’t a whole lot to setting up a standalone Spark cluster—the standalone 
mode is the default—so you must simply install the Spark binaries on all the cluster 
nodes and then start the master and worker processes in the cluster. The following steps 
show you how to do this in a setting with 1 master node and 5 worker nodes.

1. Install the Spark binaries on all six nodes (1 master and 5 worker nodes).

2. Make sure to place /path/to/spark/sbin in the path variable on all the nodes in
the cluster.

$ echo "export PATH=$PATH:/path/to/spark/sbin/" >> /home/hduser/.bashrc

If you have no legacy MapReduce jobs and also no Hadoop cluster, and you just want to 
run jobs using the Spark framework, you can do so with the standalone Spark cluster. 

Driver Program

Master

Worker

Executor

Task 1 Task 2

Worker

Executor

Task 1 Task 2

Worker

Executor

Task 1 Task 2

Figure 6.4 A standalone Spark cluster
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Starting and Stopping the Master and Worker Processes
Once you install the binaries, go to one of the servers and start the master process.

$ /path/to/spark/sbin/start-master.sh

Note

By default, the master starts on port 7077. The workers use this port to connect to the 
master. The master has a web UI running on port 8088.

The next step is to start the worker processes on all the cluster nodes.

$ /path/to/spark/sbin/start-slave.sh <master-URL>

You can stop the master and worker processes (separately on each worker node) by 
executing the following two shell scripts provided by Spark:

$ /path/to/spark/sbin/stop-master.sh
$ /path/to/spark/sbin/stop-slave.sh

You can start all the worker processes as well as the master process with a single Spark-
provided script. In order to do this, first setup a private-key-based SSH access from the 
master node to all the worker nodes (as I showed in Chapter 3, “Creating and Configuring 
a Simple Hadoop Cluster”). In addition, you need to create a file called slaves (/path/to/
spark/conf/slaves) that lists all the hostnames on IP addresses of the cluster’s worker nodes, 
with one server per line.

Using the Spark-provided scripts, you can start and stop the Spark standalone cluster 
in the following way:

$ /path/to/spark/sbin/start-all.sh
$ /path/to/spark/sbin/stop-all.sh

Configuring the Worker and Master Nodes
When you use the start-all.sh script, it starts the master and worker processes with default 
configurations. You must configure the Spark cluster configuration by editing the environ-
ment variable settings in the spark-env.sh file. You must do this on the master servers as 
well as on all the worker nodes. Spark provides a template file named /path/to/spark/
conf/spark-env.sh that contains all the configuration variables you can set. 

The easiest way to go about configuring the Spark cluster is to copy the spark-env.sh 
template, and edit the settings you want.

Spark on Apache Mesos
This book is about Hadoop, which has its own cluster manager (YARN) and hence doesn’t 
need to use Apache Mesos to run Spark applications. However, I think as an administrator 
of a Hadoop cluster it’s probably a good idea to acquire a rudimentary knowledge of how 
Spark runs in a Mesos cluster.

Apache Mesos is an open-source cluster manager that allows different distributed com-
puting frameworks to share a cluster’s resources. You can actually run Hadoop on Mesos 
if you want. Mesos supports Spark and other applications such as Kafka and Elasticsearch.
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Mesos is becoming increasingly popular as a kind of an operating system to manage 
all types of computing resources in a data center. Mesos runs on Linux distributions 
and was built according to the same principles as the Linux kernel itself.

Setting Up Spark to Work with Mesos
Installing Mesos and configuring it to work with Spark is easy, as I show you in this section. 
You can set up multiple master services in Mesos for high availability using ZooKeeper 
to support high availability, just as you do for NameNode high availability in Hadoop. 
In our example, I use a single master to keep things simple.

Here are the steps you must follow:

1. Install Mesos.

$ sudo apt-get –y update
$ sudo apt-get –y install mesos

2. In order for Spark to connect and work with Mesos, you must make the Spark
binaries avaialable to Mesos. You can do this by uploading the Spark binaries
to HDFS:

$ hdfs dfs –put spark-1.4.0-bin-hadoop2.4.tgz spark-1.4.0-bin-hadoop2.4.tgz

3. Configure Spark for Mesos by editing the spark-env.sh file to add the following:

$ export MESOS_NATIVE_LIBRARY=/usr/local/lib/libmesos.so
$ export SPARK_EXECUTOR_URI=hdfs://localhost:9000/user/hduser/
spark-1.4.0-bin-hadoop2.4.tgz

Mesos is a good framework, but our focus in this book is on Hadoop and YARN. 
Let’s look at how you run Spark on YARN.

Spark on YARN
Finally, I get to Spark on YARN, which is my main concern in this book. In Chapter 2, 
“An Introduction to the Architecture of Hadoop,” you learned the architecture of Hadoop, 
including how YARN operates as a kind of an operating system for the cluster by man-
aging the cluster’s computing resources. 

If you have legacy MapReduce jobs running in your Hadoop cluster and you foresee 
them running for a good while, YARN will be great as the cluster manager for Spark.

When you run Spark on YARN, the ResourceManager and the NodeManagers 
running on the worker nodes manage the Spark application processes. YARN’s Resource-
Manager is the counterpart to the Mesos master, and the NodeManager does the same 
work as Mesos’s slave processes.

Most Hadoop clusters have started off running MapReduce applications and have 
been moving over to Spark applications. MapReduce is viewed as a legacy application 
framework now. YARN lets you run both MapReduce and Spark applications in the 
same cluster.
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Why YARN Is Better than the Spark Standalone Cluster Manager
Using YARN as Spark’s cluster manager rather than the Spark standalone cluster manager 
offers several benefits to you, as I summarize here.

 n It’s quite common to run MapReduce, Spark and other frameworks such as Tez 
together on the same cluster. YARN lets all these applications dynamically share 
the same pool of cluster resources.

 n You can use the YARN schedulers such as the Capacity Scheduler and the Fair 
Scheduler to categorize and prioritize your cluster workloads.

 n When you run the Spark applications through a Spark standalone cluster, the appli-
cation will run an executor process on every node—in a YARN cluster, you get 
to choose the number of executors.

 n It’s easy to secure the authentication between the processes by Kerberizing 
(enabling Kerberos on) your Hadoop cluster.

How YARN and Spark Work Together
A Spark application acts as the client and submits a job to YARN’s ResourceManager. 
As you learned in Chapter 2, YARN contains an application-specific ApplicationMaster 
that owns and executes the job in the cluster. It’s the ApplicationMaster that negotiates 
resources required to run the job from the ResourceManager. Once it gets the resources, 
the ApplicationMaster launches containers on the cluster’s nodes, in coordination with the 
NodeManagers running on each of the nodes.

Everything regarding the creation of the ApplicationMaster and the allocation of 
resources works the same way for MapReduce and Spark applications. In this context, it’s 
important to realize that the ApplicationMaster is provided by the processing framework’s 
libraries. Spark provides its own ApplicationMaster through its libraries.

Chapter 7, “Running Spark Applications,” shows how to deploy Spark applications 
in a Hadoop cluster managed by YARN.

Setting Up Spark on a Hadoop Cluster
When you run Spark on Hadoop with YARN as the cluster manager, the ResourceManager 
acts as the Spark master and the NodeManagers on all the nodes act as the executors. 
Each of the Spark executors will run inside a YARN container.

In order to set up Spark in your Hadoop cluster, you need to ensure that the binary 
distribution of Spark that you installed has YARN support, as I showed earlier in this 
chapter. Once you install Spark, all you need to do is configure it to work with HDFS 
and YARN by setting these environment variables:

 n HADOOP_CONF_DIR: You configure this variable to allow Spark to write to HDFS.
export HADOOP_CONF_DIR=/opt/mycompany/hadoop/etc/hadoop

 n YARN_CONF_DIR: You configure this variable so Spark can connect to the YARN 
ResourceManager.
export YARN_CONF_DIR=/opt/mycompany/hadoop/etc/hadoop
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Spark and Data Access
Spark can use data from various sources by connecting with the data sources. Spark 
works with Hadoop’s HDFS storage as well as other data sources such as relational 
databases and Amazon’s S3 storage. Spark will work with any Hadoop-supported storage, 
meaning that the storage format must be able to work with the following Hadoop 
interfaces.

 n InputFormat: This interface creates the InputSplits from the input data 
and divides it into records.

 n OutputFormat: This interface writes data to storage.

In the following sections, I describe how to load data for Spark from various sources.

Loading Data from the Linux File System
You’ve already seen how to load data from the local directory on a Linux server. You 
usually do this for small jobs where you want to test out some new applications or some-
thing like that. Theoretically, you can load any size data into a cluster from the local 
file system, but then you must ensure that each of the cluster’s nodes can access the 
directory where you stored the data.

Here's a simple example that shows how you can load data from a text file on the 
local file system into a Spark RDD.

scala> val words = sc.textFile(file://home/bduser/words)

Loading Data from HDFS
HDFS is the most popular storage platform for Spark, owing to Spark being increasingly 
used to replace MapReduce programs that were running on a Hadoop cluster.

Spark supports Hadoop’s InputFormat, and the default InputFormat is TextInputFormat. 
Spark uses the sc.textFile method to read the data with TextInputFormat and creates 
an RDD of strings.

Accessing Data from a Text File
In our Spark WordCount example shown earlier, I used a text file stored on the local 
file system as the source for the data. When you want to use HDFS, you use the same 
WordCount program but load the words directory from HDFS:

scala> val words = sc.textFile("hdfs://localhost:9000/user/hduser/words")

Your complete WordCount program when using Scala will then look like the following:

scala> sc.textFile("hdfs://localhost:9000/user/hduser/words"). flatMap(
_.split("\\W+")).map( w => (w,1)). reduceByKey( (a,b) => (a+b)).foreach(println)
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Accessing Entire Text Files at One Time
Often you may need to access an entire file by processing multiple lines as a record. 
You can use the SparkContext.wholeTextFiles format in cases such as this. Each text 
file is stored as an element of the RDD.

Let me use a weather data set that you can get from the following location to illustrate 
how to load entire files at a time:

ftp://ftp.nc.dc.noaa.gov/pub/data/noaa 

The following steps show how to download the zipped files in the gzip format (.gz) and 
load them into HDFS.

1. Download the files:

$ wget –r ftp://ftp.ncdc.noaa.gov/pub/data/noaa/

2. Load the downloaded data into HDFS:

$ hdfs dfs –put ftp.ncdc.noaa.gov/pub/data/noaa weather/

3. Start the Spark shell and load the data for the year 1950 into an RDD:

scala> val weatherFileRDD = sc.wholeTextfiles
("hdfs://localhost:9000/user/hduser//weather/1950")

4. To avoid recomputation each time you access it, you can cache the data in the RDD:

scala> val weatherRDD = weatherFileRDD.cache

5. Load the first element of the data set:

scala> val firstElement = weatherRDD.first

6. Read the value for the first element of the RDD:

scala> val firstValue = firstElement._2

7. Split firstValue by lines:

scala> Val firstVals = firstValue.split(\\n)

8. Wind speed occupies positions 66-69 in the text of the weather data files. You
can find the wind speed by doing this:

scala> val windSpeed = firstVals.map(line => line.substring(65,69)

Often you need to load data in a specific format, and the TextInputFormat may not 
allow that. You can use Spark’s SparkContext.newAPIHadoopFile method for these cases. 

Note

You can also load data from Amazon Simple Storage Service (S3) into a Spark RDD and 
process it.
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Loading Data from a Relational Database 
Spark’s JdbcRDD feature lets you load relational database tables as RDDs. If you want 
to load a lot of data into HDFS from a relational database, a tool such as Apache Sqoop 
is best, as I explain in Chapter 12, “Moving Data Into and Out of Hadoop.” 

However, if you want to load a bit of data from a relational database directly for 
some ad-hoc analysis, JdbcRDD will work very well. JdbcRDD is an RDD that will 
execute a SQL query on a JDBC connection to a relational database such as a MySQL 
database and fetch the results as well.

Note

It’s better to use Spark SQL’s JDBC data source rather than load data directly from a rela-
tional database, as you can take advantage of DataFrames (see Chapter 7).

In the following example, I show how to load data from a table in a MySQL database.

1. Download the MySQL connector mysql-connector-java-x.x.xx-bin.jar from the
location http://dev.mysql.com/downloads/connector/j/.

2. Launch the Spark shell and make the MySQL driver available to it:

$ spark-shell –jars /path-to-mysql-jdar/mysql-connector-java-5.1.29-bin.jar

3. Create Spark variables to hold the database credentials and the JDBC URL:

scala> val url="jdbc:mysql://localhost:3306/hadoopdb"
scala> val username = "hduser"
scala> val password = "******"

4. Import the JdbcRDD and the JDBC classes, and then create an instance of the
JDBC driver:

scala> import org.apache.spark.rdd.JdbcRDD
scala> import java.sql.{Connection, DriverManager, ResultSet}
scala> Class.forName("com.mysql.jdbc.Driver").newInstance

5. Load the JdbcRDD:

scala> val myRDD = new JdbcRDD( sc, () =>
DriverManager.getConnection(url,username,password) ,
"select first_name,last_name,gender from person limit ?, ?",

1, 5, 2, r => r.getString("last_name") + ", " + r.getString("first_name"))

6. Run the following queries to check the data load:

scala> myRDD.count
scala> myRDD.foreach(println)

7. You can save the RDD to HDFS for permanent storage:

scala> myRDD.saveAsTextFile("hdfs://localhost:9000/user/hduser/person")

http://dev.mysql.com/downloads/connector/j/
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Summary
Here’s what you learned in this chapter:

 n Spark is replacing MapReduce as the go-to processing framework in Hadoop 
environments.

 n Spark can coexist with MapReduce in a Hadoop cluster.
 n Spark can be run in its own standalone cluster or in a cluster such as Hadoop 

or Mesos.
 n You gain several benefits, such as security, when you run Spark in a YARN-

managed Hadoop cluster.
 n You can load data into Spark from various sources, such as text files, HDFS, 

Amazon Simple Storage Service (S3) and relational databases.
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7
Running Spark 

Applications

This chapter covers the following:

 n The Spark programming model
 n Working with resilient distributed datasets (RDDs)
 n Programming Spark
 n Structure of a Spark application
 n Using the Spark shell
 n Running Spark applications

The previous chapter explained the architecture of Spark, showed how to install Spark 
and explained the various ways in which you can run Spark, including on a YARN-based 
Hadoop cluster. 

This chapter is all about Spark programming. You learn about the Spark programming 
model and how RDDs are at the heart of everything you do with Spark.

You learn about running Spark code interactively using the Spark shell, as well as how 
to run applications through the spark-submit script.

Spark SQL and Spark Streaming are two important components of the Spark stack, 
and this chapter provides an introduction to both.

The Spark Programming Model
Before you start programming with Spark, let’s review some important features of Spark 
programming, such as functional programming and the unique Spark programming model.

Spark Programming and RDDs
At the heart of Spark processing is the RDD, which is a distributed collection of ele-
ments or objects. You perform all your work in Spark by creating, transforming 
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and manipulating RDDs. Spark Core will take care of distributing the data contained in 
the RDDs and parallelizing your operations across the cluster. You can include Python, 
Java or Scala objects in an RDD or even user-defined classes.

An RDD, as mentioned earlier, is simply a collection of objects that’s split into parti-
tions, to be computed on different nodes in the cluster. The most common way to create 
an RDD is by loading an external dataset, for example, by loading data contained in 
a text file, as an RDD of strings. Here’s an example that shows how to create an RDD of 
strings using SparkContext.textFile():

>>>lines = sc.textFile("/path/to/README.md")

Once you create an RDD, you can perform operations called transformations and 
actions on the RDD. A transformation lets you create an RDD from an existing RDD. 
Using our first RDD, you can create a new RDD that’ll contain just the strings that con-
tain the word “Python” as shown here (I’m using Python here, but you can do equivalent 
things with either Java or Scala):

>>>pythonLines = lines.filter(lambda lines: "Python" in line)

Actions compute results based on an RDD. The computed result is either stored in 
HDFS (or any external storage system) or returned to the driver program. Here’s an 
example that shows how to return the first element of an RDD:

>>>pythonlines.first ()
U'## Interactive Python Shell

Each time you execute an action on an RDD, Spark recomputes the RDDs. If you 
plan on reusing the RDD, you can request that Spark store the RDD contents in memory. 
You can also store the data on disk instead of memory. If you’re going to query some 
data repeatedly, it makes sense to load that subset of data into memory.

Spark and Scala

You can write Spark applications in three different languages: Scala, Python and Java. 
I use Scala in this book, since it has several performance benefits over the other two 
languages, besides being much simpler to code than Java applications.

My advice to Spark users (and administrators) is to invest some time in learning the 
essence of Scala—although you can work with Spark without knowing Scala, you can 
read Spark source code if you know Scala, as Spark is written in Scala. The methods 
in Spark RDDs are patterned after Scala collections APIs. RDD functions such as map, 
filter and reduce have specifications similar to equivalent Scala functions. 

Another big advantage offered by Scala is the fact that the Spark shell is quite helpful 
for debugging and development efforts. Spark is an interpreted language; hence the 
shell. As Java is a compiled language, there’s no shell for it.

While Python is easy to learn and includes several data-science-related tool kits, such 
as SciPy, numPy and pandas, Spark code written in Python is slower than the same 
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code written in a JVM (Java Virtual Machine), which Scala uses. Also, many of Spark’s 
features are first written in Scala, so if you use Python, you’re always going to be behind! 
However, I must note that with Spark 2.0, the performance difference among the supported 
languages is smaller than before.

Spark provides all the scalability and fault tolerance of MapReduce but also goes way 
beyond MapReduce in many ways. It can support a more general execution format of a 
general directed acyclic graph (DAG) of operators, rather than the monolithic map and 
reduce format. Instead of writing intermediate results to disk like MapReduce, it can pass 
the results to the next step in the pipeline. Spark also offers in-memory processing, by 
enabling users to store data at any point in the processing pipeline to memory, avoiding the 
need to repeatedly recompute the same result or load it back from disk. Spark can read 
and write in all the data formats supported by MapReduce, such as Avro and Parquet. 
It also can work with HBase and Cassandra and is able to ingest continuously streaming 
data from Flume and Kafka. 

Functional Programming
Spark depends on functional programming, which uses functions as the basic pro-
gramming input. Functions have no state or side effects and consist of just input and 
output.

Passing Functions as Parameters
Spark uses functions as parameters, and most RDD operations accept the functions as 
parameters. It applies functions to each of the RDD’s records. Here’s an example in 
Scala:

scala> def toUpper(s):
return s.upper()

scala> mydata = sc.textFile("purplecow.txt")
scala> mydata.map(toUpper).take(2)

Anonymous Functions
You can also use anonymous functions, which are functions defined inline without an 
identifier. You do this mostly for short one-off functions. Here’s an example in Scala:

Scala> mydata.map(line => line.toUpperCase()).take(2)

You can use an underscore(_) to represent anonymous parameters:

Scala> mydata.map(_.toUpperCase()).take(2)

Note

In order to create production-grade applications and deploy them in a production setting, 
you must use integrated development environments (IDEs) and build tools.
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Programming Spark
You define RDDs in code on a driver machine and Spark will then lazily evaluate and 
execute the RDDs across the cluster.

Spark is an optimized engine that supports general execution graphs over RDDs.
In a nutshell, here are the steps for how you program something with Spark:

1. Define one or more RDDs through any of the methods available to do so, includ-
ing creating them from data stored on disk (HDFS or local disk), parallelizing a
collection in memory or transforming an existing RDD.

2. Invoke various operations on the RDDs by passing functions (closures) to each of
an RDD’s elements. Spark makes available to you over 80 high-level operators.

3. Perform actions such as count, collect and so on on the RDDs you derive from
Step 3. Due to Spark’s lazy evaluation model, computing in the cluster begins only
after the actions start their work.

When Spark runs its functions on the worker nodes, it copies the variables used in that 
function to the worker nodes. Two types of shared variables are restricted, however:

 n Broadcast variables: These variables send large sets of read-only data, such as 
lookup tables, to the workers once.

 n Accumulators: These are variables that worker nodes may add to associative opera-
tions. The Spark driver uses them as counters, as these are read-only to the driver.

Spark’s Lazy Execution Model
Spark uses a lazy execution model, which means that it will wait to process the data in 
an RDD until it performs an action—that is, a transformation isn’t executed until the 
action requires it.The following example illustrates how lazy execution works.

scala> val mydata =sc.textFile("purplecow.txt")
scala> val mydata_uc = mydata.map(line => line.toUpperCase())
Scala> val mydata_filt = mydata_uc.filter(line => line.startWith("I")
Scala> mydata_filt.count()
3
scala>

In this example, there are three RDDs: mydata, mydata_uc and mydata_filt. All 
three code lines that start with val are assignment operations. Spark’s lazy execution 
model means that Spark will actually process something only when you perform an action 
on an RDD—in this case, the count() operation on the RDD mydata_filt.

Chaining Transformations
Spark lets you chain transformations. You can chain all the different statements in the 
previous section into one simple statement in Scala:

scala> sc.textFile("purplecow.txt").map(line => line.toUpperCase ()).filter(line 
=> line.startsWith("I").count()
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RDD Lineage
Spark maintains the lineage of each RDD that you create (lineage in this context refers 
to the ancestor RDDs for an RDD). You can view the lineage of any RDD by using 
toDebugString as shown here:

scala>  val mydata_filt =
     | sc.textFile("purplecow.txt").
     | map(line => line.toUpperCase()).
     | filter(line => line.startsWith("I"))
16/04/27 10:52:39 INFO SparkContext: Created broadcast 0 from textFile at 
<console>:22
mydata_filt: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[3] at filter at 
<console>:24
scala>
Scala> mydata_filt.todeBugString

Note

Spark uses a process called pipelining while it transforms RDDs. Pipelining means that, 
whenever possible, Spark performs sequences of RDD transformations by row, without 
storing any data.

Spark Applications
A Spark application consists of a driver program, which acts as your main function and 
performs parallel operations on a cluster. Spark applications rely on two abstractions:

 n RDDs
 n Shared variables

In the following sections, you'll learn the essentials of Spark RDDs. Chapter 20, 
“Optimizing Spark Applicators,” explains shared variables.

As alluded to previously, the heart of Spark is the RDD. An RDD is a “fault-tolerant 
collection of elements” that Spark works on in parallel. An RDD is an abstraction that 
represents a read-only collection of elements that are partitioned across a cluster’s nodes 
and which can be operated on in parallel. The term RDD stands for the following:

 n Resilient: Spark recreates the data in memory if it’s lost, thus providing fault tolerance.
 n Distributed: Data is distributed across a cluster and accessed via parallel operations 

similar to those of MapReduce.
 n Dataset: You can create the dataset programmatically or get them from a data file.

Spark can also save an RDD in memory for reuse across parallel operations. RDDs 
are written to distributed storage such as HDFS. An RDD can also automatically recover 
from a node failure.

Note

Most of your work with Spark involves performing various operations on RDDs.
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Basics of RDDs
An RDD can hold various types of elements such as the following:

 n Primitive types: Integers, characters, etc.
 n Sequence types: Strings, lists, arrays, dicts, etc.
 n Scala and Java objects if serializable.

Creating an RDD
You can create RDDs in two ways: 

 n You can parallelize an existing collection in the Spark driver program (that is, from 
data in memory).

 n You can reference an external data set stored in a relational database, HDFS or a 
shared file system. Any data storage system that supports the Hadoop InputFormat 
will do the job.

Creating an RDD with Parallelization
The Spark driver program can create a parallelized collection with the help of SparkContext’s 
parallelize method. Use this method when testing your Spark programs or when you want 
to generate data programmatically.

The following example shows how to create a parallelized collection that holds the 
numbers 1 through 5.

val data = Array(1,2,3,4,5)
val distData = sc.parallelize(data)

This code creates the distributed dataset named distData. You can now perform 
operations on this dataset in parallel. For example, you add the elements of the array 
by calling distData.reduce((a,b) => a + b).

Here’s another example:

scala> myData = ["Alice","Nick","Sam","Nina"]
Scala> myRdd = sc.parallelize(myData)
scala> myRdd.take(2)
['Alice', 'Nick']

Spark automatically sets the number of partitions into which the dataset should be 
split (so it can work on the pieces in parallel), based on your cluster. However, you can 
pass a second parameter to the parallelize method to set the number of partitions, as 
shown here:

val distData = sc.parallelize(data, 20)

This example shows how to create 20 partitions to process the dataset. 
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Creating an RDD from a Text File
You can provide a single file, a wild carded list of files or a list of comma-separated files. Let’s 
take a simple example to show how you can create an RDD from data inside a text file.

scala> val mydata = sc.textFile("purplecow.txt")

Figure 7.1 shows how Spark has converted the text file purplecow.txt to the RDD mydata.
All of the following are valid ways to specify the text file or files:

–sc.textFile("myfile.txt")
–sc.textFile("mydata/*.log")
–sc.textFile("myfile1.txt,myfile2.txt")

Using a relative URI, you reference a file as just myfile.txt, for example. In order to
reference this file through its absolute URI, do this:

File://home/test/myfile.txt

The text file myfile.txt is for line-delimited text files only. It maps each line in the 
source text file to a separate element in the RDD you create—so, if the text file has 
10,000 lines, the RDD based on this text file will have 10,000 elements.

If you have a multiline input format such as JSON, use the sc.wholeTextfiles method. 
This method maps the entire contents of a text file in a specified directory to an RDD 

Figure 7.1 A file-based RDD
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element. That is, each file will correspond to a single RDD element. Obviously, you use 
this method only if the files are small, since each element must fit in memory. Figure 7.2 
shows the sc.wholeTextfiles method in action.

RDD Operations
There are two types of operations you can perform with RDDs:

 n Actions: Operations in this category just return a value from an RDD, such as the 
count() operation, for example, which returns the count of some data element.

 n Transformations: These operations define a new RDD based on the RDD you’re 
operating on.

Figure 7.3 shows the two types of RDD operations.

{
  “firstName”: “Sam”,
  “lastName”: “Alapati”,
  “userid”: “12345”
}

(file1.json,{“firstName”: “Sam”,“lstName”: “Alapati”,“userid”: “12345”

(file1.json,{“firstName”: “John”,“lstName”: “Smith”,“userid”: “34567”

(file3.json,...)

(file4.json,...)

(file5.json,...)

file1.json

{
  “firstName”: “John”,
  “lastName”: “Smith”,
  “userid”: “34567”
}

file2.json

Whole File-Based RDDs Using
the WholeTextFiles Method

Figure 7.2 The sc.wholeTextfiles method.



ptg18444370

177Spark Applications

Common RDD Operations That Involve Actions
Spark offers several RDD transformations or operations, making it easy to manipulate 
data. Here are a few of the RDD operations.

 n count(): Returns the number of elements
 n saveAsTextFile(file): Saves to a text file
 n take(n): Returns the array of the first n elements
 n first: Returns the RDD’s first element
 n top(n): Returns the RDD’s largest n elements

Here are some examples of RDD operations in action (in Scala):

scala> val mydata = sc.textFile ("purplecow.txt")
scala> mydata.count()
4
scala> for (line <- mydata.take(2))

Println(line)
I've never seen a purple cow.
I never hope to see one.

Base RDD New RDD

Transformations create a new
RDD from the base RDD.

Count, Average, etc.

An action just returns

create a new RDD.

Figure 7.3 The two types of RDD operations: actions and transformations



ptg18444370

178 Chapter 7 Running Spark Applications

Common RDD Operations That Involve Transformations
A transformation is a Spark action that creates a new RDD based on the RDD you’re 
working on. Since an RDD is immutable, Spark won’t change the data in the original 
RDD; rather, it creates a new RDD that contains the modified or transformed data. 

Following are some common RDD transformations:

n map(function): Returns a new RDD by running a function on each record in 
the original RDD.

n sample: Creates a new RDD as a subset (sample) of elements from the original RDD.
n filter(function): Creates a new RDD by either including or ignoring records 

in the original RDD.
n flatMap: Is similar to map, but each input item can be mapped to 0 or more output 

items. Therefore, the function should return a sequence rather than a single item.
n distinct: Filters out duplicates.
n sortBy: Uses the function you provide to perform a sort.

Here’s an example that uses two common transformation operations—flatMap and 
distinct:
sc.textFile(file) .
flatMap(line=> line.split(' ')).
distinct()

Figure 7.4 shows the effect of the flatMap and distinct transformations. Together 
they yield the unique words in a text file.

I

…

I

…

Figure 7.4 Using the flatMap and distinct transformations with a text file
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RDDs with Additional Functionality
You can create two types of RDS with additional functionality compared to that of a 
normal RDD:

 n Pair RDD: This is an RDD consisting of key/value pairs. Spark offers several 
operations when working with pair RDDs—it implements MapReduce with pair 
RDDs. However, unlike MapReduce, which lets you use only a single map and 
a reduce phase per job, Spark lets you chain multiple map and reduce operations, 
to perform algorithms such as join and sorting. There are several additional functions 
such as sorting, joining, grouping and counting that you can use with pair RDDs.

 n Double RDD: This is an RDD that consists of numerical data. There are several 
double RDD functions, which are convenience functions such as the mean, sum 
and variance functions, that work with RDDs that are comprised of doubles. 

RDD Persistence
An important capability of Spark is its capability to persist or cache a dataset in memory. 
Each node stores partitions of the dataset in memory and reuses them in subsequent 
actions on the dataset. Cached data sets, of course, speed up processing, and thus caching 
is a key element in the efficient computation of iterative algorithms, as well as interactive 
usage.

You mark an RDD for persistent storage with the persist() or cache() methods. 
Spark uses a fault-tolerant strategy wherein if a partition of an RDD is lost, Spark will 
automatically recompute it.

When you use the cache() method on a dataset, the default behavior is to store the 
data in memory. Spark also lets you persist an RDD using other storage levels. You can, 
for example, persist the dataset on disk or store it off-heap in Tachyon. For example, 
the DISK_ONLY storage level lets you store the RDD partitions only on disk, and the 
MEMORY_AND_DISK storage level stores RDDs as deserialized Java objects in the JVM. 
However, if the RDD doesn’t f it in memory, it stores the partitions that don’t f it 
on disk. 

You can also choose to persist data in memory and on disk so the same dataset can 
be used multiple times, by specifying .persist(StorageLevel.MEMORY_AND_DISK_SER). 
Spark will gracefully spill data to disk when datasets are too large for memory across 
all the worker nodes. Subsequent queries can read data directly from the persisted data 
rather than read the entire dataset again.

Architecture of a Spark Application
A Spark application consists of several individual components that together perform the 
work required by the application. In the following sections, let’s learn the basic Spark 
terminology pertaining to application execution and understand the key components of 
a Spark application.
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Spark Terminology
Here are the common terms used in Spark application execution, starting from the 
broader to the narrower units of an application:

 n Application: Contains one or more jobs that are managed by a single driver
 n Job: A set of tasks to be executed following an action
 n Stage: A set of tasks in a job that Spark can execute in parallel
 n Task: An individual unit of work that’s assigned to a single executor

Components of a Spark Application
A distributed Spark application that runs in a cluster consists of five key components:

 n A driver program
 n A cluster manager
 n Worker processes running on worker nodes
 n Executors running on worker nodes
 n Tasks running on worker nodes

You'll learn a bit about each of the key components of a Spark application in the follow-
ing sections.

The Driver Program
A driver program is the application that contains the processing code that Spark will 
execute on each of the worker nodes in a cluster. The driver program can launch more 
than one job on the cluster.

Cluster Managers
When you run Spark in a distributed fashion over a cluster of nodes, you need a cluster 
manager to manage the cluster resources. As you know by now, Spark supports three types 
of cluster managers:

 n Standalone Spark cluster
 n Mesos 
 n YARN (Hadoop)

While both Mesos and Hadoop YARN let you run Spark and other application 
frameworks such as MapReduce together, our focus will be on using Spark with 
YARN as the cluster manager. I described all three cluster managers earlier in this chapter. 

Workers
Worker processes run on each of the worker nodes in a cluster and provide the CPU, 
memory and storage resources necessary to execute Spark applications.
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Executors
For each application, Spark creates an executor, which is a Java Virtual Machine ( JVM) 
process, on each of the worker nodes in the cluster. The executor process executes the 
application code and also caches data in memory or disk storage when necessary. Each 
application has its own executors—when the application completes, the executor pro-
cesses go away.

Tasks
A Spark task is the smallest unit of work Spark can perform within an executor. A task rep-
resents a unit of work that’s sent to one executor. Executors contain multiple threads, 
and each task is executed by one of these threads on a worker node. Tasks perform compu-
tations and either return results or perform operations on the output such as the shuff le 
operation.

Jobs and Stages
A job is a parallel computation that consists of a set of tasks. The number of tasks per 
job depends on the number of data partitions. The number of data partitions thus deter-
mines the degree of parallelism in a Spark job.

A stage is how a job divides its tasks into smaller sets of tasks that are dependent on 
each other.

Running Spark Applications Interactively
You can either run a Spark application in the interactive mode through the Spark shell 
or submit the job. You use Spark’s interactive shell to run Spark applications locally or 
across a distributed cluster. 

Usually you use the interactive mode of running Spark applications when you are in 
the data exploration phase. Another common reason for doing this is when you perform 
ad-hoc analysis of data. 

The recommended way in production most of the time is to submit the Spark appli-
cation to the cluster. You use the spark-submit script to submit applications.

In this section we concentrate on running Spark applications interactively through 
the Spark shell.

Spark Shell and Spark Applications
Let’s look at the difference between running a job through Spark shell or through 
Spark applications in a little more detail:

 n The Spark shell is for interactive exploration and manipulation of data—you can 
use a Python or Scala shell.

 n A Spark application is an independent program that runs on its own. You use such 
applications to perform heavy-duty data processing such as ETL processing and 
streaming. You can write a Spark application in Scala, Python or Java.
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Each Spark application you run needs to be initialized. Before a Spark application can 
be run, it must create a SparkContext object. The SparkContext obtains the necessary 
information to help Spark access a cluster. 

Spark's interactive shell lets you combine operators and actions in a REPL (read-
evaluate-print loop) that you can evaluate on the cluster, with control returning to you. 
SparkContext gets added to your environment, which lets you start interacting with 
Spark and the RDDs you create and modify.

Here’s how a Spark application creates a SparkContext:

val conf = new SparkConf().setAppName(appName).setMaster(master)
new SparkContext(conf)

The master attribute is a Spark, Mesos, or YARN cluster URL. It can also be a local 
“string” to run in local mode. 

A Bit about the Spark Shell
The Spark shell is generally for development and testing and not for application deploy-
ment, but it’s quite powerful. The Spark shell is actually a wrapper around the Scala 
shell. You can certainly develop applications with the Spark shell. I show you how to 
use the Spark shell to run a simple Spark WordCount program. 

In order to run the WordCount program, I need a text file as data, which Spark will 
analyze to count the number of times each word occurs in that text file. Note that you 
can use a very large file in a compressed format if you want by loading it in HDFS first. 
Spark makes use of its compression codecs to unzip the file based on the file extension, 
such as .gz, for example. 

As I mentioned earlier, you can use the interactive shell to run applications locally or 
across a cluster. In the following sections, I show you how to run applications locally 
and in a distributed fashion.

Using the Spark Shell
You use the Spark shell to work interactively with Spark. Sometimes a developer may 
not want to run an entire program at once—they’d like to enter each line of code to see 
the results. The Spark shell is ideal for those types of testing and development efforts. 
Internally, spark-shell invokes the spark-submit script to do its work. 

Note

Every Spark application you run requires a SparkContext—it’s the main entry point to the 
Spark API.

The Spark shell lets you perform interactive exploratory analysis through its REPL. 
The REPL interface here is a modified version of the interactive Scala REPL.
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The SparkContext is the entry point to the Spark API. A special SparkContext is 
pre-created for you inside the Spark shell, within a variable named “sc.” The following 
output from spark-shell shows the SparkContext named “sc” in a Scala Spark shell.

$ spark-shell
...
16/04/27 10:46:26 INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext.

scala>

Note

In some environments, after you enter the spark-shell command, the scala prompt 
(scala>) doesn’t appear until you hit ENTER.

Running a Program Locally from the Spark Shell
Let’s run a simple program from spark-shell so as to get our feet wet. You don’t need 
to create a SparkContext when using the Spark shell—Spark provides a preconfigured 
SparkContext called “sc.” When you submit applications later on with the spark-submit 
script, however, you must create your own SparkContext.

Follow these steps to run the WordCount program locally on a single node from 
spark-shell.

1. Start the Spark shell.

$ spark-shell
16/04/27 12:52:19 INFO HttpServer: Starting HTTP Server
Welcome to

____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ '/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.3.0

/_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
16/04/27 12:52:24 INFO SparkContext: Running Spark version 1.3.0
16/04/27 12:52:25 INFO Utils: Successfully started service 'sparkDriver' on 
port 29755.
16/04/27 12:52:26 INFO SparkUI: Started SparkUI at http://hadoop09.example
.com4040
16/04/27 12:52:27 INFO Client: Will allocate AM container, with 896 MB memory 
including 384 MB overhead
16/04/27 12:52:27 INFO Client: Submitting application 2992 to ResourceManager
16/04/27 12:52:41 INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext.

scala>

2. Load the text file you want to analyze in a directory such as /tmp/words. Store
the text file in this directory as test.txt.

http://hadoop09.example.com4040
http://hadoop09.example.com4040


ptg18444370

184 Chapter 7 Running Spark Applications

3. Now, load the words directory as a Spark RDD.

scala> val words = sc.textFile("hdfs://localhost:9000/user/hduser/words")

4. Break up the lines in the text file into words.

scala> val wordsFlatMap = words.flatMap(_.split(\\w+))

5. For each occurrence of a word as the key, convert word to (word, 1).

scala> val wordsMap = wordsFlatMap.map(w => (w, 1))

6. Using the reduceByKey method, add the number of occurrences of each word
as a key.

scala> val wordCount = wordsMap.ReduceByKey ( (a,b) => a+b))

7. Sort the output.

scala> val wordCountSorted = wordcount.sortByKey (true)

8. Finally, print the resulting RDD.

scala> wordCountSorted.collect.foreach (println)

9. Check the output.

You can actually run the whole thing in one fell swoop:

Scala> sc.textFile("hdfs://localhost:9000/user/hduser/words"),
flatMap(_.split(\\w+)).map (w => (w, 1)).reduceByKey((a,b) => a+b)).
sortByKey(true).collect.foreach(println)

Note

The applications you write and test in the local mode during development will run as is on 
a cluster—there’s no need to change a thing. This means you can use small datasets to 
quickly prototype something and later run the application on a large cluster.

Running spark-shell on a Cluster
In the previous section I showed how to start spark-shell on a single node. You can start 
the Spark shell on a cluster as well. Both PySpark and spark-shell (remember there’s 
no shell for Java) have a --master option that lets you specify the values yarn, spark, 
mesos or local. The value local for the master option is the default. Here are the 
values you can specify for the --master option:

 n yarn (only in the client mode when using the Spark shell)
 n spark or mesos: The cluster manager URL
 n local: Run locally without distributed processing
 n local[n]: Run locally with n worker threads
 n local[*]: Run locally with the same number of threads as processing cores 

on that node (default value)
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The following example shows how to start the Spark shell, in a Hadoop cluster managed 
by YARN, in the client mode:

$ spark-shell --master yarn –deploy-mode client

Once you get the Spark shell prompt, everything works the same way as it did in the 
previous example, where I showed you how to use the shell in the local mode (single node).

Overview of Spark Cluster Execution
When you submit a Spark application to a cluster (for example, YARN), Spark manages 
everything through the driver program of the application. The SparkContext object in 
the main program (called the driver program) manages the application, which runs as 
an independent set of processes on a cluster.

Note

In the cluster mode, the driver runs on a different server than the client.

When it runs on a cluster, the SparkContext can connect to various types of cluster 
managers, such as YARN. When the driver program runs, the Spark framework initializes 
the executor processes on the cluster’s nodes where Spark will process your data.

Here’s what happens when you submit an application to a cluster.

1. The driver launches and invokes the Spark application’s main method (there’s one
in each Spark application).

2. The driver requests resources by asking the cluster manager (YARN) to launch
executor processes.

3. On behalf of the driver program, the cluster manager launches the executors.

4. The driver executes the application logic and sends tasks to the executors.

5. The executors perform the actual computations by running the tasks and saving
the results.

6. Once the main method exits or calls SparkContext.stop, the driver terminates
all outstanding executors and this releases all the resources granted by the cluster
manager. If you’ve enabled dynamic allocation, executors are released after they
remain idle for a specified time after the application completes its run.

A key point to understand here is that the driver must run close to the worker nodes 
to take advantage of data locality.

Creating and Submitting Spark Applications 
Just as you used a SparkContext when using Spark through its interactive shell, you use 
one when you run a Spark application. The only difference is that you create your own 
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SparkContext when running an application. By tradition you name the SparkContext sc, 
and you call sc.stop when the program ends.

Here’s how our old warhorse the venerated WordCount program looks when run as 
a Spark application:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
object WordCount {
def main(args: Array[String]) {
if (args.length < 1) {
System.err.println("Usage: WordCount <file>")
System.exit(1)
}
val sc = new SparkContext()
val counts = sc.textFile(args(0)).
flatMap(line => line.split("\\W")).
map(word => (word,1)).reduceByKey(_ + _)
counts.take(5).foreach(println)
sc.stop()
}
}

Building the Spark Application
If you’re building a Scala or a Java Spark application, you must compile the application 
and assemble it into a JAR file that you send to the worker nodes. You can use Maven 
(or SBT—Scala Build Tool), or an IDE such as IntelliJ or Eclipse for the builds. Here's 
an example:

$ spark-submit –master 'local[5]' –class WordCount MyJarFile.jar fileURL

Running an Application in the Standalone Spark Cluster
You deploy a Spark application on the standalone Spark cluster with the spark-submit 
script. You can run (deploy) a Spark application in one of two modes: client mode or 
cluster mode. The default mode is client. Following is the difference between the client 
and the cluster modes of operation:

 n Client mode: The client here is the spark-submit script. In the client mode, the 
Spark application (aka the “driver program”) runs in the client process that 
is running the spark-submit script.

 n Cluster mode: In the cluster mode, the Spark application (the driver program) 
runs on one of the worker nodes in the cluster.

Note

Since the default mode is the client mode, you can skip the deploy_md parameter when 
running in the client mode.

You can find all the command-line options for the spark-submit script by executing 
the script with the –help f lag:
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# spark-submit --help
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
Options:
  --master MASTER_URL spark://host:port, mesos://host:port, yarn, or 
local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally 
("client") or

on one of the worker machines inside the cluster 
("cluster")
 ...

You can launch an application in the cluster mode with the following command:

$ /path/to/spark/bin/spark-submit --deploy-mode cluster \
--master <master-URL> \
</path/to/app-jar> [app-arguments]

Once you launch a Spark application as shown here, the spark-submit script quits. 
Before it quits, though, the spark-submit script prints a submission ID.

You can use the submission-id to track the status of the driver program running 
on one of the worker nodes (cluster mode), as shown here;

$ /path/to/spark/bin/spark-submit --status <submission-id>

Using spark-submit to Execute Applications
Use the spark-submit script to submit jobs to a cluster. The spark-submit command 
is the common tool you use to submit a Spark job against any cluster manager, including 
Spark’s own cluster managers, YARN or Mesos.

Here’s an example that shows how to run an application through the spark-submit 
script for Scala and Java:

$ spark-submit –class WordCount MyJarFile.jar fileURL

Here’s an example that shows how to submit a Python program with spark-submit:

$ spark-submit test_script.py

Note

A Spark application consists of a driver program and executors on the cluster you’re using.

Using Help to Find Out the Options
Use the spark-submit –help command to view all the available options for running 
spark-submit. Here, I show partial output for this command to show just those settings 
that are relevant to a YARN cluster:

$ spark-submit --help
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...]
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YARN-only:
  --driver-cores NUM     Number of cores used by the driver, only in cluster mode

(Default: 1).
  --executor-cores NUM   Number of cores per executor (Default: 1).
  --queue QUEUE_NAME     The YARN queue to submit to (Default: "default").
  --num-executors NUM    Number of executors to launch (Default: 2).
  --archives ARCHIVES    Comma separated list of archives to be extracted into the

working directory of each executor.
$

Of the f lags shown here for the spark-submit script, the --master f lag and the 
execution-related f lags are crucial.

The --master flag
The --master f lag is for specifying the cluster URL, and it points to the cluster manager. 
This f lag could point to a single node (local) or to a distributed cluster. You specify the 
cluster URL through the --master f lag. For example, you can submit a job to the Spark 
standalone cluster in the following way:

$ spark-submit -–master spark: //host:7077

Following are the possible values you can specify for the --master f lag.

 n spark:host:port: Connects to a Spark standalone cluster (default port is 7077).
 n mesos://host:port: Connects to a Mesos cluster (default port is 5050).
 n yarn: Connects to a Hadoop cluster. The cluster location is specified by the 
HADOOP_CONF_DIR or the YARN_CONF_DIR environment variables. yarn-client 
URL is the same as yarn with –deploy-mode client. yarn-cluster URL is 
the same as yarn with –deploy-mode cluster.

 n local: Runs in the local mode (single node). This is the default value for the 
--master f lag.

 n local(n): Runs in local mode with n cores.
 n local(*): Runs in the local mode with as many nodes as the server has.

Running a Spark Application in the Local Mode
Just as you did with spark-shell, you use the spark-submit command with the --master 
option. By choosing the value local for the --master option, you run Spark applica-
tions locally.

You can use the following options for the local option:

 n local [*]: Runs locally with the same number of threads as the processing cores 
(default value)

 n local[n]: Runs locally with n number of threads
 n local: Runs locally with just one thread
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Following is an example that shows how to run a Spark application locally with five 
threads:

$ spark-submit –master 'local [5]' \  --class \
  WordCount MyJarFile.jar fileURL

Running Spark Applications on Mesos
The URL for the Mesos master is mesos://host:5050. You can run Spark applications 
by doing the following from a Scala program:

val conf = new SparkConf().setMaster("mesos://host:5050")
val SparkContext = new SparkContext(conf)

You can run the applications from the Spark shell by doing this:

$ spark-shell –master mesos://host:5050

Mesos can run in two modes—fine-grained and coarse grained:

 n Fine-grained mode is the default, wherein each Spark task will run as a separate 
Mesos task.

 n Coarse-grained is a mode in which there’s only a single Spark task running on 
each Mesos server.

In order to run in the coarse-grained mode, set the following property:

conf.set("spark.mesos.coarse", "true")

Running Spark Applications in a YARN-Managed Hadoop Cluster
As in the case of a standalone cluster, YARN supports both a client and a cluster mode 
deployment of Spark applications. Here’s how the two modes work:

 n In the client mode the Spark driver program runs inside the client process that 
deploys the Spark application and not in the YARN cluster. The client mode 
operation uses the ApplicationMaster just for requesting resources from YARN 
(from the ResourceManager). 

 n In the cluster mode operation, the Spark driver program runs within the Spark-
specific ApplicationMaster process, which is managed by YARN on the cluster. 
The client will go away after launching the application.

In order to run Spark applications in your Hadoop cluster, you must set either the 
HADOOP_CONF_DIR or the YARN_CONF_DIR environment variable in the spark-env.sh file, 
so it points to the directories where you’ve stored the client-side Hadoop configuration 
files. The configuration in this directory is used by Spark to write to HDFS storage and to 
connect to YARN’s ResourceManager. The configuration is distributed to the entire 
cluster so all containers used by Spark use an identical configuration.
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The following sections explain how to launch Spark applications on YARN in the 
client and the cluster modes.

Launching a Spark Application on YARN in the Client Mode
You launch a Spark application in the client mode with the following command:

$/path /to/spark/bin/spark-submit –class path.to.main.C$ spark-submt -lass  \
  --master yarn –deploy-mode client </path/to/app-jar>  [app-args]

Here’s an example:

$ spark-submit -–class org.apache.spark.examples.SparkPi \ 
--master client \
-–deploy-mode cluster \ 
--driver-memory 4g –\
--executor-memory 2g \
--executor-cores 1 \
--queue myqueue \
lib/spark-examples*.jar \
10

Launching a Spark Application on YARN in the Cluster Mode
The syntax for the command to launch Spark in the YARN cluster mode is:

$/path /to/spark/bin/spark-submit –class path.to.main.Class  \
  --master yarn –deploy-mode cluster </path/to/app-jar>  [app-args]

Here’s an example:

$ spark-submit -–class org.apache.spark.examples.SparkPi \ 
--master yarn \
-–deploy-mode cluster \ 
--driver-memory 4g –\
--executor-memory 2g \
--executor-cores 1 \
--queue myqueue \
lib/spark-examples*.jar \
10

Figure 7.5 shows how Spark runs in a Hadoop cluster managed by YARN in the 
cluster mode. There is one ApplicationMaster per job and a NodeManager runs on each 
DataNode.

Just note the following key YARN-related Spark configuration parameters for now. 
I’ll have a lot more to say about these in Chapter 19, “Configuring and Tuning Apache 
Spark on YARN,” which is dedicated to the tuning of Spark on YARN.

 n --num-executors: Configures how many executors are allocated
 n --executor-memory: Memory (RAM) allocated per executor
 n --executor-cores: CPU cores allocated per executor
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HDFS and Spark
If you are using HDFS as the data source for Spark, you must include the following two 
files in the Spark class path:

 n hdfs-site.xml: Contains default behavior for the HDFS client
 n core-site.xml: Sets the default file system name

In order for Spark to see these files, you must set the HADOOP_CONF_DIR environment 
variable in the $SPARK_HOME/spark-env.sh file such that it points to the location of 
these two files.

Using the JDBC/ODBC Server
Spark offers a JDBC server that acts as a standalone Spark driver program that clients can 
share. Business intelligence (BI) tools can also connect to the Spark cluster through the 
JDBC server.
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Figure 7.5 Spark on YARN in the cluster mode
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Spark’s JDBC server works very similarly to the HiveServer2 server in Hive. As with 
HiveServer2, it uses the Thrift communication protocol and is called the Thrift Server.

You can start the Spark JDBC server with the start-thriftserver.sh script in the sbin 
directory under Spark home. As with HiveServer2, the default port is 10000. Here’s 
how you start the JDBC server:

./sbin/start-thriftserver.sh --master sparkMaster

Once the JDBC server starts up, you can connect to it using the Beeline client pro-
gram. This opens up a SQL shell that lets you run commands on the JDBC server:

$ ./bin/beeline -u jdbc:hive2://localhost:10000
Spark assembly has been built with Hive, including Datanucleus jars on classpath
scan complete in 1ms
Connecting to jdbc:hive2://localhost:10000
Connected to: Spark SQL (version 1.2.0-SNAPSHOT)
Driver: spark-assembly (version 1.2.0-SNAPSHOT)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.2.0-SNAPSHOT by Apache Hive
0: jdbc:hive2://localhost:10000> show tables;
+---------+
| result  |
+---------+
| test   |
+---------+
1 row selected (1.188 seconds)
0: jdbc:hive2://localhost:10000>

In the Beeline client, you can execute the usual HiveQL commands to create and 
query tables, such as the CREATE TABLE and SHOW TABLES commands.

Note

In addition to the JDBC server, Spark SQL also offers a spark-shell script that launches a 
simple shell that connects to the Hive metastore. This is okay for developing on a local basis, 
but in a cluster with multiple users, you must use the JDBC server with the Beeline client.

Configuring Spark Applications
So far, you’ve learned about launching Spark applications in various ways. As an admin-
istrator, one of your main responsibilities is to configure Spark applications so they 
run well—that is, they run in the most efficient manner possible, using as few resources 
as possible, and get done fast. Configuring Spark applications so they run optimally in a 
production environment requires you to learn how to set a bunch of Spark configuration 
properties.

Spark Configuration Properties
Chapter 19 contains a detailed explanation of all Spark configuration parameters 

that affect Spark application performance when running in a YARN-managed Hadoop 
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cluster. For now, I show a couple of parameters that you can set to configure the location 
for storing intermediate files and to allocate memory for the executor processes.

 n spark.local.dir: Specifies the location for storing local files such as shuff le output
 n spark.executor.memory: Specifies how much memory is to be allocated to each 

executor

Specifying Configuration when Running spark-submit 
You can declare the configuration parameters when submitting an application. You can 
do this in four different ways: 

 n By submitting them on the command line
 n By explicitly setting the configuration values in a SparkConf
 n Using a custom properties file 
 n Using the site defaults properties file

I show examples for these four options in the following sections.

Using the spark-submit Script
You can specify the configuration properties when you execute the spark-submit script 
as shown here, by passing the properties as f lags to the spark-submit script:

$ spark-submit –driver-memory 1000M

Setting Properties in SparkConf
You can set some configuration properties directly in a SparkConf which you pass to 
your SparkContext. You can, for example, set some common properties such as the master 
URL and the application name in this way. Here’s an example:

val conf = new SparkConf()
.setMaster("local[2]")
.setAppName("CountingSheep")

val sc = new SparkContext(conf)

Using a Properties File
When you run the spark-submit script, instead of specifying properties on the command 
line, you can specify a properties file as shown here:

$ spark-submit –properties-file filename

You must first add the configuration properties you want in the properties file you 
specify, as shown here:

spark.master spark://masternode:7077
spark.local.dir   /tmp
spark.ui.port     4444



ptg18444370

194 Chapter 7 Running Spark Applications

Note

You can view the configuration options by running spark-submit with the –verbose 
option—this tells you where Spark is getting the configuration properties from.

Using the Site Defaults Properties File
Spark provides a template file for specifying Spark application configuration properties. 
You can use this file as shown here:

$SPARK_HOME/conf/spark-defaults.conf

The precedence for evaluating the configuration properties is as follows:

1. Properties set by SparkConf

2. Properties you specify at the command line

3. Properties you set with a custom properties file

4. Properties in the site defaults properties file

Monitoring Spark Applications
You can track a Spark application through a web UI, which runs on port 4040 by default. 
The web UI will show

 n Information relating to the running executors
 n List of the scheduler stages and tasks
 n Summary of the RDD sizes and the memory usage

You can get to the web UI of a running application by using the URL http://spark_
driver_HOST:4040 in your web browser.

What’s interesting is that each Spark application that’s running (same as a SparkContext) 
launches a web UI of its own, each of them using a different port starting with 4040. 
You can view the status of all running Spark applications in a Spark standalone cluster 
by going to the Spark Master UI:

http://spark_master:18080

In a YARN managed Hadoop cluster, go to the YARN applications page instead. 
The URLs I provided are only for tracking running applications. To view information 
on completed Spark applications, you need to access the Spark History Server at

http://spark_history_server:18088

Handling Streaming Data with Spark Streaming
Steaming data is the process of chopping up a continuous f low of input data into dis-
crete units. We all use streaming data on a regular basis in our day-to-day lives. When 
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you watch a streaming video, you don’t download the entire movie at once. The movie 
data is streamed in small chunks that keep showing you the movie while in the background 
the rest of the movie is continually being downloaded.

Streams can come from various sources, such Twitter, Kafka or Flume. Streaming 
enables you to process data in real time (real time analytics), which is a key objective 
for many types of analysis, such as weather data and electronic stock trading data.

Spark Streaming is a Spark component that lets you perform real-time analytics with 
Apache Spark. Using its streaming capability, Spark can ingest live data streams to provide 
you real-time analytics with minimal latency of just a few seconds.

How Spark Streaming Works
Streaming is the continuous inf low of some data, which Spark divides into discrete 
time-based slices, called batch intervals, to process the data. You specify the length of 
the time slices when you create the StreamingContext. StreamingContext is a wrapper 
around SparkContext and acts as the entry point to Spark Streaming.

Each of the batches the streaming data is cut up into will end up as a separate Spark 
RDD. So, Spark Streaming takes streaming data, chunks it up into small batches and feeds 
it to the Spark engine for analysis. Figure 7.6 shows the idea behind Spark Streaming.

TCP Socket

Kafka

Flume

Twitter

ZeroMQ

Other

File

Database

BI Tools

UI

Application

Data streams into
your environment 
from various sources.

Once Spark processes the 
streaming data, it can be stored
and viewed in various places.

Spark
Streaming

App

Figure 7.6 Spark Streaming—how it works
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Micro-batching 
When you determine a batch interval (called a micro-batch) for analyzing the streaming 
data, Spark Streaming gathers the incoming streaming data for the duration of the batch 
interval (say three seconds) and sends the data to Spark for processing. The length of 
the batch interval depends on how fast Spark can process the micro-batches—of course, 
if Spark is having a problem keeping up with data chunks for three-second intervals, 
you may need to raise the interval to something like five seconds.

How Spark Processes the Micro-batches
The micro-batches sent to Spark Core by Spark Steaming are of course a stream of RDDs 
(see Figure 7.7). Spark Streaming represents the RDDs in the form of an abstraction called a 
Discretized Stream (DStream). By operating on this logical entity, you’ll be actually operat-
ing on the underlying RDDs.

There are two basic types of Spark Streaming sources:

n Basic sources: These include file and socket connections.
n Advanced sources: These include streaming solutions such as Apache Kafka 

and Apache Flume.

Windowed Computations
Using Spark Streaming’s windowed computations, you can apply transformations 
over a sliding window of data. You use the following two parameters to configure the 
sliding window:

n Window length: This parameter specifies the duration of the window, such as 
1 minute, for example.

n Sliding interval: This parameter determines the frequency of the operations, such 
as 10 seconds, for example.

Both the window length and sliding interval parameters must be a multiple of the 
batch interval. In addition, the window length needs to be a multiple of the sliding 
interval.

Spark Streaming converts
raw data streams into RDDs.

RDDs are created by
processing raw data
in batches of x seconds.

Spark
Streaming

Spark
CodeData

Stream
Result
Stream

Figure 7.7 Micro-batching and Spark Streaming



ptg18444370

197Handling Streaming Data with Spark Streaming

A Spark Streaming Example—WordCount Again!
I use a simple streaming example where I input some text in a terminal and watch the 
Spark Streaming application capture the stream and process it in a different terminal. 
Just make sure the Spark shell has enough memory.

In one window of your server, start the Netcat server:

$ nc -1k 8585

In a different window, start up the Spark shell with sufficient memory to handle our 
streaming data.

$ spark-shell –driver-memory 1G

1. Perform some Spark imports for an implicit conversion:
scala> import org.apache.spark._
scala> import org.apache.spark.streaming._
scala> import org.apache.spark.streaming.StreamingContext._

2. Use a three-second batch interval and create the StreamingContext with that value:

scala> val ssc = new StreamingContext(sc, Seconds(3))

3. Create a SocketTextStream DStream on my server specifying 8585 as the port
and with MEMORY_ONLY caching:
scala> val lines = ssc.socketTextStream("localhost",8585)

4. Using WordsFlatMap, chunk the input lines into separate words:
scala> val wordsFlatMap = lines.flatMap(_.split(" "))

5. Convert the words to (word, 1) by outputting 1 each time a word occurs as the key:
scala> val wordsMap = wordsFlatMap.map( w => (w,1))

6. Use the reduceByKey method to count the number of occurrences of each word
as the key:
scala> val wordCount = wordsMap.reduceByKey( (a,b) => (a+b))

7. Start the StreamingContext:
scala> ssc.start

8. On the first server where you have Netcat running, enter the following line:
# nc -lk 8585
to be or not to be

9. In the Spark shell, the WordCount program prints the word count for the text
you entered:
-------------------------------------------
Time: 1461605982000 ms
-------------------------------------------
(not,1)
(or,1)
(be,2)
(to,2)
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16/04/25 12:39:42 INFO JobScheduler: Finished job streaming job 
1461605982000 ms.0 from job set of time 1461605982000 ms
16/04/25 12:39:42 INFO ShuffledRDD: Removing RDD 51 from persistence 
list

Twitter is a great platform for testing your Spark big data streaming applications. 
Over a half a billion tweets are sent each day, so you have lots of data to work with. 
You can bring Twitter data to Spark and make use of the live data feeds to find tweets 
trending in the past few minutes. It‘s common to use Apache Kafka, a distributed, 
partitioned, replicated commit log service, together with Spark Streaming.

Using Spark SQL for Handling Structured Data
You use Spark SQL for handling structured and semi-structured data. Any data that has 
a schema (known set of columns for each record or row) is considered structured data. 
Spark SQL helps you both load and query structured data.

Spark uses an abstraction called DataFrames, which are akin to relational database 
tables, to make it easy to work with structured data. Spark can handle many types of 
structured data formats such as JSON, Hive tables, Parquet files and so on.

Spark SQL lets you query the data, using SQL, in two different ways:

 n You can query using SQL statements from within a Spark application.
 n You can query using external BI tools such as Tableau, which can connect 

to Spark SQL through JDBC (or ODBC).

DataFrames
Spark SQL relies on the logical concept just alluded to, called a DataFrame, which is 
nothing but an extension of our old friend the RDD. DataFrames are aware of the schema 
of their rows. DataFrames are RDDs of row objects, with each row pointing to a record. 
Since a DataFrame is schema aware, it stores data much more efficiently than a simple 
RDD. The schema awareness of the DataFrame is what makes it possible to run SQL 
queries on the data.

You can create DataFrames from all of the following:

 n External data sources
 n Regular RDDs
 n Query results

You can register the DataFrame as a table and run SQL queries off it.

HiveContext and SQLContext
Earlier, you learned how SparkContext serves as an entry point to the Spark API. 
Similarly, when programming with Spark SQL, you can use one of two entry points: 
SQLContext or HiveContext. Here are the differences between the two entry points:
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 n SQLContext: Basic and provides a subset of the Spark SQL functionality
 n HiveContext: Provides access to HiveQL and related Hive functionality

The recommended approach is to use HiveContext, as HiveQL is the best way to 
work with Spark SQL.

Connecting Spark SQL to Hive
Spark SQL will work just fine even if you aren’t currently using Hive. However, if you 
want to connect Spark SQL to your Hive installation, copy the Hive configuration file 
(hive-site.xml) to the SparkConf directory ($SPARK_HOME/conf ).

Working with Spark SQL 
The best way to use Spark SQL is to invoke it from within Spark applications to load 
and query your data.

In order to use Spark SQL from a Spark application, you must construct a HiveContext 
(assuming you want Hive-related functionality—otherwise use SQLContext instead) 
based on the SparkContext. This will enable you to use the Spark SQL functionality.

With the help of HiveContext, you can build DataFrames and operate on them 
with SQL. You can also use regular RDD operations to work with the DataFrames, since 
RDDs form the basis for a DataFrame.

Initializing Spark SQL
Before you can start using Spark SQL, you must initialize it by adding the following to 
the Spark application:

// Import Spark SQL
import org.apache.spark.sql.hive.HiveContext

You issue these commands in order to import the implicits used to convert regular 
RDDs into DataFrames, so you can query them. You must first construct an instance 
of the HiveContext:

// Create a Spark SQL HiveContext
val hiveCtx = ...
// Import the implicit conversions
import hiveCtx.implicits._

Now that you’ve added the imports, you’re ready to create the HiveContext:

val sc = new SparkContext(...)
val hiveCtx = new HiveContext(sc)

You’re now ready to load data and query it, using the HiveContext (or SQLContext).

Loading the Data
Let’s load some Twitter data ( JSON format) and name it by registering it as a temporary 
table. This will enable you to query the table named tweets in this example.

val input = hiveCtx.jsonFile(inputFile)
// Register the input schema RDD
input.registerTempTable("tweets")
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Note

Temporary tables are what they say they are—they disappear once the Spark application exits.

Loading the data as shown here returns a DataFrame. Registering a DataFrame 
(using the registerTempTable() method) as a temporary table lets you query it through 
HiveContext.sql (or its counterpart, SQLContext.sql). You can reference the table 
with its name, if you pass a value for it thus: 

registerTempTable("mytable").

Querying the Data
You can now query the data using a SQL statement as shown here:

// Select tweets based on the retweetCount
val topTweets = hiveCtx.sql("SELECT text, retweetCount 
    FROM tweets 
    ORDER BY retweetCount 
    LIMIT 10")

Operations on DataFrames
DataFrames offer several transformations that work on themselves. Here are some basic 
DataFrame operations:

 n select(): Selects specific fields or functions, as in df.select("name. df("age")+2
 n show(): Shows the DataFrame’s contents, as in df.show()
 n filter(): Selects rows meeting a criterion, as in df.filter(df("age") >19)
 n groupBy: Groups together on a column (you must add an aggregation such as 
min() or max() to this), as in df.groupBy(df("name")).max()

Creating DataFrames
Earlier, I showed an example that helped me load data into a table and query it. Loading 
and saving data is one way to create a DataFrame. The other is to create one from an RDD. 
Let me explain both methods in more detail in the following sections.

Loading and Saving Data for DataFrames
It’s easy to load structured data using Spark SQL, since it lets you get data from various 
sources such as Hive tables, JSON and Parquet files. Spark SQL also includes a DataSource 
API, which lets data sources such as Avro, Cassandra, Elasticsearch and others integrate 
with Spark SQL. When loading data from a Hive table, Spark SQL can use all storage 
formats that Hive supports, such as RCFiles, ORC, Avro, Parquet and ProtoBuf 
(Protocol Buffers).

Using an RDD to Create a DataFrame
As with Hive, Spark SQL leverages user-defined functions (UDFs) to reduce coding 
burden. You can use both Spark SQL’s UDFs and your current Hive UDFs.
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You can register UDFs easily by passing a function:

hiveCtx.udf.register("strLenScala", (_: String).length)
val tweetLength = hiveCtx.sql("SELECT strLenScala('tweet') FROM tweets LIMIT 10")

Summary 
Here’s what you learned in this chapter:

 n Functional programming and a lazy execution model are two important compo-
nents of Spark programming.

 n You perform all your work with Spark by creating, transforming and manipulating 
Spark RDDs.

 n The Spark shell is useful for testing and interactive usage.
 n Use the spark-submit script to run Spark applications.
 n You can run Spark applications in the local or cluster mode.
 n You can perform real-time analytics with Spark Streaming.
 n Use Spark SQL to handle structured data.
 n DataFrames are similar to relational database tables and make it easy to work with 

structured data.
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8 
The Role of the 

NameNode and How 
HDFS Works

As you learned in earlier chapters, HDFS is one of the two main architectural pillars
of Hadoop 2, the other being YARN. In this chapter, I start off with an explanation of 
the interaction between the NameNode and the DataNodes and go on to discuss the 
theory behind how clients read from and write to HDFS. I then discuss HDFS features 
such as archival storage and HDFS cache management. 

This chapter discusses the following topics pertaining to HDFS:

 n The interaction between the NameNode and the DataNodes
 n HDFS data organization
 n How clients read and write HDFS data
 n HDFS recovery processes
 n Hadoop archival storage

You also learn how to use advanced features such as HDFS’s centralized cache manage-
ment, which enables you to cache frequently used data to enhance application efficiency, 
and the short-circuit local reads feature, which lets clients bypass the DataNodes and 
read data directly from the file system.

Finally, you’ll learn how to use the new Hadoop heterogeneous storage feature to 
optimize HDFS storage, by storing your data in multiple tiers of data storage.

HDFS—The Interaction between the NameNode 
and the DataNodes
HDFS is a distributed, fault-tolerant file system, explicitly designed to work with large 
data sets. An HDFS instance usually contains several nodes, each of which stores a small 
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portion of its data. By its design, HDFS is suitable for batch processing rather than interac-
tive use because the focus is on providing high throughput rather than low latency. HDFS 
relaxes some of the POSIX semantics to gain the increased throughput it requires. 
HDFS employs a write-once-read-many access mode for the files it stores. Once a file 
is created, written to and stored, its contents can’t be modified, except for appends, thus 
furthering its goal of providing high throughput.

HDFS supports common file system operations such as operations that read and write 
files and create and delete directories. You don’t need to be aware of the fact that HDFS 
stores multiple replicas of its data blocks. You simply refer to files and directories in 
HDFS by paths in the HDFS namespace. User applications access files stored in HDFS 
by using the HDFS client, which is a library that exports the HDFS file system interface. 

In a Hadoop cluster, there’s a single NameNode that acts as the master server, manages 
the file system namespace and controls client access to the files stored in HDFS. DataNodes 
run on almost all nodes of the cluster (they can run on every node, but it’s common to 
designate 2-4 nodes as the master servers, to run critical services such as the NameNode 
and the ResourceManager) and manage the storage on each node where they run. The 
NameNode manages the metadata concerning HDFS files and stores it in an image file. 
The DataNodes manage the actual data inside an HDFS file and store the files in the 
servers where the DataNodes run.

HDFS stores data in HDFS files, each of which consists of a number of blocks (default 
size is 128MB). As you know by now, blocks are replicated on multiple DataNodes. 
The NameNode performs the following functions with regard to HDFS:

 n Executes all HDFS operations, such as opening and closing files and directories
 n Maps the blocks to the DataNodes 
 n Maintains the metadata, such as the files that belong to each block location of the 

block replicas, a file’s current state and access control information

The DataNodes serve all read and write requests from clients. Upon being instructed 
by the NameNode, they also perform operations such as block creation and deletion, as 
well as replication. Clients communicate with DataNodes directly to create, read, write 
and transfer block replicas. The DataNode daemon maintains an open socket for commu-
nication with clients and other DataNodes. It lets the NameNode know the server and 
port information, so it can be sent to clients and other DataNodes. Keeping the server 
sockets open helps clients read and write efficiently. 

Interaction between the Clients and HDFS
Applications incorporate the HDFS client library into their address space, and it’s the 
client library that manages communications between the application on one hand and 
the NameNode and the DataNode on the other. HDFS exposes file block locations through 
its API, which enables MapReduce and other application frameworks to schedule tasks 
near where the data is located, making for more efficient reads. The API also enables 
applications to set the replication factor for its files.
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NameNode and DataNode Communications
DataNodes aren’t connected directly to the NameNode but communicate with them as the 
need occurs. Here are the ways in which DataNodes communicate with the NameNode:

 n Initial registration: When the DataNode is started (or restarted), it registers with 
the NameNode to let it know that it’s available to handle HDFS read and write 
operations.

 n Periodic heartbeats: All DataNodes periodically (every three seconds, by default) 
send a heartbeat containing statistical usage information for that DataNode to the 
NameNode. This heartbeat lets the NameNode know that it can send commands 
such as block replication or deletion to the DataNodes.

Note

The -getDatanodeInfo <datanode_host:ipc_port> command shows whether a 
DataNode is alive.

If the NameNode doesn’t receive a heartbeat for a long time, it requests an 
immediate block report from the DataNode. If the NameNode doesn’t recog-
nize the DataNode, either because the NameNode has restarted, or because the 
network connection with the DataNode has timed out, it asks the DataNode to 
register again. If a DataNode fails to send its periodic heartbeat even after a long 
time (such as ten minutes), the NameNode will mark that DataNode as dead and 
issues commands to other DataNodes to replicate the data stored on the dead 
DataNode, to bring the replication factor of the blocks to the configured num-
ber of replicas.

 n Periodic block report: By default, each DataNode sends a block report to the 
NameNode every hour. The block report lets the NameNode synchronize the 
replica information that exists on the NameNode with that on the DataNodes. Block 
reports piggyback on the periodic heartbeats sent by the DataNodes to the 
NameNode.

 n Completion of a replica write: After successfully writing a block replica, the 
DataNode sends a message to the NameNode.

Figure 8.1 shows how the DataNodes communicate regularly with the NameNode, 
sending it both a frequent heartbeat that indicates that the DataNodes are alive, as well 
as a periodic block report. It’s this block report that the NameNode uses to build its 
metadata and keep it up to date.

In a high availability setup, where you have both an active and a Standby NameNode 
running, the DataNodes will send their block reports to both of the NameNodes. 
This way, the Standby NameNode is ready at all times to take over from the active 
NameNode. Figure 8.2 shows how the DataNodes send block reports to both NameNodes.
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NameNode
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Figure 8.1 How the DataNodes send heartbeats and block reports to the NameNode
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Figure 8.2 In a high availability architecture, the DataNodes send block 
reports to both the active and the Standby NameNodes. 
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Rack Awareness and Topology
Both HDFS and YARN are rack-aware (actually switch-aware), meaning that they have 
an idea as to where the cluster nodes are located relative to each other. HDFS uses rack 
awareness for fault-tolerance purposes, by ensuring that it places one block replica on 
a different rack. Thus, if a network switch fails and an entire rack goes down, you are 
still guaranteed access to the data. 

The ResourceManager capitalizes on its rack awareness to optimally allocate resources 
to clients by steering them to the nodes that are closest to the data. The NameNode 
and the ResourceManager daemons obtain the rack information by invoking an API, 
which also resolves DNS names to a rack ID.  

Note

Since Hadoop places data blocks in only two unique racks rather than three different racks 
(using the default replication factor of 3), total network bandwidth usage is reduced when 
reading data.

It’s common to arrange the nodes in a Hadoop cluster into multiple racks. By default, 
even if you have nodes that belong to multiple racks in your cluster, Hadoop assumes 
that all nodes belong to the same rack. 

Figure 8.3 shows how Hadoop’s rack awareness helps build redundancy in a cluster 
by configuring multiple racks. Configuring multiple racks is beneficial, since network 
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Figure 8.3 How configuring multiple racks enhances 
redundancy in a cluster through rack awareness
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traffic among nodes in the same rack is less intense than the traffic among nodes that 
belong to different racks. If you configure multiple racks, the NameNode will attempt 
to place data replicas on multiple racks, thus providing you with higher fault tolerance 
as well.

How to Configure Rack Awareness in Your Cluster
Hadoop provides a script named topology.py to help you configure rack awareness in 
your cluster. Hadoop uses the script to determine the location of nodes in a rack. The 
script uses a text-based control f ile that you edit by adding the node information 
(IP addresses) of all nodes in your cluster.

Once you execute the topology.py script, it uses the IP addresses you provide in the 
rack information file and returns a list of the rack names for each rack. In order to 
configure the use of the topology.py script, you must first specify the script file name in the 
core-site.xml file, as shown here:

<property>
<name>net.topology.script.file.name</name> 
<value>/etc/hadoop/conf/topology.py</value>
</property>

And here’s a sample topology.py script:

#!/usr/bin/env python
import sys
DEFAULT_RACK = "/prod/default-rack"
HOST_RACK_FILE = "/etc/hadoop/conf/host-rack.map"
host_rack = {}
for line in open(HOST_RACK_FILE):
   (host, rack) = line.split()
   host_rack[host] = rack
for host in sys.argv[1:]:
   if host in host_rack:

print host_rack[host]
   else:

print DEFAULT_RACK

By default, every rack in a cluster has the same rack id—default-rack. This means that 
if you don’t set the net.topology.script.file.name parameter, Hadoop will return a 
value of /default-rack for all of the cluster nodes.

Finding Your Cluster’s Rack Information
When the Hadoop administrator configures the topology script, each node in the cluster 
will run the script to find out its rack ID, as shown here:

10.1.1.160,/rack01
10.1.1.161,/rack01
10.1.1.162,/rack02
10.1.1.163,/rack02
10.1.1.164,/rack03
10.1.1.165,/rack03
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You can execute the command dfsadmin –printTopology to access your cluster’s 
rack information:

$ hdfs dfsadmin –printTopology

Rack: /prod011
   10.192.0.21:50010 (prod011node01)
   10.192.0.22:50010 (prod011node02)
   10.192.0.23:50010 (prod011node03)
   10.192.0.24:50010 (prod011node04)
...
Rack: /prod012
   10.192.0.51:50010 (prod012node01)
   10.192.0.52:50010 (prod012node02)
   10.192.0.53:50010 (prod012node03)
   10.192.0.54:50010 (prod012node04)
...
$

How Hadoop Distributes the Data Replicas
In small cluster architectures, all of the cluster’s nodes reside in a single rack. In this case, 
locality is simple to determine—a node is either “on-machine” or “off-machine.” 
Hadoop doesn’t distribute the replicas of a file evenly across the racks in a cluster. When 
you load new data into HDFS, it places one copy in a DataNode on the local rack, the 
second replica in a different node on a remote rack, and the third replica on a different 
node on the same remote rack (assuming the default replication of three). Thus, you end 
up with the following distribution for the replicas:

 n One third of the replicas are written to one node
 n Two thirds of the replicas are written to one rack
 n One third of the replicas are distributed evenly across the other racks

The goal here is to improve write performance by minimizing inter-rack writes. You’re 
far less likely to lose an entire rack than a single node. By placing the data on two unique racks 
instead of three you ensure that you’ll need less network bandwidth when reading data.

Regardless of where the replicas are placed, if the switch doesn’t work, then the data 
becomes unavailable. 

In a larger Hadoop setup, you’ll have a larger number of nodes, distributed among 
multiple racks. In that situation, you should exploit the multiple-rack architecture by 
ensuring that the replicas of data blocks are saved on different racks to enhance data 
availability, even when an entire rack goes down.

Getting the Rack Information for a Cluster
You can use the commands fsck and dfsadmin to test that you have configured the 
rack information correctly. The fsck command should show the number of racks in 
your cluster at the very end of its output, as shown here:
$ hdfs fsck /
...
Number of data-nodes: 24
Number of racks: 3
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FSCK ended at Mon Mar 02 22:11:50 CST 2015 in 42261 milliseconds

The filesystem under path '/' is HEALTHY
$

The dfsadmin –report command will also show the rack information for each node 
in a cluster, as shown here (partial output for a large cluster):

$ hdfs dfsadmin -report
Name: 10.192.0.61:50010
Hostname: hadoop012node011
Rack: /prod02
...
Last contact: Mon Mar 02 22:13:49 CST 2015

Name: 10.192.0.59:50010 
Hostname: hadoop012node09
Rack: /prod01
...
Last contact: Mon Mar 02 22:13:48 CST 2015
$

HDFS reliability, as well as performance, depends critically on how it places the replicas.  
Rack-aware replica placement improves the reliability and availability of data. If you 
configure a rack topology by defining a rack topology script, you’re protected even if an 
entire rack fails. Hadoop places the first copy of a data block on the same node where 
the client is running and the other two replicas in two different nodes from a different 
rack. (If the client is external to the cluster, then the first block is placed on a randomly 
chosen node in the cluster.) Thus, losing an entire rack all of a sudden isn’t going to cause 
data loss. Losing multiple nodes in multiple racks could still theoretically cause data loss, 
but this is a highly unlikely event.

Let’s say your cluster nodes are spread out among three racks. If you haven’t configured 
the cluster with a rack topology script, Hadoop’s decision without any block placement 
policy is to randomly write the block replicas to any three cluster nodes. This is so because 
in the absence of a rack topology script, Hadoop can’t know in which rack a node is, 
so it assumes that all cluster nodes belong to the same rack.

HDFS Data Replication
HDFS organizes its data into files and directories, similar to how the Linux file system 
organizes its files and directories. You access HDFS files from the command line using 
an interface called the FS shell. Using the FS shell is somewhat similar to using other 
Linux shells such as the bash shell. Scripting languages can use FS shell commands to access 
data stored in HDFS. HDFS provides a Java API for applications, and you can also use 
an HTTP browser to view HDFS files.

The following sections cover

 n How HDFS data is organized into data blocks
 n HDFS data replication and data protection
 n Block and replica states
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HDFS Data Organization and Data Blocks 
The primary organizational unit of storage in Hadoop is a data block, which is the size 
of the minimum chunk of data that you can write to or read from a disk. Users deal 
with data at the file level, but maintenance tools such as fsck work at the block level. 
The default Hadoop block size is 128MB and it’s quite common to use a much larger 
block size such as 256MB. 

The reason Hadoop uses large block sizes is because it deals with huge amounts 
of data, a large block size minimizes the cost of disk seeks and data transfers depend 
mostly on the rate at which you can transfer data (disk transfer rate). Hadoop will try to 
spread the chunks around among the cluster’s DataNodes. If a file is smaller than the block 
size, it occupies only the space it needs and not the entire block.

Clients writing data to an HDFS file first write the data to a temporary local file. 
Once the size of that local file crosses the size of a single HDFS block, the client contacts 
the NameNode and requests that it create a file in HDFS. The NameNode adds the 
filename to the namespace and allocates a data block in HDFS for it. The NameNode 
informs the client of the block number and a list of DataNodes on which the block can 
be stored and replicated by the client. 

Data Replication
Unlike many other distributed file systems, Hadoop doesn’t rely on a data protection 
mechanism such as RAID. Instead, it replicates data on multiple nodes for reliability. In 
addition to providing reliability, this key strategy also multiplies the data transfer bandwidth 
and increases the chances of moving computation to where the data is stored, which 
happens to be a key principle of Hadoop.

Once the client gets the DataNode and block information from the NameNode, it 
f lushes data from the local file to HDFS. It sends the contents of the data block from the 
local file to the first DataNode in the list of DataNodes it receives from the NameNode. 
Data replication happens simultaneously with the writing of the first copy (replica) of 
the data block to the first DataNode. 

Each DataNode that’ll store a replica (except the last one) will receive data from the 
previous DataNode in the list and simultaneously transmit that data to the next DataNode. 
As the first DataNode starts receiving the data, it writes a chunk of it to its own disks 
and sends it along to the second DataNode. The second DataNode, in turn, will write 
that portion and f lush it to the third DataNode.

The NameNode sends its block replication and invalidation commands by piggy-
backing those commands when it replies to a DataNode heartbeat message. When a 
DataNode doesn’t send any heartbeats for a set length of time (ten minutes by default), 
the NameNode assumes that the DataNode is dead, as shown in Figure 8.4. When a block 
is unavailable for any reason, Hadoop simply reads the block’s replica from a different 
node. If block corruption makes one of the blocks unusable, Hadoop automatically 
replicates that block from one of the other good replicas. 
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A key question here is whether you should always set your replication factor to the 
default level of three. Three replicas are most commonly configured by users, but if the data 
isn’t critical, you can drop the replication factor to two to save storage. On the other hand, 
if you’re making heavy use of some files (hot files), you can configure more than three 
replicas, so that multiple nodes can share the load of reading the data from those hot files.

HDFS Replication Factor and Data Protection
Let’s say you go with the default HDFS replication factor of three in your cluster. If one 
of your cluster’s racks isn’t reachable due to a network issue, such as a faulty switch, you 
can’t access the replicas of the data stored on that rack. 

However, processing won’t really be affected as Hadoop will distribute a block on 
multiple racks to guard against data unavailability for any reason. Hadoop will simply 
go read one of the other two replicas of the data an application might need. Remember 
that Hadoop’s policy for placing the replicas across the DataNodes in a cluster uses the 
following strategy:

1. Place the first replica on the same node where the client is running. If the client
is running from outside the cluster, the first block is placed on a random node in
the cluster.

NameNode

DataNodes 1, 2 and 4 are alive 
and are sending periodic heartbeats
and block reports to the NameNode.

DataNode 3 is not communicating
with the NameNode, so the NameNode
is going to assume that this node is dead.

Heartbeat
+ Block Report

Heartbeat
+ Block Report

Heartbeat
+ Block Report

DataNode 1 DataNode 2 DataNode 3 DataNode 4

Figure 8.4 How the NameNode finds out that a DataNode isn’t alive any 
longer, through missing heartbeats from the DataNode
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2. Place the second replica on a DataNode in a randomly chosen rack that’s different
from the rack where the first node was placed.

3. Place the third replica on a random DataNode on the remote rack chosen in Step 2.

Figure 8.5 shows the Hadoop block placement policy in action. Once the faulty 
switch is replaced, the affected rack gradually (and automatically) rejoins the cluster. 
Note that no more than one replica of a block is placed on any node, and no more than 
two replicas are placed on any rack. Placing data on multiple racks provides security 
against major hardware failures. Rack awareness helps the NameNode find the blocks 
nearest to the client during read operations. This strategy of data locality is a key Hadoop 
principle.

Note

Remember that when you use the hdfs dfs commands to remove files, all replicas of a 
file are deleted, regardless of the file’s replication factor.

While availability is safeguarded by the use of multiple replicas, if you lose all three 
replicas due to the (unlikely) failure of all DataNodes with a replica of a block, or if you 
accidentally delete all replicas, the data is deemed corrupted and can’t be recovered. 

Node A
and Node B
are in Rack 1.

Node C and
Node D
are in Rack 2.

Two copies of Block 1 are placed in Rack 1.
1 copy of Block 1 is placed in Node C.

Block 1

Block 2

Block 3

Block 4

Block 5

Node A
Blk 1

Blk 4

Blk 5

Node B
Blk 1

Blk 2

Blk 5

Node C
Blk 1

Blk 3

Blk 4

Node D
Blk 2

Blk 3

Blk 5

The Input File

Figure 8.5 How Hadoop places multiple replicas across the DataNodes in a cluster
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Block and Replica States
So, far, I’ve been talking about blocks and replicas as if they’re synonymous—actually 
there’s a difference. To distinguish between the two, you can refer to data being stored 
in blocks when referring to them with reference to the NameNode and use the term 
replicas to refer to the blocks that are being actually stored in the DataNodes. 

Replica States
DataNodes store the replica’s state to disk. A replica being stored on a DataNode can be 
in various states. Following are the possible replica states in a DataNode. 

 n Finalized: A finalized replica of a block is one where the writes to a replica are 
completed and the replica’s length is finalized. All replicas with an identical gen-
eration stamp (GS) will have identical data.

 n RBW (Replica Being Written): An RBW replica is one where data is currently 
being written and is always the last block of an open file. Thus the block isn’t in a 
finalized state. It doesn’t matter if the file was newly created or is being appended to. 

 n RWR (Replicas Waiting to be Recovered): When you restart a DataNode after a 
failure, all replicas on that DataNode are changed to the RWR state. These replicas 
eventually will be removed or participate in the lease recovery process.

 n RUR (Replica Under Recovery): A replica is in this state when it’s participating in 
block recovery.

 n Temporary: A temporary replica is similar to an RBW, with the difference that 
clients can’t see the data. If the replication of the block fails, the replica is deleted.

Figure 8.6 shows the replicas transitioning among the multiple states.

RWR

RBW

INIT

RUR

Temporary

Finalized

The order in which the blocks are ranked is 
Finalized > RBW > RWR > RUR> Temporary.

Figure 8.6 Replica state transitioning
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Where the HDFS Data Blocks Are Stored in the Linux File System
DataNodes have no awareness of HDFS files and store all HDFS data in the local file 
system on the servers where they run. The parameter dfs.data.dir in the hdfs-site.
xml file specifies the local file system directories where the DataNodes store the HDFS 
data. The DataNodes store each block replica of HDFS data in a separate file in the 
local file system. Each DataNode periodically generates a lot of HDFS block replicas cor-
responding to each of the files on the local file system and sends a block report to the 
NameNode.

On each of your DataNodes, you should see the following directory layout:

/[mountpoint}/dfs/dn/current/{blockpool}/current
/[mountpoint}/dfs/dn/current/{blockpool}/previous

The following displays of the Linux file system storing HDFS data exhibit how HDFS 
stores its data blocks:

# cd current
# pwd
/u04/hadoop/dfs/current/BP-2077913507-10.192.0.21-1357858111062/current
# ls
dfsUsed  finalized  rbw  VERSION
# ls -altr
total 32
drwxr-xr-x 258 hdfs hadoop 12288 Apr 25 21:09 finalized
-rw-r--r--   1 hdfs hadoop    27 May 19 10:57 dfsUsed
drwxr-xr-x   4 hdfs hadoop  4096 May 19 10:57 .
-rw-r--r--   1 hdfs hadoop   143 May 19 10:58 VERSION
drwxr-xr-x   4 hdfs hadoop  4096 May 19 10:58 ..
drwxr-xr-x   2 hdfs hadoop  4096 May 26 03:20 rbw

# cd /u04/hadoop/dfs/current/BP-2077913507-10.192.0.21-1357858111062/current/
finalized/subdir210/subdir13
# ls -altr
total 24
-rw-r--r--   1 hdfs hadoop   2053323 May 11 13:05 blk_1096785957_1099623703765.meta
-rw-r--r--   1 hdfs hadoop 262824271 May 11 13:05 
drwxr-xr-x   2 hdfs hadoop      4096 May 11 13:05 .
[root@hadoop011node16 subdir13]#

As you can see, each block replica in the HDFS data directory on the local file system 
has two files—a data file (blk_1096785957) that contains the actual data, and a small 
metadata file that describes the data in the data file. The block’s metadata includes checksums 
for the data in the data file and its generation stamp. Note that the size of the data file 
(blk_1096785957, sized 262824271 bytes) is the same as the block size for the file (256MB 
in my case). If a block replica were to be half full, however, it takes up only half of the 
block size on the local file system. 

If you need to, you can freely move the block pair of files between disks. Make sure 
you bring down the DataNode first, though! You may also move an entire subdirectory 
such as subdir999 between disks. You normally don’t ever need to do this, but if there’s 
severe space crunch in a directory, you can move the directories around without a problem.
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Finalizing an Upgrade
Although you aren’t supposed to see any data blocks stored in the /[mountpoint}/dfs/
dn/current/{blockpool}/previous directory, you may find data in there following a 
failed Hadoop version upgrade or an upgrade that was not finalized as it was supposed 
to. You can run the following command in such a case to finalize the NameNode 
upgrade.

$ hdfs dfsadmin –finalizeUpgrade

Restart the NameNode after the command finishes. You’ll see the following output 
in the DataNode logs after you run the command:

INFO org.apache.hadoop.hdfs.server.common.Storage: Finalizing upgrade for storage 
directory

You’ll notice that the data blocks in the “previous” directory are gone. 

Block States
NameNodes don’t store the state of a block to disk. Figure 8.7 shows how the blocks 
transition through various states. From the point of view of a NameNode, a block can 
be in the following states:

 n Under Construction: A block is in this state while data is being written to it. A 
block in this state keeps track of the locations of all valid RBW replicas in the 
current write pipeline, as well as the locations of its RWR replicas. Readers can 
view the data in this block, and both the block’s length and its generation stamp 
could change.

 n Under Recovery: When a client’s lease on a file expires, and the last block in that 
file is in the Under Construction state, when block recovery starts, the state of 
the file is changed to Under Recovery.

 n Committed: When a client asks the NameNode to add a new block to the file 
it’s writing to, or to close the file, blocks in the Under Construction state transition 
to the Committed state. In this state, the block’s data and generation stamp are 
frozen. This state also means that the DataNodes have reported that fewer Finalized 
replicas exist than what’s required by the replication factor.

 n Complete: When enough DataNodes report that they have Finalized replicas of 
the same generation state and length, a block transitions from the Committed state 
to the Complete state. If a client requests a new block and the previous block isn’t 
in the Complete state, the block may be forced to the Complete state even if the 
minimum number of replicated blocks don’t exist for the block. 

How Clients Read and Write HDFS Data
When working with HDFS, it’s important to understand the mechanism behind a client’s 
read and write operations. The following sections provide a high-level view of how clients 
actually read and write data.
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How Clients Read HDFS Data 
The following is a high-level description of the process through which clients read 
HDFS data. 

1. When a client makes a request for reading some HDFS data, it first contacts the
NameNode to find out the locations of the first few blocks of the file it wants
to read.

2. The NameNode returns the addresses of all DataNodes that store a copy of those
first few blocks, ranking the DataNodes in order of their closeness to the client.

3. The client then reads the data from the DataNodes in the preferential order presented
to it. Should the first DataNode fail during the read (say, because the DataNode
is dead), the client automatically connects to the next DataNode in the list and
reads the block.

4. When the client reads the block, it also verifies that the block’s current checksum
is the same as the original checksum calculated when the block was first stored on
disk. If the checksums differ, again the client will move to a different DataNode
in the list to read the data. The client also informs the NameNode that it found
a potentially corrupt block and the NameNode will replicate the corrupt block
to another node. Note that by default, a DataNode will verify checksums for all
blocks it stores every three weeks.

5. If the read request emanated from one of the cluster’s DataNodes, the first choice
of the client would be to see if that DataNode itself can satisfy the read request,
without having to go to a non-local DataNode.

6. As the client starts reading through the first few blocks, it requests that the NameNode
send it the locations for the next set of data blocks. The NameNode will send the
best (based on proximity) list of DataNodes for each data block.

INIT Under
Construction Committed Complet

Block State
Transitions

Under 
Recovery

Figure 8.7 How data blocks transition through multiple states
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Figure 8.8 shows how the clients, DataNodes and NameNode interact to facilitate the 
reading of HDFS data.

The key things to remember here are that data blocks don’t travel through the NameNode, 
which merely services requests from the client for the location of the data blocks. Clients 
contact the DataNodes to retrieve the data they are looking for. The clients request the 
DataNode to read the blocks and the DataNode will read the file’s data blocks on disk 
and transmit the data to the client via TCP socket. Since the NameNode doesn’t actually 
have to serve any data, scalability is enhanced because you can serve larger requests for 
data simply by adding more DataNodes to the cluster.

Tip 

Data never travels through the NameNode during either a write or a read operation.

How Clients Write Data to HDFS
Let’s first understand, in a nutshell, what happens when a client wants to write data 
to HDFS. When you issue a command to write to HDFS from the command line, 
through the web or programmatically, a number of steps are involved in writing the 
data, as summarized in the following list.

HDFS File
System

NameNode

FSData
InputStream

DataNode DataNode DataNode

1: Open

2: Get
Block
Locations

3: Read

4: Read 5: Read

6: Close

HDFS Client

Figure 8.8 How clients read HDFS data
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1. The first thing the client does is create the file and connect to the NameNode for
that namespace.

2. The NameNode, after verifying that the file doesn’t already exist and the client
has sufficient permissions to create the file, records the new file in its metadata and
sends the block name and list of DataNodes to the client. This list of DataNodes
is called a pipeline, and for the default replication factor of three, there are three
DataNodes in the pipeline. The pipeline specifies the DataNodes on which the
clients can place the block replicas.

3. The file the client wants to write out to HDFS is split into blocks and these blocks
are stored on HDFS on various DataNodes. The client connects to the first
DataNode in the pipeline and starts writing the data blocks on that node.

4. The first DataNode will connect to the second DataNode in the list and forward
it the data blocks as it receives them.

5. The second DataNode in turn connects to and forwards the data to the next
DataNode in the pipeline.

6. When all three (by default) replicas are completely written to the client, an acknowl-
edgment packet is relayed through the pipeline of DataNodes to the client, to indicate
that the block was successfully written to all nodes. The client will start writing
the next block at this point.

7. When all block replicas are written, the block is committed in the edit log by the
NameNode and marked as “written.”

8. When the client completes writing data to the file, it closes the file. This requires that
all the file’s blocks have been replicated the minimum number of times. The client
may have to wait to close the file if there are any DataNode failures in the process.

9. The client informs the NameNode that the file writing was successfully completed.

Note the following:

 n The writing of the block replicas is done asynchronously.
 n The client doesn’t have to send the data blocks it’s writing to all the DataNodes. It 

just sends them to one of the DataNodes in the list provided by the NameNode, 
and it’s the responsibility of that DataNode to send the data blocks along to the 
other DataNodes in the pipeline.

 n Each DataNode will also save a checksum of each data block it stores. When this block 
is read, its checksum is verified to ensure that the block is complete and isn’t corrupt.

 n The NameNode creates metadata from the block reports it receives from the 
DataNodes.

Figure 8.9 shows how clients write data to HDFS files.
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HDFS stores the data blocks such that the availability of one or more nodes won’t 
cause a data loss. Hadoop automatically replicates any lost blocks. Data replication ensures 
both availability and data locality, which helps enforce a guiding principle of Hadoop, 
which is to bring processing to the data and not the other way round, as it is in tradi-
tional database systems.

How the Block Size and the Replication Factor Are Determined
The number of replicas the client stores in HDFS is based on the configuration setting 
dfs.replication, whose default value is 3. The fs.block.size parameter determines 
the block size. Any changes you make to these two parameters will affect only newly 
added data blocks. The settings for existing blocks already in HDFS aren’t affected by 
these changes.

The NameNode lets the client know the configured values for both the dfs
.replication and the fs.block.size parameters. Both of these parameters settings are 
made at the file level, and the client can override them at the file level. Based on the con-
figured values for these parameters, the client will break up the file into the appropriate 
number of blocks and store the configured number of block replicas in HDFS.

Where the Client Writes the Data
Once the client receives the list of DataNodes to which they can write data from the 
NameNode, it writes the blocks in a sequential fashion to the nodes in that list. The way 
the client writes a block to multiple nodes is called replication pipelining. The pipelining 
ensures that the block writes satisfy the configured replication setting.  

Whenever a client creates a new file block or opens a file for append, the write oper-
ation creates a pipeline of DataNodes to store the replicas. The replication factor for the 
cluster determines the number of DataNodes in this pipeline. All following writes to 

DataNode 1 DataNode 2 DataNode 3 DataNode_n

myfile.txt

1. Client checks first with
the NameNode.

2. Client writes a block to one DataNode.
3. DataNodes replicate the block.
4. Repeat for all the other

blocks in the file myfile.txt.

Blk A

D t
Blk A

D t
Blk A

D t
Blk A

Blk A Blk A

Client

NameNode

Figure 8.9 How Hadoop clients write data to HDFS files.
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that block go through the replication pipeline. Each of the DataNodes in the replication 
pipeline buffers each data packet as it’s received and starts transferring the packets as 
soon as they receive a complete data packet. Regardless of the status of the transmission, 
the client starts to transmit the next packet, without waiting for an acknowledgment 
from the DataNodes. To ensure data integrity, clients also send a checksum along with 
the data to the DataNodes for each block they’re writing to HDFS.

Once a data block is completely sent to a DataNode, it’s the turn of the DataNode to 
report to the NameNode that it has stored the new data block. This process repeats for 
all subsequent blocks in a file. When all the blocks are written to HDFS, the NameNode 
finalizes its metadata and updates the edits file (serves as the transaction log for the 
main metadata file called fsimage).

Figure 8.10 shows how Hadoop uses data pipelining.

Considerations During a Write
The write algorithm that HDFS uses ensures that data is stored on multiple racks, and it 
attempts to minimize the cost of writing. The HDFS write algorithm dictates that the 
client should attempt to write to a specific DataNode, provided the node has enough 
free space and is in a healthy state. 

If a DataNode in the current replication pipeline fails during the data transfer, the 
client moves down the list of DataNodes handed to it and picks another DataNode to 

NameNode

DataNode 1

Rack 1

DataNode 2

Rack 2

Block A Block A

The three
DataNodes let
the NameNode 

DataNode 1
lets the client
know that it has
successfully

File with Blocks

The client messages the
NameNode that the write

DataNode 3
Block A

1

Client

Figure 8.10 Hadoop uses data pipelining to nodes while writing data by first 
writing to one DataNode and having that DataNode pass the data 

blocks to the next DataNode in the pipeline.
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write the block. The current replication pipeline is closed and another pipeline is opened 
with a different set of two good DataNodes, and the data is written to those two nodes. 
The NameNode understands that the data has been replicated only to two nodes instead 
of the default number of three nodes. It will replicate the data to a third node automatically 
to maintain the correct replication factor for the data.

Note that the write algorithm doesn’t ensure that the data transfer keeps the HDFS 
data evenly balanced across a cluster’s nodes. That’s the reason you need to run the 
balancer yourself (explained in Chapter 9, “HDFS Commands, HDFS Permissions and 
HDFS Storage,” in the section “Running the Balancer Tool to Balance HDFS Data”) 
to keep HDFS data evenly distributed.

Understanding HDFS Recovery Processes
A key requirement of HDFS operations is fault tolerance. Clients such as Flume clients 
need to write continuously; hence, their streaming writes to HDFS must be success-
ful, even when one or more DataNodes in a pipeline fail. HDFS must ensure that the 
writes don’t fail. 

HDFS uses the concepts of lease recovery, block recovery and pipeline recovery to provide 
fault tolerance by ensuring that writes are durable and consistent even when the network 
or the DataNodes fail in the cluster. I review these key terms in detail in the following sec-
tions. Before we do that, it’s a good idea to familiarize ourselves with the concept of 
a generation stamp for a block.

The following sections cover

 n Generation stamps
 n Lease recovery
 n Block recovery
 n Pipeline recovery

Generation Stamp
The NameNode maintains a monotonically increasing 8-byte number called the generation 
stamp (GS) for each block. Both data blocks and replicas have a GS. If a replica’s GS is 
older than the block’s GS, it means the replica is stale. The GS is also helpful in detecting 
outdated replicas on long-dead DataNodes when the DataNodes rejoin the cluster. 

Lease Recovery 
A client is required to obtain a lease on an HDFS file before it can write to it. This lease 
acts as a lock on that file, preventing multiple simultaneous writes to it. As long as an 
HDFS client holds the lease on a file, no other client is allowed to write to the file. If 
the client doesn’t renew the lease in a predefined length of time, the lease expires and 
HDFS will close the file and release the lease, so other clients obtain a lease on it for 
their writes. This process is called a lease recovery.
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A lease manager in the NameNode process is in charge of management of leases, such 
as renewing leases and removing leases. Clients with multiple open files periodically 
request the NameNode to renew all the leases they currently hold.

The lease manager uses both soft and hard limits to set the expiration of leases. The 
soft limit is 1 minute and the hard limit is 1 hour. HDFS guarantees exclusive access to a 
file until the soft limit expires. If the soft limit expires and a client hasn’t either renewed 
the lease or closed the file, another client can take over the lease. If the client hasn’t 
renewed the lease within the hard limit of an hour, the lease manager working on behalf 
of the NameNode will close the lease and recover the lease. Figure 8.11 shows how lease 
expiries and renewals are handled.

A lease recovery can be set in motion either when the hard limit for the lease expires 
or when the soft limits expire. As with relational databases, writers don’t block readers—
when clients are writing to a file on which they hold a lease, concurrent readers can read 
the same file.

Soft Limit
for a Lease

Hard Limit 
for a Lease

No renewing of
the lease for
one minute.

Other clients
can compete
for the lease.

Lease is not renewed for 60 minutes.

compete for the lease.

Figure 8.11 How Hadoop resolves client lease renewals
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Block Recovery
Block recovery is only set in motion following a lease recovery. When a lease recovery 
occurs, it’s possible that the last block that was being written to may not have been sent 
to all the DataNodes that are part of the pipeline.  Block recovery is the process that ensures 
that when a file is closed during lease recovery, all replicas of the last block are of the 
same length. If the file’s last block is not in the Complete state defined earlier, block 
recovery is triggered on that last block of the file.

For block recovery, the NameNode finds which DataNodes contain the last block 
of the file for which lease recovery was performed and selects one of the DataNodes as 
the primary DataNode.  This primary DataNode coordinates the block-recovery work 
with the rest of the DataNodes in the pipeline, and the following steps occur:

1. The primary node gets a new generation stamp from the NameNode.

2. The primary node gets block information from each of the DataNodes.

3. The primary node computes the minimum length of the block.

4. The primary node updates the DataNodes with the new generation stamp and
the minimum block length.

5. The primary node reports to the NameNode when it completes this process.

6. The NameNode updates its internal block information for the state of this block
and removes the lease on the file so other writers can write to the file.

7. The NameNode commits the changes to the edit log.

Pipeline Recovery
If a DataNode fails while it’s in the midst of writing to a file, HDFS attempts to recover 
from the error to enable the client to continue their writes to that file, in a process called 
pipeline recovery.

When a client writes to an HDFS file, it writes in sequential blocks. The data is 
broken up into packets of about 64K in size. That packet is made up of chunks that are 
usually 512 bytes in size and propagated to the DataNodes in the write pipeline, which 
comprises three nodes by default.  How the pipeline recovery works depends on the 
stage in which the block f inds itself in the write pipeline, the three stages being

 n Setting up of the pipeline
 n The data streaming stage
 n The close stage

It’s during the close stage that the replica is finalized and the pipeline is shut down.
If a DataNode goes bad during the f low through the pipeline, it’s removed from the 

pipeline and the client may build a new pipeline with the surviving DataNodes. Similar 
to how the lease manager manages leases, a replication monitor replicates blocks to ensure 
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that the replication factor is satisfied. During pipeline recovery, a client may or may not 
replace bad DataNodes when rebuilding a new pipeline. 

You can configure the dfs.client.block.write.replace-datanode-on-failure.policy 
configuration parameter to inf luence how the DataNode replacement policy works 
during a pipeline failure.

In the following sections, you'll learn a bit about the three stages of the pipeline recovery 
process.

The Pipeline Setup Stage
The pipeline setup stage is when the clients send a write request through the pipeline and 
receive acknowledgments from all nodes in the pipeline, indicating that the pipeline is 
ready for the client to commence writing. If a pipeline encounters an error during this 
stage, and the client is writing a new block, the client asks the NameNode for a new block 
and a list of DataNodes on which it can find the blocks. Thus, a new pipeline is started 
instead of the failed pipeline. If, on the other hand, the pipeline was created for appending 
to a block, the client rebuilds the pipeline with the surviving DataNodes.

The Data Streaming Stage 
Clients buffer data in packets (chunks of data) and send the data through the pipeline 
once the packets are filled up. How failures during the data streaming stage are handled 
depends on whether the client or the DataNode detects the failure. If the client detects 
the failure, it constructs a new pipeline with the surviving good DataNodes and starts 
sending data packets with a new GS. If it’s the DataNode that detects the failure, it removes 
itself from the pipeline by closing its connections.

Close Stage
The close stage is where the replica is finalized and the pipeline is shut down. When a 
client sends a close request, all the DataNodes in the pipeline transition the replica into 
the Finalized state. Once they report this to the NameNode, if the right number of 
DataNodes (based on the configured replication factor) has reported a Finalized state 
for their replicas, it transitions the block’s state to Complete.

If a client encounters a failure in the close stage, it rebuilds the pipeline with the 
surviving DataNodes. Each of the DataNodes will ensure that it finalizes its replica of 
the block.

Centralized Cache Management in HDFS
Often, several files, such as small Hive fact tables, are accessed frequently by applica-
tions. You can use Hadoop’s centralized cache management to explicitly cache specific 
paths. You can cache data at the file or directory level.  When you cache a path, the 
NameNode instructs the DataNodes that have the blocks in that file on their disks to 
cache the blocks, essentially pinning those blocks in memory. 
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Note

Tests by Cloudera’s engineers show that applications such as Impala have increased their 
speed up to 59X when reading from cache as compared to reading from disk.

 When the amount of the working set is greater than RAM, servers evict data from 
memory to make room for fresh data. Caching large datasets used for querying isn’t as 
efficient, since you most likely won’t be repeatedly reading those same data sets. You can 
consider caching data for critical workloads with stringent SLAs to keep those data sets from 
contending for disk I/O. Caching is especially helpful in clusters with disk contention. 

Hadoop and OS Page Caching
Hadoop DataNodes already use the operating system page cache, which caches all recently 
accessed data on the local file system. However, in a distributed system such as Hadoop, 
OS page caching isn’t quite adequate. Since there’s no global information about the 
in-memory state of each DataNode, when provided a choice of multiple HDFS replicas, 
a client is unable to schedule its tasks for cache locality.  Performance suffers, because 
the client schedules tasks without awareness of the cache locality. 

When a client runs a query, the application scheduler chooses a block replica location 
and runs the task on that DataNode, pulling the replica into the OS page cache. How-
ever, the scheduler is unaware of the replicas stored in the page cache and can’t place 
tasks to exploit the cache locality. Another problem is that since most OS page caches 
use a modified version of the LRU (least recently used) algorithm to determine data 
they should retain in memory, they are likely to evict users’ working sets of data from 
the cache. Another reason the OS page cache isn’t great is that it’s less efficient than read-
ing directly from memory, which offers “zero-read copy” performance.

The Key Principles Behind Centralized Cache Management 
The NameNode’s centralized cache management feature is based on the following key 
principles:

 n Knowledge of the state of the centralized cache, which helps in scheduling jobs 
based on cache locality

 n Predictable performance for mixed loads, due to the awareness of the cluster cache 
state

 n Zero-copy reads made possible by pinning the current data set in the local cache 
instead of f lushing it out to disk

The cache pool sets a limit on the amount of memory you can use. Users manage caching 
through cache directives. A cache directive specifies the following:

 n The HDFS file or directory to cache, indicated by a path
 n The cache replication factor (from 1 to the file’s replication factor)
 n The cache pool for the directive
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How Centralized Cache Management Works
Now that you’ve learned the principles behind centralized cache management, it’s time 
to learn how it actually works:

1. When an HDFS client caches a file it sends a cache directive to the NameNode,
requesting it to cache that file.

2. The NameNode sends cache commands to a DataNode.

3. The DataNode sends back a cache report once it caches the data.

4. Application schedulers can find the cache information from the NameNode
and schedule tasks for cache locality.

The DataNodes store the data off-heap, which means that caching large amounts 
of data won’t adversely affect garbage collection. HDFS maps the cached blocks from 
the page cache into a client’s address space directly, avoiding the overhead of context 
switching involved in repeated read system calls. Zero-copy reads are the result, and 
they are named thus because they spend very little time copying data, leaving most CPU 
cycles free for “real work.” One of the other benefits of centralized cache management is 
that that since DataNodes checksum the data when they cache it, clients can skip the 
checksum verification when they read that data.

You can potentially improve the read performance of applications by co-locating 
tasks with a cached block replica. Applications can then query the set of cached block 
locations when deciding where to place the tasks. Cluster memory application is also 
more efficient, since you can pin only one of the three (default) replicas of a block, thus 
avoiding the possibility of pulling all the replicas of a block into the buffer cache, fol-
lowing repeated reads of a block. 

The following sections cover

 n Configuring caching
 n Cache directives
 n Cache pools
 n Using the cache

Configuring Caching
You use the hdfs cacheadmin command-line interface to configure caching. The 
cacheadmin command lets you configure both cache directives and cache pools, which are 
the two key components you must configure in order to cache HDFS data.

When you implement HDFS caching, you must increase the OS limits for locked 
memory. Set the dfs.datanode.max.locked.memory parameter to the maximum 
amount of memory a DataNode can use for caching data. You must specify this attribute 
in bytes, although the memory lock limit shown with a ulimit –l command displays 
the limit in kilobytes. In a Linux system, when you set this parameter, you may also need 
to increase the max locked memory attribute in the /etc/security/limits.conf file. 
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Cache Directives
In order to cache a file or a directory, you must cache the appropriate path to the file or 
directory with a cache directive. Remember that if you cache a specific path, only the files 
at that level are cached and not the files underneath that directory.  You can additionally 
specify a replication factor and expiration time when you cache a file or directory. 

You add a cache directive with the addDirective attribute of the cacheadmin 
command. Here’s the syntax:

$ hdfs cacheadmin –addDirective –path <path> -pool <pool-name> {force} 
[-replication <replication>] [-ttl <time-to-live>]

As mentioned earlier, path refers to either a file or a directory. The poolname attribute 
points to the pool to which you want to add this directive (the following section shows 
how to create a cache pool). By default, the replication factor for a cached file or direc-
tory is one, but you can specify a higher replication factor if you wish. You can specify 
the number of replicated data blocks on specific nodes in the cluster. Also, by default, a 
directive never expires, but you can specify how long a directive will remain valid, with 
the ttl (time-to-live) attribute.

You can remove one or more cache directives with the –removeDirective or the 
–removeDirectives attribute. You can list all cache directives with the –listDirectives
option. You can optionally specify the following:

 n The stats f lag to view the cache directive statistics
 n The path attribute to see only the directives under a specific path
 n The pool attribute to list just the directives in a specific cache pool

Cache Pools
You configure cache pools, which are simply administrative entities, to manage a set of 
cache directives. By setting appropriate permissions, you can restrict access to the pool 
to specific users and groups or allow users to add or remove cache directives you’ve config-
ured. The total amount of memory in all cache pools in a cluster will be equal to the 
amount of aggregate memory you’ve reserved for HDFS caching.

You create a cache pool with the addPool attribute of the hdfs cacheadmin command, 
and I show the syntax of the command here:

$ hdfs cacheadmin –addPool <name> [-owner <owner>] [-group <group>] [-mode <mode>] 
[-limit <limit>] [-maxTtl <maxTtl>

All the attributes are self-explanatory except the limit attribute, which is optional, 
and this attribute lets you specify the maximum number of bytes that can be cached by 
all cache directives together in this cache pool.

Once you configure HDFS block caching, MapReduce and other job frameworks 
can utilize the cache by scheduling jobs on the nodes where blocks are cached, reducing 
the need for I/O for reading data. 
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Using the Cache
The following example shows how create a cache pool and add a cache directive for an 
HDFS file.

1. Add a cache pool named testPool.

$ hdfs cacheadmin -addPool testPool
Successfully added cache pool testPool.
$

2. Add a cache directive.

$ hdfs cacheadmin -addDirective -path /user/test.txt -pool testPool
Added cache directive 1
$

3. List the pools with the –listPools command.

$ hdfs cacheadmin -listPools -stats testPool
Found 1 result.
NAME      OWNER  GROUP  MODE LIMIT  MAXTTL  BYTES_NEEDED  BYTES_
CACHED  BYTES_OVERLIMIT  FILES_NEEDED  FILES_CACHED
testPool  hdfs   hdfs   rwxr-xr-x   unlimited   never 37565
37565 0 1 1
$

4. Issue the dfsadmin –report command to check if the report shows the cache.

$ hdfs dfsadmin -report
...
Non DFS Used: 0 (0 B)
DFS Remaining: 94222279700 (87.75 GB)
DFS Used%: 0.94%
DFS Remaining%: 99.06%
Configured Cache Capacity: 1908408320 (1.78 GB)
Cache Used: 40960 (40 KB)
Cache Remaining: 1908367360 (1.78 GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00%
Last contact: Tue May 26 15:37:14 EDT 2015
...
$

The dfsadmin –report command shows that HDFS is indeed aware of the cache 
pool and the cache directive you created. The file test.txt that I cached with a directive 
is in the cache, since Cache Used is now 40960 bytes, whereas it was zero before I created 
the cache pool and the cache directive.

Short-Circuit Local Reads

If the client reading HDFS data is located on the same server as the DataNode, clients 
can directly read the file, which is quicker than the DataNode transmitting the data to 
the client. Short-circuit reads are those reads made by the clients directly from the 
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local file system while bypassing the DataNode using UNIX domain sockets, which offer 
a pathway for communication between clients and DataNodes. Short-circuit reads aren’t 
enabled by default. In order to use short-circuit reads, you need to configure the follow-
ing on the client as well as on the DataNodes.

  <property>
    <name>dfs.client.read.shortcircuit</name>
    <value>true</value>
  </property>
  <property>
    <name>dfs.domain.socket.path</name>
    <value>/var/lib/hadoop-hdfs/dn_socket</value>
  </property>

Short-circuit local reads offer both improved performance and enhanced security. A key 
principle of Hadoop is data locality, whereby HDFS attempts to handle most reads as 
local reads by reading data from the same node where the client (reader) is located.  

Hadoop Archival Storage, SSD and Memory 
(Heterogeneous Storage)
Frequently, organizations find that they have quite a bit of historical data occupying 
expensive storage. The typical data usage pattern in an organization is for new incoming 
data to be heavily used by applications, leading this data to be branded “hot.” Over time, 
stored data is accessed a few times a week instead of several times a day, and is considered 
“warm” data. Over the next few weeks and months, the data usage falls even more, 
becoming “cold” data. If you rarely use the data, such as querying it but once or twice 
a year, you can even create a fourth data classification based on its age, and call this set 
of rarely queried older data “frozen.”

Hadoop lets you assign historical data to less expensive storage, to be used as archival 
or cold storage, as opposed to hot or active current data. You can set up storage policies 
and transition older data from expensive and high-performing hot storage to less expensive 
storage with lower performance capabilities. 

 Hadoop 2.5, 2.6 and 2.7 all offer support for heterogeneous storage polices, where 
you can store HDFS data not only on the default traditional disk storage type, but also 
on SSD (solid state disks).

The following sections cover

 n Performance characteristics of different storage types
 n The architecture of heterogeneous storage
 n Storage types
 n Storage policies
 n Implementing archival storage
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Performance Characteristics of Storage Types
In order to understand heterogeneous storage policies and Hadoop archival storage, it’s 
helpful to compare the performance characteristics of different storage types. You can 
compare alternative storage media on the basis of cost, the durability of the media and 
their performance. Cost is usually measured in cost per megabyte of storage. Durability 
is related to the failure rate of the storage media. Performance is measured on the basis 
of throughput (maximum read/write rate in megabytes/second) and I/O operations per sec-
ond, which are limited by how fast the media can serve a request to read and write data.

Hard disk drives (HDD), the standard disk storage devices for Hadoop, offer a fairly 
high throughput and are inexpensive. The high throughput they offer is ideal for batch 
processing. However, disks can fail at any time.

SSDs offer great throughput and I/O per second but are several times more expen-
sive than disk storage devices. As with disks, SSD devices have a moderate failure rate, 
and can fail at any time.

RAM-based storage offers extremely high performance for all types of work, but is 
extremely expensive. RAM doesn’t provide durable storage as everything is stored in 
memory.

The driving factor behind using heterogeneous storage is cost—the cost per gigabyte 
of storage of the archive tier that has little processing power is 3-4 times cheaper than 
the cost of normal disk storage. Classifying your storage into multiple tiers based on the 
processing power of the nodes leads to an optimal use of storage. Hadoop provides a 
special mover tool to move some or all replicas of data blocks to a lower-cost storage as 
the frequency of usage of that data diminishes over time.

The Need for Heterogeneous HDFS Storage
Traditionally Hadoop was used for batch processing, where disk storage offered the high 
sequential throughput required by batch work. Hive and other applications that use Hadoop 
for interactive processing are more dependent for their performance on high random I/O 
performance, offered by storage such as SSD. While you can’t build an entire cluster with SSD 
devices due to their high cost, it’s ideal to have multiple storage types available in the same 
cluster so different types of applications can choose the storage device that’s best for them.

It’s common to store different types of data sets in a Hadoop cluster, with different 
teams running various types of workloads to process the data. Here’s the typical progression 
of data usage over time:

 n Initially, after new data is loaded, it tends to be used heavily, and the data sets are 
considered hot. 

 n Over a period of a few weeks or so, the frequency of usage of this data goes down 
and it transitions into warm data. 

 n Over a period of a few months, the data usage drops down even further, and this 
data is deemed cold data. 

 n Over a very long time period, this data is rarely used and can be deemed frozen, 
because it’s accessed only on rare occasions.  
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Figure 8.12 shows the various types of data in a Hadoop cluster and how it’s assigned 
to different types of storage. Hadoop’s heterogeneous storage capability lets you create 
and maintain multiple tiers of storage to ref lect the changing usage patterns of HDFS 
data over time.

Changes in the Storage Architecture
In earlier Hadoop releases, the NameNode and the HDFS clients looked upon the 
DataNode as a monolithic storage unit, without any awareness of the storage types used 
by the DataNodes. Hadoop 2.5 and later versions have made fundamental changes to 
the HDFS storage architecture so the DataNode lets the NameNode know the different 
storage types and their usage statistics. This enables the NameNode to choose a DataNode 
with a specific storage type when placing block replicas.

DataNodes send heartbeats (health reports) every three seconds by default using a 
TCP handshake to the NameNode, to announce that they’re alive and in a healthy state, 
and this heartbeat also contains a summary storage report including the capacity and 
usage information. In addition, the DataNodes also send periodic block reports (listing all 
blocks on that DataNode) to the NameNode (every tenth heartbeat includes a block 
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Archive
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Archive

Archive

Archive

Hot data blocks are in heavy demand 
right now, so you store all three replicas
on fast storage—disk.

Warm storage is currently
used but is not in heavy 
demand, so you can 
put two replicas on archive
storage.

Cold storage is hardly 
queried, so you can assign
all three replicas to the 
slow (and cheap) archive
storage.

Figure 8.12 Hot, warm and cold data and how the various types of data are 
stored on disk and archive storage based on how recent the data is
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report, so block reports are made at 30-second intervals), and these reports could be 
full block reports or incremental block reports.

In earlier Hadoop releases, both storage reports and block reports used to contain 
only aggregated information about the storage types. In Hadoop 2.5 and later releases, 
the DataNodes show the usage statistics and block reports differentiated by the storage 
types they use.

Space quota schemes have also been extended to add per-storage-type space quotas for 
each HDFS directory. If a parent directory doesn’t specify a per-storage-type quota, then 
the per-storage-type space quota you create on that directory will be enforced. If the parent 
directory already has a per-storage-type space quota specified for it, then the minimum 
space quota on the parent or subdirectory will be the space quota that HDFS will enforce. 
Therefore, an administrator can specify a per-storage-type space quota of zero on a parent 
directory to prevent the subdirectories from using any space in that specific storage type.

Storage Preferences for Files
Applications can specify a Storage Preference when creating a file, to send a hint to HDFS 
about the application’s preference for where it wants the block replicas to be stored. Appli-
cations can also modify the Storage Preference for existing files. The Storage Preference 
can include the replication factor as well as the target storage type of the file’s block replicas. 

When an application specifies a Storage Preference, HDFS will try to satisfy the pref-
erence, subject to the availability of storage space as well as the availability of the space 
quota. If a target storage type doesn’t have enough free space to satisfy a preferred storage 
type, a different storage type will be chosen. For example, if an application prefers the 
SSD storage type, and there’s not enough SSD storage to go around, HDFS will store 
the replicas on a fallback storage medium such as HDD.

Setting Up Archival Storage
To enable the maintenance of different storage types, Hadoop lets you use not only 
disk for storage, but also alternative storage media such as SSD and memory. You can 
combine different storage policies with the alternative storage types to set up Hadoop 
archival storage in your environment.

Configuring Multiple Storage Tiers for HDFS
The HDFS administrator must configure a couple of things for implementing hetero-
geneous HDFS storage. Here are the configuration parameters you need to configure 
in the hdfs-site.xml file:

 n dfs.storage.policy.enabled: This parameter lets you enable and disable hetero-
geneous storage policies. The default value for this parameter is true.

 n dfs.datanode.data.dir: This parameter is set on each of the DataNodes, and 
you should assign the storage locations with a tag indicating the storage type. 
This lets the storage policies place the data blocks on different storage types according 
to the storage policy.



ptg18444370

236 Chapter 8 The Role of the NameNode and How HDFS Works

The dfs.datanaode.data.dir parameter must be familiar to you by this point—it’s 
the parameter that specifies the local storage directories used for HDFS.  Under hetero-
geneous storage, you can add an enum called StorageType to specify the storage tier—
for example, ARCHIVE. You simply prefix the local directory location with [ARCHIVE] 
to denote that this directory belongs to the ARCHIVE storage tier. Here are some 
examples:

 n Specify [DISK]file:///grid/dn/disk0 for a storage location /grid/dn/disk0 
on DISK storage type.

 n Specify [SSD]file:///grid/dn/ssd0 for a DataNode storage location /grid/dn/ssd0 
on DISK storage type.

 n Specify [ARCHIVE]file:///grid/dn/archive0 for a DataNode storage location 
/grid/dn/archive0 on ARCHIVE storage type.

 n Specify [RAM_DISK]file:///grid/dn/ram0 for a DataNode storage location /grid/
dn/ram0 on RAM_DISK storage type.

Note

If you don’t tag a storage type, the default storage type of a DataNode’s storage location 
will be the traditional DISK storage type.

Let’s say your cluster has 50 nodes, each with 100TB of storage, thus giving you a 
total of 5PB of storage. If you now add another 20 nodes each with 100TB of storage, 
you can form an ARCHIVE tier by tagging this new storage as ARCHIVE. You tag the 
new storage by prefixing all the new local storage directories with [ARCHIVE]. You’ll 
now have two tiers of storage in your cluster, with 5PB in the DISK tier and 2PB in the 
ARCHIVE tier.

Different Storage Types
Originally you could use only a single physical storage type—DISK for HDFS data. 
DISK is the default storage type, but now you can also use a new storage type called 
ARCHIVE, which has very high storage density (petabytes of storage) but low processing 
capabilities. 

In addition to the DISK and ARCHIVE storage types, you can also use SSD and RAM_DISK 
as alternative storage types. Both SSD and RAM_DISK offer better performance than tra-
ditional disk storage. The ARCHIVE storage type is also disk-based storage, and supports 
archival storage by providing high storage density with low computing power. You can 
summarize the available HDFS storage types in the following way:

 n DISK: The default storage type, corresponding to the standard disk-based storage 
used by HDFS

 n ARCHIVE: Archival disk-based storage that uses densely packed storage nodes to 
store historical or less frequently used data 
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 n SSD: Flash storage that uses SSD storage to store data for read/write workloads 
that require a low latency

 n RAM_DISK: In-memory storage that provides single replica writes to RAM, with 
asynchronous writes to disks for persisting data

Earlier in this book, you learned how you can assign disk volumes on the host system 
as storage mount points for HDFS storage, by configuring the dfs.data.dir parameter 
in the hdfs-site.xml file. Starting with Hadoop 2.5, you can tag these storage volumes 
with a StorageType enum, to signify the specific type of storage the mount points 
represent, such as archival storage and f lash storage.

The key idea here is to store heavily used (hot) data on the nodes with superior com-
puting power in the DISK storage tier. So, if you’re using the default HDFS replication 
factor of three, you can keep all three replicas of hot data on the DISK tier. As far as warm 
data is concerned, you can keep two out of the three replicas on the DISK tier and move 
one of the replicas to the ARCHIVE tier. For data classified as cold data, you can move two 
replicas to the ARCHIVE tier and keep just one replica in the DISK tier. If you have data 
that is almost purely historical, you can classify it as FROZEN data and move all three 
replicas to the ARCHIVE tier. 

Multiple Storage Policies
HDFS storage polices let you store different files in different storage types, according to 
a predetermined policy. You can set the following types of storage policies.

 n Hot: These are for data you’re currently using for processing. All replicas are stored 
on storage type DISK.

 n Cold: This is the storage with limited computing power, for data that needs to be 
archived, with all replicas being stored in ARCHIVE storage type–based media. 

 n Warm: One replica is stored on disk (DISK storage type) and the others in archive 
storage (ARCHIVE storage type).

 n ALL_SSD: All replicas are stored in SSD (policy enforced during the creation of 
the file).

 n ONE_SSD: One replica is stored in SSD and the other replicas in DISK (policy enforced 
during the creation of the file).

 n Lazy_Persist: Used for writing blocks with a single replica in memory. This is 
meant for applications that write temporary or easily reproducible data. The replica 
is first sent to the RAM_DISK storage type, and later moved to DISK.

Figure 8.13 shows how a storage policy will determine how many block replicas will 
go on the various types of available HDFS storage.

A storage policy contains a list of storage types for placing the blocks, and there are 
two separate lists of storage types called fallback storage types, one for file creation and 
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the other for replication. When the storage types of block placement run out of space, 
blocks are placed in the fallback storage types for file creation and replication. Here’s 
what a storage policy looks like (shows only three types of storage policies):

Policy ID Policy Name   Block Placement (n replicas)  Fallback storage for creation   Fallback storage for replication
2 Hot (default) DISK: n none ARCHIVE
5 Warm DISK: 1, ARCHIVE: n-1 ARCHIVE, DISK ARCHIVE, DISK
7 Cold ARCHIVE:n none none

You can list all the storage policies by issuing the following command:

$ hdfs storagepolicies -listPolicies

The default storage policy is to store all replicas on DISK. The scope of a storage 
policy encompasses a directory and all files within that directory.

The hdfs storagepolicies command has other uses besides letting you find the 
current storage policies in place. Here’s the syntax of the command:

WARM
One replica on DISK 
storage and the 
other two replicas on 
ARCHIVE storage

COLD
All three replicas on
ARCHIVE storage

Dataset A Dataset B

The storage policy specifies that
one replica of Dataset A goes on DISK
and the other two on ARCHIVE storage.

at all, so all three replicas go to ARCHIVE storage.

Hadoop Cluster

DISK DISK ARCHIVE ARCHIVE

A A B B

AB

Figure 8.13 Storage policies that assign data blocks to different types of storage
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$ hdfs storagepolicies
Usage: bin/hdfs storagepolicies [COMMAND]

[-listPolicies]
[-setStoragePolicy -path <path> -policy <policy>]
[-getStoragePolicy -path <path>]
[-help <command-name>]

$

Managing Storage Policies
As mentioned earlier, the dfs.storage.policy.enabled parameter is by default set to 
true, meaning that the storage policy feature is enabled. You can disable the feature 
by setting the parameter to false. When you create an HDFS directory or file, it doesn’t 
have a storage policy attached to it. You can specify the storage policy by using the 
dfsadmin –setStoragePolicy command, as shown here:

$ dfsadmin –setStoragePolicy <path> <policyName>

In this command, the path attribute can refer to either a file or a directory and the 
policyName attribute must specify one of the storage polices I listed earlier.

You can determine the current storage policy for a file or a directory with the following 
command:

$ hdfs dfsadmin –getStoragePolicy <path>

Moving Data Around
You can migrate data from a hot to a warm and then to a cold storage policy. Note that 
you can move one, two or all replicas of a data set to a different storage tier to optimize 
your use of HDFS storage capacity. You can keep some replicas of a specific set of data 
on one type of storage tier and the rest on other storage types. Applications that access 
the data are completely oblivious to the fact that you’re using multiple storage tiers. 
Since the ARCHIVE tier isn’t designed to have much (or any) processing power, mapper 
tasks running on the nodes providing the DISK storage will need to read the data from 
the nodes providing the ARCHIVE storage. This of course means that your cluster will incur 
additional network traffic to move the data around.

Here’s a summary of how storage policies work:

 n When you update storage policies for a file or a directory, HDFS doesn’t automati-
cally enforce the new storage policy. 

 n You can not only enforce a storage policy when you create a file but also at a later time. 
 n When you store data for the first time in your cluster, it’s stored in the default 
DISK tier.

 n Based on the classification of the data (specified by the storage policies you con-
figured), one or more replicas are moved over time to the ARCHIVE tier.
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The new mover tool moves data from one storage tier to another. It works very 
similarly to the HDFS balancer tool, except that it moves block replicas across different 
storage types. 

You can scan the HDFS files with the mover tool to determine whether the block 
placement matches the storage policies you’ve configured. If a block is not currently placed 
according to the storage policy you’ve configured, the mover will—what else—move 
the replicas to the appropriate storage type. Here’s how you invoke the mover tool to 
migrate data in the cluster.

$ hdfs mover [-p <files/dirs> | -f <local file name>] mover 

This command will use the root directory (/) as the default path. Here’s an explana-
tion of the key options you can specify with the mover command:

 n You can specify a list of HDFS files or directories for migration by specifying the 
–p option, which accepts a space-separated list of files and directories.

 n You can also use a local file with the list of HDFS files and directories to migrate 
the data to and specify the file with the –f option. 

 n In addition to the HDFS path and destination parameters, the mover also accepts 
the replica count as a parameter.

You can periodically run the mover to migrate all files to the storage type you con-
figured with your storage policies. 

If you’ve denoted some data as belonging to the ARCHIVE storage type and subse-
quently find applications using this data much more than what you had anticipated, 
you can reclassify that data as Warm or Cold. You can move one or more replicas to 
the faster DISK storage without incurring the additional network overhead involved in 
reading data from the ARCHIVE nodes.

Suppose the administrator applies the cold storage policy to a data set that she wants 
to store on the archival storage tier nodes. Since the dataset already exists, it falls to the 
mover to enforce the cold storage policy by moving the archived data from warm storage 
to cold storage. It’s a good practice to move all your cold data into a Hadoop archive.

Implementing Archival Storage
You set up archival storage separately on each DataNode. Here are the steps to do so.

1. Stop the DataNode:

$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh stop datanode

2. Assign the archive storage type to the DataNode by specifying the dfs.name.dir
parameter in the hdfs-site.xml file. Since DISK is the default storage type, you don’t
have to set DISK as the storage type. However, if you choose to specify a DataNode
with the ARCHIVE storage, you must insert [ARCHIVE] at the beginning of the local
file system path, as shown here:
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<property>
<name>dfs.data.dir</name>
<value>[ARCHIVE]file:///u01/data/dfs/</value>
</property>

3. Set the storage policy with the –setStoragePolicy command as shown here:

$ hdfs dfsadmin –setStoragePolicy /cold1  COLD

4. Start the DataNode:

$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start datanode

5. Since you updated the storage policy on a file or directory, you must use the
HDFS mover tool to migrate blocks according to the new storage policy you’ve
configured:

$ hdfs move  /cold1/testfile

iNotify in HDFS

Applications that run on HDFS often use some type of indexing or cache part of the 
data. This means that those applications must constantly update their caches and 
indices as new files are added or deleted. Consequently, applications had to per-
form inherently inefficient periodical scans to keep themselves abreast of all HDFS 
changes. In Hadoop 2.6 there’s a brand new feature called HDFS iNotify that sends 
notifications to the applications when any HDFS-related file system changes occur. 

The HDFS iNotify feature is used in cases such as when an application needs to monitor 
file and directory changes in a Hive database. Applications such as Solr also need 
notifications of file and directory changes. There’s a Hadoop Event Notification System 
offered by a third party, but with Hadoop 2.6, HDFS notifications become an integral 
part of Hadoop.

Summary
Here’s what you learned in this chapter:

 n As a Hadoop administrator, you’ll be spending a lot of time working with HDFS.
 n Clients, DataNodes and the NameNode interact to perform read and write operations.
 n Heterogeneous storage policies help you optimize your storage profile by using 

appropriate storage types based on various data classifications.

There’s a whole lot more to HDFS than what I discussed in this chapter! This chapter 
is one of four chapters in this book that deal with HDFS in depth. Chapter 9, “HDFS 
Commands, HDFS Permissions and HDFS Storage,” Chapter 10, “Data Protection, 
File Formats and Accessing HDFS,” and Chapter 11, “NameNode Operations, High 
Availability and Federation,” cover several other important aspects of working with HDFS. 
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HDFS Commands, 

HDFS Permissions and 
HDFS Storage

This chapter covers the following:

 n Working with HDFS
 n Using HDFS shell commands
 n Managing HDFS permissions and users
 n Managing HDFS storage (including rebalancing of data)
 n Granting users permissions and quotas 

Working with HDFS is one of the most common tasks for someone administering a 
Hadoop cluster. Although you can access HDFS in multiple ways, the command line is 
the most common way to administer HDFS storage.

Managing HDFS users by granting them appropriate permissions and allocating HDFS 
space quotas to users are some of the common user-related administrative tasks you’ll 
perform on a regular basis. The chapter shows how HDFS permissions work and how 
to grant and revoke space quotas on HDFS directories. 

Besides the management of users and their HDFS space quotas, there are other aspects 
of HDFS that you need to manage. This chapter also shows how to perform maintenance 
tasks such as periodically balancing the HDFS data to distribute it evenly across the cluster, 
as well as how to gain additional space in HDFS when necessary.

Managing HDFS through the HDFS Shell Commands
You can access HDFS in various ways: 

 n From the command line using simple Linux-like file system commands, as well as 
through a web interface, called WebHDFS 

 n Using the HttpFS gateway to access HDFS from behind a firewall 
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 n Through Hue’s File Browser (and Cloudera Manager and Ambari, if you’re using 
Cloudera, or Hortonwork’s Hadoop distributions) 

Figure 9.1 summarizes the various ways in which you can access HDFS. Although 
you have multiple ways to access HDFS, it’s a good bet that you’ll often be working 
from the command line to manage your HDFS files and directories. You can access the 
HDFS file system from the command line with the hdfs dfs file system commands. 

File Systems other than HDFS

It’s important to keep in mind that HDFS file systems are only one way that Hadoop 
implements a file system. There are several other Java implementations of file 
systems that work with Hadoop. These include local file systems (file), WebHDFS 
(WebHDFS), HAR (Hadoop archive files), View (viewfs), S3 (s3a) and others. For each 
file system, Hadoop uses a different URI scheme for the file system instance in order 
to connect with it. For example, you list the files in the local system by using the file 
URI scheme, as shown here:

$ hdfs dfs –ls file:///

This will get you a listing of files stored on the local Linux file system.

Web Interface
http://hadoop1.50070/dfsheath.jsp

WebHDFS

HttpFS

Hue

Use the REST API, which doesn't 
need any installation.

Use an independent service that 
exposes a REST API on 
top of HDFS.

Use Hue's 
Job Browser.

Use the command 
line.

Use Hadoop's web interface.

Java API

Command Line Examples:
hdfs dfs -mkdir /user/sam
hdfs dfs -cat /user/sam/text.txt
hdfs dfsadmin -report

Figure 9.1 The many ways in which you can access HDFS

http://www.hadoop1.50070/dfsheath.jsp
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Using the hdfs dfs Utility to Manage HDFS
You use the hdfs dfs utility to issue HDFS commands in Hadoop. Here’s the usage of 
this command:

hdfs dfs [GENERIC_OPTIONS] [COMMAND_OPTIONS]

Using the hdfs dfs utility, you can run file system commands on the file system 
supported in Hadoop, which happens to be HDFS. 

You can use two types of HDFS shell commands:

 n The first set of shell commands are very similar to common Linux file system 
commands such as ls, mkdir and so on. 

 n The second set of HDFS shell commands are specific to HDFS, such as the 
command that lets you set the file replication factor. 

You can access the HDFS file system from the command line, over the web, or through 
application code. HDFS file system commands are in many cases quite similar to famil-
iar Linux file system commands. For example, the command hdfs dfs –cat /path/to/
hdfs/file works the same as a Linux cat command, by printing the output of a file 
onto the screen. 

Internally HDFS uses a pretty sophisticated algorithm for its file system reads and 
writes, in order to support both reliability and high throughput. For example, when you 
issue a simple put command that writes a file to an HDFS directory, Hadoop will need 
to write that data fast to three nodes (by default).

You can access the HDFS shell by typing hdfs dfs <command> at the command line. 
You specify actions with subcommands that are prefixed with a minus (-) sign, as in 
dfs –cat for displaying a file’s contents. 

You may view all available HDFS commands by simply invoking the hdfs dfs 
command with no options, as shown here:

$ hdfs dfs
Usage: hadoop fs [generic options]

[-appendToFile <localsrc> ... <dst>]
[-cat [-ignoreCrc] <src> ...]

Figure 9.2 shows all the available HDFS dfs commands.
However, it’s the hdfs dfs –help command that’s truly useful to a beginner and even 

quite a few “experts”—this command clearly explains all the hdfs dfs commands. 
Figure 9.3 shows how the help utility clearly explains the various file copy options that 
you can use with the hdfs dfs command.

Note

Several Linux file and directory commands have analogs in HDFS. These include the famil-
iar ls, cp and mv commands. However, a big difference between Linux file and HDFS file 
system commands is that there are no directory-location-related commands in HDFS. For 
example, there’s no HDFS pwd command or cd command.
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Figure 9.2 The hdfs dfs commands.

Figure 9.3 How the hdfs dfs –help command helps you understand 
the syntax of the various options of the hdfs dfs command
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In the following sections, I show you how to

 n List HDFS files and directories
 n Use the HDFS STAT command
 n Create an HDFS directory
 n Remove HDFS files and directories
 n Change file and directory ownership
 n Change HDFS file permissions

Listing HDFS Files and Directories
As with regular Linux file systems, use the ls command to list HDFS files. You can 
specify various options with the ls command, as shown here:

$ hdfs dfs -usage ls
Usage: hadoop fs [generic options] -ls [-d] [-h] [-R] [<path> ...]
bash-4.2$
Here's what the options stand for:
-d: Directories are listed as plain files.
-h: Format file sizes in a human-readable fashion (eg 64.0m instead of 67108864).
-R: Recursively list subdirectories encountered.
-t: Sort output by modification time (most recent first).
-S: Sort output by file size.
-r: Reverse the sort order.
-u: Use access time rather than modification time for display and sorting.

Listing Both Files and Directories
If the target of the ls command is a file, it shows the statistics for the file, and if it’s a 
directory, it lists the contents of that directory. You can use the following command to 
get a directory listing of the HDFS root directory:

$ hdfs dfs –ls /
Found 8 items
drwxr-xr-x   - hdfs   hdfs 0 2013-12-11 09:09 /data
drwxr-xr-x   - hdfs   supergroup 0 2015-05-04 13:22 /lost+found
drwxrwxrwt   - hdfs   hdfs 0 2015-05-20 07:49 /tmp
drwxr-xr-x   - hdfs   supergroup 0 2015-05-07 14:38 /user
...
#

For example, the following command shows all files within a directory ordered by 
filenames:

$ hdfs dfs -ls /user/hadoop/testdir1

Alternately, you can specify the HDFS URI when listing files:

$ hdfs dfs –ls hdfs://<hostname>:9000/user/hdfs/dir1/

You can also specify multiple files or directories with the ls command:

$ hdfs dfs -ls /user/hadoop/testdir1 /user/hadoop/testdir2
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Listing Just Directories
You can view information that pertains just to directories by passing the –d option:

$ hdfs dfs -ls -d /user/alapati
drwxr-xr-x   - hdfs supergroup 0 2015-05-20 12:27 /user/alapati
$

The following two ls command examples show file information:

$ hdfs dfs –ls /user/hadoop/testdir1/test1.txt
$ hdfs dfs –ls /hdfs://<hostname>:9000/user/hadoop/dir1/

Note that when you list HDFS files, each file will show its replication factor. In this 
case, the file test1.txt has a replication factor of 3 (the default replication factor).

$ hdfs dfs -ls /user/alapati/
-rw-r--r--   3 hdfs supergroup 12 2016-05-24 15:44 /user/alapati/test.txt

Using the hdfs stat Command to Get Details about a File
Although the hdfs dfs –ls command lets you get the file information you need, there 
are times when you need specific bits of information from HDFS. When you run the 
hdfs dfs –ls command, it returns the complete path of the file. When you want to see only 
the base name, you can use the hdfs –stat command to view only specific details of a file. 

You can format the hdfs –stat command with the following options:
%b  Size of file in bytes
%F  Will return "file", "directory", or "symlink" depending on the type of inode
%g  Group name
%n  Filename
%o  HDFS Block size in bytes ( 128MB by default )
%r  Replication factor
%u  Username of owner
%y  Formatted mtime of inode
%Y  UNIX Epoch mtime of inode

In the following example, I show how to confirm if a file or directory exists.
# hdfs dfs -stat "%n" /user/alapati/messages
messages

If you run the hdfs –stat command against a directory, it tells you that the name you 
specify is indeed a directory.
$ hdfs dfs -stat "%b %F %g %n %o %r %u %y %Y" /user/alapati/test2222
0 directory supergroup test2222 0 0 hdfs 2015-08-24 20:44:11 1432500251198
$

The following examples show how you can view different types of information with 
the hdfs dfs –stat command when compared to the hdfs dfs –ls command. Note 
that I specify all the -stat command options here.

$ hdfs dfs -ls /user/alapati/test2222/true.txt
-rw-r--r--   2 hdfs supergroup 12 2015-08-24 15:44 /user/alapati/test2222/
true.txt
$

$ hdfs dfs -stat "%b %F %g %n %o %r %u %y %Y" /user/alapati/test2222/true.txt
12 regular file supergroup true.txt 268435456 2 hdfs 2015-05-24 20:44:11 1432500251189
$
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I’d be remiss if I didn’t add that you can also access HDFS through Hue’s Job Browser, 
as shown in Figure 9.4.

Creating an HDFS Directory 
Creating an HDFS directory is similar to how you create a directory in the Linux file system. 
Issue the mkdir command to create an HDFS directory. This command takes path URIs 
as arguments to create one or more directories, as shown here:

$ hdfs dfs -mkdir /user/hadoop/dir1 /user/hadoop/dir2

The directory /user/hadoop must already exist for this command to succeed. 
Here’s another example that shows how to create a directory by specifying a directory 

with a URI.

$ hdfs dfs –mkdir hdfs://nn1.example.com/user/hadoop/dir

If you want to create parent directories along the path, specify the –p option, with the hdfs 
dfs -mkdir command, just as you would do with its cousin, the Linux mkdir command.

$ hdfs dfs -mkdir –p /user/hadoop/dir1

In this command, by specifying the –p option, I create both the parent directory 
hadoop and its subdirectory dir1 with a single mkdir command.

Removing HDFS Files and Directories
HDFS file  and directory removal commands work similar to the analogous commands 
in the Linux file system. The rm command with the –R option removes a directory and 
everything under that directory in a recursive fashion. Here’s an example.

$ hdfs dfs -rm -R /user/alapati
15/05/05 12:59:54 INFO fs.TrashPolicyDefault: Namenode trash configuration: 
Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop01-ns/user/alapati' to trash at: hdfs://hadoop01-ns/user/
hdfs/.Trash/Current
$

Figure 9.4 Hue’s File Browser, showing how you can access HDFS from Hue
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I issued an rm –R command, and I can verify that the directory I want to remove is 
indeed gone from HDFS. However, the output of the rm –R command shows that the 
directory is still saved for me in case I need it—in HDFS’s trash directory. The trash 
directory serves as a built-in safety mechanism that protects you against accidental file 
and directory removals. If you haven’t already enabled trash, please do so ASAP! 

Even when you enable trash, sometimes the trash interval is set too low, so make 
sure that you configure the fs.trash.interval parameter in the hdfs-site.xml file 
appropriately. For example, setting this parameter to 14,400 means Hadoop will retain 
the deleted items in trash for a period of ten days. 

You can view the deleted HDFS files currently in the trash directory by issuing the 
following command:

$ hdfs dfs –ls /user/sam/.Trash

You can use the –rmdir option to remove an empty directory:

$ hdfs dfs –rmdir /user/alapati/testdir

If the directory you wish to remove isn’t empty, use the -rm –R option as shown earlier.
If you’ve configured HDFS trash, any files or directories that you delete are moved 

to the trash directory and retained in there for the length of time you’ve configured for 
the trash directory. On some occasions, such as when a directory fills up beyond the space 
quota you assigned for it, you may want to permanently delete files immediately. You can 
do so by issuing the dfs –rm command with the –skipTrash option:

$ hdfs dfs –rm /user/alapati/test –skipTrash

The –skipTrash option will bypass the HDFS trash facility and immediately delete 
the specified files or directories.

You can empty the trash directory with the expunge command:

$ hdfs dfs –expunge

All files in trash that are older than the configured time interval are deleted when you 
issue the expunge command.

Changing File and Directory Ownership and Groups
You can change the owner and group names with the –chown command, as shown here:

$ hdfs dfs –chown sam:produsers  /data/customers/names.txt

You must be a super user to modify the ownership of files and directories. 
HDFS file permissions work very similar to the way you modify file and directory 

permissions in Linux. Figure 9.5 shows how to issue the familiar chmod, chown and 
chgrp commands in HDFS.

Figure 9.5 Changing file mode, ownership and group with HDFS commands
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Changing Groups
You can change just the group of a user with the chgrp command, as shown here:

$ sudo –u hdfs hdfs dfs –chgrp marketing /users/sales/markets.txt

Changing HDFS File Permissions
You can use the chmod command to change the permissions of a file or directory. You 
can use standard Linux file permissions. Here’s the general syntax for using the chmod 
command:

hdfs dfs –chmod [-R] <mode> <file/dir>

You must be a super user or the owner of a file or directory to change its permissions.
With the chgrp, chmod and chown commands you can specify the –R option to make 

recursive changes through the directory structure you specify.
In this section, I’m using HDFS commands from the command line to view and 

manipulate HDFS files and directories. However, there’s an even easier way to access 
HDFS, and that’s through Hue, the web-based interface, which is extremely easy to use 
and which lets you perform HDFS operations through a GUI. Hue comes with a File 
Browser application that lets you list and create files and directories, download and 
upload files from HDFS and copy/move files. You can also use Hue’s File Browser to 
view the output of your MapReduce jobs, Hive queries and Pig scripts. 

While the hdfs dfs utility lets you manage the HDFS files and directories, the 
hdfs dfsadmin utility lets you perform key HDFS administrative tasks. In the next 
section, you'll learn how to work with the dfsadmin utility to manage your cluster.

Using the dfsadmin Utility to Perform HDFS 
Operations
The hdfs dfsadmin command lets you administer HDFS from the command line. 
While the hdfs dfs commands you learned about in the previous section help you 
manage HDFS files and directories, the dfsadmin command is useful for performing 
general HDFS-specific administrative tasks. It’s a good idea to become familiar with 
all the options that are available for the dfsadmin utility by issuing the following 
command:

$ hdfs dfsadmin -help
hdfs dfsadmin performs DFS administrative commands.
Note: Administrative commands can only be run with superuser permission.
The full syntax is:
hdfs dfsadmin

[-report [-live] [-dead] [-decommissioning]]
[-safemode <enter | leave | get | wait>]
[-saveNamespace]

...
$ 
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Note

You’ve already seen a couple of the dfsadmin administrative commands in action (such 
as dfsadmin -report and dfsadmin -printTopology) in earlier chapters. This book 
explains the rest of the dfsadmin commands in the appropriate context in various 
chapters.

If you issue the dfsadmin command with no options, it will list all the options that 
you can specify with the command. The dfsadmin –help command is highly useful, 
since it not only lists the command options, but also shows you what they are for and 
their syntax as well. Figure 9.6 shows a portion of the dfsadmin –help command.

There are several useful dfsadmin command options. In the next few sections, let’s 
look at the following command options (other sections of this chapter and other chapters 
will discuss several other command options).

 n dfsadmin –report

 n dfsadmin –refreshNodes

 n dfsadmin -metasave

The dfsadmin –report Command
The dfsadmin tool helps you examine the HDFS cluster status. The dfsadmin –report 
command produces useful output that shows basic statistics of the cluster, including the 

Figure 9.6 The dfsadmin –help command reveals 
useful information for each dfsadmin command.
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status of the DataNodes and NameNode, the configured disk capacity and the health of 
the data blocks. Here’s a sample dfsadmin –report command:

$ hdfs dfsadmin -report

Configured Capacity: 2068027170816000 (1.84 PB) #A
Present Capacity: 2068027170816000 (1.84 PB)
DFS Remaining: 562576619120381 (511.66 TB) #A
DFS Used: 1505450551695619 (1.34 PB) #B
DFS Used%: 72.80% #B
Under replicated blocks: 1 #C
Blocks with corrupt replicas: 0
Missing blocks: 1
Missing blocks (with replication factor 1): 9 #C

-------------------------------------------------
Live datanodes (54): #D

Name: 10.192.0.78:50010 (hadoop02.localhost) #E
Hostname: hadoop02.localhost.com
Rack: /rack3 #E
Decommission Status : Normal #F
Configured Capacity: 46015524438016 (41.85 TB) #G
DFS Used: 33107988033048 (30.11 TB)
Non DFS Used: 0 (0 B)
DFS Remaining: 12907536404968 (11.74 TB)
DFS Used%: 71.95%
DFS Remaining%: 28.05% #G
Configured Cache Capacity: 4294967296 (4 GB) #H
Cache Used: 0 (0 B)
Cache Remaining: 4294967296 (4 GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00% #H
Xceivers: 71
Last contact: Fri May 01 15:15:59 CDT 2015

...

Notes

#A Configured capacity for HDFS in this cluster 

#B HDFS used storage statistics

#C Shows if there are any under-replicated, corrupt or missing blocks

#D Shows how many DataNodes in the cluster are alive and available

#E The hostname and rack name 

#F Status of the DataNode (decommissioned or not)

#G Configured and used capacity for this DataNode

#H Cache usage statistics (if configured)

Note

You can view the same information as that shown by the dfsadmin –report command on 
the NameNode web status page, which is at http://<namenode IP>:50070/dfshealth.jsp.
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The dfsadmin –report command shows HDFS details for the entire cluster, as well 
as separately for each node in the cluster. The output of the DFS command shows the 
following at the cluster and the individual DataNode levels:

 n A summary of the HDFS storage allocation, including information about the 
configured, used and remaining space

 n If you’ve configured centralized HDFS caching, the used and remaining percent-
ages of cache

 n Missing, corrupted and under-replicated blocks

As you’ll learn later in this book, the dfsadmin –report command’s output helps 
greatly in examining how balanced the HDFS data is, as well as helps you find out the 
extent of HDFS corruption (if it exists).

The dfsadmin –refreshNodes Command
The dfsadmin –refreshNodes command updates the NameNode with the list of 
DataNodes that are allowed to connect to the NameNode.

The NameNode reads the hostnames of the DataNode from the files pointed to by the 
dfs.hosts and the dfs.hosts.exclude configuration parameters in the hdfs-site.xml 
file. The dfs.hosts file lists all the hosts that are allowed to register with the NameNode. 
Any entries in the dfs.hosts.exclude file point to DataNodes that need to be decommis-
sioned (you finalize the decommissioning after all the replicas from the node that is being 
decommissioned are replicated to other DataNodes).

The dfsadmin –metasave Command
The dfsadmin –metasave command provides more information than that provided by 
the dfsadmin –report command. This command gets you various block-related pieces 
of information such as:

 n Total number of blocks
 n Blocks waiting for replication
 n Blocks that are currently being replicated

Here’s how you run the dfsadmin –metasave command:

$ sudo -u hdfs hdfs dfsadmin -metasave test.txt
Created metasave file test.txt in the log directory of namenode hadoop1
.localhost.com/10.192.2.21:8020
Created metasave file test.txt in the log directory of namenode hadoop02
.localhost.com/10.192.2.22:8020
$

When you run the dfsadmin –metasave command, it creates a file in the /var/log/
hadoop-hdfs directory on the server where you executed the command. The output 
file will contain the following information regarding the blocks:

58 files and directories, 17 blocks = 75 total
Live Datanodes: 1
Dead Datanodes: 0
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Metasave: Blocks waiting for replication: 0
Mis-replicated blocks that have been postponed:
Metasave: Blocks being replicated: 0
Metasave: Blocks 0 waiting deletion from 0 datanodes.
Metasave: Number of datanodes: 1
127.0.0.1:50010 IN 247241674752(230.26 GB) 323584(316 KB) 0% 220983930880(205.81 GB) 
Sat May 30 18:52:49 PDT 2015

Managing HDFS Permissions and Users
HDFS as a file system is somewhat similar to the POSIX file system in terms of the file 
permissions it requires. However, HDFS doesn’t have the concept of users and groups 
as in the other file systems. It’s important to understand the nature of the HDFS super 
user and how to manage the granting of permissions to users. You also need to learn 
how to set up users so they’re ready to read data and write to the HDFS file system.

In the following sections, I explain these topics:

 n HDFS file permissions
 n Creating HDFS users

HDFS File Permissions
In a Linux system, you create OS users and make them members of an existing oper-
ating system group. In Hadoop, you associate a directory with an owner and a group. 
You need not actually “create” either the users or the groups. Rather, you use the concept 
of users and groups to set file and directory permissions. The following sections show how 
file and directory permissions work in HDFS.

HDFS Permission Checking
The HDFS configuration parameter dfs.permissions.enabled in the hdfs-site.xml 
file determines whether permission checking is enabled in HDFS:

<property>
<name>dfs.permissions.enabled</name>
<value>true</value>
</property>

The default value of the parameter is true, meaning permission checking is enabled. 
If you set this parameter to false, you turn HDFS permission checking off. Obviously, 
you can do this in a development environment to overcome frequent permission-related 
error messages, but in a production cluster, you need to keep it at its default setting.

HDFS File and Directory Permissions
HDFS uses a symbolic notation (r, w) to denote the read and write permissions, just as 
a Linux operating system does.

 n When a client accesses a directory, if the client is the same as the directory’s 
owner, Hadoop tests the owner’s permissions.

 n If the group matches the directory’s group, then Hadoop tests the user’s group 
permissions.
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 n If neither the owner nor the group names match, Hadoop tests the “other” per-
mission of the directory.

 n If none of the permissions checks succeed, the client’s request is denied.

Although there’s an execute (x) permission for a file, it’s ignored for files, and as far 
as directories go, the execute permission implies that you can access the subdirectories 
of that directory. Unlike in the underlying Linux operating system, Hadoop has nothing 
like the UIDs (User IDs) or GIDs (Group IDs) to identify users and groups. HDFS simply 
stores users and groups of a directory or file as strings.

A user can write to an HDFS directory only if that user has the correct permissions. 
In this example, the Linux root user tries to copy a file to a user’s HDFS directory and 
fails due to lack of permissions.

[root@hadoop01]# hdfs dfs -put test.txt /user/alapati/test2222/
put: Permission denied: user=root, access=WRITE, inode="/user/alapati/
test2222":hdfs:supergroup:drwxr-xr-x
[root@hadoop01]#

Permission Denied Errors in HDFS
You may receive the permission denied error when you’re issuing an HDFS command 
from the command line, as in the previous example, or even when you’re trying to 
browse the HDFS file system through the NameNode web page. For example, you may 
receive the following error when you try to browse files through the web UI.

Permission denied: user=alapati, access=READ_EXECUTE, inode="/user":hadoop:hdfs:drwx.------

In this case, you need to change the access privileges on the HDFS directory /user, 
after logging in as the user hdfs, from the command line:

$ hdfs dfs –chmod –R 755 /user

Running administrative commands as the root user or any other non-privileged 
(from the perspective of Hadoop) user will result in errors. If you run the Hadoop file 
system checking command fsck as the root user, you’ll get the following error:

$ su root
$ hdfs fsck /
...
FSCK ended at Sun May 29 14:46:27 CDT 2016 in 39473 milliseconds
Permission denied: user=root, access=READ_EXECUTE, inode="/lost+found/user":hdfs:supergroup:drwxr--r--

Fsck on path '/' FAILED
#

The FAILED result you get from running the fsck command here doesn’t mean the 
file system is corrupt! It simply means that you failed to execute the fsck command. 
A similar thing happens when you run the dfsadmin –report command as any user 
other than the HDFS super user, hdfs:

$ hdfs dfsadmin –report
-------------------------------------------------
report: Access denied for user root. Superuser privilege is required
#
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In both the cases described here, the right thing to do is to either log in as the user hdfs 
and execute the commands, or if you have the sudo privileges to the hdfs user account, 
run the commands as follows:

$ sudo –u hdfs hdfs fsck /
$ sudo –u hdfs hdfs dfsadmin –report

Using Access Control Lists (ACLs) to control permissions

 Unlike the regular Linux or UNIX permissions mode, Access Control Lists (ACLs) let you 
define permissions for some of a group’s members. For example, you can grant or deny 
write permissions on a file only to specific users or groups. ACLs are disabled by 
default, but you can enable them by configuring the NameNode appropriately with the 
dfs.namenode.acls.enabled configuration parameter.

Chapter 15, “Securing Hadoop,” which deals with Hadoop security, discusses ACLs in 
more detail.

HDFS Users and Super Users
Typically, database administrators create users in their databases, with each user having 
specific privileges and/or roles that enable them to perform various actions in the database. 
In the context of Hadoop, creating a user is kind of a misnomer, as HDFS really doesn’t 
have anything that lets you create user identities as you would on Linux systems. It also 
doesn’t enable you to create any groups. 

In the default mode of authentication, called simple authentication, Hadoop relies on 
the underlying operating system to determine client identities. If you set up a Kerberized 
system (a system that has been set up to authenticate connections through Kerberos), 
then Kerberos will determine the client identities. Chapter 15 shows how to set up 
Kerberos for user authentication. 

Note that you don’t need to create an operating system account on the underlying 
Linux system for your HDFS users to be able to access and use HDFS. It’s a good prac-
tice to create OS accounts for all Hadoop users who’ll be using the local file system on 
the gateway servers for their Hadoop-related work.

Creating HDFS (and Hadoop) Users
In order to enable new users to use your Hadoop cluster, follow these general steps.

1. Create an OS account on the Linux system from which you want to let a user execute
Hadoop jobs. Before creating the user, you may have to create the group as well:

$ group add analysts
$ useradd –g analysts alapati
$ passwd alapati

Here, analysts is an OS group I’ve created for a set of users. The passwd command
lets me set a password for the user.
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2. Make sure that you’ve set the permissions on the Hadoop temp directory you’ve
specified in the core-site.xml file, so all Hadoop users can access it:

<property>
  <name>hadoop.tmp.dir</name>
  <value>/tmp/hadoop-$(user.name)</value>
</property>

3. If the file permissions on the HDFS temp directory aren’t 777, make them so:

$ hdfs –dfs –chmod –R 777  //tmp/hadoop-alapati

4. In order to “create” a new HDFS user, you need to create a directory under the /user
directory. This directory will serve as the HDFS “home” directory for the user.

$ hdfs dfs -mkdir /user/alapati

5. By default, when you create a directory or a file, the owner is the user that creates
the directory (or file) and the group is the group of that user, as shown here.

# sudo -u hdfs
# hdfs dfs -ls /user
Found 135 items
drwxr-xr-x   - hdfs       supergroup          0 2016-05-28 08:18 /user/alapati
....

In this case, I used the hdfs account to create the directory, so the owner is hdfs 
and the group is supergroup. Change the ownership of the directory, since you 
don’t want to use the default owner/group (hdfs/supergroup) for this directory.

$ su hdfs
$ hdfs dfs –chown –R alapati:analysts
$ hdfs dfs –ls /user/
$ drwxr-xr-x   - alapati   analysts 0 2016-04-27 12:40 /user/alapati

6. You can check the new directory structure for the user with the following command:

$ hdfs dfs –ls /user/alapati

User alapati can now store the output of his MapReduce and other jobs under that
user's home directory in HDFS.

7. Refresh the user and group mappings to let the NameNode know about the new user:

$ hdfs dfsadmin -refreshUserToGroupMappings

8. Set a space quota for the new directory you’ve created:

$ hdfs dfsadmin -setSpaceQuota 30g /user/alapati

The new user can now log into the gateway servers and execute his or her Hadoop jobs 
and store data in HDFS. 

User Identities
Hadoop supports two modes of operation—simple and Kerberos—to determine user 
identities. The simple mode of operation is the default. You specify the mode of operation 
with the hadoop.security.authentication property in the hdfs-site.xml file.
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When operating in a non-Kerberos (or non-Kerberized) cluster, the host operating 
system determines the client identities. In a Kerberized cluster, user identities are based 
on the user’s Kerberos credentials, as explained in Chapter 15. Users determine their 
current Kerberos principal through the kinit utility, and the Kerberos principal is then 
mapped to an HDFS username. 

The HDFS Super User
Since Hadoop doesn’t have the concept of a user identity, there’s no fixed super user 
for Hadoop. The system super user for Hadoop is simply the operating system user that 
starts the NameNode. The HDFS super user doesn’t have to be the root user of the 
NameNode host. If you wish, you can allocate a set of users to a separate super user 
group. 

You can make a set of users members of a super user group by setting the dfs
.permissions.supergroup configuration parameter in the hdfs-site.xml file, as shown here.

<property>
  <name>dfs.permissions.superusergroup</name>
  <value>supergroup</value>
</property>

In this example, supergroup is the name of the group of super users in the cluster. 
The following example shows that the user hdfs belongs to the group supergroup:

# hdfs dfs -ls /
Found 7 items
drwxr-xr-x   - hdfs   hdfs 0 2014-06-25 16:39 /data
drwxr-xr-x   - hdfs   supergroup 0 2015-05-05 15:46 /system
drwxrwxrwt   - hdfs   hdfs 0 2015-05-09 09:33 /tmp
drwxr-xr-x   - hdfs   supergroup 0 2015-05-05 13:20 /user
...
#

A lot of the administrative HDFS commands need to be run as the “hdfs” OS user, 
which is the default HDFS super user. If you run these commands as any other user, 
including the root user in a Linux system, you’ll get the following error:

Access denied for user root. Superuser privilege is required.

The root user in Linux is indeed a super user but only for the local file system. It’s user 
hdfs who’s king when it comes to the HDFS file system. You can perform administration-
related HDFS commands only as the hdfs user or by sudoing to that user. You can use 
the Linux sudo command to use the privileged administrative commands, as shown in 
the following example.

$ sudo –u hdfs hdfs dfs –rm /user/test/test.txt

In this example, the OS user was granted sudo privileges to the HDFS account and 
thus is able to run HDFS file commands as the HDFS super user hdfs.
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Managing HDFS Storage
You deal with very large amounts of data in a Hadoop cluster, often ranging over multiple 
petabytes. However, your cluster is also going to use a lot of that space, sometimes with 
several terabytes of data arriving daily. This section shows you how to check for used 
and free space in your cluster, and manage HDFS space quotas. The following section 
shows how to balance HDFS data across the cluster.

The following subsections show how to

 n Check HDFS disk usage (used and free space)
 n Allocate HDFS space quotas

Checking HDFS Disk Usage
Throughout this book, I show how to use various HDFS commands in their appropriate 
contexts. Here, let’s review some HDFS space and file related commands. You can view the 
help facility for any individual HDFS file command by issuing the following command first:

$ hdfs dfs –usage

Let’s review some of the most useful file system commands that let you check the HDFS 
usage in your cluster. The following sections explain how to

 n Use the df command to check free space in HDFS
 n Use the du command to check space usage
 n Use the dfsadmin command to check free and used space

Finding Free Space with the df Command
You can check the free space in an HDFS directory with a couple of commands. The -df 
command shows the configured capacity, available free space and used space of a file 
system in HDFS.

# hdfs dfs -df
Filesystem                      Size              Used Available  Use%
hdfs://hadoop01-ns  2068027170816000  1591361508626924  476665662189076   77%
#

You can specify the –h option with the df command for more readable and concise output:

# hdfs dfs -df -h
Filesystem           Size   Used  Available Use%
hdfs://hadoop01-ns  1.8 P  1.4 P    433.5 T   77%
#

The df –h command shows that this cluster’s currently configured HDFS storage is 
1.8PB, of which 1.4PB have been used so far.

Finding the Used Space with the du Command
You can view the size of the files and directories in a specific directory with the du 
command. The command will show you the space (in bytes) used by the files that match 
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the file pattern you specify. If it’s a file, you’ll get the length of the file. The usage of 
the du command is as follows:

$ hdfs dfs –du URI

 Here’s an example:

$ hdfs dfs -du /user/alapati
67545099068  67545099068  /user/alapati/.Trash
212190509    328843053    /user/alapati/.staging
26159 78477 /user/alapati/catalyst
3291761247   6275115145   /user/alapati/hive
$

You can view the used storage in the entire HDFS file system with the following 
command:

$ hdfs dfs -du /
414032717599186  883032417554123  /data
0 0 /home
0 0 /lost+found
111738 335214 /schema
1829104769791    5401313868645    /tmp
325747953341360  690430023788615  /user
$ 

The following command uses the –h option to get more readable output:

$ hdfs dfs -du -h /
353.4 T  733.6 T  /data
0 0 /home
0 0 /lost+found
109.1 K  327.4 K  /schema
2.1 T    6.1 T    /tmp
277.3 T  570.9 T  /user
$

Note the following about the output of the du –h command shown here:

 n The first column shows the actual size (raw size) of the files that users have 
placed in the various HDFS directories.

 n The second column shows the actual space consumed by those files in HDFS. 

The values shown in the second column are much higher than the values shown 
in the first column. Why? The reason is that the second column’s value is derived by 
multiplying the size of each file in a directory by its replication factor, to arrive at the 
actual space occupied by that file. 

As you can see, directories such as /schema and /tmp reveal that the replication 
factor for all f iles in these two directories is three. However, not all f iles in the /data 
and the /user directories are being replicated three times. If they were, the second 
column’s value for these two file systems would also be three times the value of its f irst 
column. 
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If you sum up the sizes in the second column of the dfs –du command, you’ll find that 
it’s identical to that shown by the Used column of the dfs -df command, as shown here:

$ hdfs dfs -df -h /
Filesystem             Size     Used  Available  Use%
hdfs://hadoop01-ns  553.8 T  409.3 T    143.1 T   74%
$

Getting a Summary of Used Space with the du -s Command
The du –s command lets you summarize the used space in all files instead of giving 
individual file sizes as the du command does.

$ hdfs dfs -du -s -h /
131.0 T  391.1 T  /
$

How to Check Whether Hadoop Can Use More Storage Space
If you’re under severe space pressure and you can’t add additional DataNodes right away, 
you can see if there’s additional space left on the local file system that you can commandeer 
for HDFS use immediately. In Chapter 3, I showed how to configure the HDFS storage 
directories by specifying multiple disks or volumes with the dfs.data.dir configura-
tion parameter in the hdfs-site.xml file. Here’s an example:

<property>
<name>df.data.dir</name>
<value>/u01/hadoop/data,/u02/hadoop/data,/u03/hadoop/data</value>
</property>

There’s another configuration parameter you can specify in the same file, named 
dfs.datanode.du.reserved, which determines how much space Hadoop can use from 
each disk you list as a value for the dfs.data.dir parameter. The dfs.datanode.du.reserved 
parameter specifies the space reserved for non-HDFS use per DataNode. Hadoop can use 
all data in a disk above this limit, leaving the rest for non-HDFS uses. Here’s how you 
set the dfs.datanode.du.reserved configuration property:

<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
<description>Reserved space in bytes per volume. Always leave this much space 
free for non-dfs use.
</description>
</property>

In this example, the dfs.datanode.du.reserved parameter is set to 10GB (the value is 
specified in bytes). HDFS will keep storing data in the data directories you assigned 
to it with the dfs.data.dir parameter, until the Linux file system reaches a free space 
of 10GB on a node. By default, this parameter is set to 10GB. You may consider lowering 
the value for the dfs.datanode.du.reserved parameter if you think there’s plenty 
of unused space lying around on the local f ile system on the disks configured for 
Hadoop’s use.
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Storage Statistics from the dfsadmin Command
You’ve seen how you can get storage statistics for the entire cluster, as well as for each 
individual node, by running the dfsadmin –report command. The Used, Available 
and Use% statistics from the dfs –du command match the disk storage statistics from 
the dfsadmin –report command, as shown here:

bash-3.2$ hdfs dfs -df -h /
Filesystem           Size   Used  Available  Use%
hdfs://hadoop01-ns  1.8 P  1.5 P    269.6 T   85%

In the following example, the top portion of the output generated by the dfsadmin 
–report command shows the cluster’s storage capacity:

bash-3.2$ hdfs dfsadmin -report
Configured Capacity: 2068027170816000 (1.84 PB)
Present Capacity: 2067978866301041 (1.84 PB)
DFS Remaining: 296412818768806 (269.59 TB)
DFS Used: 1771566047532235 (1.57 PB)
DFS Used%: 85.67%
...

You can see that both the dfs –du command and the dfsadmin –report command 
show identical information regarding the used and available HDFS space.

Testing for Files
You can check whether a certain HDFS file path exists and whether that path is a directory 
or a file with the test command:

$ hdfs dfs –test –e /users/alapati/test

This command uses the –e option to check whether the specified path exists.
You can create a file of zero length with the touchz command, which is identical to 

the Linux touch command:

$ hdfs dfs -touchz /user/alapati/test3.txt

Allocating HDFS Space Quotas
You can configure quotas on HDFS directories, thus allowing you to limit how much 
HDFS space users or applications can consume. HDFS space allocations don’t have a direct 
connection to the space allocations on the underlying Linux file system. Hadoop lets 
you actually set two types of quotas:

 n Space quotas: Allow you to set a ceiling on the amount of space used for an 
individual directory

 n Name quotas: Let you specify the maximum number of file and directory 
names in the tree rooted at a directory 

The following sections cover

 n Setting name quotas
 n Setting space quotas
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 n Checking name and space quotas
 n Clearing name and space quotas

Setting Name Quotas
You can set a limit on the number of files and directory names in any directory by 
specifying a name quota. If the user tries to create files or directories that go beyond 
the specified numerical quota, the file/directory creation will fail. Use the dfsadmin 
command –setQuota to set the HDFS name quota for a directory. Here’s the syntax 
for this command:

$ hdfs dfsadmin –setQuota <max_number> <directory>

For example, you can set the maximum number of files that can be used by a user 
under a specific directory by doing this:

$ hdfs dfsadmin –setQuota 100000 /user/alapati

This command sets a limit on the number of files user alapati can create under that 
user’s home directory, which is /user/alapati. If you grant user alapati privileges on other 
directories, of course, the user can create files in those directories, and those files won’t 
count against the name quota you set on the user’s home directory. In other words, name 
quotas (and space quotas) aren’t user specific—rather, they are directory specific.

Warning

If you create a user’s home directory but fail to grant the user a space quota, the user has 
unlimited storage in HDFS. Not good!

Setting Space Quotas on HDFS Directories
A space quota lets you set a limit on the storage assigned to a specific directory under 
HDFS. This quota is the number of bytes that can be used by all files in a directory. 
Once the directory uses up its assigned space quota, users and applications can’t create 
files in the directory. 

Note

HDFS space quotas are based on limits on HDFS storage that can be used by a directory—
and not by a user.

A space quota sets a hard limit on the amount of disk space that can be consumed by 
all files within an HDFS directory tree. You can restrict a user’s space consumption by 
setting limits on the user’s home directory or other directories that the user shares with 
other users. If you don’t set a space quota on a directory it means that the disk space 
quota is unlimited for that directory—it can potentially use the entire HDFS. 

Hadoop checks disk space quotas recursively, starting at a given directory and traversing 
up to the root. The quota on any directory is the minimum of the following:

 n Directory space quota
 n Parent space quota
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 n Grandparent space quota
 n Root space quota

Managing HDFS Space Quotas
It’s important to understand that in HDFS, there must be enough quota space to accom-
modate an entire block. If the user has, let’s say, 200MB free in their allocated quota, 
they can’t create a new file, regardless of the file size, if the HDFS block size happens to 
be 256MB. You can set the HDFS space quota for a user by executing the setSpace-
Quota command. Here’s the syntax:

$ hdfs dfsadmin –setSpaceQuota <N> <dirname>...<dirname>

The space quota you set acts as the ceiling on the total size of all files in a directory. 
You can set the space quota in bytes (b), megabytes (m), gigabytes (g), terabytes (t) and 
even petabytes (by specifying p—yes, this is big data!). And here’s an example that shows 
how to set a user’s space quota to 60GB:

$ hdfs dfsadmin -setSpaceQuota 60G  /user/alapati

You can set quotas on multiple directories at a time, as shown here:

$ hdfs dfsadmin  -setSpaceQuota 10g /user/alapati /test/alapati

This command sets a quota of 10GB on two directories—/user/alapati and /test/alapati. 
Both the directories must already exist. If they do not, you can create them with the 
dfs –mkdir command.

Caution

The space quota includes all replicated data. If you set the quota at 30GB for a user, that 
user can exhaust her quota by storing 10GB of actual data in her HDFS directory (using the 
default replication factor of three, HDFS stores 10 X 3= 30GB of data).

You use the same command, -setSpaceQuota, both for setting the initial limits and 
modifying them later on. When you create an HDFS directory, by default, it has no space 
quota until you formally set one.

You can remove the space quota for any directory by issuing the –clrSpaceQuota 
command, as shown here:

$ dfsadmin –clrSpaceQuota /user/alapati 

If you remove the space quota for a user’s directory, that user can, theoretically 
speaking, use up all the space you have in HDFS. As with the –setSpaceQuota com-
mand, you can specify multiple directories in the –clrSpaceQuota command. 

Things to Remember about Hadoop Space Quotas
Both the Hadoop block size you choose and the replication factor in force are key 
determinants of how a user’s space quota works. Let’s suppose that you grant a new 
user a space quota of 30GB and the user has more than 500MB still free. If the user 
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tries to load a 500MB file into one of his directories, the attempt will fail with an error 
similar to the following, even though the directory had a bit over 500MB of free space.

org.apache.hadoop.hdfs.protocol.DSQuotaExceededException: The DiskSpace quota
of /user/alapati is exceeded: quota = 32212254720 B = 30 GB but 
diskspace consumed = 32697410316 B = 30.45 GB

In this case, the user had enough free space to load a 500MB file but still received 
the error indicating that the file system quota for the user was exceeded. This is so 
because the HDFS block size was 128MB, and so the file needed 4 blocks in this case. 
Hadoop tried to replicate the file three times since the default replication factor was 
three and so was looking for 128*12=1556MB of space, which clearly was over the 
space quota left for this user. 

Note

The disk space quota is deducted based not only on the size of the file you want to store in 
HDFS but also the number of replicas. If you’ve configured a replication factor of three and 
the file is 500MB in size, three block replicas are needed, and therefore, the total quota 
consumed by the file will be 1,500MB, not 500MB.

The administrator can reduce the space quota for a directory to a level below the 
combined disk space usage under a directory tree. In this case, the directory is left in an 
indefinite quota violation state until the administrator or the user removes some files 
from the directory. The user can continue to use the files in the overfull directory but, 
of course, can’t store any new files there since their quota is violated.

Checking Current Space Quotas
You can check the size of a user’s HDFS space quota by using the dfs –count –q command 
as shown in Figure 9.7.

When you issue a dfs –count –q command, you’ll see eight different columns in 
the output. This is what each of the columns stands for:

 n QUOTA: Limit on the files and directories
 n REMAINING_QUOTA: Remaining number of files and directories in 

the quota that can be created by this user
 n SPACE_QUOTA: Space quota granted to this user
 n REMAINING_SPACE_QUOTA: Space quota remaining for this user
 n DIR_COUNT: The number of directories
 n FILE_COUNT: The number of files
 n CONTENT_SIZE: The file sizes
 n PATH_NAME: The path for the directories

The -count –q command shows that the space quota for user bdaldr is about 100TB. 
Of this, the user has about 67 TB left as free space.
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Clearing Current Space Quotas
You can clear the current space quota for a user by issuing the clrSpaceQuota com-
mand as shown here:

$ hdfs dfsadmin -clrSpaceQuota 

Here’s an example showing how to clear the space quota for a user: 

$ hdfs dfsadmin -clrSpaceQuota /user/alapati
$ hdfs dfs -count -q /user/alapati

none inf none inf 2 
0 0 /user/alapati
$

The user still can use HDFS to read files but won’t be able to create any files in that 
user’s  HDFS “home” directory. If the user has sufficient privileges, however, she can 
create files in other HDFS directories. It’s a good practice to set HDFS quotas on a per-
user basis. You must also set quotas for data directories on a per-project basis.

Rebalancing HDFS Data
Over time, the data in the HDFS storage can become skewed, in the sense that some of 
the DataNodes may have more data blocks compared to the rest of the cluster’s nodes. 
In cases of extreme skew, the read and write activity is overly busy on the nodes with 
more data, and the sparsely populated nodes remain underutilized. 

HDFS data also gets unbalanced when you add new nodes to your cluster. Hadoop 
doesn’t automatically move existing data around to even out the data distribution among 
a cluster’s DataNodes. It simply starts using the new DataNode for storing fresh data. 

Note

It’s a good practice to run the HDFS balancer regularly in a cluster.

 Hadoop doesn’t seek to achieve a fully balanced cluster. This state of affairs is quite 
hard to achieve in a cluster with continuous data f lows. Instead, Hadoop is satisfied 
when the space usage on each DataNode is with within a certain percentage of space 
used by the other DataNodes. In addition, it also makes use of a threshold size to give 
you f lexibility with the balancing of data. 

Hadoop makes available a useful tool, called the balancer, to let you rebalance a 
cluster’s block distribution so all DataNodes store roughly equal amounts of data.

Figure 9.7 How to check a user’s current space usage 
in HDFS against their assigned storage limits
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The following sections cover

 n Reasons for an unbalanced HDFS
 n Using Hadoop’s balancer tool
 n Setting the proper threshold value
 n When to run the balancer
 n Making the balancer run faster

Reasons for HDFS Data Imbalance 
There’s no guarantee that HDFS will automatically distribute data evenly among the 
DataNodes in a cluster. For example, when you add a new node to the cluster, all new 
blocks could be allocated to that node, thus making the data distribution lopsided. 
When the NameNode allocates data blocks to the nodes, it considers the following criteria 
to determine which DataNodes get the new blocks.

 n Uniformly distributing data across the cluster’s DataNodes
 n Keeping one of the replicas of a data block on the node that’s writing the block
 n Placing one of the replicas on the same rack as the node writing the block, to 

minimize cross-rack network I/O
 n Spreading the block replicas across racks to support redundancy and survive the 

loss of an entire rack

Hadoop considers a cluster balanced when the percentage of space in a given DataNode 
is a little bit above or below the average percentage of space used by the DataNodes in 
that cluster. What this “little bit” is, is defined by the parameter threshold size.

Running the Balancer Tool to Balance HDFS Data
The aforementioned HDFS balancer is a tool provided by Hadoop to balance the data 
spread across the DataNodes in a cluster by moving data blocks from the over-utilized 
to the under-utilized DataNodes. Figure 9.8 shows the idea behind the balancer tool. 
Initially Rack 1 and Rack 2 have data blocks. The new rack, Rack 3, has no data 
initially—only newly added data will be placed there. This means adding nodes leads 
to an unbalanced cluster. Data is moved from the nodes with data to the new nodes, 
which have no data until you move data over to them from the current DataNodes or 
wait for new data to come in. When you run the balancer, Hadoop moves data blocks 
from their existing locations to the nodes that have more free space, all nodes will 
have roughly the same amount of used space.

You can run the balancer manually from the command line by invoking the balancer 
command. The start-balancer.sh command invokes the balancer. You can also 



ptg18444370

269Rebalancing HDFS Data

run it by issuing the command hdfs –balancer. Here’s the usage of the balancer 
command:

$ hdfs balancer --help
Usage: java Balancer

[-policy <policy>] the balancing policy: datanode or blockpool
[-threshold <threshold>] Percentage of disk capacity
[-exclude [-f <hosts-file> | comma-separated list of hosts]]     Excludes 

the specified datanodes.
[-include [-f <hosts-file> | comma-separated list of hosts]]     Includes 

only the specified datanodes.

The threshold parameter denotes the percentage deviation of HDFS usage of each 
DataNode from the cluster’s average DFS utilization ratio. Exceeding this threshold in 
either way (higher or lower) would mean that the node will be rebalanced. 

The default DataNode policy is to balance storage at the DataNode level. The balancer 
doesn’t balance data among individual volumes of the DataNode, however. The alternative 
blockpool policy applies only to a federated HDFS service.

Setting the Proper Threshold Value for the Balancer 
You can run the balancer command without any parameters, as shown here:

$ sudo –u hdfs hdfs balancer

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

Rack 1 Now
Has Data

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

DataNode
with Blocks

Rack 2 Now
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New DataNode
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Data Blocks
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Data Blocks
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Data Blocks

Rack 3 Has
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Figure 9.8 How the balancer moves data blocks to the under-
utilized nodes from the over-utilized nodes
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This balancer command uses the default threshold of 10 percent. This means that the 
balancer will balance data by moving blocks from over-utilized to under-utilized nodes, 
until each DataNode’s disk usage differs by no more than plus or minus 10 percent of 
the average disk usage in the cluster. 

Sometimes, you may wish to set the threshold to a different level—for example, when 
free space in the cluster is getting low and you want to keep the used storage levels on the 
individual DataNodes within a smaller range than the default of plus or minus 10 percent. 
You can do so by specifying the threshold parameter, as shown here:

$ hdfs balancer –threshold 5

Tip

How long the balancer will run depends on the size of the cluster and how unbalanced 
the data is. When you run the balancer for the very first time, or you schedule it infre-
quently, as well as when you run it after adding a set of DataNodes, it will run for a very 
long time—often several days.

The amount of data moved around during rebalancing depends on the value of the 
threshold parameter. If you use the default value of 10 and the average DFS usage across 
the cluster is, for example, 70 percent, the balancer will ensure that that each DataNode’s 
DFS usage lies somewhere between 60 and 80 percent of that DataNode's storage capacity, 
once the balancing of the HDFS data is completed.

When you run the balancer, it looks at two key HDFS usage values in your cluster:

 n Average DFS used percentage: The average DFS used percentage in the cluster 
can be derived by performing the following computation:

Average DFS Used = DFS Used * 100/Present Capacity

 n A Node’s used DFS percentage: This measure shows the percentage of DFS used 
per node.

The balancer will balance a DataNode only if the difference between a DataNode’s 
used DFS percentage and the average DFS used (by the cluster) is greater than the 
threshold value. Otherwise, it won’t rebalance the cluster.

As noted previously, if you run the balancer without specifying a threshold value, it’ll 
use the default value of 10 as the threshold. In our case, it won’t perform any balancing, 
ending up as shown here (assuming all the DataNodes have a similar DFS usage as that 
of Node10):

$ hdfs balancer
15/05/04 12:56:36 INFO balancer.Balancer: namenodes  = [hdfs://hadoop01-ns]
15/05/04 12:56:36 INFO balancer.Balancer: parameters = Balancer
.Parameters[BalancingPolicy.Node, threshold=10.0, number of nodes to be excluded = 0, 
number of nodes to be included = 0]
Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  
Bytes Being Moved
,,, 
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The cluster is balanced. Exiting...
May 4, 2015 12:56:37 PM  Balancing took 1.47 seconds
$

The balancer ran, but it wound things up pretty quickly, because it found that all 
nodes in the cluster have a usage that’s within the threshold value—the cluster is already 
balanced!

In our case, for balancing to occur, you must specify a threshold value that’s <=2. 
Here’s one way to run it:

$ nohup su hdfs –c "hdfs balancer –threshold 2" > /tmp/balancer.log/stdout.log 
2>/tmp/balancer.log/stderr.log &

Specifying nohup and & will run the job in the background and get back control of 
the shell. Since a balancer job can run for quite a long time in a cluster, it’s a good idea 
to run it in this way.

Using hdfs dfsadmin to Make Things Easier
In our example, we used a single node, Node10, to check that node’s DFS used percent-
age. We then figured out that we must set the threshold to a value that is <= 2 based on 
this node’s DFS used percentage. But you can’t run the balancer on a specific node. So, 
how do you determine the threshold value when you have a larger number of nodes? 
It’s easy. Just pick the lowest DFS used percentage of a node in the entire cluster. You 
don’t have to spend a lot of time figuring out the DFS used percentages for each node. Use 
the hdfs dfsadmin –report command to find out everything you need in order to 
figure out the right threshold value. 

In this example, there are 50 nodes in the cluster. I can run the dfsadmin command 
as follows, capturing the output in a file, since the command will print out the DFS 
usage reports for each node separately.

[root@hadoop01]# sudo -u hdfs hdfs dfsadmin -report > /tmp/dfsadmin.out

Look at the very top of the command’s output (in the file dfsadmin.out), where you’ll 
find the DFS used statistics for the entire cluster:

Configured Capacity: 608922615386112 (553.81 TB)
Present Capacity: 607364914327552 (552.40 TB)
DFS Remaining: 166697481228288 (151.61 TB)
DFS Used: 440667433099264 (400.78 TB)

DFS Used%: 72.55%

The smaller the value of the threshold parameter, the more work the balancer will need 
to perform and the more balanced the cluster will be. However, there’s a catch here: If 
you have a heavily used cluster with numerous writes and deletes of data, the cluster may 
never reach a fully balanced state, and the balancer will be merely moving around data 
from one node to another. 

When you start the balancer, you’ll see the following type of output. Note how 
the balancer determines how many nodes are overutilized or underutilized. It’ll move 
data from the overutilized nodes to the rest of the cluster nodes. It also determines 



ptg18444370

272 Chapter 9 HDFS Commands, HDFS Permissions and HDFS Storage 

the actual amount of data that needs to be moved around to balance the cluster’s data 
distribution.
30/05/2016 10:02:26 INFO balancer.Balancer: 4 over-utilized:               #A  
[10.192.0.55:50010:DISK, 10.192.0.24:50010:DISK, 10.192.0.54:50010:DISK, 
10.192.0.25:50010:DISK]
30/05/2016 10:02:26 INFO balancer.Balancer: Need to move 8.05 TB to make the 
cluster balanced. #A
30/05/2016 09:07:21 INFO Balancer: Decided to move 10 GB bytes from #B     
10.192.0.55:50010:DISK to 10.192.0.116:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from 
10.192.0.25:50010:DISK to 10.192.0.115:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from 
10.192.0.24:50010:DISK to 10.192.0.118:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Decided to move 10 GB bytes from 
10.192.0.54:50010:DISK to 10.192.0.110:50010:DISK
30/05/2016 09:07:21 INFO balancer.Balancer: Will move 40 GB in this iteration
30/05/2016 09:07:22 INFO balancer.Dispatcher: Successfully moved 
blk_1155910122_1099683676641 with size=17370340 from 10.192.0.54:50010:DISK to 
10.192.0.110:50010:DISK through 10.192.0.54:50010 #B

May 30, 2016 10:34:10 PM  Balancing took 14.56153333333334 minutes #C
$ 

Notes

#A Points out the four DataNodes that are currently overutilized. Their HDFS usage 
percentage is higher than the average HDFS usage for the cluster.

#B Shows how the balancer moves the data from overutilized to under-
utilized DataNodes.

#C Shows the completion of the balancing once the data is evenly spread 
across all DataNodes.

Tip

To keep the balancer from running for a very long time, specify a higher threshold first and 
then drop the threshold to a lower value the next time you run the balancer.

Iterative Movement of Blocks 

The goal of the balancer is to move data from the overutilized nodes to the underutilized 
nodes, thus balancing the DFS usage across the cluster. When you start the balancer, it 
starts by moving some data from nodes whose DFS usage is higher than the threshold 
and moves that data to nodes whose DFS usage is below the threshold. The balancer 
is rack aware and thus will generate minimal inter-rack traffic. The balancer works in an 
iterative fashion, moving a certain amount of data per iteration as the output of the 
balancer run shows (e.g., “Will move 40GB in this iteration”).
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When to Run the Balancer
A couple of guidelines as to when to run the balancer are appropriate. In a large cluster, run 
the balancer regularly. You can schedule a cron job to perform the balancing, instead of 
manually running it yourself. If a scheduled balancer job is still running when the next 
job needs to start, no harm’s done, as the second balancer job won’t start. 

It’s a good idea to run the balancer right after adding new nodes to the cluster. When 
you add a large number of nodes at once and run the balancer afterwards, it’ll take quite 
a while to complete its work.

Making the Balancer Run Faster
Ideally you must run the balancer during periods when the cluster is being lightly utilized, 
but the overhead is usually not high. You can adjust the bandwidth of the balancer to 
determine the number of bytes per second that each DataNode in the cluster can use 
to rebalance its data. 

The default value for the bandwidth is 10MB per second and you can raise it to make 
the balancer complete its work faster. You can raise the bandwidth up to about 10 percent 
of your network speed without any noticeable impact on the cluster’s workload. You can 
set the network bandwidth used by the balancer with the help of the hdfs dfsadmin 
command, as shown here:

$ hdfs dfsadmin -setBalancerBandwidth <bandwidth in bytes per second>

The –setBalancerBandwidth option enables you to change the network bandwidth 
consumed by each DataNode in your cluster during an HDFS block balancing operation. 
The bandwidth you specify here is the maximum number of bytes per second that will 
be used by each DataNode in the cluster. If you’re using a shell script to invoke the balancer 
periodically, you can specify the bandwidth option in the script before invoking the bal-
ancer. Here’s an example showing how to change the bandwidth to 20MB. 

$ hdfs dfsadmin -setBalancerBandwidth 20971520
Balancer bandwidth is set to 20971520 for hadoop01.localhost/10.192.0.22:8020
Balancer bandwidth is set to 20971520 for hadoop01.localhost/10.192.0.51:8020
$

Make sure that you have adequate bandwidth before increasing the bandwidth. You 
can find out the speed of your NIC card by issuing the following command:

$ ethtool eth0
...
Speed: 1000Mb/s
Duplex: Full
...
$

In this example, the network has a speed of 1,000MB per second, so it’s safe to set 
the balancer bandwidth to about 10 percent of it, which is 100MB per second.
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When the balancer runs for a long time, you can schedule it to run with different 
bandwidths during peak and off peak times. You can run it with a low bandwidth during 
peak times and run it with a higher bandwidth during periods when the cluster is less 
busy. For example, during peak times, you can schedule a cron job such as the following 
for the balancer (bandwidth of 10MB):

$ su hdfs -c 'hdfs dfsadmin -setBalancerBandwidth 10485760'
$ nohup su hdfs -c 'hdfs balancer' > /tmp/balancerstderr.log 2> 
/tmp/balancerstdout.log &

You can at the same time schedule a different cronjob to run at off-peak times, with 
a higher (20MB) setting for the bandwidth parameter:

$ su hdfs -c 'hdfs dfsadmin setBalancerBandwidth 20971520>'
$ nohup su hdfs -c 'hdfs balancer' > /tmp/balancerstderr.log 2>  
/tmp/balancerstdout.log &

Only one balancer job can run at a time. When the second (off-peak) job starts, it stops 
the first balancer job and starts a new balancer job with the higher bandwidth setting.

Reclaiming HDFS Space
Oftentimes you can conserve HDFS storage space by reclaiming used space where you 
can. There are two ways in which you can reclaim space allocated to HDFS files: 

 n You can remove the files or directories once you’re done processing them.
 n You can reduce the replication factor for a file. 

Removing files works well with the raw data files you load into HDFS for processing, 
and the reduction of the replication factor is a good strategy for handling older and 
less-critical HDFS files.

Removing Files and Directories
Periodic removal of unnecessary data is an operational best practice. Often, data needs 
to be retained only for a specific period of time. You can stretch your storage resources 
by removing any files that are just sitting in HDFS and eating up valuable space.

Decreasing the Replication Factor
You can configure the replication factor at the cluster level by setting the dfs.replication 
parameter in the hdfs-site.xml file, as explained in Chapter 4, “Planning for and Creating 
a Fully Distributed Cluster.” The setting you configure with the dfs.replication 
parameter sets a global replication factor for the entire cluster. 

It’s important to understand that while you can set the replication factor at the clus-
ter level, you can modify the replication factor for any existing file, with the –setRep 
command. This offers great f lexibility, as you can set the replication factor based on 
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the importance and usage of data. For example, you can lower the replication factor 
for historical data and raise the replication factor for “hot” data, so more nodes can 
process the data. 

You can change the global replication factor anytime by configuring the dfs.replication 
parameter. Hadoop will either add or remove replicas across the cluster based on whether 
you increase or decrease the global replication factor. 

Note how this behavior is different from how the fs.block.size parameter works. 
The fs.block.size parameter sets the block size for the cluster. When you change the 
value of this parameter, it won’t change the block size of files already in HDFS. It’ll use 
the new block size only for new files that are stored in HDFS. 

Applications can also specify the replication factor on a per-file basis. You can change 
the replication factor for a file anytime with the hdfs dfs –setRep option. You can change 
the replication factor for a single file with this command:

$ hdfs dfs –setRep –w 2 /data/test/test.txt

You can change the replication factor for all files in a directory by adding the –R option 
as shown here:

$ hdfs dfs –setRep –w 2 –R /data/test

You can reduce the amount of HDFS space occupied by a file by simply reducing the 
file’s replication factor. When you reduce the replication factor using the hdfs dfs –setrep 
option, the NameNode sends the information about the excess replicas to the DataNodes, 
which will remove the corresponding blocks from HDFS.

Here’s an example showing how to reduce the replication factor from the default 
level of 3 to 2:

1. Issue the following command to check the current replication factor for the file.

$ hdfs dfs -ls /user/hive/warehouse/customer/year=2016/month=12/day=31
-rw-r--r--   3 alapati   analysts   60226324 2016-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/
CustRecord-20150131_040_28049_20150131235718-000001-0.avro

The number 3 next to the file permission list indicates the replication factor for
this file.

2. Change the replication factor from 3 to 2 with the following command:

$ hdfs dfs -setrep -R -w 2
/user/hive/warehouse/customer/year=2015/month=12

You can check to make sure that the replication factor has been changed to 2 from 3.

$ hdfs dfs -ls /user/hive/warehouse/shoprecord/year=2016/month=01/day=31
-rw-r--r--   2 alapati analysts   60226324 2016-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/CustRecord-
20160131_040_28049_20160131235718-000001-0.avro
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3. Optionally, you can also add the –w f lag with this command, to wait for the rep-
lication to complete, but this takes a long time for some files. You can see that the
replication factor has changed to 2 for the file.

$ hdfs dfs -ls
/user/hive/warehouse/customer/year=2016/month=01/day=31
-rw-r--r--   2 alapati analysts   60226324 2015-02-01 01:07
/user/hive/warehouse/customer/year=2015/month=01/day=31/
ShoppingRecord-20160131_040_28049_20160131235718-000001-0.avro

In the example here, I changed the replication factor for a file. If you specify a 
directory instead of a file, the setrep command will recursively change the replication 
factor for all files that are under the directory name you specify.

Although I discussed reducing the replication factor as a way to conserve storage, for 
important data, you can also try increasing the replication factor. You can also set a higher 
replication factor for data that’s in demand (hot data).

Summary
Here’s what you learned in this chapter:

 n The hdfs dfs command is your ally in performing day-to-day work with 
HDFS files and directories

 n The hdfs dfsadmin command is highly useful for checking the status of the 
DataNodes and the way HDFS data is spread across the DataNodes

 n By granting space and file quotas, you can control HDFS usage.
 n RThe hdfs du and hdfs df commands are handy for finding out how your 

cluster is using its storage
 n Balancing your cluster’s data on a regular basis provides computational benefits 

by evenly spreading HDFS data across all the nodes of your Hadoop cluster.
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This chapter covers the following:

 n Safeguarding HDFS data using trash and HDFS snapshots
 n Ensuring data integrity with file system checks (fsck command)
 n File-based formats supported by Hadoop
 n Choosing the optimal file format
 n The Hadoop small files problem and merging files
 n Using Hadoop archives to manage small files
 n Using Hadoop WebHDFS and HttpFS

As a Hadoop administrator, one of your key tasks is to safeguard Hadoop data. In this 
chapter, I build on the HDFS introduction I provided in the last chapter and show you 
how to protect the data stored in HDFS from corruption and accidental deletion of files. 
You’ll learn how to use an important HDFS utility, fsck, to check the integrity of 
HDFS data. I also show how to effectively configure the HDFS trash feature that saves 
accidentally (or otherwise) deleted files from oblivion. You’ll learn how protect HDFS data 
through the use of HDFS snapshots.

Hadoop can use various types of file formats, with different compression capabilities. 
The choice of the right file format and the right compression format play a huge role 
in performance. This chapter details the most common Hadoop file formats. You can 
compress HDFS data at various levels, and the chapter shows you how to configure 
compression. You can access HDFS data from outside the Hadoop cluster, through web-
based utilities such as WebHDFS and HttpFS, and this chapter shows how to use these 
tools effectively.
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Safeguarding Data
HDFS offers two highly useful features that help guard against deletions of files and 
directories by users:

 n The trash feature stores deleted files and directories for a specified period in a 
special trash directory before permanently removing them.

 n The HDFS snapshot feature lets you make a read-only point-in-time copy of 
HDFS files or directories that you can revert to if necessary.

Using HDFS Trash to Prevent Accidental Data Deletion
When you delete a file from HDFS, you’ll free up blocks associated with that file. 
However, this freeing up of space won’t occur immediately, since HDFS doesn’t imme-
diately remove the files you delete. Rather, it renames them and places them in the trash 
directory. If you configure the retention period to say, six hours, the deleted files stay in 
the trash directory for six hours, after which the NameNode deletes the file from its 
namespace. You can restore a deleted file back to its original or a different directory as long 
as it’s still in the trash directory. Thus, the trash feature is a safety device that protects you 
from the accidental removal of a file. As I just alluded to, you can configure the time 
interval for which deleted files stay in the trash directory.

Things to Remember about Trash
HDFS trash is a user-level feature, meaning that only files you remove with the HDFS dfs 
file system commands are stored in trash. If you programmatically remove an HDFS 
file, it’s deleted permanently right away! If you want to protect against accidental or 
wrong file removals through a program, you can do so. You need to create a trash instance 
and call moveToTrash() with the path of the file you want to delete. If trash isn’t enabled, 
the moveToTrash() method returns false.

Configuring Trash
The HDFS trash feature protects you against accidental deletion of both files and direc-
tories. You can enable the trash feature by setting the parameter fs.trash.interval 
(in minutes)in the core-site.xml file, as shown here.

<property>
  <name>fs.trash.interval</name>
  <value>1440</value>
</property>

By default the trash interval is zero (fs.trash.interval=0), so files are deleted 
permanently immediately, without storing them in the trash directory. By setting 1,440 
minutes as the value for the fs.trash.interval parameter, I ensured that deleted files 
are retained in HDFS for one day. 

In addition to the fs.trash.interval parameter, you can also configure the fs.trash
.checkpoint.interval parameter when configuring trash in your cluster. This second 



ptg18444370

279Safeguarding Data

parameter specifies how often the NameNode checks the trash directory. Trash 
checkpointing is the process where the current subdirectory is periodically renamed with a 
timestamp. If you set this parameter to one hour, then the NameNode checks the trash 
directory every hour and removes files that have been there longer than 1,440 minutes, 
which is my configured trash interval in this example.

Note that it isn’t enough to set the fs.trash.interval parameter on the NameNode. 
You must also set it on all the client nodes from which your clients may access HDFS. 
Otherwise, you may see files being deleted immediately when clients delete files! The 
trash interval starts ticking from the time the file was moved to trash, which is whenever 
you delete a file.

If you’ve enabled trash, and a file or directory is deleted from HDFS, it doesn’t disappear—
it’s automatically moved to the trash directory under the user’s home directory. Here’s 
an example:

$ hdfs dfs -rm /user/test/test.txt
15/05/28 08:52:10 INFO fs.TrashPolicyDefault: Namenode trash configuration: 
Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop01-ns/user/test/test.txt' to trash at: hdfs://hadoop01-ns/
user/hdfs/.Trash/Current
$

The deleted files will actually be located in the /.Trash/.Current/user/test subdirectory 
of the user’s home directory, as shown here:

$ hdfs dfs -ls /user/hdfs/.Trash/Current/user
Found 1 items
drwxr-xr-x   - hdfs supergroup 0 2015-05-28 08:52 /user/hdfs/.Trash/Current/user/
test/test.txt
$

The file you just deleted, test.txt, which is now in the .Current subdirectory, will 
be permanently deleted and the NameNode will remove the file from the HDFS 
namespace once the configured time interval for trash elapses. To restore a deleted file 
from the trash directory, simply copy it to any location in HDFS, as shown here:

$ hdfs dfs -cp /user/hdfs/.Trash/Current/user/test/test.txt /user/test/

You can empty the trash directory with the following command:

$ hdfs dfs –expunge

This command deletes all files that are older than the trash interval you’ve configured. 
The expunge command will let you reclaim HDFS space occupied by files in the trash 
directory.

Note

The trash feature allows you to selectively delete some files from HDFS. You can first 
delete a directory and then restore the files you want from the trash directory.
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Bypassing Trash
Sometimes, you may want to bypass the trash facility, because you’re deleting some data 
for good and you want it be gone once and for all. If trash is enabled, the deleted files 
will continue to occupy the blocks associated with the file and you can’t free up the space. 
If you’re performing a regular deletion of files for conserving HDFS space, specify the 
–skipTrash option when deleting files, as shown here:

$ hdfs dfs –rm –r –skipTrash /user/test

Since I specified the –skipTrash option, trash is bypassed, and the deleted file is imme-
diately removed, space occupied by the file is freed up and the NameNode namespace is 
updated. You can use the –skipTrash option when deleting files from a user’s directory 
that exceeds its granted space quota.

If you issue the following command, it removes not only every file stored in the trash 
directory but the trash directory itself !

$ hdfs dfs –rm –r –skipTrash /user/alapati/.Trash

Not to worry though, since as soon as you remove any new file, Hadoop will recreate 
the .Trash/Current directories under your home directory.

Using HDFS Snapshots to Protect Important Data
You can use HDFS snapshots to protect a cluster against errors, as well as to recover from 
disaster. You can create snapshots of an entire file system or a subtree. 

Neither the DataNodes nor the block management layer has any knowledge of the 
snapshots, with the NameNode storing all the snapshot metadata.

By default, HDFS directories aren’t enabled for snapshots, but you can create snapshots 
on an HDFS directory once you formally set the directory as snapshottable. You can choose 
to make specific directories or the entire file system snapshottable. 

You won’t be copying any blocks when you make a director snapshottable. The snapshot 
files will only contain the block list and the size of the files. You can specify any HDFS 
directory as snapshottable. In order to delete a snapshottable HDFS directory, it mustn’t 
contain any snapshots.

Snapshots allow you to query previous versions of data. You can access current data 
without a slowdown, but accessing snapshot data involves some slowdown.

 In order to access the snapshot of a directory that you’ve made snapshottable, you use 
the path component .snapshot, as shown here.

/test1/file1 .snapshot/s0/file1

In this example

 n /test1 is a snapshottable directory
 n /test1/file1 is a file under /test1
 n s0 is a snapshot of /test1
 n The path /test1/.snapshot/s0/file1 points to the snapshot copy of /test1/file1 
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In the following sections, I cover

 n Working with HDFS snapshots
 n Creating and removing snapshots
 n Listing snapshots
 n Getting a snapshot difference report
 n Recovering a deleted file from a snapshot

Working with HDFS Snapshots
You can manage HDFS snapshots with simple commands, such as the examples shown 
in this section. But before you can play with HDFS snapshots, you must enable the cre-
ation of snapshots in a directory. Use the dfsadmin utility to make an HDFS directory 
snapshottable. Use the –allowSnapshot command to allow the creation of snapshots 
under a directory. The syntax of the command is as follows:

[-allowSnapshot <snapshotDir>]

And here’s an example:

$ hdfs dfsadmin -allowSnapshot /user/test
Allowing snapshot on /user/test succeeded
$

In this command, the snapshot name is optional, and if you omit it, Hadoop will 
generate a default name for it using a timestamp from when the command was executed. 
This command makes the /user/test directory snapshottable, meaning you can now create 
snapshots on this directory. You can reverse the ability to create snapshots on a directory 
with the –disallowSnapshot command. The syntax of this command is as follows:

[-disallowSnapshot <snapshotDir>]

Creating and Removing Snapshots
Once you’ve made an HDFS directory snapshottable, use the dfs utility to execute the 
-createSnapshot command to create a snapshot of the now snapshottable directory, as
shown in this example.

$ hdfs dfs –createSnapshot <path> [,snapshotName>]

Here’s an example showing how to create a snapshot on the /user/test directory.

$ hdfs dfs -createSnapshot /user/test Snap1
Created snapshot /user/test/.snapshot/Snap1
$

The snapshot is named Snap1 in this example. If you don’t specify a snapshot name, 
which is an optional attribute for the command, you’ll still create a snapshot, but it will 
now have a Hadoop-generated name, as shown here.

$ hdfs dfs -createSnapshot /user/test
Created snapshot /user/test/.snapshot/s20150509-140236.074
$
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It’s easier to refer to a snapshot with a name provided by you than with a system-generated 
one, so use a snapshot name when creating a snapshot.

As mentioned earlier, all snapshots are created under the target directory, within a direc-
tory named .snapshot.

You can remove a snapshot with the deleteSnapshot command:

$ hdfs dfs -deleteSnapshot /user/test Snap1

Listing Your Snapshots
You can use the normal HDFS file commands when dealing with .snapshot paths. To 
list all snapshots under a directory, issue the ls command.

$ hdfs dfs -ls /user/test/.snapshot
Found 1 items
drwxr-xr-x   - hdfs supergroup 0 2015-05-28 08:44 /user/test/.snapshot/
Snap1
$

In order to find all the snapshottable directories where a current user is allowed to create 
snapshots, issue the lsSnapshottbleDir command:

$ hdfs lsSnapshottableDir
drwxr-xr-x 0 hdfs     supergroup 0 2015-05-09 14:11 0 65536 /user/test

In this case, I have just one snapshottable directory. If you have multiple snapshottable 
directories, you can optionally specify the path of the snapshottable directory and the 
snapshot name as well, as shown in the following syntax statement.

hdfs lsSnapshottableDir $path $snapshotName

Getting a Snapshot Difference Report
You can get a snapshot difference report to view the differences between two snapshots, 
a starting and ending snapshot, by issuing the following command.

hdfs snapshotDiff $path $fromSnapshot $toSnapshot

The fromSnapshot parameter species the name of the starting snapshot and the 
parameter toSnapshot specifies the name of the ending snapshot. Here’s an example:

$ hdfs snapshotDiff snap1 snap2

When you issue this command, you’ll see output like the following:

Difference between snapshot snap1 and snapshot snap2 under
directory /test:
M           .

./file1

./subdir1
+ ./file2
+ /subdir2

The symbol M in the output for this command indicates that the file or directory was 
modified. The + (plus) and – (minus) signs indicate which files and directories were 
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removed or added in the second snapshot. If you see the symbol R, it means that the file 
or directory was renamed.

You can list all files in a snapshot in the following manner:

$ hdfs dfs -ls /foo/.snapshot/s0

You can copy a file from a snapshot, in this case snapshot s0, in the following way.

$ hdfs dfs -cp -ptopax /foo/.snapshot/s0/bar /tmp

The options –ptopax mean that the timestamps, ownership, permissions, ACLs 
and XAttrs are all preserved in the copied snapshot.

Removing a Snapshottable Directory
You can test whether the snapshottable directory works as promised by trying to delete a 
snapshottable directory that has a file inside it. Earlier, I showed how you could remove an 
empty snapshottable directory with the deleteSnapshot command. Let’s see what hap-
pens when issuing a rm –r command to delete a snapshottable directory that contains files.

$ hdfs dfs -rm -r /user/test

15/05/28 08:50:32 INFO fs.TrashPolicyDefault: Namenode trash configuration: 
Deletion interval = 1440 minutes, Emptier interval = 0 minutes.

rm: Failed to move to trash: hdfs://hadoop01-ns/user/test: The directory 
/user/test cannot be deleted since /user/test is snapshottable and already has
 Snapshots

$ 

As you can see, Hadoop has refused to delete the directory because it’s snapshottable 
and it contains a directory. You can’t remove the directory, either as the HDFS super user 
or as the owner of the directory. A snapshottable directory can’t be deleted or renamed 
until you delete all snapshots.

Recovering a Deleted File from a Snapshot
Let’s see what happens when you remove a file from a snapshottable directory.

$ hdfs dfs –rm /user/test/test1.txt

Hadoop does as you wish and removes the file. Since this file was in a snapshottable 
directory, you can recover the deleted file without any problem! To do this, follow 
these steps.

1. Find the file you wish to recover by looking for it in the snapshot subdirectory:

$ hdfs dfs –  test/.snapshot

As you can see, the subdirectory you need to check is named .snapshot, and under
it is the file that you removed from HDFS. You can even view the contents of the
file to ensure everything is intact.
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2. Recover the deleted file from the snapshot by copying the file to its original location:

$ hdfs dfs –cp /user/test/.snapshot/Snap1/test.txt /user/test/test.txt

Your deleted file is back without a problem! 
When you create an HDFS snapshot, the blocks in the DataNodes aren’t copied, and 

there is no data copying whatsoever. The snapshot files merely record the block list and 
the file size. Normal HDFS operations go on as usual. Any modifications to a snapshotted 
file are stored in reverse chronological order, so you can access current data directly. 
The snapshot data is figured by subtracting any modifications from the current data.

Users can be enabled to take their own snapshots, with administrators managing the 
snapshots by specifying where the users can take the snapshots. Files and directories in 
a snapshottable directory are immutable, and you can’t add or remove anything from 
the directories.

Snapshots and HDFS Backups
In the previous section, I showed you how to recover a deleted file, say due to a user error, 
with the help of an HDFS snapshot. You can also use HDFS snapshots to back up critical 
data. Using the trash facility guards against accidental deletion of files and directories 
works only for CLI-based deletions. Snapshots enable point-in-time recovery and peri-
odic snapshots from which to restore data. There’s no recovery involved in accessing data 
in the snapshots.

Ensuring Data Integrity with File System Checks
Linux system administrators run the fsck command to repair file system corruption on 
an ext3 or ext4 file system. The fsck utility examines the on-disk structures and can fix 
them if they’re corrupted. HDFS offers a similar fsck command, which helps determine 
files missing blocks or containing corrupt blocks. 

Unlike the Linux fsck command, the hdfs fsck command doesn’t try to repair the 
errors but provides options to fix the corruption. Here’s an example that shows how to 
check the entire HDFS file system—that is, the entire file system namespace—by specifying 
/ as the path under which Hadoop must check the file system.

Note

When you run the fsck command right after adding a DataNode back to the cluster, the 
fsck report normally reports over-replicated blocks—this is corrected over time.

Instead of issuing the command hdfs fsck, you can issue it in the following format:

hdfs fsck / | egrep -v '^\.+$' | grep -v eplica

This gets rid of the lines of dots that preceded the actual output of the fsck command. 
Following are the results of our example.

$ hdfs fsck / | egrep -v '^\.+$' | grep -v eplica
Connecting to namenode via http://hadoop01.localhost:50070
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FSCK started by hdfs (auth:SIMPLE) from /10.192.0.23 for path /
 at Mon May 30 13:54:08 CDT 2016
$ hdfs fsck /
........
.........Status: HEALTHY
 Total size:    146228151045063 B
 Total dirs:    28152
 Total files:   1077255
 Total symlinks: 0
 Total blocks (validated): 1170946 (avg. block size 124880354 B)
 Minimally replicated blocks:   1170946 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor:    3
 Average block replication:     2.9950006
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 18
 Number of racks: 1
FSCK ended at Fri May 01 09:45:41 CDT 2015 in 18069 milliseconds
The filesystem under path '/' is HEALTHY
$ 

Note that the total size of the cluster (in bytes) shown by the following line at the 
top shows actual size of all HDFS files and not their replicated size. If your replication 
factor is three for HDFS, then the total actual size used by HDFS is three times this 
number.

Total size:    146228151045063 B

The actual size occupied by HDFS will be about 438TB in this example.
If you’ve configured HDFS snapshots, you can add the option -includeSnapshots 

when running the fsck command. This option ensures that fsck includes the snapshot 
data if a directory path has snapshottable directories under it. The -list-corruptfileblocks 
option in the fsck command will print all missing blocks and the files of which they 
are a part.

HDFS Data Corruption
HDFS file corruption could have a serious impact on the availability of data. In the fol-
lowing sections, I explain how to detect HDFS data corruption and what to do about it.

The easiest way to check if there’s corruption in HDFS is to run the fsck command. 
The fsck command will run through all the HDFS blocks and report whether the file 
system is healthy. If the fsck command reports an unhealthy HDFS system, you most 
likely will see the following types of messages in the fsck command output:

There are 1 missing blocks. The following files may be corrupted:

blk_1088616699 /user/alapati/.staging/job_1424873694018_0438/libjars/hbase-
common.jar
Please check the logs or run fsck in order to identify the missing blocks. See the 
Hadoop FAQ for common causes and potential solutions.
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And the fsck command reports that the HDFS file system that HDFS is corrupt, as 
shown in the following example.

$ sudo –u hdfs hdfs fsck /
Status: CORRUPT
 Total size:    360430 B
 Total dirs:    0
 Total files:   1
 Total symlinks:                0
 Total blocks (validated):      1 (avg. block size 360430 B)
  ********************************
  CORRUPT FILES: 1
  MISSING BLOCKS: 1
  MISSING SIZE: 360430 B
  CORRUPT BLOCKS: 1
  ********************************
 Minimally replicated blocks:   0 (0.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 1 (100.0 %)
 Default replication factor:    3
 Average block replication:     0.0
 Corrupt blocks: 1
 Missing replicas: 0
 Number of data-nodes: 54
 Number of racks: 3
FSCK ended at Fri May 01 12:13:54 CDT 2015 in 1 milliseconds
The filesystem under path '/user/alapati/.staging/job_1424873694018_0438/libjars/
hbase-common.jar' is CORRUPT
$

Handling HDFS Corruption
If you’re concerned about some blocks being corrupt, you can run the fsck command 
with the -list-corruptfileblocks option as shown here:

$ hdfs fsck -list-corruptfileblocks
Connecting to namenode via http://hadoop1.localhost:50070
The list of corrupt files under path '/' are:
blk_1088616699  /user/alapati/.staging/job_1424873694018_0438/libjars/hbase-
common.jar
The filesystem under path '/' has 1 CORRUPT files
$ 

There are two ways to handle corrupt files. One way is for you to run the fsck com-
mand with the –move option to move the corrupted files to the /lost+found directory. 
This is better than deleting the corrupted file from the HDFS file system with the hdfs –
dfs -rm command. Also, remember that when you remove a corrupted file from HDFS 
with the rm command, the corrupted file is shown as corrupt, because it goes into the 
trash directory, if you’ve configured one.

A better way to remove the corrupted files is by specifying the –delete option with 
the fsck command, as shown here:

$ fsck –delete 
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While the fsck command issued without any options (besides the file system to check) 
lets you know the health status of that file system, specifying the –blocks option gets 
you a block report and the –locations option prints out locations for every block. 
Here’s an example:

$ hdfs fsck /user/alapati/.staging/job_1424873694018_0438/libjars/hbase-common.jar 
-blocks -locations
Connecting to namenode via http://hadoop01.localhost:50070
FSCK started by hdfs (auth:SIMPLE) from /10.192.0.22 for path /user/alapati/
.staging/job_1424873694018_0438/libjars/hbase-common.jar at Mon May 30 12:13:54
CDT 2016
.
/user/alapati/.staging/job_1424873694018_0438/libjars/hbase-common.jar:
CORRUPT blockpool BP-2077913507-10.192.0.21-1357858111062 block blk_1088616699

/user/alapati/.staging/job_1424873694018_0438/libjars/hbase-common.jar:  
Replica placement policy is violated for BP-2077913507-10.192.0.21-
1357858111062:blk_1088616699_1099615351525. Block should be additionally 
replicated on 1 more rack(s).

/user/alapati/.staging/job_1424873694018_0438/libjars/hbase-common.jar: MISSING 1 
blocks of total size 360430 B.
0. BP-2077913507-10.192.0.21-1357858111062:blk_1088616699_1099615351525
len=360430 MISSING!

The output of the previous command helps you find out where the corrupted blocks 
are (on which node in the cluster). You can then use the block numbers to go to the 
NameNode and check its logs to see where the blocks are (or were) located. If you find that 
the problem was due to a DataNode being down or a missing mount point, the corruption 
will go away once you fix the problem.

When you see a message stating that a block is missing as shown here, unfortunately, it 
means just what it says!

MISSING 1 blocks of total size 360430 B
BP-2077913507-10.192.0.21-1357858111062:blk_1088616699_1099615351525 len=360430 
MISSING!

Regardless of the replication factor of the missing block, all replicas of that block are 
gone and the NameNode is not aware of any DataNode that has a replica of this block. 
It’s possible that the DataNode that stores a replica of this block is down or unreachable, 
and when you are able to access that DataNode again, the block is replicated as many times 
as specified by its replication factor. You consequently also won’t find the block listed as 
corrupt when you rerun the fsck command. 

It’s possible that a block is not missing but is replicated fewer times than it’s supposed 
to be. In this case, you’ll see output similar to the following:

BP-2077913507-10.192.0.21-1357858111062:blk_1088616699_1099615351525 len=360430 
repl=3 [10.192.0.21:50010, 10.192.0.25:50010, 10.192.0.30:50010]
BP-2077913507-10.192.0.21-1357858111062:blk_1088616699_1099615351525 len=360430 
repl=3 [10.192.0.21:50010]
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The entries in the square brackets are the DataNodes that hold the block. The first 
entry lists three such DataNodes. The second entry lists only one DataNode, which indi-
cates that while the replication factor is three, only a single replica of the block exists 
(on node 10.192.0.21). The remaining two blocks are missing. Unless you have hard drive 
issues on the target servers, over time the cluster will automatically replicate this block 
two more times. If you run the fsck command at this point, you won’t find the block 
listed as corrupt.

If all replicas of a data block are either missing or corrupt, it means that there’s no 
readable replica—in effect the data on the data block can’t be read. A missing data block 
has no live replicas. This may be due to corruption or because the DataNode on which 
the block lives is off line. If you see the file system corrupt message for many blocks at 
once, it means several DataNodes are unavailable simultaneously. If you have stored any 
data with a replication factor of just one, you may see the missing blocks messages even 
when a single node is lost or is functioning incorrectly.

The fsck Command Options
Here’s a brief summary of the important options you can specify with the hdfs fsck 
command.

 n fsck /: Performs an HDFS file system check
 n fsck / -files: Displays files being checked
 n fsck / -files –blocks: Displays files and blocks 
 n fsck / files –blocks –locations: Displays files, blocks and their locations
 n fsck / -files –blocks –locations –racks: Displays files, blocks, 

locations and racks
 n fsck –locations: Shows locations for every block
 n fsck – move: Moves corrupted files to the /lost+found directory
 n fsck –delete: Deletes corrupt files
 n fsck –list-corruptfileblocks: Lists missing blocks and the files they belong to

Handling Files That Are Unrecoverable
A corrupted file is an HDFS file where all replicas of a block are missing. You can use 
the fsck –move command to move all corrupted files to the /lost+found directory. 
You can execute the fsck –delete command to delete the corrupted files from HDFS.

 If you can’t find at least one DataNode that contains any of the missing or corrupt 
blocks of a file pointed out by the fsck utility, that file doesn’t exist in HDFS any longer 
and is lost for good. In this case, use the fsck –move command to move the parts of the 
file with missing blocks to the /lost+found directory, as shown here.

$ hdfs fsck –move <file_name>
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Here’s an example:

$ hdfs fsck -move /user/alapati/.staging/job_1424873694018_0438/libjars/hbase-
common.jar
Connecting to namenode via http://hadoop01.localhost:50070
FSCK started by hdfs (auth:SIMPLE) from /10.192.0.23 for path /user/alapati/
.staging/job_1424873694018_0438/libjars/hbase-common.jar at Mon May 04 13:22:09 
CDT 2015
drwxr--r--   - hdfs supergroup          0 2015-05-04 13:22 /lost+found/user/
alapati/.staging/job_1424873694018_0438/libjars

$ hdfs dfs -ls /lost+found/user/alapati/.staging/job_1424873694018_0438/libjars
Found 1 items
drw-r--r--   - hdfs supergroup          0 2015-05-04 13:22 /lost+found/user/
alapati/.staging/job_1424873694018_0438/libjars/hbase-common.jar

If you store an HDFS file with a replication factor of two and two of the DataNodes go 
down, potentially you could end up with corrupted HDFS files. Similarly, if you have 
stored any HDFS files with a replication factor of 1, even the loss of a single DataNode can 
result in missing blocks showing up when you check your file system with the hdfs fsck 
command.

By running the fsck –delete command, you ensure that the missing files are removed 
from the HDFS metadata. If you don’t remove them, it’s possible that a process may get 
stuck trying to read the missing files. Make sure that the unimportant files are the 
only ones showing up in the fsck command output before you issue the fsck –delete 
command. You may still find that fsck reports the deleted files. When you run fsck 
subsequently, it should report a healthy HDFS. 

To proactively catch potential HDFS corruption, run the hdfs fsck command on 
a regular basis, just as you’d run the HDFS balancer command (to ensure that the HDFS 
data is balanced across all nodes), using a cron job. The overhead of the fsck file checks 
isn’t really significant, but on a busy cluster, you may want to schedule the job during 
off-peak times, just as you schedule the balancer jobs.

Handling Under-Replicated Files
Hadoop is good about replicating blocks to meet the configured replication factor for 
files. When a DataNode crashes, files on that node are usually replicated in a short time. 
Hadoop is aware of the missing DataNode since it ceases getting the heartbeats from the 
DataNode. The replication starts in a little over ten minutes after the DataNode crash. 

Data Compression
Compression is used for efficiently storing data blocks. Compression is highly recommended 
as it reduces the size of the files on disk and also speeds up both disk and network I/O. 

You must weigh the following when deciding on a compression format:

 n CPU required for compressing and decompressing the data
 n The network bandwidth consumed by the transmission of data across the cluster
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 n Disk I/O required for reading and writing the data
 n Whether the file is splittable

Note

If the blocks in a file are independently compressible, then those file formats support block-
level compression. If a file format doesn’t permit block compression, and you compress that 
file, that file isn’t splittable. If you are dealing with a large file, this will affect performance 
because when reading the compressed file, Hadoop must start at the beginning of the file, 
even if it wants to simply read a block at the very end of the file.

As you’ll learn, the choice of a compression format involves tradeoffs between speed 
and the size of the compressed output. Faster compression and decompression speeds 
usually are associated with larger compressed files. 

Regardless of the compression format, however, since the files are significantly smaller 
than uncompressed files, I/O bound jobs tend to finish faster when you compress the 
input files.

Common Compression Formats
The most common compression formats are gzip, bzip2, LZO and Snappy. Let’s quickly 
review these compression formats.

 n gzip: This compression format is based on the def late algorithm and uses the file 
extension .gz. It’s a non-splittable format.

 n bzip2: It’s highly efficient in terms of storage savings and is also fast in both com-
pressing data and decompressing data. This is a splittable format.

 n LZO: It’s composed of multiple small blocks of compressed data, which allows 
jobs to be split across the block boundaries. Its decompression speed is about 
twice as fast as that of bzip2. However, the compressed files are about 50 percent 
larger than files compressed with the bizip2 format. LZO files are splittable only 
if they’re indexed.

 n Snappy: Snappy offers reasonable compression of data, since its compression ratio 
is less efficient than that of several other compression formats. However, the com-
pression is done at higher speed. Although Snappy compressed files are usually 
10 to 50 percent larger than a gzip compressed file, for example, it’s much faster, 
with a compression rate of about 250MB per second and a decompression rate of 
about 500MB per second.

Note

The Text file type is an unstructured file format. Avro, Parquet, RCFile and SequenceFile 
are all structured formats.
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Evaluating the Various Compression Schemes
As you’ve learned, you can employ various compression algorithms for data. Here are some 
observations regarding the various compression strategies:

 n LZO is good for general formats.
 n Snappy and LZO both are optimized for speed but aren’t very effective at com-

pressing data. Snappy is faster than LZO in decompressing data.
 n Snappy is recommended for container formats like Avro, and gzip is generally not 

recommended as an output format because it’s not splittable. Snappy is a better 
performer than LZO in most cases.

 n gzip offers a better compression ratio, but it uses more CPU resources than Snappy 
and LZO. You can consider gzip for compressing data that’s accessed infrequently. 
For data you access frequently. Snappy or LZO are better options.

 n bzip2 offers a better compression ratio than gzip2, but for some types of files, it’s 
slower when compressing and decompressing the data. 

 n If you want the MapReduce compressed data to be in a splittable format, you 
should consider bzip2, LZO and Snappy, since they’re all splittable. gzip isn’t 
splittable.

 n Your choice of a file format has serious performance implications. Query perfor-
mance is directly related to the amount of resources in the form of CPU and I/O 
that you need to expend to deserialize compressed data. 

The appropriate file format and compression codec you choose will depend on your 
data sets. Hive can import files stored in the gzip and bzip2 compression format into 
tables directly. When you execute queries the compressed files are decompressed and 
provided to the mapper tasks. However, gzip and bzip2 compression schemes don’t allow 
the file to be split and processed within a single mapper. Therefore, files stored in the 
gzip/bzip2 format are loaded into Hive tables using a SequenceFile or Avro or Parquet 
format, all of which are splittable and assignable to different mappers. 

You can move data from one f ile format or compression codec to another by 
creating a new Hive (or Impala) table with the new file format or compression codec 
and then copying the data from the current table to a new table with an INSERT 
statement.

Compression at Various Stages for MapReduce
You can compress data at the input, intermediate or output stages. It’s a good practice 
to consider compressing data at each of the three stages, to reduce both disk and 
network I/O. You’ll almost always have enough available CPU cycles to handle the 
overhead involved in compressing and decompressing data.
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MapReduce Input and Output
MapReduce jobs involve a heavy amount of I/O processing, so any reduction in the I/O will 
improve job performance. Compressing data is a great way of reducing MapReduce I/O. 
MapReduce involves I/O at several steps during its processing:

 n Reading input data files from HDFS
 n Writing mapper output to the local file system
 n Merging sorted data received from the mappers on the local file system for use 

by the reducers
 n Reducers reading data from their local file system
 n Reducers writing output back to HDFS

These steps are all operations that involve the usage of disk. Besides disk usage, there’s 
also network I/O involved during the retrieval of files by the reducers from the nodes 
where the mappers are running. Compressing data is a great way to reduce the I/O 
involved in processing.

Compressing Input Data
You can compress input files when storing data in HDFS. Mappers need to perform 
less I/O when reading the compressed input blocks. Since compression reduces the bytes 
you need to read from HDFS, reads are faster, but decompressing the files involves 
CPU overhead. 

MapReduce automatically decompresses data as it reads the input files. It uses the 
filename extension to determine which compression codec to use. For example, it iden-
tifies a file ending with the .gz extension as a gzip-compressed file, and reads the file 
with the gzip codec.

Compressing Intermediate Mapper Output
Input files aren’t the only ones that benefit from compression. You can also compress 
the intermediate files generated by MapReduce jobs. During MapReduce processing, 
mappers produce intermediate files on the local file system of the nodes where the mappers 
run. The destination reducers will then partition the intermediate output files and sort 
them according to the reducer keys, following which the reducers download the files 
over HTTP. Compressing intermediate output will reduce both disk I/O due to mappers 
writing to disk as well as network I/O when reducers transfer the partitioned files from 
the mapper nodes to the nodes where the reducers are running.

You should consider compressing intermediate data for all MapReduce jobs that generate 
more than a tiny amount of map output. Using LZO compression will hasten job comple-
tion by reducing the amount of disk I/O incurred during the shuff le phase. You can enable 
compression by setting the configuration parameter mapred.compress.map.output to 
true in the mapred-site.xml file. 

If your job outputs are large, LZO compression will reduce the number of writes, 
especially if you’re using the default replication factor of three. 
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Note that even if MapReduce reads and writes uncompressed data, it can benefit from 
compressing the mapper’s intermediate output. For example, if you use LZO compression 
or Snappy, you gain performance improvements through reducing the amount of data 
transferred.

Compressing MapReduce Job Output
You can compress map output before it’s written to disk. This is not only faster but 
involves less data transferred to the reducer, as well as consumes less storage space. 
By default, output is not compressed, and you can enable compression by setting the 
mapred.compress.map.output parameter to true. You specify the actual compression 
codec with the parameter mapred.map.output.compression.codec.

Some MapReduce jobs use a reduce phase and some don’t. Regardless, there’s output 
that can be compressed. If it’s a map-only job, you can compress the mapper output, and 
if the job uses a reducer, you compress the reducer output. 

You can compress either the MapReduce intermediate data or the output data, or 
even both intermediate and output data. The following example shows how to compress 
both intermediate as well as output data when running a MapReduce job:

hadoop jar hadoop-examples-.jar sort "-Dmapreduce.compress.map.output=true"
"-Dmapreduce.map.output.compression.codec=org.apache.hadoop.io.compress

.GzipCodec"
"-Dmapreduce.output.compress=true"
"-Dmapreduce.output.compression.codec=org.apache.hadoop.io.compress

.GzipCodec" -outKey
org.apache.hadoop.io.Text -outValue org.apache.hadoop.io.Text input output

How to Enable Compression
Hadoop comes with several codecs to enable you to compress (and decompress) data. 
A codec is an implementation of the CompressionCodec class, and you can specify the 
appropriate compression codecs in the core-site.xml file by specifying the property 
io.compression.codecs. For example, you can specify Snappy compression by speci-
fying the Snappy CompressionCodec implementation class in the core-site.xml file, by 
specifying the class org.apache.hadoop.io.compress.SnappyCodec.

Since compression isn’t enabled by default, you must enable it by setting both of these 
parameters to true in the mapred-site.xml file.

 n mapreduce.map.output.compress: Compresses the intermediate mapper output
 n mapreduce.output.fileoutputformat.compress: Compresses the MapReduce 

job output

The mapreduce.map.output.compress parameter determines whether the map out-
put should be compressed before it’s sent across the network. The default value for this 
parameter is false. The mapreduce.output.fileoutputformat.compress parameter 
determines whether the job output should be compressed and is set to false by default. 

It’s important to understand that if you enable compression but don’t specify the com-
pression codecs with the io.compression.codecs parameter, Hadoop will still compress 
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the output, using a default codec. The default Hadoop compression codec is org.apache
.hadoop.io.compress.Defaultcodec, which uses the def late compression format. The 
def late compression format is the same as gzip without the additional headers.

You can configure the type of compression you want by choosing the appropriate 
compression codec. The following compression codecs are available:

org.apache.hadoop.io.compress.DefaultCodec
org.apache.hadoop.io.compress.GzipCodec
org.apache.hadoop.io.compress.BZip2Codec
org.apache.hadoop.io.compress.DeflateCodec
org.apache.hadoop.io.compress.SnappyCodec
org.apache.hadoop.io.compress.Lz4Codec

As mentioned earlier, the configuration property io.compression.codecs (in the 
mapred-site.xml file) lets you configure the types of compression codecs you want to use. 
For this parameter, you provide a list of comma-separated compression codec classes that 
Hadoop is allowed to use for compression and decompression of data.

You can configure the use of multiple compression codecs in your cluster, as shown here:

<property>
  <name>io.compression.codecs</name>
  <value>
org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress
.GzipCodec,org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress
.DeflateCodec,org.apache.hadoop.io.compress.SnappyCodec,org.apache.hadoop
.io.compress.Lz4Codec
  </value>
</property>

In this example, I enabled the use of multiple compression codecs in my cluster. 
MapReduce jobs in my cluster can use any of these compression codecs. As explained 
earlier, if you enable compression but don’t specify a particular codec to use, Hadoop 
uses the default codec (org.apache.hadoop.io.compress.DefaultCodec). You can change 
the default codec to an alternative codec by configuring one or both of the following 
two parameters in the mapred-site.xml file:

 n mapreduce.output.fileoutputformat.compress.codec: Sets the default codec 
for the job output

 n mapreduce.map.output.compress.codec: Sets the default codec for the inter-
mediate output produced by the mappers

If you don’t frequently process the stored data, and the compression factor is high, or 
the data arrives in a compressed format, then that data is a good candidate for compressing. 
This is particularly true if you’re using a compression format such as Snappy, whose 
decompression speed is quite high. You end up gaining a lot while paying a small price 
for compression. On the other hand, if you can only gain meager benefits because the 
data isn’t very redundant and compressed data isn’t in a splittable format, it may not be 
such a good idea to use compression.
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Compression for Spark
Spark comes with its own compression-related configuration parameters. For example, 
you can compress broadcast variables before sending them, by setting the spark.broadcast
.compress property (the default value is true, anyway).

Spark lets you compress internal data such as RDD partitions, broadcast variables 
and shuff le outputs through the spark.io.compression.codec property. Spark provides 
three codecs: lz4, lzf and Snappy (default). You may optionally use fully qualified class 
names when specifying the codecs, such as the following:

org.apache.spark.io.LZ4CompressionCodec
org.apache.spark.io.LZFCompressionCodec
org.apache.spark.io.SnappyCompressionCodec

Data Serialization
In its raw form, data is a sequence or stream of bits. When data is sent to HDFS from an 
external source, it’s in this raw form that data moves through the network and is stored 
on disk. Serialization is the process of converting structured data to its underlying raw 
form and deserialization is the opposite process of reconstructing a structured form of data 
from its raw form. Once you choose the right type of file format, you may also choose the 
type of serialization you want.

Hadoop uses the writable interface for serializing and deserializing data. Hadoop’s 
serialization is more compact than Java serialization and thus more efficient. You can 
integrate any type of alternative serialization framework with MapReduce jobs. Many 
of these frameworks are more compact and faster in serializing and deserializing data.

Typically, serialization and deserialization (SerDe) is used to read and write data to 
a Hive table. The SerDe module is located between the file format of the data and the 
object representation of the rows in the Hive table. Here’s how we can summarize how 
serialization/deserialization works:

 n Serializer: Row Object => Serializer => <key,value> => OutputFormat 
=> HDFS File

 n Deserializer: HDFS File => InputFileFormat => <key,value> => Deserializer 
=> Row Object

Parquet data, for example, is serialized using a Parquet file format. Parquet, there-
fore, can’t read files serialized with the Avro SerDe, and the same thing does for Avro, 
which can’t read Parquet files.

Hadoop File Formats
Although administrators often focus their time and energies on cluster management, it’s 
important that they devote adequate attention to the selection of the optimal Hadoop 
file formats. The file formats you choose for your data have a significant impact on both 
performance and storage.
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 The problem here is that there’s no file format out there that is best in both perfor-
mance and storage requirements. Some file formats lend themselves better to compression, 
and thus are appropriate if reducing storage for that data is your key concern. Similarly, 
a file format may lead to lower throughput because changes in the schema (such as adding 
new columns) may lead to the reprocessing of vast amounts of data.

Hadoop supports the following data formats:

 n Text files
 n SequenceFiles
 n Record columnar (RC) and optimized row columnar (ORC) files
 n Avro
 n Parquet

One of the key points you must remember with regard to data formats is that most of 
us deal with structured data as well as semi-structured data that is quite likely to undergo 
structural changes over time, with the addition, modification and removal of fields. It’s 
also possible that the formats may vary across records. 

Hadoop lets you work with several data formats, including regular text files, SequenceFiles, 
Avro, ORC and Parquet. The various formats determine how Hadoop reads, splits and 
writes files. 

It’s common in many environments to transform the input data from their original format 
such as XML files to a more useful format such as the Avro file format. You can also com-
press the files, using various compression formats, such as Snappy, bzip and bzip2. Thus, you 
end up with various choices, such as Avro or Avro with Snappy Compression, for example. 

I discussed compression in detail in the preceding sections. In addition to the file format 
you select, you can also specify a SerDe to determine how a table’s records ought to be 
serialized and deserialized. For example, Hive comes with an AvroSerDe, where the Avro 
format stores data in a binary format. 

Criteria for Determining the Right File Format
Following are some of the common criteria used to determine the right file format for 
data for Hadoop applications.

Flexibility of the File Format
Some file formats are more amenable than others to enabling schema evolution over 
time. If you anticipate that your data will add or delete fields, it’ll be nice if your file 
format can read the historical data without your having to modify the code. Ideally, 
you should be able to read all your historical data, even though the current schema has 
changed over time, without having to rewrite code.

Compression Capabilities
When using large files, you need to be wary about the disk storage that you’re going 
to need. If a f ile is 10GB, since each file will be replicated three times, you’ll actually 
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need 30GB of disk storage to store that f ile. Obviously, anything that can conserve 
your disk storage is going to be a great thing. It’s common in many environments to 
transform the input data from their original formats, such as converting input files in 
the XML format to Avro files for MapReduce processing. 

There are several types of compression that are available. The most commonly used 
compression types are Snappy, bizp, bzip2 and def late.

Splittability
A file is considered splittable if Hadoop can read the data from any specific point in 
the file. If Hadoop can’t process a f ile by starting at any arbitrary point in the file, that 
f ile isn’t splittable. In a splittable format, a f ile can be split reliably into pieces called 
splits at the record boundaries. A splittable file format can easily seek to the beginning 
of a record from any point in the file. Since MapReduce splits f iles in order to read the 
data in parallel with multiple mappers, splittable files are a vital requirement for it.

SequenceFiles, Avro, RC and ORC are container file formats that support both 
compression and splitting. They all help solve Hadoop’s “small files problem,” which I 
explain later in this chapter. 

The compression format you use has a significant bearing on how MapReduce 
processes the input f iles, depending on whether the compression format supports 
splitting. 

Performance
Compressing data has a bearing on performance, and you need to differentiate between 
write and read performance in this context. Some file formats perform great for reading 
the compressed data but offer less efficient write performance. Typically, uncompressed 
data such as writing to a CSV file is much faster than writing to a compressed file, as 
there’s no overhead of compression. The same compressed CSV file also proves to be 
less efficient for reading data, since reading from a compressed file is usually slower as 
compared to reading from an uncompressed original file. 

File Size
As mentioned earlier, it’s advantageous to use large splittable files as small f iles aren’t 
conducive to efficient processing. Hadoop works best with large files—processing 
large numbers of tiny files will adversely affect performance. Ideally, you should have 
large files that are splittable, so you can take advantage of Hadoop’s parallel processing 
architecture. 

Compatibility with the Processing Tools
A key criterion when choosing a file format is the format’s compatibility with various 
tools used in the Hadoop environment, such as Hive and Pig. Hadoop components 
support multiple data formats such as text files, SequenceFiles and RC files. Hive, for 
example, can load data into the Text, Parquet, Avro, RC file and SequenceFile formats. 
I discuss the file formats supported by Hadoop in the next section.
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File Formats Supported by Hadoop
It might seem to you that since Hadoop is a big data tool, you can store all the data 
you need without worrying about space. Unfortunately, that isn’t true, and it’s very easy to 
exhaust space by loading and storing data. You can save space by compressing the data, 
and for doing that, you need to store the data in container formats such as a SequenceFile 
or the Avro file format. 

Hadoop is quite f lexible regarding the storage formats of data. You can use various 
file formats by explicitly specifying the format in a SQL statement, such as STORED AS 
PARQUETFILE, or by using an installed interface such as Avro. 

In the following sections, I brief ly review the data formats supported by Hadoop.

Text Files and Binary Formats
The text file format is the default storage format and represents data stored in a delimited 
form, with a separate line for each record and with new lines separating the records. 
Here’s an example:
...
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY ',' ESCAPED BY '\\' 
  LINES TERMINATED BY '\n'  
  NULL DEFINED AS '\N'

You can specify the termination character as a tab or a carriage return character or 
an octal or hexadecimal value, and the data mustn’t contain any delimiter characters.

In a text file, every record is a line of text. Text files are most commonly CSV, TSV 
or JSON records. Text and CSV files are common and are used often when transferring data 
from relational databases or loading data into other databases. Text format is convenient 
when exchanging data with applications or scripts that generate or read delimited files, 
and it is readable by humans and parsable as well.

The text file format, while it can be processed by almost all tools, isn’t as efficient 
as a binary storage format, because unlike the latter, it requires type conversions for all 
non-character columns. The text file format also doesn’t support block compression. 
Not being able to use block compression means that reading large uncompressed CSVs 
is much slower when compared to read performance of other compressed data formats.

CSV files don’t store metadata, and therefore you must have that information with 
you when working with these types of files. CSV files don’t offer full support for schema 
evolution, because while you can add new fields, you can do so only by adding them at 
the end of a record. You can’t delete existing fields.

JSON data fully supports evolving schemas, as it stores metadata with the data. As with 
text files, JSON records don’t support block compression and thus aren’t splittable. 

Your data might come in a format readable by humans. However, for efficient processing 
by applications, it’s smarter to convert them into a binary format since they store data much 
more efficiently on disk (fewer bytes to store the same data) and, therefore, are faster to 
write out the data to disk. In addition, many binary formats can compress data before 
writing it out to disk. 



ptg18444370

299Hadoop File Formats

Binary formats are also better at error detection during writes. The fact that binary 
records detect and ignore error-ridden files makes them a better candidate for writing 
to HDFS when compared to regular text files if, during a write, a file ends up with 
incomplete or corrupt records, say due to a block allocation.

Avro and Protobuf are popular binary formats used in several Hadoop environments. 
There are also binary columnar formats such as RC file, ORC file and Parquet.

SequenceFiles
SequenceFiles provide persistent data structures for storing binary key/value pairs. 
These files are row-based and are frequently employed by MapReduce jobs to transfer 
data among themselves. SequenceFiles support splitting, even when you compress the data. 
SequenceFiles are used as containers to store small files. A SequenceFile is a f lat file that 
contains key/value pairs. It’s common during data ingestion to use a SequenceFile as a 
container and store the file-related metadata such as the filename and creation time as the 
key and consider the file’s contents as the value.

SequenceFiles are more compact than text f iles and work well with the output 
of MapReduce programs. In order to lower its I/O footprint, you can compress 
SequenceFiles on file or block level. SequenceFiles are a common data format used to write 
files to HDFS. 

SequenceFiles are commonly used to combine multiple small files into a single large 
file, to get around the well-known small file problem in Hadoop. 

SequenceFiles let you store any arbitrary data in a binary format and have a structure 
that’s similar to a text file (CSV file). This type of file maintains the necessary meta-
data to recognize the record boundaries and thus lets you store data that can be split 
on record boundaries. Contrast this with a text file, where newlines determine record 
boundaries, and therefore an arbitrary DFS block is processed by looking for new lines 
to find the beginning and end of a record. If the data is in binary format, however, it’s 
impossible to read an arbitrary block. 

Since SequenceFiles don’t store metadata, their support for schema evolution is limited—
you can only append new fields to the existing schema.

SequenceFiles can store either text or binary data:

 n Text SequenceFile: The main rationale for this format that stores delimited text 
data in a SequenceFile format is to enable the compression of the textual data, which 
in a regular text file will remain unsplittable.

 n Binary SequenceFile: Stores data in a binary format that needs minimal conver-
sion processing during reads. From the performance point of view, this is better 
than using the text file storage format. A Parquet file, which I explain shortly, 
offers even better performance.

SequenceFiles can be split into configurable blocks. SequenceFiles support binary 
compression, and you can use Snappy, gzip, def late or bzip2 compression. Reading 
SequenceFiles is somewhat complex, so they’re most commonly used just for handling 
intermediate data storage during MapReduce processing.
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A MapFile is a sorted and indexed SequenceFile. MapFiles are special forms of 
SequenceFiles and allow random access to data stored in a sorted SequenceFile. A MapFile 
is a set of two SequenceFiles stored together in a directory with the same name as that 
of the MapFile. The name of the MapFile is denoted by the variable ${map.file.name}, 
and it consists of a file named data which is a SequenceFile with the data sorted by keys. 
The second file, named index, is also a SequenceFile that contains a fraction of the keys. 

RC Files and ORC Files
The record columnar (RC) file and optimized row columnar (ORC) file formats are 
efficient binary formats that store data in a columnar format and offer several benefits.

The RC file is a high-performance f lat file-storage format that stores data in the 
form of binary key/value pairs. It partitions rows into row splits and then partitions the 
row splits in the columnar format. It stores the row split metadata as the record key and 
the data of the row split as the value.

RC files split the data horizontally into row groups and store sets of rows in each group. 
For example, rows 1 to 100 may be stored in one group and rows 101 to 200 in another 
group. Each HDFS file consists of one or more row groups. RC files save this row group 
data in a columnar format. That is, instead of storing rows 1 through n serially, they store 
the first column values across all rows, then the following columns across all rows as well. 

Since the row groups of various files are distributed redundantly across the cluster, 
Hadoop can process the data in parallel. Each node in the cluster skips the unnecessary 
columns in a query and just reads the pertinent columns only. Since compression takes 
advantage of the similarity of data in the columns, compression is more efficient. 

RC files support Snappy, bzip, def late and bzip 2 compression and, in addition to 
significant benefits on the compression side, offer significant performance benefits for 
querying data. However, the write performance when writing to and RC file involves 
significant overhead in terms of both memory and CPU when compared to non-
columnar data formats, thus leading to slower writes. 

The key problem with the RC file format is that currently the existing SerDes in Hive 
and other Hadoop tools don’t support full schema evolution. This means that if you add 
fields to the file you may have to rewrite all the existing RC files you store now.

The ORC file format is an improvement over RC files. It stores collections of rows 
and, within those collections, stores the actual data in a columnar format. As with RC 
files, the columnar format enables the parallel processing of data across the cluster. 

An ORC file stores records in a columnar format, with each column contiguously 
stored for all the rows, thus increasing the efficiency of aggregate queries that are I/O-
intensive in nature. ORC files are very similar to RC files and provide better compression 
than the latter. However, ORC files don’t support full schema evolution, while RC 
files do.

ORC files are quite similar to SequenceFiles but offer more optimizations and are 
especially useful in Hive, where their capabilities of compression, predicate push-down 
and so on lead to tremendous improvements in query performance. 
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ORC files include lightweight indexing that enables them to skip all blocks containing 
rows that aren’t relevant for a query. The format also comes with a set of elementary 
statistics on columns, such as the minimum, maximum, count and sum. The format allows 
the parallel processing of row collections, since it’s splittable.

Parquet File Format
Parquet offers a columnar storage format that supports encoding schemas as well as efficient 
compression, thus providing faster query performance. Parquet supports the Snappy and 
gzip compression formats. The columnar format adopted by Parquet, however, leads to 
slower write performance when compared with non-columnar storage formats. Parquet 
files offer limited schema evolution support—you can add new columns at the end of the 
current column.

Since Parquet is a columnar storage format, it works well with structured data that 
include some repetition of data. It’s quite efficient in how it uses disk I/O when you query 
specific columns. If you want to retrieve an entire record at a time, however, Parquet 
doesn’t perform too well, owing to its somewhat complex format. Parquet format is suitable 
for storing nested information in records.

Hive and Pig both support the Parquet file format, and it’s quite easy to add the format 
to your Hive and Pig scripts or commands.

Avro Files
Avro is one of the more popular Hadoop storage formats. Avro makes it easy to represent 
complex data stores by using Avro SerDes. In many ways, Avro is similar to Sequence-
Files. While the SequenceFile format is also a binary format, it supports only the Java 
language. You can use an Avro file with any language for which Avro bindings exist. 

Avro files are row-based and offer a compact and fast binary format for storing data. 
Avro files are splittable, support block compression and support the Snappy, bzip, def late 
and bzip2 compression types. Avro lets you serialize data to a very compact binary format 
based on the schema you specify. 

Avro’s model is JSON-like, but you represent it in a compact binary form as well. 
Avro offers the following benefits:

 n Offers direct mapping between itself and JSON
 n Very compact format that is ideal for high volume data transfers
 n Very fast performance
 n Contains bindings for a large number of programming languages so you don’t 

need to write separate code for different data streams
 n Contains a rich, extensible schema language
 n Offers the best compatibility over time for evolving data

Unlike the other storage formats discussed here, Avro fully supports schema evolu-
tion by letting you add, delete, modify and rename the fields in a schema. Avro makes 
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this possible by storing the metadata along with the data, as well as enabling you to specify a 
separate independent schema for reading the Avro file.

Avro uses schemas during reading and writing of data, which makes possible a com-
pact representation of the serialized objects. The schemas are self-describing and are 
described in a JSON format. 

Note

The Avro format is splittable and can detect incomplete or corrupt data in a file.

Avro’s serialization format is quite similar to that of Protocol Buffer (protobuf ). 
Avro is very compatible with Hadoop because the Avro container is based on Hadoop’s 
SequenceFile and is integrated fairly well with MapReduce. Since Avro has a self-
describing schema using JSON, it’s ideal for long-term data storage, as storage formats 
usually change over time. Avro is beneficial if your data has a lot of structure and you 
expect that structure to change. 

Popular tools such as Pig and Hive support reading and writing data in the Avro format. 
You don’t need to write fancy Java (or Python) code to see what’s in a binary file. Avro 
comes with its own command line tools that let you read, write and convert data to and 
from binary Avro files. 

          Handling Format Changes
Since you’re going to be handling data that comes in from external sources over which 
you have no real control, you must be concerned with future changes in the structure 
of the data. Hive, for example, applies the table schema only when you’re reading data, 
and queries may fail when new data does not match the queries that you’re trying to run.

Avro can easily handle changes to the data structure. Suppose you create a Hive table 
using an Avro schema stored in a file named twitter.avsc, where avsc is the standard 
file extension for AVRO schemas. You store this file in HDFS and then create a Hive table 
that uses this schema. You can then create a Hive table that uses the Avro schema you 
stored. Let’s say you add a new field, thus updating your Avro schema. You’ll find that 
the Hive table definition has also been automatically updated to ref lect the schema change.

       The Ideal File Format
Well, the heading of this section is somewhat misleading, as there’s no one ideal file format 
for Hadoop processing! Your choice will depend on the type of data you handle and also 
whether the data format is compatible with your processing and querying tools. The size 
of the data files and whether schemas evolve over time are also important factors in the 
choice of a data format.

The selection of the file format depends on your use case. If all you want to do is move 
data from Hadoop to a relational database, good old-fashioned CSV files will be fine. Text 
files are good for the quick movement of large amounts of data to HDFS. The text format 
is somewhat inefficient, but it’s easily readable as well as parsable. SequenceFiles work 
well when data sets are shared between MapReduce jobs.
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 If the structure of the input data is constantly evolving, you should consider using a 
format such as Avro, which fully supports schema evolution. 

If query performance is your main concern, ORC and Parquet may be better than Avro. 
However, the write performance when using ORC or Parquet will be slower. Both of 
these formats require additional parsing to format data, which leads to longer time to 
read the data. 

Finally, specific Hadoop distribution such as Cloudera or Hortonworks, for example, 
may support specific file formats. 

When it comes to reading data, remember the following:

 n Parquet and ORC provide optimal read performance but make you pay the cost 
of poorer write performance.

 n Columnar formats such as Parquet or ORC files are good for queries that are 
specific to a few columns or a few groups of columns.

 n Regardless of the file format, compressing data means longer query times.
 n Text files are usually slower to read.

Most likely, you’re going to have to deal with various types of data such as XML files, 
web server logs in plain text and so on. It may be useful to use a mix of plain text files 
and one or more container file formats. In general, you are better off converting all XML 
documents into a container format such as Avro to overcome Hadoop’s small file problem. 
JSON documents in general aren’t affected so much by the small files problem. You can 
store small log files from web servers as plain text files. 

In many ways, more important than the specific file format you end up choosing is 
the fact that you must endeavor to keep the file format consistent.

The Hadoop Small Files Problem and Merging Files
Ideally, as you know by now, you should use large files in HDFS, with each file around 
the size of the block size (default is 128MB, with 256MB commonly used as the block size). 
Small files are files that are much smaller than the HDFS block size. You may be using 
small files due to several reasons, such as the source system generating small files and their 
being loaded directly into HDFS. Also when Hadoop ingests real-time data, the ingestion 
processes are running continuously, grabbing small chunks of new data each time. 

Small files in Hadoop mainly pose two problems. The first problem is performance 
related—too many small files means that you’ll spend a lot of time in disk seeks. Many 
small files increase random disk seeks, which are much less efficient than performing a 
sequential read to read one very large file that contains the same data. 

The second problem is that a large number of small files will stress the NameNode’s 
memory. Remember that for fast access, the NameNode holds all metadata in its RAM. 
Even a small file will take up a block to store its information in the namespace, just as a 
large file will. Each file, directory and block in HDFS is an object in the NameNode’s 
memory and takes up about 150-200 bytes of RAM on average. 
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Let’s say you have a set of 20,000 small files, each about 1MB. The NameNode will 
need to store the metadata for 20,000 files as well as 20,000 blocks—that is, a total of 
40,000 pieces of metadata information. If you store the same data in a 10GB file, you 
end up with just one file name and 40 blocks (assuming the block size of 256MB), for a 
total of just 41 pieces of metadata information. Clearly, small files impose a huge burden 
on the NameNode’s memory!

If you end up with 60 million small files in your system, you’ll need about 18-20GB 
of memory for the NameNode to handle the huge number of objects in its namespace. 

DataNodes continuously report the block information to the NameNode. With numerous 
small files, there’s a lot more reporting of data from the DataNodes to the NameNode, 
stressing your network bandwidth. 

There are two well understood approaches to reducing the impact of a large number 
of files on the NameNode’s memory footprint. The first involves using a federated 
NameNode architecture, as explained in Chapter 11, “NameNode Operations, High 
Availability and Federation.” The second is the use of Hadoop archive (HAR) files, a 
way to archive or consolidate several files into a single archive file. Let’s quickly review 
the two approaches to reducing the adverse impact of a large number of small files on 
the NameNode’s performance.

Using a Federated NameNode to Overcome the Small Files Problem
A federated NameNode architecture helps you overcome the small files problem by 
portioning the metadata over multiple NameNodes. However, the problem is that if the 
same data is shared across multiple applications, this partitioning may not be ideal. The 
number of small files remains the same; you are merely apportioning the large number 
of files to multiple NameNodes.

Using Hadoop Archives to Manage Many Small Files
Hadoop archive (HAR) files get around the limitation imposed by too many small 
files by packing small files (files sized much smaller than the HDFS block size) more 
efficiently into larger f iles in HDFS, thus diminishing the usage of the NameNode 
namespace. Instead of a larger number of small files, the NameNode just needs to be aware 
of a few HAR files. These HAR files can be accessed by specifying har:/// instead of 
hdfs:/// as a prefix. By decreasing the load on the NameNode, the scalability of your 
system will be higher. Your MapReduce jobs will process just as usual, since HAR files 
are transparent to them, and the jobs access the original small files in a parallel fashion.

A HAR file imposes a kind of file system on top of HDFS and lets you archive a large 
number of files into a small number of HDFS files. Clients see and can access all the orig-
inal files with a har:/// URL, and the number of files in HDFS is drastically diminished. 

Although HAR files don’t offer any performance gains in reading HDFS files, they 
are ideal for archiving purposes. If you rarely access the small files, the HAR files will 
serve the purpose of limiting the namespace for a large number of files.
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The following sections cover each of the following:

 n The HAR format
 n How Hadoop archives work
 n Creating a HAR file
 n Using a HAR file
 n Querying HAR files using Hive external tables
 n Accessing HAR files from Pig

The HAR Format
A HAR file has a file extension of .har and consists of two types of files—index files 
and part files. The index files contain the original directory tree structure and the status 
of the files contained in the HAR file, while the part files contain the file data. The 
HAR file format is laid out in the following manner:

foo.har/_master_index //stores the hashes and effects
foo.har_index //stores the status of the files
foo.har/part-[1,,n] //stores the file data

How Hadoop Archives Work
Since the HAR file is integrated with HDFS, the archived files and directory structures 
are exposed transparently to the users. Let’s say you copy an HDFS file to a local direc-
tory as follows:

$ hdfs dfs –get hdfs://namenode/foo/file-1 localdir

Let’s now create a HAR file named bar.har from the foo directory. You can now copy 
the original file as follows using the HAR file instead:

$ hdfs dfs –get har://namenode/bar.har/foo/file-1 localdir

Due to their transparency, HAR files are compatible with Hadoop APIs and MapReduce, 
as well as applications such as Pig and DistCp.

Creating a HAR File
HAR archive files are created in the HDFS file system from preexisting HDFS directories. 
You create a HAR file with the Hadoop archiving tool, which involves MapReduce to 
create the archive file. Here’s the syntax for using the archiving tool.

$ hadoop archive –archiveName name –p <parent> <src> <dest>

In this command, archiveName is the name of the HAR file, and you specify the 
extension .har to denote that it’s a HAR file. The <parent> argument specifies the path 
to the location where the HAR files are archived. The file list is split into map task inputs, 
with each map task creating a part file (default size is 2GB) from a subset of the source 
files. A reduce task will collect the metadata output by the mappers and create the index file 
for the HAR file. All source files are retained after the creation of the HAR archive file.
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Let’s say you want to archive two directories named /user/hadoop/dir1 and /user/
hadoop/dir2 in the /user/test/foo.bar archive. You issue the following command to 
generate the archive.

$ hadoop archive –archiveName foo.har –p /user/hadoop dir1 dir2 /user/test

Since Hadoop archives are immutable, you can’t rename an archive.

Using HAR Files
Hadoop archives are exposed as a file system, and MapReduce can use all input files in the 
archives as input. In order for MapReduce to use the files stored in the archive foo.har, you 
must specify the input directory as har://user/test/foo.har.

When you archive files into a .har file, the original files remain in place and aren’t deleted. 
If you need to conserve HDFS space, you can manually delete the source files. HAR is 
designed to act as a file system, and you can’t extract the original files from the HAR 
archive by issuing a command such as tar –xvf, for example. However, you can use 
regular HDFS file commands to look up the HAR files. Simply add har: before the 
HAR file name. The URI for a HAR file is

har://scheme=hostname:port/archivepath/fileinarchive

If you don’t specify a scheme, Hadoop assumes the underlying file system, in which 
case the URI looks like this:

har:///archivepath/fileinarchive

For example, to view an archive you created, issue the following command.

$ hdfs dfs –ls har:///user/text/foo.bar/
Output:
har:///user/test/foo.har/dir1
har:///user/test/foo.har/dir2

You can copy an archived file inside a HAR file by using the cp command, which 
essentially unarchives the file.

$ hdfs dfs –cp har:///user/test/foo.har/dir1 hdfs:/user/test/newdir

You can use the DistCp (distributed copy) command to perform the unarchiving in 
parallel:

$ hadoop distcp har:///user/text/foo.har/dir1 hdfs:/user/test/newdir

Some Caveats
HAR files are meant to efficiently store data and don’t offer performance benefits for 
reading the files in the archive. Reading files in a HAR archive may be slower than 
reading other files because you need two index file reads plus the data file read for each 
HAR file access. As an alternative to HAR files, you may use Avro to combine files 
or write a MapReduce job to combine multiple files into a SequenceFile. You may also  
look into an open-source utility such as filecrusher to combine small files.
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Handling the Performance Impact of Small Files
While a federated NameNode architecture or the HAR archives may help you with 
the namespace issue involved in handling small files, you must also consider alternative 
methods to reduce the performance impact of many small files. Following are some of 
the ways you can improve performance when dealing with small files.

Using SequenceFiles
A SequenceFile uses key/value pairs, with the keys denoting file names and the values the 
content of the files. SequenceFiles are very useful when you need to merge small files 
but still keep them logically separate. For instance, you can store HTML files as key/value 
pairs in a SequenceFile and process them with MapReduce. 

SequenceFiles are ideal when ingesting a large number of small files at once, because 
MapReduce jobs need to launch just a single job to process a file instead of assigning a separate 
mapper for each of the numerous small files. This advantage disappears if you’re ingesting 
the small files a few at a time, because you can’t append to an HDFS file. Also, if you’re 
using Hive, note that Hive sees the entire contents of the file as a single row. In addition, Hive 
tables have access only to the value and not the key of the SequenceFile, which is the 
filename of the SequenceFile. You’ll need to write custom Hive SerDes to overcome 
these limitations.

Extensible binary formats such as Avro, Parquet, Thrift or protobuf are all good candidates 
for storing data on disk. Note that regardless of which of these you choose to use, each 
record is an Avro, Thrift, or protobuf struct stored in a SequenceFile. Parquet provides 
features such as predicate push-down, which Avro and other formats lack.

Consolidating the Batch Files
You can also consolidate a large number of small files by rewriting those files into a few 
large files. You can write simple Pig programs to consolidate multiple text files. You can 
also use the open-source Filecrush project to consolidate the small files. You can merge a 
large number of small files into fewer files either before or after getting them into HDFS. 

In addition to the use of SequenceFiles and the consolidation of batch files, there 
are several alternative ways to reduce the adverse performance impact of small files. 
You can, for example, stream the small files into HBase and use the HBase tables for 
processing, instead of the original files. If you’re using Amazon EMR, you may also use 
S3DistCp, which lets you process numerous small files by concatenating the files and 
processing them using Amazon EMR. This approach is quite similar to the consolida-
tion of the batch files before processing them. 

Alternatively, your development team can use CombineFileInputFormat, which reads 
multiple files and merges them for use by a single map task, without ever writing the merged 
file to disk. You’ll therefore still have to deal with the large number of small files and 
their impact on the NameNode’s memory.

Finally, you can append the content of the small files to an existing file, but tools such 
as Flume, Sqoop, Hive, Spark, Pig and MapReduce don’t support the append option. 
You may have to custom develop a complex system to successfully append data to an 
existing file.
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Using Hadoop WebHDFS and HttpFS
WebHDFS and HttpFS are both HTTP/HTTPS REST interfaces to Hadoop. Both 
interfaces enable you to read HDFS data and to write to it, as well as perform several 
administrative commands relating to HDFS. You can use both interfaces by embedding 
them in programs or scripts or through command-line tools such as curl or wget.

WebHDFS doesn’t support the high-availability NameNode architecture. You can 
use HttpFS for those environments.

WebHDFS—The Hadoop REST API
When applications that are running within a Hadoop cluster want to access HDFS data, 
they use Hadoop’s native client libraries to work with HDFS. However, you may need 
to access HDFS from outside the cluster in order to process data as well as store and 
retrieve HDFS data. 

If the applications want to use the native HDFS protocol, you must install Hadoop 
on the servers where the applications run and also provide a Java binding with the 
applications. 

Hadoop’s WebHDFS offers a powerful set of HTTP REST APIs. Representational 
State Transfer (REST) is an architectural style for building large-scale web services that 
enable applications to access and work with HDFS remotely. In addition to facilitating 
external access to HDFS, WebHDFS is also helpful when you’re trying to work with 
two Hadoop clusters, each running a different version of Hadoop. Since WebHDFS is 
independent of MapReduce and the HDFS versions, as it employs REST APIs, it can 
be used to work with the two clusters. It can be used, for example, when you need to 
perform a data copy between the two clusters using the DistCp utility.

When using WebHDFS to remotely access HFDS data, you don’t need to install 
Hadoop on the client. You use well-known tools such as curl and wget to access the 
HDFS data. WebHDFS supports all HDFS operations you can perform by connecting 
directly to a Hadoop cluster. 

WebHDFS uses the basic HTTP operations GET, PUT, POST and DELETE in order to 
remotely manipulate the HDFS file system. For example

 n HTTP GET supports the OPEN, GETFILESTATUS and LISTSTATUS commands
 n HTTP PUT supports the CREATE, MKDIRS and SETPERMISSIONS commands
 n HTTP POST supports the APPEND operation
 n HTTP DELETE supports the DELETE operation

Using WebHDFS
Using WebHDFS is simple. All you need to do is replace the HDFS file system URIs 
with the HTTP URLs. Suppose your HDFS URI looks like the following.

hdfs://<HOST>:<RPC_PORT>/<PATH>
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A WebHDFS file system URI has the following format instead:

webhdfs://<HOST>:<HTTP_PORT>/<PATH>

In your REST API, you must insert the prefix /webhdfs/v1 in the path and append a 
query at the very end (after ?op=), as shown here.

http://<HOST>:<HTTP_PORT>/webhdfs/v1/<PATH>?op=<hdfs query here>

The HTTP URL shown here is the standard format for accessing HDFS using the 
WebHDFS REST API.

Setting Up WebHDFS
In order to use WebHDFS, you must add the following configuration parameter to the 
hdfs-site.xml file:

<property>
  <name>dfs.webhdfs.enabled</name>
  <value>true</value>
</property>

You must restart HDFS (all NameNodes and DataNodes) after adding the new con-
figuration parameter. If your Hadoop cluster is Kerberized, you need to configure the 
following two parameters as well, in order to use WebHDFS.

dfs.web.authentication.kerberos.principal     // HTTP Kerberos principal
dfs.web.authentication.kerberos.keytab // Kerberos keytab file

In a non-Kerberized cluster, authentication is based on the “user name” query parameter. 
In a Kerberized cluster, it depends on Kerberos credentials instead.

Using the WebHDFS API
You can access and transfer data using regular HDFS CLI commands or use standard 
Linux/UNIX tools such as curl or wget. The following sections show how to perform 
common file system operations using both methods.

Using WebHDFS through HDFS Commands
If you have Hadoop command line tools installed on your local client, you can use regular 
HDFS file commands to list HDFS files or to copy the files. The following URL will 
let you access HDFS:

webhdfs://localhost:14000/<path>

The following command lists all the files and directories in the HDFS directory 
named /user:

$ hdfs dfs -ls webhdfs://hadoop02.localhost:14000/user

Note that you specify the NameNode but don’t use the usual port number, which is 8020. 
Instead, you specify the port number 14000.



ptg18444370

310 Chapter 10 Data Protection, File Formats and Accessing HDFS   

You can copy a file from the local system to HDFS in the following way:

$ hdfs dfs –put webhdfs://hadoop02.localhost:14000/user/<username>/test.txt

You can execute the same –put command as a different Hadoop user by specifying 
the HADOOP_USER option as shown here:

$ HADOOP_USERNAME=hdfs dfs -ls webhdfs://hadoop02.localhost:14000/user

You can copy a file from HDFS to your local file system as follows:

$ hdfs dfs –get webhdfs://hadoop02.localhost:14000/user/<username>/test.txt  test.txt

You can remove a file from HDFS by issuing the following command:

$ hdfs dfs –rm webhdfs://hadoop02.localhost:14000/user/<username>/test.txt 

Understanding the WebHDFS Commands
WebHDFS is really quite comprehensive and includes numerous commands that help 
you access and work with HDFS data. Let’s review the most common ways to access 
HDFS with the WebHDFS REST API, using the curl tool. You need to make sure that 
curl is already installed on your server first. curl commands are simple to use and you 
can use them to get data into or out of HDFS. Here are the curl options you need to 
be familiar with:

 n -L: Asks curl to follow redirects
 n -X: Indicates the HTTP method to use
 n -H: Adds a header to the request
 n -T: Points to an upload file

The standard format for a URL is the following:

http://host.port/webhdfs/v1/?op=operation&user.name=username

You can read a file in HDFS by specifying OPEN. Suppose you want to read the contents of 
a file named test1.txt from the HDFS /tmp directory. You can issue the following curl 
command to read the file.

$ curl -i -L \ 
http://hadoopNameNode:50070/webhdfs/v1/tmp/test1.txt?op=OPEN&user.name=
hadoopUserName

Here, replace hadoopNameNode with your NameNode’s server name and hadoopUserName 
with any Hadoop user that has read permissions on the test1.txt file.

If the NameNode (default port is 50070) redirects the request with a location URL 
that points to a DataNode, you must then use that URL to execute the WebHDFS file 
system operations on a DataNode. In this case, you’ll specify the port 50075, which is 
the default port number for a DataNode.
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The following curl command lets you view the contents of a file named test1.txt.

# curl -i –L \ 

http://hadoop01.localhost:50070/webhdfs/v1/tmp/test1.txt?op=OPEN&user.name=alapati

HTTP/1.1 307 TEMPORARY_REDIRECT
...
Content-Type: application/octet-stream
Access-Control-Allow-Methods: GET
...
A|1|2|3
B|4|5|6
#

Make sure you use the active NameNode’s address, not the Standby NameNode’s 
address, if you have an HA NameNode setup. Your read request is redirected to a 
DataNode where the file can be read.

Checking the Status of a Directory
You can check the status of an HDFS directory with the LISTSTATUS command:

$ curl –i –L "http://$<<Host_Name>:$<Port>/webhdfs/v1/foo?op=LISTSTATUS"

You can list the status of an HDFS file with the GETFILESTATUS command:

$ curl –i –L "http://$<<Host_Name>:$<Port>/webhdfs/v1/foo?op=GETFILESTATUS"

Here’s an example.

[root@hadoop01 ~]# curl -i "http://hadoop01.localhost:50070/webhdfs/v1/tmp?user
.name=alapati&op=GETFILESTATUS"
HTTP/1.1 200 OK
Cache-Control: no-cache
)
...
{"FileStatus":{"accessTime":0,"blockSize":0,"childrenNum":62,
"fileId":16393,"group":"hdfs","length":0,"modificationTime":
1431361777691,"owner":"hdfs","pathSuffix":"","permission":
"1777","replication":0,"type":"DIRECTORY"}}
[root@hadoop01 ~]#

The LISTSTATUS command gets you the same results as the HDFS command dfs –ls:

# curl -i "http://hadoop01.localhost:50070/webhdfs/v1/tmp?user
.name=alapati&op=LISTSTATUS"
HTTP/1.1 200 OK
Expires: Mon, 30 May 2016 13:50:10 GMT
Date: Mon, 30 May 2016 13:50:10 GMT
...
{"FileStatuses":{"FileStatus":[
{"accessTime":0,"blockSize":0,"childrenNum":1064,"fileId":1970264,"group":"hdfs",
"length":0,"modificationTime":1432993768677,"owner":"hdfs","pathSuffix":
".cloudera_health_monitoring_canary_files","permission":"1777","replication":0,
"type":"DIRECTORY"},
...
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{"accessTime":1417766804894,"blockSize":268435456,"childrenNum":0,"fileId":
7463010,"group":"hdfs","length":0,"modificationTime":1417766804915,
"owner":"hdfs","pathSuffix":"test_hdfs","permission":"644","replication":3,
"type":"FILE"}
]}}
#

Creating a Directory
You must specify the PUT option to perform any operations that involve writing and 
renaming a file or creating a new HDFS directory. Create a directory with the MKDIRS 
command, as shown here:

$ curl –i –X  PUT 
http://$<<Host_Name>:$<Port>/webhdfs/v1/foo2?op=MKDIRS&permissions=711

This command creates a directory and also sets permissions on it.

Reading a File
Specify the –L option with the curl command so as to follow the HTTP temporary 
redirect URL. Here’s an example:

$ curl -i -L "http://localhost:50070/webhdfs/v1/tmp/webhdfs/webhdfs-
test.txt?op=OPEN&user.name=alapati"

HTTP/1.1 307 TEMPORARY_REDIRECT
...

Using the OPEN command is identical to issuing the dfs –cat command.

Creating a File
Creating a file requires two steps. First you run the command against your NameNode, 
and then you follow the redirection to execute the WebHDFS API against the DataNode 
referred to by the NameNode, as follows.

First:

curl -i -X PUT 
"http://hadoop01.localhost:50070/webhdfs/v1/tmp/webhdfs/webhdfs-test.txt?user
.name=alapati&op=CREATE"
HTTP/1.1 307 TEMPORARY_REDIRECT
...

Next:

$ curl -i -T webhdfs-test.txt "http://hadoop01.localhost:50075/webhdfs/v1/tmp/
webhdfs/webhdfs-test.txt?op=CREATE&user.name=alapati&overwrite=false"
HTTP/1.1 100 Continue
...

You can check the results of the CREATE command with the dfs –ls command.

Removing a Directory
You can delete an HDFS directory by issuing the DELETE command and specifying the 
directory name. However, the target directory must be empty. If you have files inside 
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the directory you want to remove, first remove the files and then remove the directory 
itself. Here’s an example that shows how to do this.

First:
$ curl -i -X DELETE "http://hadoop01.localhost:50070/webhdfs/v1/tmp/webhdfs-new/
webhdfs-test.txt?op=DELETE&user.name=alapati"
Next:
$ curl -i -X DELETE "http://hadoop01.localhost:50070/webhdfs/v1/tmp/webhdfs-
new?op=DELETE&user.name=alapati&destination=/tmp/webhdfs-new"
HTTP/1.1 200 OK

Check Directory Quotas
You can check the quota on an HDFS directory with the following command:

$ curl -i -L 
"http://hadoop01:14000/webhdfs/v1/user/<username>/?op=GETCONTENTSUMMARY&user
.name=alapati&overwrite=false"

Most of the WebHDFS commands help users perform various tasks with HDFS, but 
as an administrator, you can use WebHDFS to perform several administrative operations. 
Here’s a command that shows how to get a content summary of an HDFS directory, 
including information such as number of files, space quotas and space consumed:

$ curl -i "http://<HOST>:<PORT>/webhdfs/v1/<PATH>?op=GETCONTENTSUMMARY"

Using HttpFS Gateway to Access HDFS from Behind a Firewall
HttpFS is a Java application that runs on Apache Tomcat. HttpFS lets you remotely access 
the HDFS file system through the WebHDFS REST API. HttpFS uses HTTP REST 
calls that map to HDFS file system operations.

You can set up an HttpFS server to provide a REST HTTP gateway that supports 
HDFS file system operations. Since HttpFS is a proxy, it doesn’t require clients to access 
every machine in the cluster, unlike WebHDFS. 

HttpFS is useful in environments where firewall restrictions make it difficult to access 
HDFS data. You can set up an HttpFS server as the only system allowed to access the 
cluster through the firewall in such cases.

HttpFS involves a little bit more work to get going, because you must first install 
and configure an HttpFS server. You must then enable proxy access to HDFS for an 
HttpFS user, so the user running the HttpFS server can access HDFS on behalf of other 
users. The client only needs access to the HttpFS server since it’s the HttpFS server that 
accesses HDFS.

Hue contains an HDFS browser that uses HttpFS in an HA NameNode setup to 
access the HDFS file system. In an HDFS HA setup, you can’t use WebHDFS to access 
HDFS through Hue’s file browser. In a non-HA setup, however, you may use either 
WebHDFS or HttpFS to access HDFS.

Configuring HttpFS
As mentioned earlier, HttpFS uses a server to provide the gateway to HDFS. You must 
download the HttpFS zip file from Apache and unzip the file in the HttpFS configuration 
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directory. Make sure that you configure the httpfs.hadoop.config.dir property in the 
hdfs-site.xml file to point to the location of the Hadoop configuration directory in 
your cluster.

1. You must first install HttpFS by downloading and unzipping the HttpFS binaries:

$ tar xvzf httpfs-2.5.1.tar.gz

You can download the binaries from http://hadoop.apache.org.

2. Once you download and unzip the HttpFS binaries, start the HttpFS server as
shown here.

$ bin/httpfs.sh start

3. Edit the Hadoop core-site.xml file as follows to define the Linux user that will
run the HttpFS server:

<property>
    <name>hadoop.proxyuser.#HTTPFSUSER#.hosts</name>
    <value>httpfs-host.foo.com</value>
  </property>
  <property>
    <name>hadoop.proxyuser.#HTTPFSUSER#.groups</name>
    <value>*</value>
  </property>

Here, #HTTPUSER# is a placeholder for your Linux user that will run the HttpFS 
server as a proxy user.

4. Restart the NameNodes to activate the proxy user you’ve configured. Now you
can start the HttpFS server as shown here:

$ sbin/httpfs.sh start

Using HttpFS to Access HDFS
Use the Linux curl command to access HDFS through HttpFS. The following example 
show how to get the contents of the /user/foo/README.txt file.

$ curl http://httpfs-host:14000/webhdfs/v1/user/foo/README.txt 

And the following command shows the contents of the /user/foo directory in JSON 
format:

$ curl http://httpfs-host:14000/webhdfs/v1/user/foo?op=list

You can create a directory by specifying the MKDIRS operation, as shown here:

$ curl -X POST http://httpfs-host:14000/webhdfs/v1/user/foo/bar?op=mkdirs

Since the HttpFS REST API returns JSON objects, you may want to pipe those 
objects to the python –m json.tool to get the output into an easily readable format, as 
shown in the following example.
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$ curl –s "http://httpfs-host:14000/webhdfs/v1/\
     User/sam?op=LISTSTATUS&user.name=sam"\
| python –m json.tool

The curl command shown here will return a JSON object showing the status of the 
directories under the /user/sam path in HDFS.

Differences between WebHDFS and HttpFS
A key difference between WebHDFS and HttpFS is that using HttpFS, a single node 
will act as a gateway and the main transfer conduit for the data to the client node from 
where you issue the HttpFS command. On the other hand, WebHDFS needs access to 
all of a cluster’s nodes, and data read from a node is directly sent from that node. 

If you’re transferring very large files, HttpFS can prove to be a chokepoint. The best 
thing to do is test both in your environment and pick whichever works best for you.

Summary
Here’s what you learned in this chapter:

 n Using the HDFS trash feature prevents accidental data deletion.
 n HDFS snapshots help you safeguard important data.
 n You can use the fsck command to detect HDFS corruption and fix it.
 n Hadoop supports many file formats, and the choice depends on your use cases.
 n Hadoop has difficulty dealing with small files, and you can overcome that problem 

using Hadoop archives.
 n You can communicate remotely with HDFS through WebHDFS and HttpFS.
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11
NameNode Operations, 

High Availability and 
Federation

       This chapter covers the following topics:

 n Understanding NameNode operations
 n Different types of NameNodes
 n The checkpointing process
 n Configuring HDFS High Availability
 n Setting up federated HDFS

As you know by now, HDFS stores metadata on the NameNode, and the application 
data is stored on the DataNodes. The NameNode detects failed DataNodes, unavailable 
replicas and other causes of data corruption. In case the data isn’t replicated the configured 
number of times, it’s the NameNode that ensures that enough copies of the good replicas 
are copied over to the DataNodes.

The main job of the NameNode is to store the HDFS metadata, which includes the 
directory tree, file permissions and mapping of HDFS files to the block IDs on the 
DataNodes. Two entities are involved in maintaining the HDFS namespace:

 n The fsimage file: This file contains the most recent checkpointed namespace.
 n The edit log: This is a set of log files that contain a record of the changes made to 

the namespace after the latest checkpoint.

 While the fsimage file is the master file for the namespace metadata, due to its usually 
large size (it could run into hundreds of megabytes and even several gigabytes in most 
decent sized clusters), it’s not practical to write all modifications to the namespace directly 
to the fsimage file. When the namespace is modified in any way, say, by the creation of 
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an HDFS directory, the NameNode records the change in the edit log so the change is 
permanently stored on disk.

 When you restart a NameNode after a crash or after scheduled maintenance, the 
NameNode loads the fsimage file into memory and then replays the transactions from the 
edit log that record the most recent metadata operations in the cluster. The NameNode 
thus starts up with the most up-to-date version of its metadata.

 In this chapter, you’ll learn all about NameNode metadata and how Hadoop ensures 
that it’s continuously updated and available. 

You’ll also learn how to put HDFS into safe mode, which is a read-only mode, 
when performing maintenance tasks.

Probably the most important topic this chapter deals with is the NameNode high 
availability feature available in Hadoop 2, which involves running two NameNodes—
one an active NameNode and the other a Standby NameNode. If the active NameNode 
needs to be stopped or crashes, it’s automatically (or manually) failed over to the Standby 
NameNode, which becomes the active NameNode. 

In a large environment with a lot of HDFS data and a large number of processes 
accessing that data, you may want to consider federating the NameNode. A federated 
NameNode uses multiple NameNodes to provide scalability, performance and isolation. 

Understanding NameNode Operations
In Hadoop, the DataNodes are the workhorses, since they store the data blocks and also 
retrieve them when clients or the NameNode ask them do so. The NameNode keeps 
track of all the data blocks by maintaining information about which blocks make up the 
individual files. If you happen to lose the server where the NameNode is running and don’t 
have a backup of the metadata, your HDFS files are deemed lost, since there’s no way 
for Hadoop to reconstruct the HDFS files from the blocks stored on the DataNodes.

The HDFS file system metadata is stored in two different files: the fsimage and the 
edit log. The fsimage is a point-in-time snapshot of the HDFS metadata. However, the 
format of the fsimage file is more suited to reading than writing small updates, which 
involves creating a new fsimage file every time the namespace is modified by even a tiny 
change, such as the renaming of an HDFS file. 

To keep things simple and efficient, all HDFS file changes are logged in an edit journal 
conveniently named the edit log. The edit log consists of a set of files called the edit log 
segments, which together contain all the namespace changes made since the creation of the 
fsimage file. The edit log stores all changes since the last checkpoint, which is defined as 
the last time when the contents of the edit log file were merged with the latest fsimage file. 

Both the fsimage and the edit log are stored on the server running the NameNode 
daemon. If the NameNode crashes, it restores its state by loading the fsimage file and 
then replaying all the operations in the edit log. These operations are called edits or 
transactions. The replaying of the edits from the edit log lets the NameNode update the 
state of the namespace and ensure that it matches the actual current status of the HDFS 
file system. 
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 HDFS Metadata
The NameNode’s primary job is to store the HDFS namespace. HDFS metadata, or what 
is the same thing, the HDFS namespace, is a hierarchy of files and directories represented 
by inodes. Inodes store attributes such as permissions, modifications, access times and 
disk space quotas. The namespace also includes information showing the mapping of 
files to block IDs.

The NameNode stores the HDFS metadata while the DataNodes store the actual HDFS 
data. When clients connect to Hadoop to read and write data, they connect first to the 
NameNode, which lets the clients know where the actual data blocks are stored or on 
which DataNodes they should write their data. 

HDFS Metadata includes the following information:

 n HDFS file locations
 n Names of the HDFS data blocks
 n Locations of the HDFS data blocks
 n File ownership and permissions

The metadata file fsimage includes all the metadata listed above, except the location 
of the HDFS data blocks. 

The NameNode maintains the namespace tree, as well as the mapping of data blocks 
to the DataNodes in a cluster.

The inodes and the list of blocks together define the metadata of the namespace and 
are called the image (fsimage). The NameNode stores the entire image in its memory 
and stores a record of the image on the NameNode’s file system. This persistent record 
of the namespace is called a checkpoint. 

The NameNode writes changes to the HDFS file system to a journal, named the edit 
log. The checkpoint combined with the journal gives the current in-memory image of 
the NameNode. It’s important to understand that the NameNode doesn’t ever change 
its checkpoint while it’s running. A new checkpoint is only created when the NameNode 
starts, or when requested by you, or by the Secondary or Standby NameNode. When 
the NameNode starts up, it initializes the namespace image from the checkpoint on disk 
and replays all changes from the journal. Before it starts serving clients, it creates a new 
checkpoint (fsimage file) and an empty journal (edits file).

Tip

The fsimage file contains the mapping between the data blocks stored on the DataNodes 
and the HDFS files. If this file is lost or corrupted, your HDFS data stored on the DataNodes 
can’t be accessed—it’s just as if all that data has disappeared!

When clients write data to HDFS, the write operations change the HDFS metadata, 
of course, and those changes are recorded to the edit log by the NameNode. Simultaneously 
the NameNode will also update its in-memory representation of the metadata. 
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Every client transaction is recorded in the write-ahead journal by the NameNode, 
which f lushes and syncs the journal (edit log) before sending an acknowledgement to 
the client. The NameNode processes requests from multiple clients in the cluster, so in 
order to optimize the process of saving those transactions to disk, it batches multiple 
client transactions together. 

More about the fsimage and the Edit Log
The fsimage and the edit log are the two key constructs associated with HDFS metadata. 
The NameNode stores both of these in the directory specified by the configuration 
parameter dfs.namenode.name.dir in the hdfs-site.xml file. Following are the contents 
of the directory specified by this parameter in my cluster:

# pwd
/opt/hadoop/dfs/nn/current
# ls -altr
total 1105192
-rw-r--r-- 1 hdfs hadoop 1432 Aug 15 00:22 
edits_0000000000594347899-0000000000594347912
-rw-r--r-- 1 hdfs hadoop 10 Aug 15 00:24 seen_txid
-rw-r--r-- 1 hdfs hadoop 1531 Aug 15 00:24 
edits_0000000000594347913-0000000000594347927
-rw-r--r-- 1 hdfs hadoop   1048576 Aug 15 00:24 
edits_inprogress_0000000000594347928
drwxr-xr-x 3 hdfs hadoop 4096 Aug 15 00:34 ..
-rw-r--r-- 1 hdfs hadoop 62 Oct 15 10:57 fsimage_0000000000686020016.md5
-rw-r--r-- 1 hdfs hadoop 564821977 Oct 15 10:57 fsimage_0000000000686020016
-rw-r--r-- 1 hdfs hadoop 184 Oct 15 11:57 VERSION
-rw-r--r-- 1 hdfs hadoop 62 Oct 15 11:57 fsimage_0000000000686033110.md5
-rw-r--r-- 1 hdfs hadoop 564691172 Oct 15 11:57 fsimage_0000000000686033110
drwxr-xr-x 2 hdfs hadoop 4096 Oct 15 11:57 .
#

The Secondary NameNode (or the Standby NameNode) has an identical file structure. 
Note that the edit log consists of multiple edit segments, each of which is a file starting 
with “edits_”. The fsimage file, of course, starts with “fsimage_”.

Downloading the Latest fsimage File

You can use the dfsadmin command option –fetchImage to download the latest fsimage 
file to a local directory.

# hdfs dfsadmin -fetchImage /tmp

This command downloaded the fsimage file named fsimage_0000000000074283613 
to the /tmp directory. 

The NameNode stores only the file system layout data such as the files, blocks, direc-
tories and permissions in the fsimage file on disk. It keeps the actual block locations only 
in its memory. When a client seeks to read a file, the NameNode informs the client where 
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the file’s blocks are located. At this point, the client doesn’t need to communicate further 
with the NameNode regarding the transferring of the data itself.

Because of the critical nature of NameNode metadata, you should configure more 
than one directory as the value for the dfs.namenode.name.dir configuration parameter. 
Ideally, you must configure one of the locations on NFS. 

You can view the contents of an fsimage file to examine the cluster’s namespace using 
the Off line Image Viewer (OIV). This tool dumps the contents of the fsimage file 
to a human-readable format and lets you examine the HDFS namespace through the 
read-only WebHDFS API. The fsimage file tends to be quite large, and the OIV helps 
you quickly process the file’s contents. As the name of the tool indicates, you can view 
the image file off line with it.

The NameNode Startup Process
Understanding how the NameNode starts up goes a long way toward understanding the 
nature of NameNode operations. A key function of the NameNode is to let applications 
know the data blocks they need to process. It maintains ready access to the exact location of 
all data blocks by keeping the block locations and the block-to-file mappings in memory. 

When you start up the NameNode, the following things happen:

1. The NameNode reads into memory the contents of the image file it has, thus
obtaining the HDFS file system state.

2. The NameNode loads the edit log and replays the edit log (the transactions in
the edit log segments) to update the metadata it loaded into memory in step 1.

3. The NameNode also updates the fsimage file with the updated HDFS state
information.

4. The NameNode starts running with a fresh, empty edits file.

5. The DataNode daemons connect to the NameNode and send it block reports that
list all data blocks stored by a DataNode.

Once the startup process completes, the NameNode will have full knowledge of the 
HDFS data, and it can now start serving HDFS data to clients. When HDFS data is modi-
fied, the edit log is updated with the information and the changes are also made in the 
block locations and metadata that the NameNode stores in RAM for quick access. 

The key point to understand here is that the NameNode writes all namespace modifica-
tions to the edit log, but it doesn’t merge those changes with the fsimage file during runtime. 

Note

DataNode daemons send the NameNode a heartbeat every three seconds by default, to 
let it know that they’re alive. You can configure a different frequency for the heartbeats. 
By default, the DataNodes also send a block report to the NameNode every hour, to let 
the NameNode know which file blocks the DataNodes are storing. This ensures that the 
NameNode always has the latest picture of the HDFS storage.
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How the NameNode and the DataNodes Work Together
When you start up a DataNode, it connects to the NameNode and performs a handshake 
to verify the namespace ID and the DataNode’s software version. If one of these doesn't 
match the ID and version stored in the NameNode, the DataNode shuts down. 

When you format the NameNode, a namespace ID is generated and assigned to the 
file system instance and stored on all the cluster nodes. This is done to ensure that 
DataNodes with other namespace IDs don’t join the cluster by mistake. 

After the initial handshake to register themselves with the NameNode, the DataNode 
stores a unique ID internally, called the storage ID. This storage ID is assigned only once 
to each DataNode when it first registers with the NameNode and never changes. Even 
if you change the IP address or the DataNode’s port number following this, the DataNode 
will always be able to join the cluster without a problem.

Following the initial registration with the NameNode, all DataNodes send two pieces 
of information to the NameNode: periodic heartbeats that show they’re alive and a 
block report that shows block information. The block reports sent by the DataNodes 
enable the NameNode to know which block replicas are stored on each DataNode. 
The block report contains the block ID, a generation stamp (GS) and the length of each 
block replica a DataNode stores. DataNodes send out a block report to the NameNode 
every hour and also when they register with the NameNode.

The heartbeats sent to the NameNode by the DataNodes serve to confirm that a 
DataNode and its block replicas are available. In addition to the DataNode’s health status, 
a heartbeat also contains information about total storage capacity and the storage currently 
in use and the number of currently ongoing data transfers. 

The NameNode uses this storage-related information from the DataNodes during 
its block-allocation and load-balancing work.

The NameNode uses the heartbeat sent by the DataNodes for other purposes as well. 
It never directly sends requests to the DataNodes, instead using its replies to the DataNode 
heartbeats to send requests to the DataNodes. This is called “piggybacking the heartbeats.” 
The requests sent by the NameNode this way may include instructions to replicate a 
DataNode’s block replicas to other DataNodes, or to remove its block replicas or even 
to shut down the DataNode. It may also request an immediate block report from the 
DataNodes, should it need it.

DataNodes send a heartbeat to the NameNode every three seconds by default. You 
can set the heartbeat interval in the hdfs-site.xml file by configuring the parameter 
dfs.heartbeat.interval.

If the NameNode doesn’t receive any heartbeats for a specified time, which is ten 
minutes by default, it assumes the DataNode is lost and that the block replicas hosted by 
that DataNode are unavailable. The NameNode then sets in motion the process of 
replicating the data blocks stored on the lost node to other DataNodes in the cluster. The 
NameNode will then do the following:

1. It determines the blocks that were stored on the DataNode.

2. It checks to see which DataNodes have copies of those blocks.
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3. It tells those other DataNodes to start copying the data blocks to other nodes in
the cluster to maintain the replication factor for those blocks.

Now that the NameNode has ensured the data blocks are correctly replicated, what 
happens when the lost DataNode joins the cluster again? The NameNode realizes that 
certain data blocks are over replicated and tells the DataNodes to remove the over-
replicated copies. All this is automatic, and you don’t need to do a thing to ensure that 
the data is correctly replicated following the removal or addition of a DataNode. This 
is one of the many things that make the administration of Hadoop a delight!

The Checkpointing Process
Checkpointing is the process that creates a new fsimage by merging the current fsimage 
and the edit log. Once the edit log reaches a specified threshold or when a certain period 
of time elapses, the new entries in the edit log are committed to the fsimage file. 

While the edit log segments (files that together comprise the edit log) are quite small 
(tens or hundreds of bytes) in comparison with the fsimage file, if you don’t regularly 
update the fsimage file with the edit log transactions, the edit log could get pretty large 
itself! Of course, this will delay the restart of the NameNode. Checkpointing periodically 
merges the latest fsimage file with the edit log, creating a brand new up-to-date fsimage. 
This helps the NameNode load its final in-memory state directly from the fsimage file 
instead of having to replay a vast number of files from the edit log. 

You might be thinking at this point that the NameNode might be tasked with the 
periodic updating of the fsimage file. Actually, this isn’t the case. Checkpointing is a 
resource intensive operation and may also lead to the restricting of user concurrent access. 
During checkpointing, the NameNode won’t be able to allow client operations such as 
reading and writing HDFS files. That’s the reason the NameNode relies on either the 
Secondary NameNode or the Standby NameNode (in a high-availability setup) to take 
care of checkpointing.

In Hadoop 2, the checkpointing functions can be handled by any one of the following 
four daemons:

 n Secondary NameNode
 n Checkpoint node
 n Backup node
 n Standby NameNode

The last one, the Standby NameNode, is present only in an HDFS high-availability 
environment, of course. I brief ly review these daemons in the next section. 

The Need to Keep the fsimage File Updated

Earlier in this chapter, you learned about the sequence of steps the NameNode goes 
through when you restart it. The drawback of this sequence of steps is that if you don’t 
start up the NameNode for a long time, you’ve got a big problem on your hands! The 
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startup is going to take a long time, and the NameNode isn’t available (it’ll be in the safe 
mode) until it completes reading and merging all changes since its last start. Hadoop 
lets the Standby NameNode (or the Secondary NameNode) regularly update the fsimage 
file, so an updated fsimage is always ready for the NameNode following a restart.  

Secondary, Checkpoint, Backup and Standby Nodes
As mentioned in the previous section, you can configure checkpointing through the 
Secondary NameNode, checkpoint node, backup node or Standby NameNode. The 
Secondary NameNode checkpoint node and backup nodes all perform somewhat similar 
functions, and thus you don’t need to run all three of these services on a cluster. Most 
commonly, you run the Secondary NameNode in a non-HA-enabled cluster. In a high-
availability NameNode configuration, you won’t need a Secondary NameNode, since 
the Standby NameNode will take over its functions.

Secondary NameNode
The Secondary NameNode, contrary to what its name suggests, doesn’t really function 
as a NameNode. The Secondary NameNode’s job is to perform periodic checkpoints of 
the namespace. 

 The Secondary NameNode doesn’t upload the checkpointed fsimage file to the active 
NameNode as a matter of course. In order to use the checkpointed file, you must phys-
ically move the file over to the NameNode server.

You run the Secondary NameNode on a server configured identically to the server on 
which the NameNode runs. The Secondary NameNode maintains a directory identical 
to the one the NameNode maintains, thus facilitating the reading of the checkpointed 
image file by the NameNode when necessary.

Checkpoint Node
The checkpoint node performs the same function as the Secondary NameNode—that 
is, it checkpoints the namespace on a regular basis, helping keep the size of the edits file 
down. As with the Secondary NameNode, the checkpoint node downloads the edits file 
from the NameNode, merges it with the image file and sends back the updated image file 
to the NameNode. You can have multiple checkpoint nodes for safety, if you wish, as 
long as you have no backup nodes registered.

The key difference between the Secondary NameNode and the checkpoint node 
is that, unlike the Secondary NameNode, the checkpoint node actually uploads the new 
updated image file to the active NameNode. 

Backup Node
The backup node is an extension of the checkpoint node. The backup node, while 
ultimately providing essentially the same functionality as the Secondary NameNode or 
checkpoint node, employs a different mechanism. This node maintains an in-memory copy 
of the latest namespace and ensures that it’s synchronized with the NameNode’s namespace. 
It achieves this by getting a stream of the namespace changes from the NameNode. 
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The backup node then stores these changes to disk and applies them to its in-memory 
copy of the namespace. Since the backup node doesn’t have to transfer and then merge 
the fsimage and edits filed from the NameNode, it’s much more efficient than the 
checkpoint node for performing the checkpointing duties.

Since the backup node always has a backup of the namespace in its memory, it’s called 
a “backup” node! When the backup node performs a checkpoint, it doesn’t need to 
download the fsimage and the edit log from the NameNode—it simply saves its own 
namespace to the local fsimage file and zeroes out the edit log file. If you start up a backup 
node, there’s no need to start a checkpoint node or a Standby NameNode in your cluster.

If you startup a backup node, you can run the NameNode without any requirements 
to store the namespace on its own disk system. The NameNode only maintains the latest 
namespace in-memory in this case. The backup node will take care of the actual storage of 
the fsimage and the edit log files on disk. In order to do this, you start the NameNode 
as follows, after starting the backup node.

$ hdfs namenode -backup
$ hdfs namenode –importCheckpoint

Since you’re choosing not to store the namespace on the active NameNode, you must 
also remove the dfs.name.dir parameter in the hdfs-site.xml file. 

Note

If you run the backup node, you can’t run the checkpoint node.

Standby NameNode
The Standby NameNode is the hot standby for the NameNode service. In its capacity 
as a Standby NameNode, it also performs the checkpointing duties normally performed 
by one of the other types of NameNodes. Therefore, in a high-availability environment, 
you shouldn’t run the backup node, checkpoint node or Secondary NameNode. Later in 
this chapter, you’ll learn how to configure and manage a Standby NameNode.

Configuring the Checkpointing Frequency
The checkpointing process is highly configurable. By default, the Secondary NameNode 
will checkpoint every hour or after every 1 million transactions, whichever occurs first. 
You can configure the frequency of checkpointing by basing it on either of the follow-
ing two criteria: 

 n Time elapsed since the last checkpoint. You configure this with the 
dfs.namenode.checkpoint.period configuration parameter.

 n Number of edit log transactions since the last checkpoint. You set this 
with the dfs.namenode.checkpoint.txns parameter.

If either the elapsed time or the number of edit transactions since the last checkpoint 
exceeds their respective configured values, the checkpointing node (could be the Standby 
NameNode, the Secondary NameNode, the checkpoint node or the backup node) will set 
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the checkpointing process in motion. As mentioned earlier, the Secondary NameNode 
performs the checkpointing by default, and in a high-availability setup, it’s the Standby 
NameNode that checkpoints.

If for any reason the checkpointing process isn’t working right, you may have a lot of catch-
ing up to do, especially in a large, busy cluster. Make sure that the periodic checkpoints are 
occurring. You can check the checkpoint time by viewing the NameNode web UI.

If you monitor the NameNode logs during a startup, you may notice the statement 
“replaying edit logs.” This means the NameNode is replaying the necessary edit logs based 
on its “last checkpoint” information. Once it replays all the necessary edit logs, it updates 
its namespace information. 

How long will this process take? It depends on when the most recent checkpointing 
was performed and the number of changes in your cluster since that time, as indicated 
by the number of edit logs generated since the last checkpoint. 

Go to the directory configured in the dfs.namenode.name.dir parameter to view the 
fsimage and the edit log files. The last successful checkpoint time is shown by the creation 
time of the latest fsimage file. You can figure out how long it takes for the NameNode 
to create its fresh namespace information by checking to see how many edit log segments 
(edits files) are present in this directory. If the cluster stopped checkpointing a few months 
ago and you never caught it, the NameNode will need to process through thousands of 
edit log segments, making the cluster unavailable for days!

Note

If the checkpoint process fails for any reason, the NameNode server can end up with a very 
large edit log with numerous edits segments, which you may not be aware of until the disk 
space is exhausted and the NameNode crashes. It’s no fun to restart the NameNode in 
this situation, as it may take hours for it to replay the accumulated edit log files, which
may run into hundreds of gigabytes!

In some clusters, mostly non-production-related, it’s possible that a Secondary 
NameNode hasn’t been configured, hasn’t been running or, although it was running, 
failed to perform its main duty of performing checkpointing operations. As you know 
by now, if the NameNode has been running for a long time and needs to be restarted, 
it’ll then be looking at a massive amount of edit log segments that need to be replayed. 
Hadoop provides a couple of useful parameters that help you configure how many extra 
edit logs (and how many extra edits) are retained:

 n  dfs.namenode.num.extra.edits.retained (default value of 1,000,000): This 
parameter specifies the number of extra transactions to be retained beyond the 
minimum necessary for restarting the NameNode. This is useful for cases where 
the remote Standby NameNode has been off line for a while and needs to access 
a larger backlog of edits in order to restart. The default value for this parameter is 
1 million edits. Since the average edit is a few hundred bytes in size, the default 
value of 1 million edits means the total size of the retained edits will be a few hun-
dred megabytes or a few gigabytes at the most.
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 n  dfs.namenode.max.extra.edits.segments.retained (default value of 10,000): 
This parameter specif ies the maximum number of extra edit log segments that 
should be retained over and above what is required for restarting the NameNode. 

The two parameters listed here work in tandem to keep the total extra edits and the 
extra edits files at a reasonable level.

Managing Checkpoint Performance
On large clusters a checkpointing operation can consume critical I/O and network resources 
when copying very large fsimage files (several GB in size) to the NameNode. You can 
control the transfer speed of the fsimage file by configuring the following parameters.

 n dfs.image.transfer.bandwidthPerSec: This configuration attribute allows you 
to specify the maximum amount of bandwidth (in bytes per second) for transferring 
the fsimage and edits files. This parameter is designed to help you keep NameNode 
operations responsive during the checkpointing process. The default value is 0, 
meaning that there’s no throttling.

 n dfs.image.transfer.timeout: This parameter sets the socket timeout (in milli-
seconds) for transferring the image. The timeout prevents the clients from hanging 
when the sender fails during the transfer of the image. The default value is 60,000 
milliseconds.

Note

NameNode logs are always quite exhaustive, even in the literal sense, since they consume 
lots of disk space. Configure plenty of space for handling the NameNode logs. Because 
the NameNode rolls over its logs very quickly (a few minutes), you won’t have the neces-
sary diagnostic data that you’ll need for troubleshooting in current logs if you don’t size 
the NameNode logs big enough. Big is a relative term of course, but in general, a size of 
250MB or higher should be ideal.

The Mechanics of Checkpointing
Checkpointing is a resource-intensive operation and may also lead to restricting user 
concurrent access. During checkpointing, the NameNode won’t be able to allow client 
operations such as reading and writing HDFS files. That’s the reason the NameNode 
relies on either the Secondary NameNode or the Standby NameNode (in a high- 
availability setup) to take care of the checkpointing work.

In the following two sections, you'll learn the checkpointing mechanics, first with a 
Standby NameNode and then with a Secondary NameNode.

Checkpointing with a Standby NameNode
When you configure high availability for the NameNode service, edits are stored 
in shared storage that is accessible to both the active and Standby NameNodes. The 
Standby NameNode doesn’t concern itself with handling client requests. Its main job 
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is to keep its version of the namespace updated by regularly performing checkpoints—
that is, by updating the fsimage by replaying the edits being written to the shared edits 
directory by the active NameNode.

Note

Creating a new fsimage file with the latest namespace through checkpointing is essentially 
the same as running the command hdfs dfsadmin -saveNameSpace.

Here are the steps involved in checkpointing with a Standby NameNode:

1. The Standby NameNode checks whether the time elapsed since the last checkpoint
or the number of accumulated edits matches the configured checkpoint thresholds
for these two conditions.

2. The Standby NameNode saves its namespace data to a new intermediate file named
fsimage.ckpt_txid. The txid part in the filename refers to the ID of the most
recent edit log transaction. After writing an MD5 file for this fsimage file, it renames
the file to fsimage_.xxxx.

3. The Standby NameNode sends an HTTP GET message to the active NameNode’s
GetImageServlet (/getimage?putimage=1).

4. The Active NameNode will do its own GET operation to the Standby NameNode’s
GetImageServlet. It renames the newly retrieved fsimage file to an intermediate
name (fsimage.ckpt), creates an MD5 file for it and then renames it fsimage_.xxxx

Note

When a checkpoint is in progress, you can’t fail over to the Standby NameNode or access 
the Standby web UI. Fortunately, the checkpointing process lasts for a very short time.

Now that you’ve seen how checkpointing works with a Standby NameNode, let’s 
see how it works with a Secondary NameNode.

Checkpointing with a Secondary NameNode
The checkpointing process run by the Secondary NameNode is different initially, as it 
and the active NameNode don’t share an edits directory. Here’s the checkpoint procedure 
when using a Secondary NameNode:

1. The Secondary NameNode checks whether the time elapsed since the last check-
point or the number of accumulated edits meets the configured checkpoint
threshold.

2. The Secondary NameNode retrieves the most recent edit log transaction ID
through an RPC call to the NameNode.

3. The Secondary NameNode requests the NameNode to roll the current edits file
by ending the current edit log segment and starting a new edit segment.
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4. The NameNode continues writing edits to the new edit log segment and the
Secondary NameNode compacts the old edit logs. The Secondary NameNode
also obtains the transaction IDs of the current fsimage file and the rolled edit
log segment.

5. Using the two transaction IDs retrieved in step 4, the Secondary NameNode
performs a GET to the NameNode’s GetImageServlet to get the fsimage and
edit files.

6. The Secondary NameNode replays the edit log segments so it can catch up with
the current transaction ID and refresh its namespace.

7. The Secondary NameNode writes its refreshed namespace to a new fsimage file.

8. The Secondary NameNode performs an HTTP GET operation (/getimage?
putimage=1) to the NameNode. The NameNode will in turn perform its own
GET operation to the Secondary NameNode and download the new fsimage file.

9. Finally, the NameNode replaces its previous fsimage file with the new fsimage file.
It also replaces the previous edits file with the new edits file it created in step 3.

NameNode Safe Mode Operations
Safe mode is a NameNode state in which the node doesn’t accept any changes to the HDFS 
namespace, meaning HDFS will be in a read-only state. Safe mode is entered automatically 
at NameNode startup, and the NameNode leaves safe mode automatically when the 
configured minimum percentage of blocks satisfies the minimum replication condition. 

The NameNode can enter the safe mode automatically, or you can place it in the safe 
mode before performing certain maintenance operations, such as backing up the HDFS 
metadata. The following sections explain both of these cases.

Automatic Safe Mode Operations
When you start up the NameNode, it doesn’t start replicating data to the DataNodes 
right away. The NameNode first automatically enters a special read-only state of opera-
tion called safe mode. In this mode, the NameNode doesn’t honor any requests to make 
changes to its namespace. Thus, it refrains from replicating, or even deleting, any data 
blocks until it leaves the safe mode. 

As you learned earlier in this chapter, the DataNodes continuously send two things 
to the NameNode—a heartbeat indicating they’re alive and well and a block report listing 
all data blocks being stored on a DataNode. Hadoop considers a data block “safely” repli-
cated once the NameNode receives enough block reports from the DataNodes indicating 
they have a minimum number of replicas of that block. 

Hadoop makes the NameNode wait for the DataNodes to report blocks so it doesn’t 
start replicating data prematurely by attempting to replicate data even when the correct 
number of replicas exists on DataNodes that haven’t yet reported their block information. 
When a preconfigured percentage of blocks are reported as safely replicated, the 
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NameNode leaves the safe mode and starts serving block information to clients. It’ll 
also start replicating all blocks that the DataNodes have reported as being under replicated.

You can’t write HDFS data while the NameNode is in safe mode. If you attempt to 
perform a write operation, you’ll get the following error:

$ hdfs dfs -copyFromLocal test.txt /tmp/
     copyFromLocal: org.apache.hadoop.hdfs.server.namenode.SafeModeException: 
Cannot create 
     file/tmp/.bash_history. Name node is in safe mode.   

While the NameNode automatically enters and transitions out of safe mode upon 
restarting, sometimes you may need to put the NameNode into safe mode. You need to 
put the NameNode into safe mode whenever you want to freeze the namespace. Thus, 
safe mode can be seen as a tool to put your cluster in maintenance mode. 

Placing the NameNode in Safe Mode
Sometimes, you may want to perform administrative actions that require HDFS to be 
in the read-only mode. You can explicitly put the NameNode in safe mode during those 
operations. Once you’re done performing the administrative actions, you can take the 
NameNode out of safe mode. 

Use the dfsadmin –safemode command to manage safe mode operations for the 
NameNode. You can check the current safe mode status with the -safemode get command:

$ hdfs dfsadmin -safemode get
  Safe mode is OFF in hadoop01.localhost/10.192.2.21:8020
  Safe mode is OFF in hadoop02.localhost/10.192.2.22:8020 
$

You can place the NameNode in safe mode with the -safemode enter command:

$  hdfs dfsadmin -safemode enter
Safe mode is ON in hadoop01.localhost/10.192.2.21:8020
Safe mode is ON in hadoop02.localhost/10.192.2.22:8020
$

Finally, you can take the NameNode out of safemode with the –safemode leave command:

$ hdfs dfsadmin -safemode leave
Safe mode is OFF in hadoop01.localhost/10.192.2.21:8020
Safe mode is OFF in hadoop02.localhost/10.192.2.22:8020
$

The –safemode wait command makes the NameNode wait to resume its operations 
until HDFS finishes all of its data replication.

$ hdfs dfsadmin –safemode wait 

This command blocks all access to the NameNode until it exits safe mode.
You already know that the NameNode will automatically enter the safe mode every 

time you start it up. In addition, the NameNode will also enter the safemode when the 
server on which the NameNode is running runs out of disk space. 
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The NameNode stores its metadata in the directory you specify with the dfs.namenode
.name.dir parameter. The amount of space the NameNode can use for its metadata 
storage depends on a key parameter named dfs.namenode.du.reserved. This parameter 
specifies the threshold for free space to be reserved by Hadoop for the NameNode to write 
its namespace information. By default, this parameter is about 100MB (104,857,600 bytes).

If the free space on the server where the NameNode stores its metadata information 
falls below the threshold specified by the dfs.namenode.du.reserved parameter, the 
NameNode will immediately enter the safe mode, as you’ll see in the following messages.

Space available on volume /u05 is 103645184, which is below the configured
reserved amount 104857600
NameNode low on available free space. Entering safe mode.
STATE* Safe mode is ON
Resources are low on NN. Please add or free up more resources then turn off
safe mode manually. NOTE:  If you turn off safe mode before adding resources, 
the NN will immediately return to safe mode.

As the messages clearly inform you, there’s no way you can manually take the NameNode 
out of safe mode until you add more disk space to the partition or volume on which you 
ran out of space. Once you’ve taken care of the space issue, you can take the NameNode 
out of safe mode with the dfsadmin –safemode leave command. 

Note

The dfs.datanode.du.reserved parameter specifies the threshold of free space on the 
entire system, not on any specific volume.

You can put the NameNode into the safe mode for purposes other than backing up 
its metadata. If a large number of DataNodes in your cluster fail, Hadoop will immediately 
swing into action by replicating large amounts of data to the remaining DataNodes in 
the cluster. A good strategy to avoid the large-scale data replication is to start up the 
NameNode in safe mode and then go about bringing up the failed DataNodes. 

Note

The NameNode logs, the dfsadmin safemode command and the NameNode UI all show 
the current state of the NameNode.

How the NameNode Transitions Through Safe Mode 
Following is a quick rundown of how the NameNode transitions through safe mode to 
a fully “open” mode.

1. When you enter the safe mode of operations, both the NameNode and the
DataNodes are in the running state. NameNode reads the latest checkpoint to
initialize the NameNode’s namespace information.

2. The NameNode may replay some edit logs to create fresh namespace information
based on the checkpoint information.
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3. NameNode creates a new checkpoint (that is, a new fsimage file that’s a compaction
of the previous fsimage file and all transactions applied from the edit logs) and saves it.

4. The ports to the DataNodes, NameNode web UI and Secondary NameNode are
opened to start communications.

5. The NameNode enters safe mode—no HDFS read and write operations are per-
mitted at this point.

6. The NameNode exits the safe mode—HDFS reads and writes are allowed.

If there are a large number of edit logs, say because the Secondary NameNode was out of 
commission for a while, the NameNode could stay in the safe mode status quite a while. 

If you’ve configured multiple redundant storage locations for the fsimage f ile, the 
NameNode writes in a parallel fashion to all the fsimage files but remains in safe mode until 
it completes writing to all locations. Until then, there can’t be any client connections to HDFS.

You can track the NameNode restart process immediately upon starting it by checking 
the NameNode web UI. The UI will display the percentages of completion in the process 
of loading the fsimage and loading the edits. 

During the NameNode restart process, in the NameNode web UI, completed phases 
are displayed in bold text. Currently the running phase is shown in italics and the yet-to-
begin phases are shown in gray text. The UI will also show other bits of information 
such as where the active NameNode is loading the fsimage and edits files from, and 
the size of those files. It also shows all the locations where the NameNode is writing the 
fsimage to, as well as the size of the fsimage file.

Backing Up and Recovering the NameNode Metadata
Since the NameNode metadata is absolutely critical to your cluster operations, you 
should periodically back it up. Here are the steps to back up the NameNode metadata.

1. Put the cluster in safe mode:

$ hdfs dfsadmin -safemode enter
Safe mode is ON in hadoop02.example.com/10.192.2.22:8020
Safe mode is ON in hadoop02.example.com/10.192.2.21:8020
$

2. Back up the metadata with the -saveNameSpace command:

$ hdfs dfsadmin -saveNamespace
Save namespace successful for hadoop02.example.com/10.192.2.22:8020
Save namespace successful for hadoop02.example.com/10.192.2.21:8020
$ hdfs dfsadmin -safemode leave
Safe mode is OFF in hadoop02.example.com/10.192.2.22:8020
Safe mode is OFF in hadoop02.example.com/10.192.2.21:8020
$

The –saveNameSpace command saves the current namespace (HDFS metadata) to
disk, and also resets the edit log. Since this command requires HDFS to be in safe
mode, you must make sure to exit safe mode after executing the –saveNameSpace
command.
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3. The dfsadmin –metasave command helps you save the NameNode’s primary
structures to a text file, as shown here:

$ hdfs dfsadmin -metasave mymeta.txt
Created metasave file mymeta.txt in the log directory of namenode
hadoop02.example.com/10.192.2.22:8020
Created metasave file mymeta.txt in the log directory of namenode
hadoop02.example.com/10.192.2.21:8020
$

In this example, the dfsadmin –metasave command stores the following pri-
mary data structures to the file named mymeta.txt in the directory you specified
for the hadoop.log.dir parameter (in our case this is /var/log/hadoop-hdfs).
A primary data structure in this context is of the following types:

 n DataNode heartbeats sent to the NameNode
 n Blocks awaiting replication
 n Blocks that are currently being replicated
 n Blocks awaiting deletion

4. Here’s the top portion of the mymeta.txt file created with the –metasave command:

Note 2222102 files and directories, 2148293 blocks = 4370395 total
Live Datanodes: 17
Dead Datanodes: 1
Metasave: Blocks waiting for replication: 79
/user/sam/pos_poc/hive/hostsession_bbis_prod/date=2014-05-26/hostmessage_
data_attempt_1408991795079_0265_r_000029_0.avro: blk_1074299104_1099524502475
MISSING (replicas: l: 0 d: 0 c: 0 e: 0)
/user/sam/pos_poc/hive/hostsession_bbis_prod/date=2014-05-27/hostmessage_
data_attempt_1408991795079_0266_r_000013_0.avro: blk_1074299273_1099524502644
MISSING (replicas: l: 0 d: 0 c: 0 e: 0):

 It’s not a good idea to edit the metadata files, as you could end up losing data. For 
example, the VERSION file protects DataNodes belonging to a different namespace from 
registering with a NameNode. This is a built-in safety device, and by editing the VERSION 
file to match the namespace IDs of the DataNodes and the NameNode, you can end up 
corrupting the data.

Using the getconf Command to Get the NameNode Configuration

The hdfs getconf utility gets you NameNode configuration information, as explained here.

$ hdfs getconf –namenodes
hdfs getconf is utility for getting configuration information from the config 
file

hadoop getconf
[-namenodes] gets list of NameNodes in the cluster.
[-secondaryNameNodes]  gets list of secondary NameNodes in the cluster.
[-backupNodes] gets list of backup nodes in the cluster.
[-includeFile] gets the include file path that defines the 

DataNodes that can join the cluster.
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[-excludeFile] gets the exclude file path that defines the 
DataNodes that need to decommissioned.

[-nnRpcAddresses]     gets the namenode rpc addresses
[-confKey [key]] gets a specific key from the configuration

Here’s an example:

$ hdfs  getconf -namenodes
hadoop01.localhost hadoop02.localhost
$

This example assumes a high-availability NameNode setup, wherein there are two 
NameNodes: an active and a Secondary NameNode. 

Earlier, I mentioned that you can configure a Standby NameNode to provide high 
availability for the NameNode. The next section shows how to configure and set up 
HDFS high availability.

Configuring HDFS High Availability 
A NameNode outage, regardless of whether it’s planned or not, means that users can’t use 
HDFS. If the NameNode server (host on which the NameNode runs) is lost, all HDFS files 
are for all practical purposes lost as well, since there’s no way to access the HDFS metadata.  

If you have just a single NameNode, an outage means that you’re going to spend 
significant time starting up a new NameNode service on a different server and wait for 
it to start accepting client requests. 

NameNodes are usually architected to run on more robust servers than the DataNodes, 
so they may not fail often. However, you must also consider the fact that you’ll be taking 
the NameNode down once in a while to perform various maintenance tasks—such as 
patching the OS of the server on which the NameNode service is running, for example—
and each time you take it down, there’s an outage, albeit planned. Obviously, availability 
of the Hadoop cluster is weakened due to its dependence on the NameNode service.

Due to the critical importance of the metadata managed by the NameNode, you must 
make the NameNode immune to failure by building resiliency for the NameNode service. 
In Hadoop 2, you can run two NameNodes simultaneously to provide high availability for 
HDFS, with one of the NameNodes serving as the active NameNode and the other as the 
Standby NameNode. While configuring a high-availability (HA) NameNode service is 
purely optional, this architecture is recommended for a production environment. 

The Standby NameNode doesn’t merely sit idle until it’s called upon to take over 
from the active NameNode and become the active NameNode. Besides providing high 
availability, the Standby NameNode provides other services. In a HA architecture, the 
Standby NameNode takes over the task of performing checkpoints of the namespace 
from the Secondary NameNode. 

In most cases, the standby will transition to active status within about a minute or so. 
It can transition this quickly because it has the up-to-date namespace state stored in 
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its memory, with consists of the latest edit log data, as well as the most up-to-date block 
mapping. 

You can also take advantage of the HDFS high-availability capability when you need 
to perform any maintenance work on the server hosting the active NameNode. 

The NameNode uses the edit log to get the latest state of HDFS metadata. The key to 
supporting NameNode high availability is to make sure the edit log is shareable (highly 
available) between the active and Standby NameNodes. Hadoop lets you enable the 
sharing of the edit log in two different ways:

 n You can set up a Quorum Journal Manager (QJM) to enable the sharing of the edit log. 
 n Alternatively, you can set up a shared NFS directory to enable the sharing of the edit 

log between the two NameNodes. 

Setting up high availability through the QJM is the recommended approach. In the 
following sections, you'll learn how to configure HDFS HA using the QJM. Many of 
the configuration steps are quite similar in both approaches, so if you understand the 
following discussion, you can easily set up HA using the alternative shared NFS direc-
tory approach.

NameNode HA Architecture (QJM)
When you’re running an HA NameNode service, there are two NameNodes, but only 
one of them is active at any time, in terms of handling HDFS client operations. As its 
name indicates, it’s the job of the active NameNode to interact with the clients. The 
Standby NameNode doesn’t handle client requests—it simply ensures that its state is 
synchronized with that of the active NameNode. 

When you use the QJM to synchronize the two NameNodes in an HA environment, 
you’ll have a set of JournalNode (JN) daemons running in the cluster, in addition to the 
two NameNode services. When the active NameNode modifies the HDFS metadata, it 
writes the changes to all, or at least a majority of, the JNs. 

Following are the main components of the Hadoop NameNode HA architecture 
(with two NameNodes):

 n The ZooKeeper Failover Controller (ZKFC) controls the NameNode failover process.
 n JNs hold the shared edit logs.
 n A pair of NameNodes run in an the active/standby mode.

Using Apache ZooKeeper as a Coordinator
Apache ZooKeeper is used for coordination purposes in an HA environment. ZooKeeper 
monitors the active NameNode and handles the failover mechanism when the active 
NameNode becomes unavailable. Both the active and the Standby NameNode run a 
ZKFC to monitor the NameNodes and to initiate the failover tasks. It’s the ZKFC that 
informs the ZooKeeper instances when a NameNode fails, which leads to those instances 
electing a new active NameNode to take over from the failed active NameNode.
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The Role of the JournalNodes
In a typical HA environment, one of the NameNodes is in the active state and the other 
is in a standby state. The active NameNode attends to client operations, while the Standby 
NameNode waits to take over from the active NameNode in case of a failover.

In order to be able to take over from the active NameNode, the Standby NameNode 
must maintain state. The way the Standby NameNode synchronizes its state with that 
of the active NameNode is by both nodes communicating through a set of daemons 
called JournalNodes ( JNs). 

All changes made by the active node are written to a majority of the JNs. In order to 
obtain a quorum of these nodes, you always run an odd number of JNs, such as 3 or 5. 
The Standby NameNode monitors the JNs and applies all edits made to the JNs to its 
own namespace. 

Before a failover, the Standby NameNode ensures that it has read all edits from the 
JNs before it makes itself the active NameNode.

Note

In order to ensure that the Standby NameNode always has up-to-date information regard-
ing all blocks and thus minimize the time failover, the DataNodes send the block locations 
as well as their health status (heartbeats) to both the active and the Standby NameNodes.

It’s the job of the JNs to ensure that only one NameNode writes changes to the namespace 
at any time, in order to avoid ending up with an inconsistent namespace.

You need a minimum of three JNs to support NameNode HA. When there are 
changes to HDFS, the active NameNode writes journal entries to the majority of the 
JN services. 

When a failure occurs, the Standby NameNode reads the completed journal entries 
(that is, where a majority of the JNs have a completed entry) to make sure that when it 
transforms into an active NameNode, its state is fully consistent with the cluster’s state. 

How High Availability Works
Clients connect to the active NameNode, but the DataNodes will send their heartbeats 
to both the NameNodes. The active NameNode writes its metadata to the JNs, and the 
Standby NameNode stays in sync with the active NameNode by continuously reading 
the metadata from the JN. 

Note

There are two types of failover: automatic failover, which is detected and initiated by 
HDFS,  and manual failover, which is initiated by the administrator and can be due to 
maintenance work.

The JNs provide the shared edits storage. The active NameNode writes to this stor-
age and the Standby NameNode reads from it, to keep current with the HDFS changes 
being made by the active NameNode. Here’s how high availability for HDFS works:
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1. The active NameNode writes all metadata changes to (a majority of ) the JN’s
Journal Manager, which is part of the NameNode. It waits for a majority of the
JNs to acknowledge success. The majority acknowledgment is to ensure that a
single failed JN won’t adversely affect the NameNode latency.

2. The Standby NameNode monitors the JNs for changes to the edit log.

3. When the Standby NameNode notices changes to the edit log, it updates its
namespace with the changes it notices.

4. When a failover is imminent, the Standby NameNode first ascertains that it has
up-to-date metadata based on the changes to the edit log in the JNs.

5. Once the Standby NameNode verifies it has the most recent changes in the edit
log, it’s ready to be converted into the active NameNode.

6. The new active NameNode (former Standby NameNode) will commence writing
namespace changes to the JNs.

As far as provisioning the servers for the Standby NameNode is concerned, ensure 
that the machine on which it runs is identical to the server on which you’re running 
the active NameNode, since the Standby NameNode could be called upon to replace the 
active NameNode anytime. 

As mentioned earlier, the active NameNode needs to write to a majority of the JNs, 
so you’d need an odd number of JN daemons running. You must therefore configure a 
minimum of three JN daemons. 

When the active NameNode writes edit logs to the JNs, it uses the QuorumGeneralManager 
to write data to a majority of the JNs to achieve high availability. The greater the number 
of JNs, the higher the number of failures your cluster can survive and still maintain a 
high-availability HDFS service.

Luckily, you don’t need to run the JN daemons on dedicated servers—simply run them 
on any of the master cluster nodes.

Note

The DataNodes will send block reports to both the active and Standby NameNodes.

Setting Up an HDFS HA Quorum Cluster 
Now that you’ve learned about the basic architecture of QJM-based HDFS high availability, 
let’s learn how to set up a high-availability NameNode service. In an HA NameNode setup, 
you create a logical nameservice, formally called a nameservice ID, to point to the HDFS 
instance, which consists of both the active and the Standby NameNodes. 

In a HA configuration, you must also add a logical NameNode ID to tell the two 
NameNodes apart from each other. To configure the HA NameNode service, you must 
make a few configuration changes in the hdfs-site.xml configuration file. Since you’re 
distinguishing between the two NameNodes with their own IDs, you can use the same 
hdfs-site.xml file to configure settings for both NameNodes.
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Configuring an HA NameNode service involves the configuration of several name-  
and address-related attributes, as well as some failover attributes. To keep things clear, 
let’s approach these two sets of configuration parameters separately.

Configuring the HA Name and Address Attributes
Following are the name- and address-related HA configuration parameters you add to 
the hdfs-site.xml file to set up NameNode high availability.

1. Create a logical name for the nameservice. Using the dfs.nameservices config-
uration parameter, you can specify an arbitrary name for the nameservice. In this
example prodcluster is the logical name for the nameservice. Here’s how to set
the logical name with the dfs.nameservices attribute:

<property>
   <name>dfs.nameservices</name>
   <value>prodcluster</value>
</property>

This parameter sets a unique nameservice ID (prodcluster), which is used by the 
two NameNodes as well as Hadoop clients.

2. Configure the fs.defaultFS attribute to setup a default path prefix for HDFS.
By using the logical name you specified earlier (prodcluster), you ensure that
Hadoop clients will access the HA-enabled nameservice.

<property>
  <name>fs.defaultFS</name>
  <value>hdfs://prodcluster</value>
</property>

The logical URI specified here will define a virtual NameNode and resolves to 
the active NameNode, for example, hdfs: //prodcluster, as in our example.

3. Uniquely identify each NameNode. You’ve already configured the logical name
with which to identify the HA nameservice (prodcluster). You must also create
unique identifiers for each of the NameNodes in the HA configuration by con-
figuring the dfs.ha.namenodes.<xxxx> property as shown here.

<property>
  <name>dfs.ha.namenodes.prodcluster</name>
  <value>nn1,nn2</value>
</property>

I chose to name the two NameNodes nn1 and nn2. When I set the other HA 
configuration attributes next, I can specifically refer to each of the NameNodes 
by their unique NameNode IDs. The DataNodes (and clients) will identify a 
NameNode through its ID.

4. Provide the URI to identify the set of JournalNodes. In our case, there are
going to be three JournalNodes, so we need to configure the addresses in the
following way.
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<property>
  <name>dfs.namenode.shared.edits.dir</name>
  <value>qjournal://node1.example.com:8485;node2.example.com:8485;
  node3.example.com:8485/prodcluster</value>
</property>

The list of JNs you specify here is used by the NameNodes. The attribute dfs.namenode
.shared.edits.dir points to our three JNs, running on three different servers. 
Configuring this parameter is a bit tricky! The correct format to use here is 
qjournal://{semicolon-separated list of journal- server:port entries}/

journalId). The Journal ID is a unique identifier for this nameservice, and although 
it isn’t mandatory, it probably is a good idea to just use the nameservice ID as the 
Journal ID as well.

Although you need to specify the three addresses for our three JournalNodes, make 
sure to configure just one of the addresses as a URI. In this case, the third JN’s 
URI (node3.example.com:8485/prodcluster) points to the group of JNs. I used 
our cluster’s nameservice ID (prodcluster) as the Journal ID in this example, but 
you may specify any other logical name you wish.

5. You must also provide the specific location on the JNs where the cluster will store
the edits file as well other local state information needed by the JNs.

<property>
  <name>dfs.journalnode.edits.dir</name>
  <value>/path/to/journal/node/local/data</value>
</property>

This property is used by the JNs. You can’t specify multiple locations for the storage 
directories, as redundancy is provided by using multiple JNs. If you wish additional 
redundancy, you can configure this directory on a local RAID array.

6. Configure RPC addresses for the two NameNodes. You must supply the full address
and the IPC port for both NameNodes, as shown here.

<property>
  <name>dfs.namenode.rpc-address.prodcluster.nn1</name>
  <value>machine1.example.com:8020</value>
</property>

<property>
  <name>dfs.namenode.rpc-address.prodcluster.nn2</name>
  <value>machine2.example.com:8020</value>
</property>

The RPC addresses are used by both NameNodes and clients.

7. As with the RPC addresses, you must also specify the HTTP addresses where the
NameNodes will listen.

<property>
<name>dfs.namenode.http-address.prodcluster.nn1</name>

  <value>hadoop01.localhost:50070</value>
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</property>
<property>
  <name>dfs.namenode.http-address.prodcluster.nn2</name>
  <value>hadoop02.localhost:50070</value>
</property>

The HTTP addresses are used by the NameNodes.

8. Configure the Java class for HDFS clients to use when contacting the active NameNode.

<property>
  <name> dfs.client.failover.proxy.provider.prodcluster </name>
  <value>org.apache.hadoop.hdfs.server.namenode
.ha.ConfiguredFailoverProxyProvider</value>
</property>

The dfs.client.failover.proxy.provider.prodcluster property specifies the 
Java class that HDFS clients use to determine which of the two NameNodes is 
currently acting as the active NameNode. 

Configuring the HA Failover Attributes
The NameNode handles the heartbeats from the DataNodes and passes back its current 
HA state. When the active NameNode goes down for any reason, it may potentially 
serve out-of-date read requests (stale data) to clients. In order to avoid this, it’s advisable 
to have a fencing mechanism for use during a failover. 

Fencing ensures that only a single NameNode runs in the active mode at any point 
in time. You do this by configuring a fencing process for the storage directory shared 
by the NameNodes. During a failover, if the failed NameNode still is in the active state, 
the fencing process will prevent that node from accessing the storage directory. Instead, 
it allows the former Standby NameNode, which is the current active NameNode, to 
complete the failover process. 

Note

Fencing prevents the well-known split-brain scenario, wherein more than one node can 
write to the JournalNodes, causing potential file system metadata corruption.

The attribute dfs.ha.fencing.methods lets you specify a set of scripts or Java classes 
that will be used to fence the active NameNode during the failover. Hadoop attempts 
each of the fencing methods you configure in the order you list until one of them indicates 
that fencing has succeeded. Configure a fencing method that’s guaranteed to return 
success as the last fencing method in the set of scripts or Java classes you provide. This 
ensures that the system is available even if all the fencing mechanisms fail.

You can use one of two methods for configuring the fencing of the NameNode:

 n sshfence kills the process after connecting to the active NameNode.
 n shell executes a shell command to fence the active NameNode.
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The sshfence method will kill the process listening on the NameNode port after 
using SSH to connect to the Active NameNode. You configure the sshfence option 
by setting sshfence as the value for the dfs.ha.fencing.methods attribute, as shown here.

<property>
  <name>dfs.ha.fencing.methods</name>
  <value>sshfence</value>
</property>

The dfs.ha.fencing.methods parameter value is used for both of the NameNodes 
as well as by the ZKFCs.

When using the sshfence fencing method, you must also configure the hdfs.ha.fencing
.ssh.private-key-files attribute, which lets you provide a list of SSH private key files 
that enable the use of SSH:

<property>
  <name>dfs.ha.fencing.ssh.private-key-files</name>
  <value>/home/exampleuser/.ssh/id_rsa</value>
</property>

This property specifies the location of the SSH key used for SSH-based fencing and 
is used by both NameNodes and the ZKFCs. This file must be readable by the HDFS 
user, and it allows automation of SSH with no passphrase.

The alternative fencing method, simply called shell, uses an arbitrary shell command 
to fence the active NameNode, and you can configure it as shown here:

<property>
  <name>dfs.ha.fencing.methods</name>
  <value>shell(/path/to/my/script.sh arg1 arg2 ...)</value>
</property>

If you’re testing the HA NameNode setup, you can specify shell(/bin/true) as your 
fencing method, but note that it won’t perform any fencing during a failover. It’s a good 
idea to use sshfence as your fencing method. This requires generating an SSH key and 
configuring its location.

In order for a NameNode to successfully failover, one of the fencing methods you 
configure must be successful. Fencing is deemed successful if the shell command returns 
an exit code of 0.

After making the configuration changes in the hdfs-site.xml file on one of your servers, 
you can copy it over to the rest of the nodes.

Note

It’ll only take you a few minutes to configure high availability with Cloudera Manager or Ambari. 
The documentation is very good for both of these products, and the steps are quite simple 
to follow. My goal, however, isn’t merely to help you set up high availability; it’s to help you 
understand exactly how it all works.
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Deploying the High-Availability NameNodes
Once you’ve configured the JournalNodes, it’s time to get the HA NameNode service 
going. Follow these steps to deploy the two HA NameNodes. 

1. On each of your JournalNodes, create the shared edits directories where the
JournalNodes will share the metadata. Once you create the shared edits directory
on all Journal Nodes, change the ownership of the shared edits directory to the
user hdfs and the group hadoop.

$ mkdir –p /var/data/dfs/jn
$ chown –R hdfs:hadoop /var/data/dfs/jn

2. Start up the JournalNode daemons using the following command on each of the
three servers where you’ve configured a JournalNode.

$ hdfs hadoop-daemon.sh start journalnode

You can confirm that the JournalNodes are running as supposed with the
"jps | grep JournalNode" command.

3. Once all JournalNodes have successfully started up, the final step is to synchronize
the state of the active and Standby NameNodes. In case you’re setting up a fresh
cluster, you must format one of the NameNodes, as shown in Chapter 3, “Creating
and Configuring a Simple Hadoop Cluster.” If you’re adding high availability to
an existing cluster, you mustn’t format the NameNodes!

4. Run the following command on the current single NameNode:

$ hdfs namenode –initializeSharedEdits –force

Running this command will initialize all JournalNodes with the edits data recorded
after the most recent checkpoint from NameNode nn1 to the edits directory of all
the JournalNodes.

5. Run the following command on the new unformatted NameNode in order to
bootstrap it before starting it:

$ hdfs namenode –bootstrapStandby –force
INFO util.ExitUtil: Exiting with status 0

This command synchronizes the namespace metadata stored on disk on both the
NameNodes by copying the latest fsimage file from nn1 (active) to nn2 (Standby).
It formats the storage on the Standby NameNode first and afterwards copies the
latest namespace snapshot from the active NameNode.

6. Make sure the ZooKeeper services are running on all the nodes on which services
are configured to run. If they are not, start the ZooKeeper service on all the
ZooKeeper hosts. The following command formats the znode in the ZooKeeper
server that tracks the status (active/Standby) of your NameNodes. The ZKFCs use
the znode to track the active and the Standby NameNodes.

$ hdfs zkfc –formatZK -force
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7. Finally, start up the first NameNode, which is nn1 in our example, as shown here:
$ /usr/lib/hadoop/sbin/hadoop-daemon.sh start namenode

8. Check to make sure that NameNode nn1 is running successfully.

9. You must now initialize the second NameNode, which is named nn2 in our exam-
ple. Format this NameNode and copy the latest checkpoint from nn1 to nn2, as
shown here, with the –bootstrapStandby command:
$ hdfs namenode –bootstrapStandby [-force]  [-nonInteractive]

The –bootstrapStandby command gets the checkpointed fsimage file from the
first NameNode, nn1. It also makes sure that nn2 has received all the correspond-
ing edit logs from the JournalNodes. This command will succeed only if the JNs
are currently initialized and provide the edit logs requested by nn2.

10. At this point, you’re ready to start the second NameNode, nn2, with the usual start
command:
$ /usr/lib/hadoop/sbin/hadoop-daemon.sh start namenode

11. Start all the DataNodes by issuing the following command:
$ su - hdfs –c "/usr/lib/hadoop/sbin/hadoop-daemon.sh –config

/etc/hadoop/conf start datanode"

12. Restart all the NodeManagers, the JobHistoryServer and the ResourceManager,
as well.

Initially, both of the NameNodes are in the standby state! If you attempt to list any
files in HDFS, you’ll get an error because neither of your NameNodes are in active
status. You can check the status of the NameNodes, nn1 and nn2, with the following
commands:
$ hdfs haadmin -getServiceState nn1

   Standby
 $ hdfs haadmin -getServiceState nn2
   Standby

13. Now you need to transition one of our two NameNodes to the active state by failing
over the NameNode:
$ hdfs haadmin –failover –forcefence- –forceactive nn2 nn1

Your cluster is now running with an HA NameNode service. You can verify the HA
NameNode configuration by issuing the hdfs getconf command as follows:
$ hdfs getconf -namenodes
hadoop02.localhost hadoop01.localhost
$

14. Verify that the two NameNodes are now running as they’re expected to, with nn1
in the active state and nn2 in the standby state, using the following commands:
$ hdfs haadmin -getServiceState nn1
Active

$ hdfs haadmin -getServiceState nn2

   Standby
$
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Namenode nn1 is now running in the active state. You can also check the status of each 
NameNode by accessing their web pages. One of the NameNodes must show that it’s in the 
active and the other node, in the standby state. Figure 11.1 shows a typical high-availability 
architecture, with two NameNodes and three ZooKeeper instances.

What Our High-Availability Configuration Looks Like
At the end of the HA NameNode configuration exercise, our cluster with the three nodes 
named hadoop1, hadoop2 and hadoop3 has the services shown in Figure 11.2 running on 
each of the nodes.

Here’s a summary of the HA NameNode configuration on my cluster now:

 n There are two NameNodes, on hadoop1 and hadoop2, in an active/passive 
configuration.

 n There are three JournalNodes, one on each of the three nodes of my cluster.
 n The ZKFC daemons run on the same nodes as the two NameNodes, to support 

automatic failover.
 n There are three ZooKeeper servers, to provide a quorum to support the ZKFC 

daemons.

Active
NameNode

ZooKeeper

JournalNode

Standby
NameNode

ZooKeeper

JournalNode

ResourceManager

ZooKeeper

JournalNode

Figure 11.1 A typical Hadoop HA NameNode architecture with 
multiple ZooKeeper instances to support HA

NameNode
JournalNode 1
ZFKC

Standby NameNode
JournalNode 2
ZFKC
DataNode
NodeManager

ResourceManager
JournalNode 3
ZFKC
DataNode
NodeManager

Figure 11.2  The Hadoop services on any three-node cluster after 
setting up quorum-based NameNode high availability
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Testing the HA NameNode Setup
You can run some tests to make sure all the processes that are expected to be running 
are indeed running. Use the jps command to check the processes.

When I issue the jps command, I see the following services on the three nodes of 
my cluster:

 n hadoop1: NameNode, JournalNode, ZKFC, QuorumPeerMain, DataNode, 
NodeManager

 n hadoop2: NameNode, JournalNode, ZKFC, QuorumPeerMain, DataNode, 
NodeManager

 n hadoop3: JournalNode, QuorumPeerMain, DataNode, ResourceManager, 
JobHistoryServer, NodeManager

Notice the new processes named QuorumPeerMain on hadoop1, hadoop2 and 
hadoop3—this process runs the ZooKeeper server on those three nodes.

In an HA NameNode setup, you’ll have two NameNode UIs, one for the active and 
the other for the Standby NameNode. If you access the web UIs, you’ll see that the very 
first line in the web UI shows the following for the two NameNodes:

NameNode 'hadoop1:8020'
(active)
NameNode 'hadoop2:8020'
(standby)

You can test the HA configuration by bringing down each of the NameNodes one by 
one and restarting them, with the following commands.

$ $HADOOP-PREFIX/sbin/hadoop-daemon.sh stop namenode
$ $HADOOP-PREFIX/sbin/hadoop-daemon.sh start namenode

You’ll notice that the NameNodes switch between the active and standby states. You 
can stop and start a NameNode anytime you wish—it won’t have any impact on the 
cluster operations. That’s the whole point in setting up an HA NameNode service! 

Managing an HA NameNode Setup
In an HA NameNode configuration, the active NameNode must at all times be able 
to write to a majority of the JNs. You must ensure that the JNs are running before you 
start up the NameNodes. In an HA NameNode setup, you must start up the NameNodes, 
JNs and DataNodes in the following order.

1. Start all JNs.

2. Start the active NameNode.

3. Start the Standby NameNode.

4. Start all DataNodes.
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Errors When Querying the Standby NameNode
The Standby NameNode is, as its name indicates, merely a node that’s waiting to take 
over as the active NameNode on short notice. The active NameNode serves all client 
requests. When users mistakenly connect to the Standby NameNode for metadata 
operations, they get an error message: 

{"RemoteException":{"exception":"StandbyException","javaClassName":"org.apa
che.hadoop.ipc.StandbyException","message":"Operation category READ is not 
supported in state standby"}}

In the standby mode, the NameNode can only perform HA-related functions such as 
a failover. It’s not designed to share client-related and namespace-related work with the 
active NameNode. If you need to execute a command that must access the currently 
active NameNode in a cluster, such as a curl command, you can write a script to poll 
both the NameNodes in an HA cluster to find the NameNode that’s currently in the 
active state. 

Using the dfsadmin Command in an HA NameNode Environment
You must specify the –fs option when issuing any dfsadmin commands, so as to specify 
the RPC address or service RPC address of the NameNode. If you don’t set the –fs 
option, the following commands will fail over to the active NameNode and perform 
the operation there.

 n -setQuota

 n -clrQuota

 n -setSpaceQuota

 n -clrSpaceQuota

You must run refresh options such as –refreshNodes or –refreshServiceAcl on both 
the active and Standby NameNodes.

When the Standby NameNode takes a checkpoint, it saves the data to its local stor-
age and also uploads it to the other NameNode. That is, it applies the edit logs to its 
fsimage file, and then it uploads the image file to the active NameNode to speed up 
failovers and avoid long delays for updating the fsimage file on the active NameNode.

The NameNode checks its HA state and doesn’t serve any requests when it’s in the 
standby state. All operations are permitted in the active NameNode, but read and write 
operations aren’t allowed in the standby state. 

HA Manual and Automatic Failover
Now that you’ve configured high availability for your NameNodes, it’s time to learn 
how to set up automatic failover, as well as how to manually failover a NameNode from 
an active to a standby status. In a QJM-based HA setup, the NameNode transitioning to 
the active state will take over the responsibility of writing to the JournalNodes, since the 
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JournalNodes don’t allow multiple NameNodes to write namespace changes. This means 
that the original NameNode (active) can’t continue in the active state simultaneously.

Configuring Automatic Failover
The NameNode HA setup you’ve configured is only capable of a manual failover by 
the administrator. The next step is to learn how to configure automatic failover from 
the active to the Standby NameNode. 

The ZooKeeper service is at the heart of automatic NameNode failover. While you 
don’t need ZooKeeper to set up NameNode high availability, you do need it to set up 
automatic failover. ZooKeeper sets off the failover by notifying the Standby NameNode 
when the active NameNode’s ZooKeeper session expires for a reason such as the crash of 
the server on which the active NameNode runs. The Standby NameNode will then take 
an exclusive lock in ZooKeeper to convert itself into the active NameNode.

Note

Since ZooKeeper instances aren’t resource hungry, you can simply install them on the 
same nodes as the master daemons.

ZooKeeper uses the aforementioned special component named the Zookeeper Failover 
Controller (ZKFC) that runs on both NameNodes to monitor NameNode state. The 
ZKFC verifies that the active NameNode is healthy through periodic pings, and as long 
as the active NameNode is healthy, ZFKC holds a session open for it in ZooKeeper. When 
the currently active NameNode is unhealthy, ZooKeeper fails over from the active to 
the Standby NameNode.

The time it takes to automatically failover from the Standby to the active NameNode 
is determined by the value of the ha.zookeeper.session-timeout.ms parameter, whose 
default value is five seconds. Before configuring and deploying automatic failover through 
ZooKeeper, you need to stop all Hadoop services in the right order. Once you stop the 
services, follow these steps to configure automatic failover:

1. Configure your cluster for automatic failover by adding the following parameter
to the hdfs.site.xml file on both of the servers hosting the NameNodes:

<property>
   <name>dfs.ha.automatic-failover.enabled</name>
   <value>true</value>
<property>

2. Configure the ha.zookeeper.quorum parameter in the core-site.xml file to indi-
cate where the ZooKeeper services are running:

<property>
<name>ha.zookeeper.quorum</name>   <value>zk1.localhost.com:2181,zk2

.localhost.com:2181,zk2.lcoalhost.com:2181</value>
<property>

ZKFC uses this information, and this is required only when configuring automatic
failover.
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3. Start the ZooKeeper service with the following command:

$ /usr/local/zookeeper/bin/zkServer.sh start /usr/local/zookeeper/conf/
zoo.cfg

JMX enabled by default
Using config:
Starting zookeeper ... STARTED
$

You can check that ZooKeeper has successfully started up with the following
command:

$ ps -ef | grep zoo | grep -v grep

4. Initialize the ZooKeeper state on both of the NameNodes:

$ hdfs zkfc –formatZK

5. Start the ZKFC service on both NameNode hosts:

$ /usr/lib/ahdoop/sbin/hadoop-daemon.sh start zkfc

You must start the ZKFC service on both NameNode servers. The server where you
start the ZFKC service first will be the active NameNode.

6. Test that automatic failover works by killing the active NameNode’s PID at the
OS level. You should see the Standby NameNode transition to the active state
shortly.

$ hdfs haadmin –getServiceState nn1
active
$ ps –ef | grep namenode | grep –v grep
$ kill -9 $PID_of_Active_Namenode
$ hdfs haadmin –getServiceState nn2
active
$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start namenode

The previous command starts the nn1 namenode service that I killed earlier.

7. Get the state of nn1:

$ hdfs haadmin –getServiceState nn1
standby

The haadmin –getServiceState command verifies that that the NameNodes failed 
over successfully.

High Availability and Manual Failover Commands
Once you configure NameNode HA, you have access to a set of HA-related haadmin 
commands, which are summarized as follows.

 n haadmin –failover: Use this command to initiate a failover between the two HA 
NameNodes. If nn1 is in standby state, the command will transition nn2 to the 
active state. If nn1 is in the active state, the command will attempt to transition 
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nn1 gracefully to the standby state. If the attempt fails, Hadoop will try one of 
the fencing methods you configured with the dfs.ha.fencing.methods parameter 
in order, until one of them succeeds. The NameNode nn2 will not be transitioned 
to the active state if no fencing method succeeds.

 n haadmin –checkHealth: Lets you check the health of a NameNode and returns 
0 if that NameNode is healthy. Note that currently this command will always 
return success, unless the NameNode is completely down.

 n haadmin -transitionToActive: Transitions the Standby NameNode to the active 
status.

 n haadmin -transitionToStandby: Set monospace Transitions the active NameNode 
to the standby status.

 n haadmin –getServiceState: Shows the current status of either of the two 
NameNodes. Often some jobs need to verify whether they’re connected to the 
current active or standby NameNode. This command is very useful for 
confirming that you are connected to an active NameNode.

HA NameNode architecture doesn’t help you scale—it provides you high availability 
of the NameNode. For scalability, you can set up a federated NameNode, to which we 
turn next.

HDFS Federation
The NameNode stores a reference to all files and data blocks in its memory. If you have 
a large number of HDFS files, lack of sufficient memory could limit the size to which 
you can scale. Once you reach a set number of data blocks, the NameNode simply can’t 
scale up. 

Hadoop 2 lets you configure multiple NameNodes, called federated NameNodes. 
You can federate the NameNode in order to expand your Hadoop cluster to a very 
large size. Along with multiple NameNodes, you also will have multiple namespaces, 
with parts of the total HDFS storage apportioned to each nameservice.

Federation is a very simple concept—you create multiple NameNode instances run-
ning on separate nodes, with each of the NameNodes responsible for a portion of the 
HDFS file blocks, as part of its own namespace. For example, one of the NameNodes 
will manage all files under the /user namespace and the other all files under /share. 

The DataNodes of course will store the data blocks from all namespaces, while each 
NameNode maintains its own namespace and its own image and edits files. 

In order to access a federated HDFS, clients make use of client-side mount tables to map 
file paths to the different NameNodes. You can configure this using the ViewFileSystem 
and the viewfs:// URIs.

In       a very large cluster, the namespace may be so large that it becomes difficult for 
a single NameNode to efficiently manage it. As a result, large Hadoop clusters won’t 
easily scale beyond three to four thousand nodes. 
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In an HDFS federation (also called NameNode federation) setup, the multiple 
NameNodes work independent of each other, all of them accessing the same storage, 
without any communication among themselves. In this architecture, the DataNodes will 
send their heartbeats and block reports to all NameNodes that are part of the federated 
NameNode architecture. 

Federated namespaces provide scalability, isolation and performance benefits. A fed-
erated NameNode service is ideal for large clusters that need to deal with a very large 
number of large files. You get better throughput since multiple NameNodes can work 
with the DataNodes. You can also set up things such that you allocate different namespaces 
to different sets of applications. 

Architecture of a Federated NameNode
HDFS, the storage component of Hadoop, can be best viewed as a combination of a 
namespace and a storage service. The storage service is called the Block Storage Service. 
The namespace contains information about the files, directories and data blocks that are 
part of your HDFS storage system. 

The Block Storage Service consists of two main components—physical storage and 
block management. Physical storage is simply how the DataNodes store the HDFS blocks 
on the underlying Linux (or other OS) file system. Block management refers to block-
related operations such as the creation, deletion and modification of data blocks and 
the replication and the placement of the replicas among the cluster’s nodes.

In very large Hadoop environments there are thousands of DataNodes with millions of 
files and data blocks ranging over petabytes of storage. In such environments, while you 
can scale HDFS by adding new nodes, the namespace can’t keep up with the increase 
in storage. The single namespace’s throughput is designed to support only about 60,000 
tasks, thus affecting performance as you scale higher. 

Each namespace in a federated architecture will be assigned a block pool, which is a 
specific set of HDFS blocks that belong to a single namespace. A namespace (metadata) 
and its block pool are together referred to as a namespace volume. 

Each namespace volume is a self-contained management unit, with each of the 
namespaces managing its own block pool independent of the other block pools, enabling 
it to generate its own block IDs for the new blocks without coordinating with the rest of 
the namespaces.

If one of the federated NameNodes goes down and you don’t have a standby config-
ured for it, you can’t access the data blocks that belong to that NameNode’s namespace. 
Thus, a federated architecture for your NameNode service doesn’t buy you high availability; 
instead, it provides scaling capabilities, besides enhancing performance as well as pro-
viding isolation between different sets of users.
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Summary
Here’s what you learned in this chapter:

 n HDFS metadata is absolutely critical to the functioning of your cluster. No meta-
data, no cluster! You must set up a high-availability system with the Standby 
NameNode taking care of the regular updating of the HDFS namespace.

 n You’ve spent a lot of time reviewing the details of the checkpointing process, 
but you really can’t know too much about this process, in light of how critical a 
process it is.

 n While the federated NameNode architecture isn’t really very popular in real life, 
it’s helpful to know that it’s there for you if your use case requires it.
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Moving Data Into and 

Out of Hadoop

This chapter covers the following topics:

 n Using HDFS commands to move data to and from Hadoop clusters
 n Using Sqoop to move data between Hadoop and relational databases
 n Ingesting external data with Apache Flume and Apache Kafka 

In this chapter, I explain some of the most common ways to move data into and out 
of HDFS, such as using HDFS file and directory commands and the DistCp (Distributed 
Copy) tool, which helps you move data between Hadoop clusters. In addition, the chapter 
shows how to use Apache Sqoop to move data between HDFS and a relational database, 
and how to use Apache Flume to capture log data in near real time and store it in HDFS. 
I also brief ly describe how to set up and use Apache Kafka, which is a popular data inges-
tion tool in Hadoop environments.

One of the things that’ll be quickly apparent to you when working with Hadoop is 
that you can use a dizzying array of tools to load data into HDFS. Apache Hadoop itself 
contains tools like DistCp to let you transfer data between clusters. You can also use tools 
such as Flume for data movement. Storm and Kafka are both good tools for processing 
streaming data.

Introduction to Hadoop Data Transfer Tools
You often need to move large data sets into your cluster when you initially populate your 
cluster. Later on, there will be times when you need to move large amounts of data into 
and out of the cluster. There are several good tools available that make your life easier, but 
you need to know when and how to use each of these data migration tools. Typically, 
you use bulk data transfers to populate your cluster after setting it up. Later on, you’ll be 
updating the cluster (HDFS) with periodic batch updates. You may also stream in new data 
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in real time, as the data arrives. So, you need tools that can help with all three of the data 
transfer modes: bulk, batch and streaming.

Following is a summary of the various data transfer tools I discuss in this chapter:

 n Hadoop’s built-in tools to move data: HDFS has several built-in commands to 
copy and move data from the local file system to HDFS as well as between two 
HDFS directories, or even between two Hadoop clusters. 

 n Tools for bulk data loading: DistCp is a bulk data loading tool that ships with 
Hadoop, and it offers effective data transfer capabilities to move data between 
Hadoop clusters. 

 n Tools for moving data to and from a relational database: Apache Sqoop lets you 
easily import and export data from and to various popular relational databases. 

Note

One of the concerns with DistCp is its potential to saturate your cluster’s network 
when moving large data. Make sure you don’t use too many parallel copy processes 
to avoid network saturation. In addition, DistCp has also been known to timeout 
sometimes, causing the entire job to fail. It’s therefore a good idea to check out the 
DistCp options to increase the timeout duration as well as to turn off checksumming.

 n Tools for handling streaming data: Apache Flume is a commonly employed event 
transport system that uses the push mode to write streaming data such as web 
server logs to your HDFS system. Apache Kafka is an alternative streaming data 
movement candidate and uses a publish-subscribe messaging mechanism. Apache 
Storm is another great tool for event stream processing, which involves responding 
to individual events within a reasonable timeframe. We discuss Apache Flume in 
detail in this chapter.

If your goal is to load data from f lat files or semi-structured/unstructured files, you 
can simply use HDFS shell commands or Hadoop’s DistCp utility. 

Let’s start our exploration of the data movement tools available to us with a quick 
overview of the HDFS commands you can use to move around data.

Loading Data into HDFS from the Command Line
Loading data into HDFS using HDFS commands is the easiest way to move data from 
the local file system into HDFS. 

You’ll often use HDFS file system commands to copy data into and out of HDFS. 
Let’s review all the ways in which you can move data from the command line.

Using the -cat Command to Dump a File’s Contents
The -cat command copies source paths to stdout. The command concatenates the source 
files and displays the contents. This command is handy when you want to view the contents 
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of a script or an output file and works similarly to Linux’s cat command. Here are a 
couple of examples:

hadoop fs -cat hdfs://nn1.example.com/file1
hadoop fs -cat file:///file1 /user/sam/file2

Testing HDFS Files
You can test whether a file exists in HDFS by issuing the following command:

$ hdfs df –test –e /user/alapati/file.txt

You can test whether a file is empty with the –test –z option:

$ hdfs dfs –test –z /user/alapati/file.txt

You can check whether a file is a directory by issuing the -test command with the –d 
option:

$ hdfs dfs –test –d /user/alapati/testfile

Issue the dfs –stat command to find various file-related statistics, such as whether 
it’s a file or a directory:

$ hdfs dfs –stat /user/alapati/file.txt

You can create an empty file with the -touchz command:

$ hdfs dfs –touchz /user/alapati/file.txt

The -touchz command is, of course, the counterpart of Linux’s familiar touch command.

Defining Files as URIs
Specifying filenames isn’t the only way to refer to the target files. You can also specify 
the file as a URI (Uniform Resource Identifier). URIs indicate a file’s source and 
destination in HDFS and include the server name, file path, file name and a source 
identifier. 

You may specify the URI for both local and HDFS files. When you want to point to 
a file in HDFS, use hdfs: in front of the URI, and when you want to point to a file from 
the local file system, specify file: instead. In the following example, the server is 
localhost and the file I’m interested is in the HDFS directory /users/sam.

hdfs://<server-name>:<port-name>/<TargetDirPath>
hdfs://localhost:9000/users/sam

Here’s an example that shows the contents of a file by specifying a URI:

$ hdfs dfs –cat file://localhost:9000/home/sam/scripts/test.pig
$ hdfs dfs –cat hdfs://localhost:9000/users/sam/scripts/test.output

The first example shows the contents of the file test.pig, which is in the local directory /
home/sam/scripts. The second example does the same for a file stored in the HDFS 
directory /users/sam/scripts.
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Copying and Moving Files from and to HDFS
Hadoop provides several built-in file system commands that make your life easy when 
copying and moving files between the local file system and HDFS, as well as within 
the HDFS file system itself.

You can use either the HDFS –put or the –copyFromLocal command to move a file or 
even a directory from the local file system into HDFS and vice versa. The -put command 
copies a single source file or even multiple files from the local file system to HDFS.

Here’s the syntax of the hdfs dfs -put command:

Usage: 
dfs fs -put <localsrc> ... <HDFS_dest_Path>

Since the -put command lets you also read from the standard input and write to an 
HDFS file, in order to test the -put command, you can do the following:

# echo -e "A|1|2|3\nB|4|5|6" | hadoop fs -put - /tmp/test1.txt

The following example shows how to copy a file from the local file system into HDFS 
with the –put command:

$ hadoop dfs -put /var/hadoop/logs /users/sam/

If the file you’re copying already exists, you’ll receive an error:

$ hdfs  dfs -put /tmp/test.txt /user/
put: '/user/test.txt': File exists
$

If the file you’re copying from the local file system to HDFS exists, add the –f option 
to overwrite the file, as shown here:

$ hadoop dfs -put –f /var/hadoop/logs  /users/sam    

You can copy multiple files with a single –put command, as shown here:

$ hdfs dfs –put /tmp/file1.txt /tmp/file2.txt /users/sam/

You can use a wildcard (*) to copy multiple files to a target directory:

$ hdfs dfs –put /tmp/file* /users/sam/

This command copies all files in the /tmp directory whose filenames start with “file” to 
the HDFS directory /users/sam.

You can copy an entire local directory over to HDFS with the -put command, as 
shown here:

$ hdfs dfs –put /home/data/customer /user/alapati/customer

The following shows the syntax for the copyFromLocal command and a simple  exam-
ple of the command's usage.

$ hdfs dfs -copyFromLocal <local_FS_filename> <target_on_HDFS>
$ hdfs dfs -copyFromLocal /var/log/test.txt  
/user/sam/test.txt
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The -copyFromLocal command works the same as the -put command, the only 
difference being that it’s restricted to copying from a local file system to HDFS, whereas 
the -put command can copy files from HDFS to the local file system as well.

You can use the pipe symbol (|) with the less command to review a file, as shown here:

$ hdfs dfs –cat /user/sam/testfile | less

You can extract a zip file and load it into HDFS with the -put command in a single step, 
as shown in the following example:

$ gunzip –c testfile.gz | hdfs dfs –put - /user/sam/testfile

The following example shows how to load an Avro file into HDFS, to make the data 
available for processing by MapReduce jobs:

$ hdfs dfs –copyfromLocal /src/text/avro/twitter/.avro  /test/input

When copying files, make sure you already have the target HDFS directory in place, 
or create one if you don’t have it, before attempting the copy of a file or directory:

$ hdfs dfs –mkdir /user/sam

If you want to move a large file into HDFS but you really don’t want to consume three 
times the size of the file in HDFS storage (assuming you’re using the default replication 
factor of three), you can overwrite the default replication factor when copying a file by 
specifying the replication factor with the –D option, as shown here.

$ hdfs dfs –D dfs.replication=1 –copyFromLocal bigfile.txt /user/alapati

The -copyToLocal command is analogous to the -copyFromLocal command. It 
copies a file from HDFS to the local file system. You can move data between two 
Hadoop clusters with the help of the –copyFromLocal and the –copyToLocal commands, 
as shown here:

 n Use the -copyToLocal command to move data from the first cluster’s HDFS to a 
local file system.

 n Use the -copyFromLocal command to move the data from the local file system to 
the second cluster’s HDFS.

Using the -get Command to Move Files
You can use the -get command to copy HDFS files to the local file system. Here are 
some examples showing how to use the -get command to download files from HDFS 
to a local file system.

$ hdfs dfs –get /user/sam/output.txt /home/
$ hdfs dfs -get  /user/alapati/.staging/job_1430256400174_0444/
job_1430256400174_0444_1.jhist 
/tmp/
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The first command will copy the HDFS file output.txt to your current local file system 
location, under the /home directory. If you specify a directory as the target in your -get 
command, Hadoop will put the entire directory on your local file system.

Moving Files from and to HDFS
The HDFS -mv command lets you move a file from one HDFS directory to another, 
and works similarly to the Linux mv command.

$ hdfs dfs –mv /users/sam/scripts/test1.txt /users/sam/tmp/test1.txt

You can use the -getmerge command to concatenate multiple HDFS files into a single 
file in the local system. The syntax for the -getmerge command is as follows:

hdfs dfs –getmerge <src> <localdst> [adnl]

The optional attribute adnl lets you add a new line at the end of each file you are con-
catenating. The following example shows how to merge files from the HDFS directory 
/user/hadoop/dir1 into the local directory named samplefile2.txt.

$ hdfs dfs –getmerge /user/hadoop/dir1/  ./Samplefile2.txt

Hadoop’s DistCp command is a much faster way to move large amounts of data within 
a cluster or between two clusters. I will discuss DistCp later in this chapter.

Using the -tail and head Commands
You can use the –tail command to view a (HDFS) file’s last portion, as shown here:

$ hdfs dfs –tail /users/sam/text1.txt

If you’d like to watch the contents of a file as data is being added to it, specify the –f 
option as shown here:

$ $ hdfs dfs –tail –f /users/sam/output.txt

Although there’s an HDFS -tail command that works similarly to the Linux tail 
command, there’s no equivalent to the Linux head command in HDFS. You can view 
the topmost portion of an HDFS file by piping the contents of the file and then using the 
Linux head command to view the file’s contents, as shown here.

$ hdfs dfs –cat /users/sam/text1.txt | head

You can also use Linux’s pipe mechanism to pipe a command’s output into an HDFS 
file, as shown here:

$ hdfs dfs –cat /local/text1.txt | hadfs dfs –put – /user/sam/myfile.txt

This command will output the contents of the local file test1.txt into the HDFS file 
channel named myfile.txt.
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Copying HDFS Data between Clusters with DistCp
Hadoop offers a great tool called DistCp to help you move data between two Hadoop clusters 
or from one location in HDFS to another location within the same Hadoop cluster. Most 
commonly, you use DistCp for moving data between two different clusters. DistCp is quite 
powerful because it uses MapReduce underneath to perform parallel loading of data. 

DistCp works great for moving large amounts of data in both bulk and batch modes. 
Bulk mode is when you want to load a cluster with a lot of initial data from a source, and 
batch mode is when you want to perform regular exports and imports of data to and 
from HDFS. 

How to Use the DistCp Command to Move Data
DistCp will turn out to be your best friend when it comes to moving data, especially 
between different Hadoop clusters. Let’s learn the most common DistCp commands you’ll be 
using often in your cluster to move data. 

The syntax for the DistCp command is simple:

$ distcp srcdir destdir

In the syntax

 n srcdir is a fully qualified path to the source directory. When moving data between 
clusters, the path will include the NameNode host and port information for the 
source cluster.

 n destdir is a fully qualified path to the destination directory. When moving data 
between clusters, the path will include the NameNode host and port information 
for the destination cluster.

Note that you can also specify an Amazon S3 path such as s3://bucket-name/key. 
Here’s an example that shows how to use DistCp to copy data:

$ hadoop distcp hdfs://nn1:8020/source hdfs://nn2:8020/destination 

The following example shows how to use DistCp to move data from one cluster to 
another.

hadoop distcp hdfs://nn1:8020/user/hadoop/dir1/\
dfs://nn2:8020/user/hadoop/dir2/

Note that you must specify absolute paths to the HDFS data. In the syntax for the 
command, here’s how you specify the source and destination: 

hdfs://nn1:8020/source /* this is the data source
hdfs://nn2:8020/destination /* this is the destination

In the command, nn1 and nn2 refer to the NameNodes from two different Hadoop 
clusters. 
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Note

It’s important to understand that DistCp uses MapReduce underneath to move the data 
between the two HDFS file systems, one on the source cluster and the other in the destination 
cluster. When you issue the command, DistCp will make the namespace under the source 
directory (/source) into a temporary file and partition the file’s contents among a set of 
map processes. The mappers will then copy chunks of data from the source to the target.

You can specify multiple source directories, as shown here:

hadoop distcp hdfs://nn1:8020/source/a hdfs://nn1:8020/source/b hdfs://
 nn2:8020/destination

You can alternatively specify multiple source directories within a text file, and pass 
the file name as a parameter to the DistCp command, as shown here:

hadoop distcp -f hdfs://nn1:8020/srclist hdfs://nn2:8020/destination

Here, I specify a file named srclist with the –f option. The srclist file will contain 
the source directory information as follows:

hdfs://nn1:8020/source/a
hdfs://nn2:8020/source/b

If you’re using DistCp to move data between two clusters enabled with NameNode 
high availability, one way to specify the NameNode correctly is to first verify which 
of the two NameNodes is currently active Namenode, and specify the host for that 
NameNode in your DistCp command. The other way is to use the nameservice instead 
of the hostname in the DistCp command. Recall that you can specify the logical name 
for the nameservice with the dfs.nameservices property (in the hdfs-site.xml file).

A DistCp Example
DistCp is typically used to move data between two clusters, as shown in the following 
example. Here, I’m using DistCp to “refresh” a Hive table partition in my test cluster 
with data from the production cluster.

$ hadoop distcp -overwrite 
hdfs://hadoop01.localhost:8020/user/hive/warehouse/custrecord/year=2015/month=
05/day=08* 
hdfs://hadoop01.localhost:8020/user/hive/warehouse/custrecord_prod/year=2015/m
onth=05/day=08

15/05/18 15:06:35 INFO tools.DistCp: Input Options: 
DistCpOptions{atomicCommit=false, syncFolder=false, deleteMissing=false,
 ignoreFailures=false, maxMaps=20, sslConfigurationFile='null', 
copyStrategy='uniformsize', sourceFileListing=null, sourcePaths=[hdfs://ahdoop01
.localhost:8020/user/hive/warehouse/custrecord/yea
year=2015/month=05/day=08*], targetPath=hdfs://hadoop01.localhost:8020/user/hive/
warehouse/custrecord_prod/
year=2015/month=05/day=08, targetPathExists=false, 

...

BYTESCOPIED=1095967454036
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BYTESEXPECTED=1095967454036

COPY=2530

$

How to Use DistCp to Move Data within a Cluster
Here’s an example that shows how you can use DistCp to perform a data move within 
the same Hadoop cluster. Let’s say that you want to increase the block size of your input 
datasets to 256MB from 128MB to reduce the number of mapper tasks. When you change 
the block size, it affects only new data you load into HDFS. Current data will continue 
to use the smaller block size. You can use DistCp to change the block size of the old 
files in HDFS. Here’s the command for doing this:

$ hdfs distcp –D dfs.block.size=$[128*1024*1024] /pth/to/source_data 
/path/to/data-with-larger-block-size

Once DistCp finishes running, you can verify that you’ve copied all the files you need 
and remove the original data that was stored with the smaller block size. This example, 
although not very common, is provided to illustrate the potential uses to which you can 
put DistCp in your cluster.

Note

DistCp uses Mapreduce for its work. Therefore, you may need to increase the memory 
allocation for mappers when copying very large files.

DistCp Options
When you move data with the help of the DistCp utility, you can customize the data 
transfers with the help of several DistCp command options. Following is a list of the most 
useful of these options.   

 n -p: Modification times are preserved when you specify this option.
 n -i: This option tells DistCp to ignore any failures. It also saves the logs from

a failed copy.
 n -log: This option lets you specify a directory for a log file.
 n -m: This option specifies the maximum number of mappers for a copy.
 n -overwrite: This option overwrites the destination.
 n -update: This option overwrites the destination if the source file size is different

from the target file size.
 n -f <urilist uri>: This option lets you specify a fully qualified URI to list all

the source files instead of specifying them on the command line.
 n -delete: This option deletes files from the destination (but not from the source).

Trash will be used if you've enabled it.
 n -sizelimit <n>: This option specifies the maximum size of the copy in bytes.
 n -filelimit: This option lets you limit the total number of files.
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Of these options I’ve listed here, the –update and the –overwrite options require 
some elaboration, as explained in the following sections.

Default Behavior of DistCp When Copying Files and Directories
If you specify neither the –overwrite nor the –update options in the following example, 
by default DistCp will create the directories first and second on the target cluster, under 
the directory named /target. So, if you issue the following DistCp command, you’ll see 
the ensuing list of contents under the /target directory on the target cluster.

$ hadoop distcp hdfs://nn1:8020/source/first  hdfs://nn1:8020/source/second  \  
hdfs://nn2:8020/target

hdfs://nn2:8020/target/first/1
hdfs://nn2:8020/target/first/2
hdfs://nn2:8020/target/second/10
hdfs://nn2:8020/target/second/20

The Update and Overwrite Options
You must specify the –update option in the following cases:

 n When you’re copying files that don’t already exist on the target cluster
 n When the files exist but the file contents are different

The –overwrite option will overwrite target files if they exist.
Since the -update and -overwrite options tend to be quite tricky in practice, let’s 

use some examples to understand these two options further.
Let’s say you’re copying files from two directories named /source/first and /source/

second on the source cluster, to a directory named /target on the target cluster. The source 
directory paths are as follows:

hdfs://nn1:8020/source/first/1
hdfs://nn1:8020/source/first/2
hdfs://nn1:8020/source/second/10
hdfs://nn1:8020/source/second/20

If you add either –update or –overwrite, only the contents of the source directories 
are copied over. The source directories themselves aren’t copied to the target cluster. So, 
if you issue the following DistCp command, you’ll see the ensuing contents under the 
/target directory.

$ hadoop distcp –update hdfs://nn1:8020/source/first  hdfs://nn1:8020/source/
second  hdfs://nn2:8020/target
hdfs://nn2:8020/target/1
hdfs://nn2:8020/target/2
hdfs://nn2:8020/target/10
hdfs://nn2:8020/target/20

Because of the way the –update command works, if there’s a file with the same name 
under the /first and the /second directories on the source cluster, DistCp will abort the 
copy process.
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Let’s use another example to understand how DistCp decides whether it should skip 
a file copy or not, and whether it should overwrite a file. In this example, I issue the 
DistCp command without the –update or –overwrite option:

$ hadoop distcp hdfs://nn1:8020/source/first  hdfs://nn1:8020/source/second  
\
hdfs://nn2:8020/target

Here are the files and their sizes in the two directories on the source cluster:

hdfs://nn1:8020/source/first/1   32
hdfs://nn1:8020/source/first/2   32
hdfs://nn1:8020/source/second/10 64
hdfs://nn1:8020/source/second/20 32

And here’s the same information under the /target directory in the target cluster:

hdfs://nn2:8020/target/1    32
hdfs://nn2:8020/target/10   32
hdfs://nn2:8020/target/20   64

The target cluster will end up with the following set of files after DistCp finishes the copy:

hdfs://nn2:8020/target/1    32
hdfs://nn2:8020/target/2    32
hdfs://nn2:8020/target\10   64
hdfs://nn2:8020/target/20   32

DistCp does the following in this situation:

 n It copies the file to /target/2 because it didn’t exist prior to the copy.
 n It overwrites the files /target/10 and /target/20 since their contents are different.
 n It skips the file /target/1 because its file length and contents are identical to the 

source file.

Ingesting Data from Relational Databases with 
Sqoop
Sqoop, short for “SQL to Hadoop,” is a commonly used and powerful tool for moving 
bulk data to and from relational databases. Often you’ll find that the value of big data 
is significantly enhanced when it’s combined with enterprise analytical databases and 
warehouses. Sqoop is an important ally in combining big data with traditional enterprise 
data stores.

There are many cases where you’d like to import data directly into HDFS from a 
relational database management system (RDBMS)or to send the output of your Hadoop 
processing directly to an external database or data warehouse. Sqoop takes care of the 
headaches involved in moving data between Hadoop and the databases.

Sqoop provides an easy way to import the external data residing in databases over 
to HDFS, where you can process it with Pig (a high-level data pipeline system used to 
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query and manipulate data) and Hive (which helps you write SQL-like queries that are 
converted into MapReduce) jobs, and then export the output of these jobs to the same 
or a different database. 

Sqoop can import and export data from relational databases, data warehouses and 
NoSQL systems. Sqoop offers two-way replication of data and incremental updates. 
Sqoop supports multiple, commonly used data formats such as Avro and SequenceFiles and 
is well integrated with tools such as Hive and Oozie, Hadoop’s popular job scheduler. 

In the following sections, I discuss:

 n Sqoop’s architecture
 n Deploying Sqoop
 n Using Sqoop to move data
 n Importing data with Sqoop
 n Importing Data into Hive
 n Exporting Data with Sqoop

Sqoop Architecture
Sqoop takes advantage of Hadoop’s MapReduce framework for all its heavy lifting. This 
means that you reap all the benefits of the MapReduce framework—such as MapReduce’s 
parallel processing capabilities, as well as its excellent fault tolerance capabilities—when 
you employ Sqoop to move data around.

Figure 12.1 shows the basic architecture of Sqoop. Sqoop clients perform all exports 
and imports of data through Hadoop map tasks. 

RDBMS

YARN Map Tasks

HBaseHiveHDFS

Sqoop Client

Figure 12.1 The basic architecture of Sqoop and how it works with an RDBMS to move data
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It’s important to remember that while Sqoop can directly import data from an RDBMS 
into HDFS, Hive and HBase, you can’t export data from Hive and HBase directly to an 
RDBMS. (That’s why the arrows to Hive and HBase in Figure 12.1 aren’t bidirectional, 
as is the arrow to HDFS.) Instead, you perform all exports from HDFS. When you 
export Hive tables from your Hadoop cluster to an RDBMS, you do so by pointing to 
the HDFS directories that store the Hive tables (by default: /user/hive/warehouse). 

Deploying Sqoop
As Sqoop is not a cluster service, you need to install it on just one node within your cluster. 
Sqoop just needs the Hadoop binaries and configuration files on the server where you 
install it. To work with Sqoop, you must first download and install the Sqoop binaries 
and also the Java Database Connectivity ( JDBC) drivers for the specific RDBMS you’re 
going to use, since Sqoop doesn’t come with the JDBC drivers.

Sqoop Connectors and Drivers
You can use any RDBMS that supports JDBC to import and export data with Sqoop. 
JDBC lets applications access and inspect data stored in a relational database. Sqoop also 
comes bundled with special connectors for Oracle, Microsoft SQL Server, MySQL, 
PostgreSQL and Netezza. The special connectors are used to provide additional func-
tionality beyond that provided by the standard JDBC standard drivers and help improve 
the performance of Sqoop’s imports and exports. 

It’s a bit tricky to figure out which connectors and drivers you need for Sqoop to work 
with a specific database or warehouse product (such as Teradata), due to the various 
options and choices.  It’s good to remember that although Sqoop is bundled with special 
connectors for many databases, it doesn’t come with the JDBC drivers that are required 
for the Sqoop connectors to function. This is so because the JDBC drivers are subject 
to licensing requirements by the RDBMS vendors. 

Following are your three options, then, regarding the Sqoop connectors and JDBC 
drivers:

 n If Sqoop is bundled with a special connector that works with your database, you 
need to get the JDBC driver from your database provider. You must get the JAR 
file for the driver and install it in the $SQOOP_HOME/lib directory. SQOOP_HOME 
is the directory where you installed Sqoop. This is the approach I use in the follow-
ing section to install the JDBC driver for the MySQL database.

 n For databases such as Couchbase and Teradata, which don’t have a bundled Sqoop 
special connector, you need to get both the JDBC driver and the special connector 
for Sqoop from the vendor.

 n If a database has no special Sqoop connector, whether bundled with Sqoop or not, 
do both of the following:

 n Download and install the vendor’s JDBC driver.
 n Use Sqoop’s generic JDBC connector.



ptg18444370

368 Chapter 12 Moving Data Into and Out of Hadoop 

Using Sqoop to Move Data 
Sqoop is really a collection of tools such as import and export, and therefore, you can 
alias scripts using the sqoop-(toolname) syntax, as in sqoop-import and sqoop-export, 
for example. The command line program for invoking Sqoop is named sqoop. This is 
a wrapper that runs the bin/hadoop script that comes with Hadoop. 

Note

Two simple commands go a long way when working with Sqoop. You can issue the command 
sqoop help to see all the Sqoop options. In order to view the specific options for just the 
import or export capability, type sqoop help import or sqoop help export. Use the 
sqoop version command to check the Sqoop version.

By default, Sqoop will use the value you set for the $HADOOP_HOME environment variable. 
If you want to point to an alternative Hadoop installation, you must configure the 
HADOOP_COMMON_HOME and the HADOOP_MAPRED_HOME environment variables, as shown here:

$ export HADOOP_COMMON_HOME=/path/to/different/hadoop 
$ export HADOOP_MAPRED_HOME=/path/to/different/hadoop-mapreduce 

Let’s start with a simple command that shows all databases in an RDBMS, which is 
MySQL in our case. You use the list-databases command for this, as shown here:

sqoop  list-databases /
    --connect jdbc.mysql://hadoop01  /
    --username root /
    –-password password  

This command gets you a list of all databases on the host you specify.
You can list all the tables in a database by issuing the list-tables command:

sqoop  list-tables /
    --connect jdbc.mysql://hadoop01/db1
    --username root /
    –-password password  

This command shows all tables in the database named db1.
Now that you’ve learned how the sqoop command works, let’s see how you can use 

it perform the two most important things Sqoop can do for you—import and export data.

Importing Data with Sqoop
As mentioned earlier, Sqoop leverages Hadoop MapReduce (actually just the map part 
of the framework) to perform its data imports (as well as exports). Figure 12.2 shows 
how Sqoop uses Hadoop map tasks to import data into HDFS and Hive tables. Here’s 
the high-level sequence of steps in a Sqoop import operation:

1. Sqoop uses the special connector for the RDBMS to get the table metadata for the
tables involved in the import. In this example, it’s the metadata for a single table named
CUSTOMERS. This metadata helps map the data types from the RDBMS table
(CUSTOMERS) to Java data types.
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2. Using the metadata it retrieved in step 1, Sqoop generates and compiles the Java
class that it will use in the MapReduce job that is submitted to import the data.

3. Hadoop map tasks use the Sqoop-generated Java class to import data from the
CUSTOMERS table.

4. Sqoop uses multiple map tasks to import the data from the CUSTOMERS table in the
MySQL database (or another RDBMS) to HDFS (or Hive or HBase).

Let’s learn how Sqoop imports data with a simple example that shows how to import 
data from a MySQL database into HDFS. You use Sqoop’s import command to per-
form the data import from a MySQL database. The import example is shown right after 
Figure 12.2.

Note

You can get the entire list of Sqoop import and export parameters by typing sqoop help import 
or sqoop help export.

Every Sqoop import command has two basic parts: a set of generic arguments and a set 
of arguments pertaining to the import. Here’s the general syntax of the import command:

sqoop import  {generic arguments}    {import arguments}

Customers
Table

RDBMS

Map 1 Map 2 Map 3

HiveHDFS

Sqoop Client

Java
Class Named

“customers” Generated
by Sqoop

Figure 12.2 How Sqoop uses Hadoop map tasks to 
import data from an RDBMS into HDFS
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Here’s the Sqoop import command in action.

sqoop import \
   --connect jdbc:mysql://mysql.example.com/sqoop \
   --username sqoop \
   --password sqoop \
   --table tableName \
   --target-dir  /user/data/test

In this example, I chose not to specify either a class name or a location for the Java 
code that Sqoop will generate and for importing data through Hadoop Map tasks.

You can specify the name of a custom class by adding the —class-name command 
line argument. By default Sqoop places the generated Java code in the current working 
directory. You can specify a different location by adding the —bindir argument to the 
import command. When I add these two parameters to our previous import example, 
this is what the import command will look like:

sqoop import \
   --connect jdbc:mysql://mysql.example.com/sqoop \
   --username sqoop \
   --password sqoop \
   --table tableName 
   --target-dir  /user/data/test
   --class-name  myClassName
   --bindir .

 n The –class-name attribute points to the name of the Java class that Sqoop generates 
as part of this import.

 n The –bindir attribute specifies the location for the class and JAR files pertaining 
to the Java code.

When you issue a Sqoop import command, Sqoop chops up the dataset into multiple 
partitions and launches map-only jobs to transfer the data chunks into HDFS, with 
Sqoop inferring the data types from the database metadata. Thus, a Sqoop import is a 
two-step process:

1. Sqoop gathers the required metadata for the data it’s importing.

2. Sqoop submits the mapper jobs to the Hadoop cluster.

Note

It’s important to understand that Sqoop doesn’t directly connect to the relational data-
base or warehouse to import (or export) the data. Sqoop simply runs a MapReduce 
job that will connect to the database, read the table and import the data into HDFS.

You can check your HDFS home directory after the import completes to make sure 
that you can see the SUCCESS and the part* files.

The success and part* files are similar to those that you received following the 
WordCount example in Chapter 5. This is no surprise, as Sqoop uses MapReduce to 
perform the actual imports. 
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Using an Options File
Instead of specifying all the import connection options each time you run an import job, 
you can simplify things by using an options file, inside which you place the connection-
related parameters. Here’s how to specify an options file.

$ bin/sqoop import 
     --options-file /opt/option-file.txt 
     --table testTable 
     --target-dir   /user/sam/testTable

This is much simpler than the previous import example, since the options file (in 
this example named option-file.txt) contains the following connection information:

connect jdbc:mysql://localhost/db1
   username root
   password password

Note that the imported data is loaded into the HDFS directory specified by the 
–target-dir parameter, which in our case points to the /user/sam/testTable directory.
As your import job starts importing data into this directory, other clients will be able to
see the blocks in that file and may begin to process it before the import has completed.

In order to avoid complications, import data into a temporary directory. Once the 
import completes, you can simply move data from the temporary directory to where you 
really want it to end up. This move is very quick (it requires only file metadata updates and 
no data moves). You can include the HDFS data move operation at the very end of the 
job that sets off the import.

How Sqoop Imports Data
When you issue an import command, this is how the data import process proceeds:

1. Sqoop connects to the relational database (such as MySQL or Oracle).

2. Sqoop fetches the table’s metadata, such as the columns and their data types.

3. Sqoop generates a Java class and compiles it.

4. Sqoop connects to the Hadoop cluster.

5. Sqoop generates a MapReduce job.

6. Sqoop executes a MapReduce job in the Hadoop cluster.

7. MapReduce performs the import process with the help of map processes
(no reducers) using the metadata generated in step 1.

8. MapReduce generates the output as a set of files in HDFS.

Sqoop leaves the actual transferring of the data to the Hadoop mappers and merely 
oversees the entire process. By default, an import will get all of a table’s records, but you can 
limit the data, as explained later. The output file will have the records in the original 
order of the columns in the database. Because Sqoop imports data in a parallel fashion, 
the HDFS output is also in multiple files, such as delimited text files, binary Avro files 
and SequenceFiles. 
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Specifying the Password
In our example, I specified the password at the command line itself, but you have other 
options. You can specify --P instead of --password, so Sqoop can prompt you for the 
password. Alternatively, you can store the password in a file somewhere in HDFS and 
specify the --password-file option so Sqoop can read the password from there. 

You can also store the password in the Sqoop metastore, although it is less secure. 
You do this by setting the sqoop.metastore.client.record.password property in the 
sqoop-site.xml file.

The password stored in the metastore isn’t encrypted. Therefore, use this method only 
if you can restrict access to the metastore server.

How to Share the Sqoop Metastore between Clients
As explained in the previous section, you can store passwords in the Sqoop metastore 
without having to provide them each time you run a Sqoop import or export job. You 
can share the Sqoop metastore among clients. In order to do this, you must know how 
to start the Sqoop metastore. You can start the Sqoop metastore with the following 
command:

$ sqoop metastore

Once you start the Sqoop metastore service, the embedded HSQLDB becomes 
accessible to users. The default port for the metastore is 16000. You can modify it with 
the sqoop.metastore.server.port property in the sqoop-site.xml file. Users can con-
nect to the metastore by specifying the –meta-connect parameter as shown here:

meta-connect jdfs.hsqldb:hsql://metastore.exmple.com:16000/sqoop

You don’t need to specify the --meta-connect parameter if you store the value in the 
sqoop-site.xml file, as shown here:

<property>
<name>sqoop.metastore.client.autoconnect.url</name>
<value>jdbc:hsqldb:hsql://your-metastore:16000/sqoop</value>
</property>

Setting Delimiters for Output and Input
By default, the output files generated by MapReduce (these files contain the imported 
data) use comma-separated (,) fields separating the records with new lines (\n). You 
can explicitly specify delimiters, as well as field-enclosing characters and escape characters, 
to handle delimiters (such as commas) in the fields. You can change the default file and 
line delimiters by setting any of the following formatting options at the command line:

 n --fields-terminated-by <char>: Custom field delimiting character, 
such as a comma.

 n --lines-terminated-by <char>: Custom line or record terminator character, 
such as the new-line character.
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 n --enclosed-by <char>: Custom field-enclosing character, such as double quotes.
 n --optionally-enclosed-by <char>: If the data includes the enclosed-by <char> 

such as double qutoes, for example, then write the characters. Otherwise, ignore 
the characters.

 n --escaped-by <char>: Custom escaped character ( \:), used to avoid ambiguity 
when parsing or writing data to HDFS. For example, you can specify this option 
when importing a string with double quotes inside it, and Sqoop will write the field 
to HDFS by adding a backslash before the double quotes in the string.

You can specify fields-terminated-by '\t', for example, when working with 
Hive and Pig, to separate the HDFS file’s fields with the tab character. The list of format-
ting options I showed here is for formatting Sqoop output. There are also similar input 
parsing options, which are counterparts to the output formatting options, and work 
in the same fashion. Here’s the list of input parsing options you can specify:

 n --input-fields-terminated-by <char>     

 n --input-lines-terminated-by <char>

 n --input-enclosed-by <char>

 n --input-optionally-enclosed-by <char>    

 n --input-escaped-by <char>    

By default, an output file is in the delimited text format, but you can import data 
into a binary format such as a SequenceFile or an Avro binary format, as shown here.

 n as-avrodatafile: Stores output file in an Avro file format
 n as-sequencefile: Stores output in a SequenceFile format
 n as-textfile: Stores output in a delimited text format

The Avro file format uses a schema to describe the data structures in an Avro file and 
encodes it in a JSON string. Sqoop automatically generates the Avro schema from the 
metadata it retrieves from the relational database server. 

Compressing the Table Data
Sqoop takes advantage of the built-in support MapReduce has for compression and provides 
various options to compress the data it imports from a database. If you specify just -compress 
while importing data, Sqoop compresses the output files with the gzip code, resulting 
in HDFS output files with a gz extension. You can specify an alternative compression 
codec such as bzip2 instead, as shown here.

sqoop import ...
compress –compression-codec org.apache.hadoop.io.compress.Bzip2Codec
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Tip

Regardless of which file format you use, such as Avro, SequenceFile or text file, you can 
specify the --compress command line argument to compress the data you import from a 
database. By default, the compression will use the gzip format. You can specify an alter-
native format by adding the –compression-codec argument at the command line when 
performing the Sqoop import.

Make sure that the parameter mapred.output.compress is set to true (default value) 
in the mapred-site.xml file. 

Selecting the Target Directory in Which to Store the Imported Data
In our simple import example, I didn’t specify a target directory where Sqoop should 
store the imported data. So, where does Sqoop place the imported data? By default, it 
stores the data in the user’s home directory with the same name as the imported table. 
So, if user sam is the one performing the Sqoop import, the table data will be placed in 
the HDFS directory /user/sam/TableName. You can specify an alternative directory 
with the --target-dir parameter. 

Tip

Make sure the directory you specify with the –target-dir parameter doesn’t already exist 
in HDFS. Otherwise Sqoop will throw an error, just as Hadoop does when a MapReduce output 
directory is already present!

If you don’t want to use your HDFS home directory, you can specify that all Sqoop 
imports go into a special directory with the parameter --warehouse-dir. Sqoop will 
then load the imported data under the directory you specify for the --warehouse-dir 
parameter, in a subdirectory named the same as the imported table. Make sure you don’t 
use the Hive warehouse directory, which is /user/hive/warehouse by default, for your 
temporary location.

Specifying the Access Mode
Sqoop uses the JDBC access mechanism by default, but for those databases such as MySQL 
that permit a non-JDBC access, you can specify the parameter direct to select the 
non-JDBC access mechanism. 

You can use the high-performance capabilities of a database such as MySQL by specifying 
the direct parameter during an import. Note that the direct option is meant to be used 
along with the direct-split-size command line argument (--direct-split-size <n>).

Selective Imports of a Table’s Data
The first Sqoop import example you saw earlier in this chapter will import all of the 
target table’s rows. You can import only some of the rows of a table by specifying a WHERE 
clause. Simply add a WHERE clause such as the following to the import command, to 
selectively import the table's rows:
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 sqoop import \
  --connect jdbc:mysql://mysql.example.com/sqoop \
  --username sqoop \
  --password sqoop \
  --table customers \
  --where "state = 'Texas'"

You can alternatively import only selected columns of a table, by specifying the –columns 
attribute as shown here:

sqoop import \
  --connect jdbc:mysql://mysql.example.com/sqoop \
  --username sqoop \
  --password sqoop \
  --table customers \
  --columns customer_id, address, state

Sqoop assumes that the HDFS data that you’re importing and the target table to which 
you’re exporting that data have an identical number of columns in the table, and that they’re 
ordered the same way as well. Your target database must allow the inserting of rows with 
specific columns. It must also allow a NULL value for the columns you aren’t exporting 
or define a default value for those columns.

Sqoop lets you express any condition in the WHERE clause that the source relational 
database supports, in addition to special functions and user-defined functions. Due 
to the nature of Sqoop’s parallel data transferring mechanism, ideally you should 
f ilter the data on the source table f irst and save the data in a temporary table before 
importing it. 

Sqoop allows you to specify the query parameter with the import command, which 
lets you import the data that results from executing the SQL query that you specify. 
Here’s an example:

sqoop import 
-–connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--query 'select students.student_id, \

counties.county, \
students.city \
FROM students \

JOIN counties USING(county_id) \
WHERE $CONDITIONS' \

--split-by-id \
--target-dir cities

Specifying the query argument is also called a free form import and is one of 
Sqoop’s most powerful features. Free form import lets you specify an arbitrary query for 
importing data instead of using a regular table import. It replaces the arguments such 
as table, columns and where, which are the parameters that you need to specify when 
restricting the data you’re importing. Often, a free form import is slower than an alterna-
tive table import that imports the same data. 
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When you perform a free form import, you are required to specify two parameters, 
and optionally, a third parameter (in addition to the query parameter, of course), as shown 
in our example:

 n --split-by-id: Use this parameter to specify the column that Sqoop will use to 
split the data into several parallel tasks. Note that we specified the parameter but 
didn’t specify any column. In this case, the parameter will default to the primary 
key of the main table in the join.

 n --target-dir: This parameter specifies the HDFS directory where the imported 
data is stored. You can’t use the parameter –warehouse-dir to store the data with 
a free-form import.

 n $CONDITIONS (optional parameter): You can make Sqoop split the query into 
several chunks, each of which can be imported in parallel, by specifying this 
parameter. The $CONDITIONS parameter acts as a placeholder in the WHERE clause 
that you specify, and Sqoop generates conditions to substitute for the placeholder, 
with each condition specifying the data chunk to be moved by an import task. If 
you omit the $CONDITIONS parameter, Sqoop will not parallelize the import job 
and will simply use a single mapper to perform the import. If your join is fairly 
complex, you ought to parallelize it. 

Getting Data from All the Tables
You can use Sqoop to import all tables from the target database into HDFS with the 
import-all-tables command:

sqoop import-all-tables \
-–connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop

This example shows how to import all tables from a database into HDFS. Sqoop stores 
data for each table in a separate HDFS directory. 

In essence this command will sequentially import an entire database in one fell swoop.
If you want to import most, but not all the tables from a database, add the 

--exclude-tables option to the previous import command, as shown here:

sqoop import-all-tables \
   --connect jdbc:mysql://mysql.example.com/sqoop \
   --username sqoop \
   --password sqoop \
   --exclude-tables customers,sales

This command will get you the data from all tables from the database, with the exception 
of the customers and sales tables.
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Creating Sqoop Jobs

For one-off imports, you can simply run a Sqoop import (or export) command from 
the command line. However, if you need to run the same Sqoop job frequently, it’s a 
good idea to create a Sqoop job, by storing the import (or export) command in the 
built-in Sqoop metastore. All you need to do to create a Sqoop job is specify the attri-
butes job and –create <jobname> when running a Sqoop command, in this case a 
Sqoop import. In the following example, I named the Sqoop job testjob.

sqoop job  \
--create testjob \
--username sqoop \
--password sqoop
--import  \
–-table testTable 

You can view the stored Sqoop jobs by issuing the following command:

$ bin/sqoop job –list

You can view the parameters of a job you saved by specifying the -show attribute:

$ bin/sqoop job –show testjob

Finally, you can execute a saved job by specifying the -exec attribute:

$ bin/sqoop job –exec testjob

You can delete a Sqoop job by specifying the –delete option at the command line. 
Saving jobs to the metastore is especially useful when performing incremental imports 
and exports, which I explain in the following sections. This is due to the fact that a 
saved Sqoop import job will store not only the commands to rerun the import job but 
also the last value of the column that you want to incrementally import. 

Controlling Job Parallelism
Sqoop uses MapReduce processes to perform its imports, and by default, for each import 
(and export), it runs four map tasks, with each of the four tasks importing roughly a 
quarter of the data. 

You can tell Sqoop to utilize more mappers by specifying the –num-mappers attribute. 
Sqoop uses the primary key column of the source table by default, to consider how to 
split work among the mappers. If the source table doesn’t have a primary key column, 
you can specify the parameter --split-by <column-name> to specify the column on which 
to split the work among the mappers.

In the following example, I specify 12 as the value for the –num-mappers parameter, 
meaning I want Sqoop to use 12 parallel map tasks.

sqoop import \
-–connect jdbc:mysql://mysql.example.com/sqoop \
--username sqoop \
--password sqoop \
--table tableName \
--num-mappers 12
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Remember that if the table is missing a primary key column and you’re thinking 
of specifying the --split-by parameter, check to ensure that the column’s values are 
somewhat equally distributed. Otherwise, you’ll end up with some map tasks that take 
much longer to complete when compared to the rest of the mappers.

Tip

Remember that the parallelism option doesn’t really mandate that the job use the degree 
of parallelism you specify—it’s only a directive that Sqoop is at liberty to ignore by spawning 
fewer mappers than what you assume.

When specifying parallelism, it’s a good idea to also keep in mind the potential extra 
load on the target database. It’s a good strategy to start with a small value and move up 
to a larger number for the --num-mappers parameter.

Performing Incremental Imports
Sometimes you’d like to import just the newly added or modified rows from a table. 
You don’t want to have to import the entire table just to capture the newly updated or 
added rows. Sqoop provides options to perform incremental imports, allowing you to 
import just the new inserts and updates into HDFS.

You make use of the following three parameters when performing incremental imports.

 n --incremental: This parameter tells Sqoop that it should perform an incremental 
import. An incremental import can be performed in two different modes. You can 
specify append as the value for the --incremental parameter when Sqoop is getting 
all new rows and no currently existing rows are modified. Alternately, you can spec-
ify an incremental import with the lastmodified option, which means that Sqoop 
should import only those rows which were updated after the most recent import.

 n --check-column: This column’s value determines the rows Sqoop will import.
 n --last-value: You use this parameter to let Sqoop know the value of the column 

(check-column) from the most recent import you’ve performed. If a record has 
a check column value greater than the value for the --last-value parameter, 
Sqoop will import it.

By specifying the last-modified attribute for the --incremental parameter, you 
can import both newly added as well as any updated records. In order for you to do this, 
the source table must have a timestamp column. 

As in the append incremental mode, Sqoop prints out the value of the --last-value 
parameter at the end of an incremental import. Sqoop performs two separate MapReduce 
jobs here to get you the data you need. It imports the changed data first and saves it in a 
temporary HDFS directory. A second job will merge the old and the new data while saving 
only the last updated values for each row.

Let’s say you run the same incremental job again or whenever the import is sched-
uled to run again. This will generate a new file under the HDFS directory customer, 
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with the new customer table data. You can merge the multiple files with the help of 
Sqoop’s merge command as explained next.

Using the Sqoop Merge Command
When you use the incremental import in the lastmodified mode, each import creates a 
separate file. You can use Sqoop’s merge command to combine new data sets with the old 
data sets. The way this works is that whenever the primary keys in the two datasets match, 
the data from the older data set is overwritten by the data from the newer dataset. Here’s an 
example showing how to use the merge command when using incremental imports.

$ sqoop merge
  --new-data /user/alapati/customer/part-m-00001
  --onto /user/alapati/part-m-00000
  --target-dir /user/alapati/customer/MERGED-CUSTOMERS
  --jar-file customer.jar
  --class-name   customer
  --merge-key customer-id

Note that the -–merge-key attribute states that the primary key customer-id should 
be used to match the rows from the older dataset with those from the new dataset.

Importing Data into Hive
Sqoop can automatically create Hive tables to store the data it imports from a relational 
database. Before we learn how to import data into Hive tables with Sqoop, let’s quickly 
review how to create a Hive table and how you load data from HDFS into a Hive table. 
Doing this will get you ready for using Sqoop to do the same.

You load data from either the local file system or from HDFS into a Hive table with 
Hive’s load data statement, as shown here:

hive> load data local inpath  './examples.files.test1.txt' overwrite into table test;
hive> load data inpath '/users/sam/test1.txt overwrite into table test;

The first load statement loads data into the Hive table named test, from a file in the 
local file system. The second load statement loads the same Hive table using data from 
a file stored in HDFS.

Now, on to how you can do the same things with Sqoop, this time by getting data 
from a relational database such as MySQL. Importing data into Hive is really the same 
as importing data into HDFS and then manually asking Hive to create and load the Hive 
table (or Hive partition). 

However, manual loading into Hive requires you to know the type mapping between 
data and the serialization format and delimiters. Sqoop takes care of all this for you when 
you use it to load data directly into Hive. It populates the Hive metastore with the neces-
sary table metadata and invokes the commands to load the table. All you need to do is 
specify the hive-import option when running a Sqoop import.

Sqoop first imports the data to a temporary location in HDFS. It then generates a query 
for creating a table and also another query for loading the data from the temporary HDFS 
location, using the Hive load data inpath statement to move the data into the Hive 
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warehouse directory in HDFS. You can specify the temporary location with either the 
--target-dir parameter or the --warehouse-dir parameter. I explained both of these 
Sqoop parameters earlier in this chapter.

By default, Sqoop appends new data it imports to the existing data in the Hive table. 
By specifying --hive-overwrite, you can tell Sqoop to truncate the data and load it with 
fresh data. This essentially replaces the existing table. The --overwrite parameter is handy 
when you need to refresh a Hive table’s data on a regular basis.

There are two different ways in which you can get data from a relational database into 
Hive. Both of these are quite simple and are essentially the same as importing data into 
HDFS, which you already know. Following is an explanation of the two methods.

The First Method
The first method is to import the MySQL (or other database) table data into a file such 
as /user/sam/customers. Once you import the data into HDFS, you can create an external 
Hive table as shown here:

hive> CREATE EXTERNAL TABLE student(id int, name string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n    STORED AS TEXTFILE
LOCATION '/user/sam/customers';

The LOCATION parameter tells Hive where to look in HDFS to access the data you’ve 
imported from MySQL.

The Second Method
The alternative way to load data into Hive from an external relational database is to 
specify the --hive-table argument in the Sqoop import command and let Sqoop both 
create the table and load it from the HDFS directory into which it imports the table data 
from the RDBMS. In this case the HDFS data is loaded into the Hive warehouse direc-
tory. If the Hive table doesn’t already exist, you can create it at the same time as you’re 
loading data by specifying the --create-hive-table argument at the command line.

The following example shows how to create a Hive table and load data into it from a 
MySQL table:

sqoop import 
  -–connect jdbc:mysql://mysql.example.com/sqoop 
  --username sqoop 
  --password sqoop 
  --table testtable  
  --hive-table testTable 
  --create-hive-table 
  --hive-import 
  --hive-home /path/to/hive_home

Once this import is complete, you can access the Hive table just as if you performed a 
direct load into a Hive table.  As with a regular import into HDFS, if the target table doesn’t 
have a primary key column, you must specify a split-by option to specify a column whose 
value Sqoop will take into account when dividing the job into multiple map tasks.
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Sqoop converts the data from the native data types into corresponding Hive data 
types, using the native Hive delimiter set. If the data consists of new lines or other Hive 
delimiter characters, you can remove the characters in order to correctly populate the 
Hive table.

If the target table already exists in Hive, Sqoop imports data into that table. If that 
table doesn’t exist, Sqoop creates it, using the metadata it fetches for that table. For a new 
Hive table, Sqoop converts the source table’s data types into Hive-compatible data types. 
If the default mapping doesn’t work for you, you can overwrite it as follows, by specifying 
the parameter --map-column-hive in your Sqoop import command:

sqoop import \
   ...
  --hive-import \
  --map-column-hive id=STRING,price=DECIMAL

In this example, I changed the Hive data type for the column id to STRING and the 
column price to DECIMAL.

Using Partitioned Hive Tables 
Sqoop can automatically import data into a Hive table partition. If you want Sqoop to 
load data directly into a Hive partition, specify the following parameters:

 n --hive-partition-key: This parameter names the partition column.
 n --hive-partition-value: This parameter specifies the desired value.

For example, to load data into a partition named 2016-04-23 for a partition column 
named day, you can run the import command as follows:

sqoop import \
  --connect jdbc:mysql://mysql.example.com/sqoop \
  --username sqoop \
  --password sqoop \
  --table cities \
  --hive-import \
  --hive-partition-key day \
  --hive-partition-value "2016-04-23"

As Sqoop has no way of knowing into which partition it should import data, you 
must specify the name and value of the partition with the two parameters shown here. 
You can’t simply specify the column name for a partitioned table import.

 Exporting Data with Sqoop
Exporting with Sqoop means you get data from HDFS into a relational database 
(RDBMS) table. When you export an HDFS file to an RDBMS, a MapReduce (map-
only) job processes a set of text-delimited files in HDFS and converts them into table 
rows in the target RDBMS, using INSERT statements. Exporting data has many parallels 
to importing data. 
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How to Export Data with Sqoop
Let’s use a simple example to learn how to use Sqoop to export data into a MySQL 
database table:

sqoop export  \ 
   -–connect jdbc:mysql://mysql.example.com/sqoop \
   --username sqoop \
   --password sqoop  \
   --table testTable \
   --export-dir /user/alapati/testTable

This export command exports the data in the HDFS directory /user/alapati/testTable 
into the MySQL database’s table named testTable. You must have the table ready in 
MySQL before you run the Sqoop export. If the table isn’t present in the database 
already, make sure you create it, with the same target columns and in the same order. 
Also ensure that the table is created with the correct SQL data types. For your export 
job to succeed, no input row can violate a primary key or other database constraint. 

The parameter --export-dir points to the location of the input files in HDFS from 
which Sqoop will export the data, and the --table parameter points to the database 
table into which you are exporting the data. Both of these parameters are mandatory, and 
you can also specify one or more of the parameters listed here:

 n --direct: Specifies the direct mode so you can complete the export faster. A 
direct-mode export to most databases is more efficient than a comparable JDBC-
based export.

 n -m, --num-mappers <n>: Lets you specify the number of mappers for the export
process.

 n --update-mode <mode>: Specifies how an update will be performed when new 
rows are found with non-matching keys in the database. The two values for <mode> 
are the default value of updateonly and allowinsert.

 n --update-key <col-name>: A column used to identify the records you want to 
update during the update-mode. You can supply a comma-separated list to update 
multiple columns at once.

 n --staging-table <staging-table-name>: The name of the staging table used to 
stage data before inserting it into the target table. This ensures that the export is 
an “all-or-nothing” affair. The export data is moved from the staging table to the 
target table after the entire data export completes successfully. This avoids partial 
exports and potential data corruption in the target table.

Tip

If you specify the --staging-table option, the target database will need storage for 
two copies of the data, one the staging table and the other, the actual target table. Also, 
the --staging-table option is only available with the INSERT mode and not in the update, 
update insert or direct mode, or when you call a stored procedure during an export.
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 n --clear-staging-table: If you specify a staging table, that table must exist 
before starting the Sqoop export. The staging table needs to be empty and you 
can specify the --clear-staging-table option to let Sqoop clean up the staging 
table by truncating the table.

How Sqoop Export Works
Here’s what happens when you run a Sqoop export job. Sqoop will do the following:

 n Validate the metadata of the MySQL table.
 n Execute the MapReduce job, which will transfer the data in each record from the 

HDFS file and translate it into an INSERT command before appending it to the 
target table. 

Note that Sqoop appends data to the target table. By specifying the --update-key argu-
ment with your export command, you can instead have Sqoop update the target rows in 
the database table.

Tip

By default, Sqoop uses four map jobs for both an import and an export. You can specify 
the number of map jobs to perform a Sqoop export (as well as an import). Of course, the 
more the mappers, the faster your export. However, as is true so often with the map 
tasks, there’s a tradeoff—the more mappers, the more load on the cluster, and if there’s 
a resource crunch, the whole cluster might be affected. In addition, too many map jobs may 
make it harder for the target database to handle the extra work!

When you start a Sqoop export job, multiple mapper tasks are started to perform the 
export, and if one or more of them fails, you’ll end up with a partial export of rows to the 
target table. If you rerun your export, it may fail because rows already exist. In order 
to avoid this situation, you can specify the --staging-table argument with your exports. 
Sqoop will then store the data into a staging table first, before moving it to the target 
table. To ensure that the staging table is empty, specify the --clean-staging-table 
argument when you issue the export command.

Figure 12.3 shows the basic steps involved in a Sqoop export from HDFS to a database.

Performing Batch Exports
By default, Sqoop exports will insert each row as a separate INSERT statement. If you want 
to export millions of rows to a database, the SQL INSERT command will be painfully slow, 
as it needs to insert data one row at a time! You can change this default behavior in three 
different ways, so Sqoop can insert multiple rows at a time during an export:

 n Enable JDBC batching.
 n Specify the number of records to be inserted with an INSERT statement.
 n Specify the number of rows to be inserted per transaction.

I brief ly explain the three techniques in this section, starting with JDBC batching.
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You can enable JDBC batching during an export by specifying the -–batch parameter, 
as shown here:

sqoop export \
  --connect jdbc:mysql://mysql.example.com/sqoop \
  --username sqoop \
  --password sqoop \
  --table customers \
  --export-dir customers \
  --batch 
  ....

When you specify the --batch parameter, your mileage may vary, because some JDBC 
drivers serialize rows in an internal cache before sending it to the database server, slowing 
down the export. Specifying the --batch parameter means that the map tasks will batch 
multiple INSERT statements together before sending them to the database, instead of using 
the default mode of single row inserts.

Alternatively, you can specify the property sqoop.export.records.per.statement 
to dictate the number of records per INSERT statement, as shown here, where I specify 
ten records per INSERT statement:

sqoop export \
Dsqoop.export.records.per.statement=10 \
  ...

Map 1 Map 2 Map 3

Customers
Table

RDBMS

HDFS

Java
Class Named

“customers” Generated
by Sqoop

Sqoop Client

Figure 12.3 How Sqoop exports data from HDFS to 
a relational database (or data warehouse)
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Tip

Sqoop lets you specify certain properties at the command line by using the 
–D <property=value> argument. This will let you avoid having to set these parameters in
the sqoop-site.xml file (in the $SQOOP_HOME/conf directory by default). You can check out
the command line arguments that start with the –D option by issuing the sqoop help
export command.

Adding the --batch parameter makes Sqoop generate a query with multiple rows 
in a single INSERT statement before sending it to the database server. Most databases 
support the use of multiple rows in a single INSERT statement, but not all do. The insert 
may fail on some databases because it exceeds the database’s maximum query size.

Finally, you may also specify the number of rows to be inserted per transaction by 
adding the sqoop.export.statements.per.transaction property, as shown here:

sqoop export \
   Dsqoop.export.statements.per.transaction=10 \
   ...

The sqoop.export.statements.per.transaction parameter lets you group a set of 
insert statements to be run together, before committing the transaction. Thus, this strategy 
reduces the overhead of starting and completing each INSERT transaction separately. 
While you can generally increase insert performance by setting this parameter, you should 
also remember that each RDBMS may behave differently in how it handles this parameter. 
Test before you try this in production!

While I’ve presented several options here for enhancing Sqoop export performance, 
you’ll be able to find the best option for you by testing these options in your own 
environment.

Simultaneously Updating or Inserting Data
When you use Sqoop to export data to a relational database such as MySQL, Sqoop 
leverages the SQL INSERT statement to append the data to the target table. 

What if you want to update data instead of appending it? Sqoop takes care of this with 
its --update-key <column(s)> command line argument, which lets Sqoop generate a 
SQL UPDATE statement during an export, instead of the usual INSERT statement. So, in 
order to let a Sqoop export command generate a SQL UPDATE statement, you run the 
export as follows:

sqoop export
  ...
  --update-key customer_id \
...

If the target table (CUSTOMER) in the RDBMS has a record with the matching value 
in the column CUSTOMER_ID for the export data stored in HDFS (in the directory specified 
by the export-dir parameter), the table CUSTOMERS in the RDBMS is updated. 

However, what happens if there’s no matching record?  You want to make sure that 
you don’t let any data fall through the cracks. Obviously, if the data in HDFS is new, 
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there won’t be a matching record for the CUSTOMER_ID column in the RDBMS table 
CUSTOMERS and you ought to insert this new data into that table. Fortunately, you don’t 
need to worry as Sqoop takes care of this eventuality as well.

Note

You can move data into and out of HDFS effortlessly using the Sqoop UI (through the Hue 
interface), which lets you move data with the mere click of a few buttons.

Sqoop offers an UPSERT (update or insert, depending on the situation) capability 
that lets it insert a row if it’s new or update it if the row already exists. You can use this in 
cases when the data includes rows that you need to update with newer data from Hadoop 
as well as brand new rows. Obviously you can’t simply specify the update mode in this 
scenario. 

There really isn’t actually a Sqoop export command named UPSERT. You must 
specify allowinsert as the value for the --update-mode parameter to perform simul-
taneous inserts (depending on the value of the matching columns) of new rows and 
updates of existing rows. 

sqoop export
  ...
  --table customers
  --update-key id 
  --update-mode allowinsert
...

The --update-mode <mode> attribute can have one of two possible values: 

 n The default value is updateonly and allows only updates, as the attribute 
value indicates. 

 n The allowinsert value specifies the UPSERT mode. 

Some databases may not support the UPSERT option, so be sure to check your 
database documentation first before specifying it during an export operation.

Using Stored Procedures during Exports 
You can use stored procedures during exports, by replacing the --table parameter with 
the  --call parameter, followed by the name of the stored procedure you want Sqoop 
to invoke (--call <stored procedure>), as shown in the following example:

sqoop export \
  --connect jdbc:mysql://mysql.example.com/sqoop \
  --username sqoop \
  --password sqoop \
  --call populate_cities...

When you specify a stored procedure, Sqoop will call the stored procedure with column 
values as a separate parameter, instead of issuing insert statements for each row of data. For 
each record in the directory you specify with the --export-dir parameter, Sqoop will call 
the stored procedure populate_cities. 
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Exporting Data from Hive to a Database
You can’t really directly export data from a Hive table into a database table using Sqoop 
(or Sqoop 2). You can, however, effectively do so by exporting data from the HDFS 
directory where Hive stores its table data. You can extract the data as text or as an Avro 
file. The following example shows how to export data from a Hive table named testTable 
into a MySQL table.

$ bin/sqoop export 
-–connect jdfs:mysql://localhost/test_db 
-–table invoice 
-–export-dir/user/hive/warehouse/invoice 
-–username root -–password password 
-–m 12 
-–input-fields terminated by '001'

In this export command, I specify the path to the Hive warehouse where I stored the 
table named invoice. I also specified '001' as the field delimiter—Hive allows several other 
types of delimiters as well. This export command will load the Hive table invoice into 
the MySQL table, also named invoice. 

Sqoop will read the records one by one from the /user/hive/warehouse/invoice table 
and insert them into the MySQL table. If you need to export an HBase table to an 
RDBMS, you can extract the data in a fashion similar to HDFS and then use Sqoop 
to export the data to the RDBMS.

Using Sqoop as a Service with Sqoop 2

Sqoop 2 is a new version of Sqoop that utilizes a client-server design and lets you run 
Sqoop as a service on its own dedicated server. Just as HiveServer2 is the centralized 
Hive server, Sqoop 2 is the centralized Sqoop server. Since the Sqoop 2 server does 
most of the work, it has a thin client.  Other clients can also communicate with the 
Sqoop 2 server, using its JSON-REST protocol. Sqoop requires a client-site installation 
and configuration, whereas Sqoop 2 is installed and configured only on the server. One 
of the big drawbacks of Sqoop is that there really is no way to manage resources when 
working with relational databases. Sqoop 2 administrators can manage resources by 
limiting connections to the databases.

Using Sqoop means that you must install all connectors and JDBC drivers on each client. 
Each of the clients also needs its own connections to the database. If you use Sqoop 2, you 
don’t need to install the connectors and drivers on the clients, as they are installed on 
the Sqoop server already. You also need database connectivity for just the Sqoop 2 
server and not for each of the clients. Whereas traditional Sqoop clients were limited 
to the command-line interface CLI, in Sqoop 2, clients can use a CLI, browser, REST 
interface browser or another client to connect to the Sqoop server when working with 
databases.

While Sqoop 2 is definitely the future of the Apache Sqoop project, as of now, Sqoop 2 
lacks some key capabilities offered by Sqoop (Sqoop 1 if you will). You may use Sqoop 2 
if it contains the functionality you need. Otherwise, you must use Sqoop 1 for all your 
Sqoop-related work.
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Sqoop 2 supports interaction through the command line but adds a web UI with a simple 
user interface to easily set up import and export jobs. Since the UI is built on a REST 
API, a command line client with similar functionality can use the UI. Sqoop 2’s UI will 
walk you through the settings of import and export jobs, letting you eliminate incorrect 
options. 

Sqoop 2 is architected differently than Sqoop 1. Since Sqoop 1 and Sqoop 2 use 
different code paths, there are different features available with each of them. While 
Sqoop 2 comes with a UI, there’s none for Sqoop 1. The only way to run Sqoop 1 jobs 
from Hue is either by scheduling an Oozie job or by going through the Job Designer 
application. Sqoop 2 jobs can’t yet be run from Oozie.

While you can use both Sqoop 1 and Sqoop 2 from the command line, there’s a major dif-
ference. Sqoop 1 doesn’t offer an interactive command line interface, while Sqoop 2 does.

Sqoop 2 currently has the following limitations:

 n Unlike Sqoop, Sqoop 2 doesn’t allow you to transfer data from a relational data-
base to Hive or HBase. You can, however, get around this limitation by importing 
data from the RDBMS to HDFS, and then manually loading the data into Hive or 
HBase using the appropriate commands (LOAD DATA in Hive, for example). 

 n Again, unlike Sqoop, Sqoop 2 doesn’t support connectors for all major relational 
databases. As a workaround, you can use the generic JDBC Connector, which 
works with several popular relational databases, but its performance lags behind 
that of Sqoop’s specialized connectors.

Ingesting Data from External Sources with Flume 
A prime use case for big data is the capture and analysis of data coming in through 
high-throughput data streams such as application log data. Apache Flume is a popular 
tool often used for collecting log data from multiple sources, aggregating it and storing 
it in HDFS. While Flume is often used to transport log data, you can transport any type 
of data you like. Flume offers the following benefits:

 n It’s architected for handling streaming data f lows.
 n It's simple to use.
 n It's highly reliable (Flume stores a central list of ongoing data f lows in ZooKeeper 

for redundancy). 
 n It contains extensions that enable online analytic applications that process data streams.

Unlike Sqoop and other data-migration tools, Flume is ideal for handling live trans-
actions and can write log entries in near-real time—as the entries are being written to 
an access log, for example.  

Flume is ideal for the ingestion of large volumes of log files in real time, from sources 
such as web servers and mail servers, which generate millions of log events on a daily 



ptg18444370

389Ingesting Data from External Sources with Flume 

basis. It’s ideal for aggregating and moving streaming data from multiple sources into 
HDFS or HBase.

If you’re moving only a small amount of data to HDFS, you can use WebHDFS (see 
Chapter 10, “Data Protection, File Formats, and Accessing HDFS”) instead of Flume. 
Flume is designed for continuously ingesting data into HDFS and is perfect for handling 
massive amounts of log data. If the amount of data you need to move is small, Flume isn’t 
worth the effort to configure and deploy it. 

Flume Architecture in a Nutshell
A f lume agent (running in a JVM), which is a daemon, is the basic unit of Flume. An agent 
consists of three components: sources, channels and sinks:

 n Sources write events to one or more channels, which are holding areas for events. 
 n Events are passed from the sources to the sinks through channels. 
 n Sinks are the ultimate repository for the data Flume transmits. 

The Flume agent is a JVM process that hosts the three components (sources, channels 
and sinks) through which the Flume data events f low. Note that a sink can also be a 
follow-on source of data for other Flume agents, or write data to HDFS and S3. 

Figure 12.4 shows the Flume data f low model. The Flume agent is a JVM that runs 
Flume. The Flume sinks for each agent node send data to collector nodes. The collector 
nodes aggregate data from multiple agents and write it to HDFS so it can be analyzed 
with Pig, Hive and other tools.

Key Components of Flume 
Apache Flume has three main components—sources, channels and sinks:

 n Sources receive or retrieve data and send it along to channels.
 n Channels act as a transient store for events within the agent and queue the tran-

sitory data. Channels serve as intermediary conduits between sources and sinks 
and are useful for holding data in queue when the ingest rate of data exceeds the 
outf low rate. Although there’s an experimental hybrid memory and file channel, 
the two main channels are a non-durable memory-based channel and a durable 
file-system-based channel. The choice of channel type will depend upon your 
specific needs, risk tolerance and how you handle failures. 

SinkSource Channel

Figure 12.4 The Flume data-flow model showing how sources, channels and sinks interact
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 n Sinks take the data held temporarily by the channels and process it. A sink can 
remove an event from a channel and send it to another Flume agent or to the event’s 
final destination, such as HDFS. A sink is sometimes an intermediate store, and 
at other times, the final destination of the events being captured. You can specify 
various types of sinks: The HDFS (type-hdfs) sink writes events to HDFS and sup-
ports creating text and SequenceFiles, and you can specify compression for both 
file types. 

Simply put, a Flume source is the source of the streaming input, the channel acts as 
the temporary buffer for the data and the sink defines the final destination of the incoming 
streaming data. The clients send data events to the source, which sends those events to 
the channel buffer, and from there the data f lows to the sink, which is the final destination 
for the data.

In addition to knowing how sources, channels and sinks work, you must understand 
several key Flume concepts including events, interceptors, channel selectors and sink 
processors.

 n An event is the payload delivered by Flume, and it consists of a body (the actual 
payload) and possibly some headers. An event is the basic data unit handled by 
Flume processes—for example, a log record. The event body is a byte array and the 
headers are a map with string keys and values. Headers are for routing purposes (for 
example, hostname=mywebserver.myhostname.com) and for tracking the priority 
of the events being sent. Events are transmitted from their point of origination, 
also referred to as a client, to the source. A number of events together constitute a 
transaction, which has a unique ID.

Note

Flume events are designed for small events and usually are about 1–2KB in size. 
Thus, large events such as video and audio events won’t work well with Flume.

 n An intercept is a point in the data f low where you can inspect and alter events.
 n A channel selector takes care of the moving data from a source to one or more 

channels.
 n A sink processor is the mechanism that lets you create failover paths for sinks 

or load balance multiple Flume events across multiple sinks. 

Sources write events to a channel and the events stay in the channel until a sink removes 
the events through a transaction. If there’s a network failure, the events are queued in the 
channels until the sink can write them to HDFS. 

Important Things about the Flume Agent
Here are the key things you need to know about a Flume agent:

 n At a minimum, a Flume agent consists of a single source, a channel and a sink. 
 n Each source, channel and sink must be uniquely named.
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 n A Flume agent can have multiple sources, channels and sinks.  
 n You can configure multiple Flume agents to run multiple sets of channels and 

sinks to either replicate or selectively route events. 
 n You can chain agents to form a tiered collection topology with multiple hops 

until the events are stored in their ultimate data store—for example, HDFS.
 n While a source can send data to multiple channels, a sink can receive data only 

from one channel. 
 n You can send data to multiple sinks such as HDFS sinks and Cassandra sinks. 

Flume topologies can be extremely f lexible, and there’s no standard architecture. 
Flume architecture supports tiered data collection, with multiple Flume agents in a 
tiered fashion. You can chain multiple Flume agents to build complex data workf lows. 
In a chained-agent architecture, the sink for one agent can send data to the source from 
a different agent. Avro is commonly used to send data across networks, since it’s known 
as an efficient serialization mechanism for transforming data into a compact binary 
format. 

Configuring the Flume Agent
Once you download and extract the Flume binaries, in order to run a Flume job, you 
need to configure the Flume agent. 

The file f lume.conf is the key file for you—it’s where you configure the Flume agent 
by specifying the properties of the sources, channels and sinks, as well as how they are 
connected together to form a Flume data f low. You can either edit the file directly or, to 
make things a bit easier, copy the f lume-conf.properties.template file to the f lume.conf file, 
as shown here:

$ cp flume-conf.properties.template  flume.conf

The Flume architecture I described earlier as consisting of the three components—
sources, channels and sinks—is converted into a functioning model by the Flume agent 
configuration, with is stored in a local text file that’s similar to a Java properties file. 

The Flume configuration file f lume.conf uses key/value pairs that you pass to the agent 
when it starts up. Flume monitors this configuration property file for changes every 30 
seconds.  You can configure multiple Fume agents in a single Flume agent configuration 
file. You configure each Flume agent with the following three parameters:

agent.sources=<list of sources>
agent.channels=<list of channels>
agent.sinks=<list of sinks>

Each configuration item in a Flume configuration file lets Flume know the kind of 
source, channel and sink it’s using. You configure properties for the sources, channels 
and sinks in the configuration file. 

In a Flume agent, sources, channels and sinks all have unique names within that 
agent’s context. You can specify a name for the agent as well, but I chose to simply 
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use “agent” as the agent’s name. For example, if you are moving Apache web server 
HTTP access logs, you can name your channel “access” and configure the channel as

agent.channels.access

In this example, agent.channels.access is a configuration item. More specifically, 
when you configure a channel, you need to specify the type of channel. I chose to specify 
an in-memory channel (there are other types of channels, as I explain later), so the complete 
configuration for our channel named “access” is going to be

agent.channels.access.type=memory

Similarly, you configure a capacity parameter for the memory channel you’ve con-
figured with the following:

agent.channels.access.capacity=200

The capacity of a channel specifies the maximum number of events the channel can 
hold at any time.

A Simple Flume Example
Let’s use a very simple example to understand how to configure a Flume agent. In this 
example, we have the following:

 n A single agent named “agent1”
 n A source named “netcatSource”, a channel named “memChannel” and a sink 

named …“logsink”
 n The channel type is memory
 n The sink type is logger, a sink that’s commonly used for debugging event 

f lows and for testing

Sources need a type, and in our example, it is Netcat, which opens a socket and listens 
for events through the open socket. The Flume agent will connect to the Netcat utility 
to send Flume events. There can only be a single sink since we have a single channel. In 
this example, the Flume agent receives service requests from a specified port and turns 
each line of text it receives into an event. The events are stored in a memory channel 
named “memChannel.” These events are then retrieved by the memory-based sink and 
shown to you.

Open the configuration file f lume.conf, and add the following configuration to the 
file:

# You must define the sources, channels and sinks on a per-agent basis, in this 
case for the Flume agent named agent1
agent1.sources=netcatSource
agent1.channels=memChannel
agent1.sinks=logsink

# configure the source
agent1.sources.netcatSource.type=netcat
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agent1.sources.netcatSource.channels=memchannel
agent1.sources.netcatSource.bind=0.0.0.0
agent1.sources.netcatSource.port=44444

#configure the channel
agent1.channels.memChannel.type=memory

# Configure the sink
agent1.sinks.logsink.type=logger
agent1.sinks.logsink.channel=memChannel

In this example, the agent configuration you specify in the f lume.conf file does the 
following:

 n It configures an agent named “agent1.”
 n It contains properties for each source, channel and sink in agent1.
 n It specifies the connection properties—for example, the source listens for data 

(messages to netcat) on port 44444.
 n It contains a channel that buffers event data in memory (and not disk).
 n It configures a sink that logs event data to the console.

Once you configure the Flume agent, follow these steps to test your configuration:

1. Start the Flume agent, to test your configuration. To start the agent, use the
shell-script flume-ng, located in Flume’s bin directory. Issue the agent command
from the command line, as shown in the following example.

$ ./bin/flume-ng agent –n agent1 –c conf –f /home/flume/flume.conf –
Dflume.root.logger=INFO, console

The agent command has two required parameters: an agent name and a con-
figuration file to use. If you’ve configured only a single agent, you can omit the
agent’s name.

2. Check the Flume agent’s log to make sure that the source, channel and sink have
all successfully started up. If you didn’t specify the –Dflume.root.logger property,
the output will go to the log/f lume.log file.

3. Telnet to port 44444 from a different terminal and type the following Netcat (nc)
command, to send a simple string message and hit Return.

$ nc localhost 12345
It's time for big data!
OK

The agent confirms the acceptance of the text you typed by printing it on the screen, along 
with an OK message to indicate that all went well. In the agent log, you can see your message:

2016-21-05 11:52:45:11,215 (SinkRunner-PollingRunner
DefaultSinkProcessor) [INFO –
org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: {
headers:{} body: 48 65 6C 6C 6F 20 57 6F 72 6C 64 It's time for 
big data!}
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You can find all the event-processing messages from the source and the sink in 
the /opt/apache-f lume/bin/logs.f lumelog file.

In our example, the source of the Flume agent’s data was Netcat. You can alternatively 
specify Exec, Avro, Thrift, Syslog, HTTP, JMS, a spooling directory source or twitter-
source as your source type. You can even write a custom source type. 

If you specify Exec, you must provide an executable command that will be executed 
to get the data to the Flume agent. For example, you can specify a command such as 
tail –F /tmp/access_log, which grabs the web server access logs. Each time the 
command executes, the Flume agent receives an event. 

Tip

Watch your Java Heap size (-Xms and –Xms) closely when using a memory channel; if you 
raise the size of the memory channel significantly, you may need to raise the Java heap size.

Using Flume to Move Data to HDFS
This book is primarily for Hadoop administrators, so let’s discuss a very common use 
for Flume in Hadoop environments, where Flume is commonly used to write dynam-
ically generated data into HDFS, such as the access logs from a company’s web servers. 
Flume is capable of writing various HDFS file formats such as text, SequenceFile, JSON, 
Avro and so on.

In order to configure a Flume data capture and storage f low, you must modify the 
Flume agent configuration file. You can configure one or more Flume agents in a single 
Flume agent property file (flume.conf). 

Each of the Flume agents must have its own named sources, channels and sinks.  
When you configure multiple Flume agents in a single configuration file, before you 
start a Flume agent you must pass an argument at the command line to tell Flume which 
Flume agent it should start. 

Let’s create a Flume agent configuration file for moving the dynamic data to HDFS. 
I named the Flume agent “hdfs1” in this example, but you can name it anything. The 
following code shows the Flume configuration file.

# Configure the Flume agent, sources, channels and sinks
hdfs1.sources = execSource
hdfs1.channels = fileChannel
hdfs1.sinks = hdfsSink

# Configure the source
hdfs1.sources.execSource.type = exec
hdfs1.sources.execSource.command = tail -F /var/log/messages 
hdfs1.sources.execSource.channels = fileChannel

#Configure the channels
hdfs1.channels.fileChannel.type = FILE
hdfs1.channels.fileChannel.capacity = 1000000
hdfs1.channels.fileChannel.maxFileSize= 10737418240
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#Configure the Sinks
hdfs1.sinks.hdfsSink.type = hdfs
hdfs1.sinks.hdfsSink.hdfs.path = hdfs://<Name Node IP>/user/flume/messages
hdfs1.sinks.hdfsSink.hdffs.filePrefix = flume-
hdfs1.sinks.hdfsSink.hostname = localhost
hdfs1.sinks.hdfsSink.port = 6000
hdfs1.sinks.hdfsSink.batch-size = 100
hdfs1.sinks.hdfsSink.channel = fileChannel 

Here’s what the Flume agent configuration parameters mean:

 n Channel: The channel type is a file and not memory. The file is configured 
to store 1 million events.

 n Sources: I’ve specified exec as the source type—in our first small example 
I used Netcat. When you specify exec as the source type, you must specify the 
actual command to be executed in the hdfs1.sources.execSource command attri-
bute. The exec source executes a command you specify and consumes the output. 
In this example, the executable command is tail –F /var/log/messages. The 
user running this must be able to read from the /var/log/messages file.

 n Sinks: Our sink type is HDFS, so the data is going to be stored in the /user/f lume/
messages directory in HDFS, as specified by the hdfs1.sinks.hdfsSink.hdfs.path 
attribute in the f lume.conf file.

Now that our Flume agent is configured, run the Flume agent as shown here:

$ flume-ng agent  \
    --conf  /etc/flume-ng/conf  \
    --conf-file  hdfs1.cfg  \
    --Dfile.root.logger=DEBUG, INFO, CONSOLE \
    --name hdfs1

Tip

Ensure that the Flume sinks can keep up with the sources, thus keeping the channels from 
becoming a chokepoint. If you suspect that the channel is the issue, specify a memory sink 
to verify that the channel isn’t the cause of the problem.

When you start the Flume agent (hdfs1), Flume validates its configuration file and 
shows you the sources, channels and sinks you’ve configured in the f lume.conf file. 

Our example here is quite elementary and uses a single agent with one source and 
one sink, but you could build complex processing topologies with Flume, as mentioned 
earlier.

A More Complex Flume Example 
In our two examples, I used only a single Flume agent. However, you can chain multiple 
Flume agents together, where the sink of one agent sends data to the source of another 
sink. You need to do this often when you want to first collect data such as log data and 



ptg18444370

396 Chapter 12 Moving Data Into and Out of Hadoop 

store it in a central location such as HDFS. You can then use HDFS as the source for 
sending out that data to other targets, which will serve as the sinks. 

The Avro file format is the standard method used to send data across the network with 
Flume. In the example I discuss in this section, a source tails a log file. New log lines are 
queued up in a channel, from where a sink extracts them and writes them to HDFS.

There are two Flume agents in this setup:

 n The first Flume agent, called simply “agent,” runs on the web server whose 
access logs we’re interested in. It retrieves the log lines from the /var/logs/
httpd/access_log file and sends them to the second Flume agent.

 n The second Flume agent, which is typically referred to as a “collector,” stores 
the log lines in HDFS.

Configuring the Web Server Flume Agent
Since I’m using two Flume agents, I need two configurations, one for each agent. I can 
put both configurations in a single file, or I can use a separate config file for each of the 
agents. In this case, I’m using separate configuration files, but it doesn’t really matter. 
For the first agent running on the web server, the /opt/f lume/conf/f lume-webagent.conf 
file has the following configuration:

webagent.sources = apache
webagent.sources.apache.type = exec
webagent.sources.apache.command = tail -F var/log/httpd/access_log
webagent.sources.apache.batchSize = 1
webagent.sources.apache.channels = memoryChannel
webagent.sources.apache.interceptors = itime ihost itype
# 
webagent.sources.apache.interceptors.itime.type = timestamp
# 
webagent.sources.apache.interceptors.ihost.type = host
webagent.sources.apache.interceptors.ihost.useIP = false
webagent.sources.apache.interceptors.ihost.hostHeader = host
# 
webagent.sources.apache.interceptors.itype.type = static
webagent.sources.apache.interceptors.itype.key = log_type
webagent.sources.apache.interceptors.itype.value = apache_access_combined

# 
webagent.channels = memoryChannel
webagent.channels.memoryChannel.type = memory
webagent.channels.memoryChannel.capacity = 100

## Send to Flume Collector on 1.2.3.4 (Hadoop Slave Node)
# agent.sinks = AvroSink
webagent.sinks.AvroSink.type = avro
webagent.sinks.AvroSink.channel = memoryChannel
webagent.sinks.AvroSink.hostname = 1.2.3.4
webagent.sinks.AvroSink.port = 4545

This configuration file is quite simple: 
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 n It specifies exec as the source type, with a single source, Apache, which refers to 
the Apache HTTP Server.

 n It has a single memory channel (no files) to hold the log entries.
 n It has a single Avro sink. 

Once the first Flume agent is running, it starts sending log entries to a different Flume 
agent running on the Hadoop cluster.  

Start up the first agent as shown here:

$ cd /opt/flume
$ bin/flume-ng agent  -f  conf/flume-webagent.conf   -n webagent

I specify webagent as the Flume agent’s name, since that’s the name we configured 
in the f lume-webagent.conf file. Once you have the first Flume agent running, configure 
the second Flume agent, which stores the access log data in HDFS. The following 
section explains how to do this.

Configuring the Collector Agent
Following is the configuration for the “collector” agent.

# collector.sources = AvroIn
collector.sources.AvroIn.type = avro
collector.sources.AvroIn.bind = 0.0.0.0
collector.sources.AvroIn.port = 4545
collector.sources.AvroIn.channels = memChannel1 memChannel2

## Source writes to 2 channels, one for each sink (Fan Out)
collector.channels = memChannel1 memChannel2

# collector.channels.memChannel1.type = memory
collector.channels.memChannel1.capacity = 100

collector.channels.memChannel2.type = memory
collector.channels.memChannel2.capacity = 100

## Sinks 
collector.sinks = LocalOut HadoopOut

## Optionallly write to the Local Filesystem (For Debugging purposes)
# 
collector.sinks.LocalOut.type = file_roll
collector.sinks.LocalOut.sink.directory = /var/log/flume
collector.sinks.LocalOut.sink.rollInterval = 0
collector.sinks.LocalOut.channel = memChannel1

## Write to HDFS 
collector.sinks.HadoopOut.type = hdfs
collector.sinks.HadoopOut.channel = memChannel2
collector.sinks.HadoopOut.hdfs.path = /flume/events/%{log_type}/%{host}/%y-%m-%d
collector.sinks.HadoopOut.hdfs.fileType = DataStream
collector.sinks.HadoopOut.hdfs.writeFormat = Text
collector.sinks.HadoopOut.hdfs.rollSize = 0
collector.sinks.HadoopOut.hdfs.rollCount = 10000
collector.sinks.HadoopOut.hdfs.rollInterval = 600
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Here’s what the f lume-connector.conf file shows:

 n The Flume agent runs on port 4545.
 n We have two sink collector channels, memChannel1 and memChannel2.
 n Flume will store a maximum of 100 entries in the two channels. 

In this example, the source accesses two Avro network events, sending the events 
along to two different memory channels, memChannel1 and memChannel2. Each of the 
two memory channels stores data in a different sink, with memChannel1 writing to a 
directory (optional, for debugging purposes) and memChannel2 writing to HDFS.

Start the second Flume agent as shown here:

$ bin/flume-ng agent  -c conf -f  /etc/flume-ng/conf/flume-connector.conf  -n 
collector

Now that both Flume agents are running, you can view the logs stored in HDFS by 
issuing the command hdfs dfs –ls /flume. If you’ve configured the f ile roll sink as 
well, you can find the logs in the /var/log/f lume directory in case you need to debug 
or test things.

Ingesting Data with Kafka
Apache Kafka is a publish-subscribe messaging system used instead of traditional message 
brokers such as JMS due to the higher throughput and reliability it offers. Kafka is highly 
fault tolerant and can handle huge amounts of messages for low-latency analysis in your 
Hadoop system, by allowing parallel data loads into Hadoop. In a Hadoop 2 environment, 
you can use Kafka along with Apache Storm and Apache Spark for real-time analysis of 
streaming data.

While Kafka is similar to Flume in some ways because it can process streaming data, 
in its architecture it really resembles well-known messaging systems such as ActiveMQ 
and Rabbit MQ.

Apache Kafka is especially designed for handling streaming data. While it’s often called 
a messaging system, and does provide many capabilities of a typical messaging system, 
it’s fundamentally different in the sense that it provides a different abstraction of a struc-
tured commit log of updates.

Benefits Offered by Kafka
Kafka offers the following features that make it highly desirable in situations where you 
need a high throughput with reliable message delivery. You can summarize Kafka’s 
benefits thus:

 n Performance: High throughput for publishing and subscribing messages even 
when handling very large amounts of stored messages.

 n Data consistency: You don’t need to implement functionality for checking data 
consistency since Kafka takes care of it for you.
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 n Scalability: Kafka is a distributed system, without any downtime
 n Reliability: Kafka provides fault-tolerant data replication and balances the message 

consumers when failure occurs, in addition to offering delivery guarantees.
 n Durability: Kafka stores messages on disk.
 n Real-time: Due to the speed with which Kafka handles messages, it supports 

real-time use cases.

Due to the benefits Kafka offers, it is widely used for work involving the tracking 
of website activity, the collection and monitoring of metrics and aggregating logs, and 
stream processing. Following are some key use cases for Kafka:

 n Analyzing meter and sensor data from grid points
 n Capturing solar and wind energy production data (transient sources)
 n Forecasting data for weather, energy production and energy markets
 n Working with activity data such as log data
 n Capturing event messages
 n Application performance tracing

How Kafka Works
The key to understanding how Kafka works is realizing that it is Kafka’s commit log 
abstraction that makes possible a reliable and highly efficient way of distributing 
changes to consumers. Figure 12.5 shows the Kafka commit log abstraction. Data 
producers send streaming records which are appended to the commit log and consumers 

Data Sources

Commit
Log

Hadoop Stream
Processing Caches Databases

Multiple data sources
write to the commit log.

Figure 12.5 Kafka’s commit log abstraction
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can stream the updates to the log with very low latency. Since consumers advance 
through the commit log independent of each other, a reliable and ordered stream of 
updates is sent to each consumer.

Database updates need to be delivered in the order they occur. Kafka’s commit log 
can be spread over a cluster, with each part of the log replicated for fault-tolerance. The 
cluster helps parallel and ordered transmitting of data to multiple customers. The Kafka 
cluster can grow in size or shrink, without applications being aware of the changes. 
Even when a Hadoop cluster working with data from Kafka goes down for a while, there’s 
nothing to worry about, as the Kafka cluster safely persists all changes. All these capa-
bilities set Kafka apart from typical enterprise messaging systems.

As with typical messaging systems, Kafka’s design involves four key components—
topics, producers, consumers and brokers. Here’s how the four key components interact:

 n A topic is a user-defined category to which messages are published. 
 n Producers publish messages to the topics.
 n Consumers subscribe to those topics to access the published messages. 
 n Brokers are servers that manage all the work related to the messaging, which 

involves the persistence and replication of messages in various topics. 

Consumers are responsible for keeping track of the messages they consume. Consumers 
keep track of the messages they consume by tracking what’s called an offset, which is a 
sequential number identifying a message. Consumers can easily get to any message stored 
on disk by supplying the message’s offset value. Unlike in traditional messaging systems 
such as JMS, the broker is relieved of the duty of tracking message consumption. This 
design feature is at the heart of Kafka’s ability to scale with the number of consumers.

Kafka—A Real-Time Messaging Solution

In addition to its high reliability and throughput, Kafka stands out for its ability to provide 
a real-time publish-subscribe solution for very large data volumes. You can use multiple 
producers, such as the web applications generating logs, producers generating web 
analytics logs and so on. Producers send data to various types of consumers, includ-
ing offline consumers who may store them in HDFS or in an RDBMS. Near real-time 
consumers may store data in a NoSQL database such as Cassandra and real-time con-
sumers filter messages in the in-memory database and trigger alert events.

Offline analysis provided by Hadoop and other systems isn’t adequate for handling large 
amounts of data generated by a users’ web activity such as logins and page visits, as 
well as social networking activities such as likes and comments. Kafka offers a way to 
combine both online and offline processing and not only load data parallely into HDFS, 
but also partition real-time consumption over a cluster of machines. LinkedIn uses Kafka 
for streaming activity data and operational metrics, as well as streaming data to Hadoop 
for offline analysis.
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Setting Up an Apache Kafka Cluster
Although this isn’t really a full-f ledged introduction to Kafka, let me brief ly describe 
how you go about setting up an Apache Kafka cluster. 

You can create the following types of Kafka clusters:

 n Single node–single broker
 n Single node–multiple broker
 n Multiple node–multiple broker

To keep things simple, let’s learn how to create a single node–single broker cluster. 
Before we do that, however, we need to first install Apache Kafka, so let’s start with that.

Installing Apache Kafka
In order to create our simple Kafka cluster, let’s start by installing Kafka. Here are the steps.

1. Download the current stable version of Kafka from http://apache.kafka.org
and extract it into a directory such as /opt, as shown here.

# tar xvzf kafka-0.8.0-incubating-src.tgz

2. Once you untar the zipped file, you must build the source binaries using the tool, since
Kafka is implemented in Scala. Change the current directory to go to the one
where you downloaded Kafka. Run the following command from there to build
Kafka.

# ./sbt update

3. The update downloads all dependencies necessary to build Kafka. Run the fol-
lowing command to compile the source code.

$ ./sbt package

4. Run the following command to produce the dependency artifacts.

$ ./sbt assembly-package-dependency

Apache Kafka is now installed on your server, and you can move on to the building 
of the Kafka cluster.

Creating the Single Node–Single Broker Cluster
Kafka comes with the files necessary for defining the minimal properties you need to 
get a single node–single broker cluster going. These files include basic configuration for 
ZooKeeper, Kafka brokers and so on. You’ll need to do the following to set up and test 
a working Kafka cluster.

 n Set up ZooKeeper.
 n Start a Kafka broker.
 n Create a Kafka topic.
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 n Start a producer to send messages.
 n Start a consumer to consume the messages.

Since this is going to be a single-node cluster, it’s good to open up four different 
terminals on your server, one each for running the ZooKeeper server, the broker, the 
producer and the consumer. This way, when you’re done setting up the Kafka cluster by 
creating all these entities, you can enter messages from the terminal where the producer 
is running, and see them show up on the terminal running the consumer!

Setting up the ZooKeeper Services
Creating a functioning Apache Kafka cluster requires you to set up the ZooKeeper server 
for storing the cluster coordination information such as status, configuration, location 
information and so on.  

You learned how to setup the ZooKeeper service and you also learned how to use it 
to support NameNode high availability in Chapter 11. You can use the same ZooKeeper 
servers for supporting an Apache Kafka cluster as well. However, Kafka also comes with a 
small default ZooKeeper configuration file that launches a single local ZooKeeper instance. 
This ZooKeeper instance coordinates the f low of activity between the Kafka brokers 
and the Kafka consumers. 

In this example, I use the default ZooKeeper configuration file provided by Kafka. 
This file contains the following configuration properties:

dataDir=/tmp/zookeeper
clientPort=2181

Start the ZooKeeper server as shown here.

[root@localhost]# bin/zookeeper-server-start.sh 
config/zookeeper.properties

Now that ZooKeeper is running, time to start up the Kafka broker.

Starting the Kafka Broker
You can start the Kafka broker with its default configuration file, which contains the 
following configuration items:

 n broker.id=0

 n log.dir=/tmp/kafka8-logs

 n zookeeper.connect=localhost:2181

There’s a single broker in this cluster and its ID is 0. It connects to the ZooKeeper 
service using the port 2181.

Start the Kafka broker with the following command:

# bin/kafka-server-start.sh config/server.properties

Now that both ZooKeeper and the Kafka broker are running, you can create Kafka 
topics.
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Creating a Kafka Topic
You create Kafka topics using a command line utility provided by Apache Kafka. The 
following example creates a simple topic with a single partition and replica.

# bin/kafka-create-topic.sh –zookeeper localhost:2181 –replica 1 –
partition 1 –topic testtopic

I named our topic testtopic in this example.
I’m almost done! Once the topic is successfully created, you start a producer to send 

messages to the Kafka cluster.

Starting the Producer
In a real Kafka cluster, you’ll usually have multiple brokers, producers and consumers. 
In our case, it’s enough to start a single producer, as shown here.

[root@localhost]# bin/kafka-console-producer.sh –broker-list 
localhost:9092 –topic testtopic

You need the following two parameters to start the command line producer client:

 n broker-list: The server and port information for the brokers (localhost and 9092 
in our example)

 n topic: The name of the topic (testtopic in our example)

What I created here is a command line producer client that accepts your input from 
the command line and publishes it to the cluster as messages. The consumer will then 
consume the messages. But first we need to create and start the consumer, which is our 
next and last step in the cluster configuration.

The producer client is now running, so you can start sending messages. Type something 
like the following message on the terminal where the producer is running:

Hola Kafka, Como Esta?

Starting a Consumer
In order to consume the messages sent by the producer, you need a consumer. Start the 
consumer as shown here.

# bin/kafka-console-consumer.sh –zookeeper localhost:2181 –topic testtopic –from-
beginning

The consumer runs with the default configuration properties from the consumer
.properties file, as shown here:

groupid=test-consumer-group
zookeeper.connect=localhost:2181

As soon as the consumer starts running, you’ll see the message you typed in the producer 
server appear on the screen. An Apache Kafka cluster sure is easy to set up, isn’t it?

This example showed how to set up and use a single node–single broker Kafka cluster. 
Setting up a single node–multiple broker cluster isn’t really much different. You just need 
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to create multiple brokers on the same node, using unique values for all the configuration 
properties (such as unique broker IDs, for example) listed in the server.properties file, 
which specifies the broker configuration. Since you have multiple brokers, you need to 
name the different server properties files server1.properties, server2.properties and 
so on, depending on how many brokers you want to start. When you start the brokers, 
you need to start each of them in the following way, with a unique port for each of the 
brokers.

# bin/kafka-server-start.sh config/server1.properties
# bin/kafka-server-start.sh config/server2.properties

Since you have multiple brokers (two in this example) you can create a new topic 
with multiple partitions and replicas as well, as shown here.

# bin/kafka-create-topic.sh –zookeeper localhost:2181 –replica 2 –
partition 2 –topic testtopic2

Assuming you’re running a single producer, it needs to connect to all the brokers you 
start. You do this by specifying the different brokers with the --broker-list parameter 
when you start the producer, as shown here.

# bin/kafka-console-producer.sh –broker-list localhost:9092, 
localhsot:9093 –topic testtopic

The single consumer you created earlier will be able to consume messages as before, 
after it subscribes to the topic created earlier. The procedure to start the consumer is no 
different from how you start it in a single-broker setup.

To set up a multiple node–multiple broker Kafka cluster, you need to install Kafka on 
each of the cluster nodes. All the brokers will also need to connect to the same ZooKeeper 
service. Kafka lets you create complex architectures, such as multiple producers con-
necting to different sets of brokers and so on. It also lets you configure all its components 
such as the brokers, consumers, producers and topics in a much more complex way by 
offering a richer set of configuration properties than what you saw here. This was, after 
all, just a mere introduction to setting up an Apache Kafka cluster!

Integrating Kafka with Hadoop and Storm
Kafka is ideally suited for integrating with Hadoop and Storm, as well as other tools 
such as Apache Flume, another important log-processing tool. There are several use 
cases that merit integrating Kafka with Hadoop and Storm. For example, you may be 
storing heaps of raw cluster clickstream data from web sites in a Hadoop cluster and 
processing the data with MapReduce and Hive jobs. However, there’s no real-time use 
of this humongous amount of clickstream data f lowing into your system. By integrating 
Storm and Hadoop with Kafka, you can perform both batch processing and real-time 
data processing. Kafka, for example, can provide critical real-time business intelligence 
to a real-time data processing framework such as Apache Storm, which can capitalize 
on this intelligence and take appropriate actions.
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Integrating Kafka with Hadoop and Storm (and Flume) requires significant aware-
ness of the enterprise architecture as well as expertise in working with the various data 
ingestion tools that are involved. You can architect the integrations in a highly complex 
fashion. For example you can have Flume stream data to Kafka and then let Kafka 
stream the data to Storm for processing. Storm can then be architected to stream the 
processed data into HDFS for analytical use and into Spark or a NoSQL database for 
real-time processing. Our goal here is to get a rudimentary idea of how and why one 
may want to integrate Kafka with Hadoop and other data processing frameworks. 

Integrating with Hadoop
You can use Kafka to build data pipelines that enable real-time processing and load the 
data into Hadoop for off line processing. A Hadoop producer publishes HDFS data to 
the Kafka cluster, and a Hadoop consumer pulls data into HDFS from a Kafka cluster.  
Kafka provides the source code for creating Hadoop producers and consumers, and you 
can also use third-party solutions for integrating Kafka and Hadoop. 

Let’s understand a bit about how the Kafka-provided Hadoop producers and con-
sumers work:

 n A Hadoop producer serves as a conduit for publishing data from the Hadoop cluster 
to the Kafka cluster. One way to send data from Hadoop to Kafka is to write Pig 
scripts for the Kafka producers in an Avro binary format, where rows indicate a 
single message, and push the data to the Kafka cluster. In this approach, you use an 
AvroKafkaStorage producer to write to various topics and brokers in the same Pig 
script. An alternative approach is to use the Kafka OutputFormat class to publish 
HDFS data to the Kafka cluster. Kafka’s OutputFormat class extends Hadoop’s 
OutputFormat class when writing messages to a Hadoop cluster. 

 n A Hadoop consumer moves data from Kafka to Hadoop. The consumer is a Hadoop 
job that pulls the data from the Kafka brokers and loads it parallely to HDFS. 

Integrating with Storm
Apache Storm uses entities called spouts and bolts to do its work. Spouts are sources of 
continuous streams of log data and bolts consume the data sent to them by the spouts, 
with a Storm topology defining how data f lows from the spouts to the bolts. As with 
the Kafka integration with a Hadoop cluster, you need two clusters to be running 
simultaneously: a Kafka cluster and a Storm cluster.

You can use the Kafka Spout code available from Apache Kafka to integrate Storm 
with a Kafka cluster. The Kafka Spout continuously reads data from a Kafka cluster. 
The Kafka Spout stores the message offset and other message consumption tracking 
information in Zookeeper’s root path.  By default, this message offset is stored in the Storm 
cluster’s ZooKeeper znodes. You can also store the data in other ZooKeeper clusters, by 
configuring the Kafka Spout.
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You need to provide the configuration information for the Kafka Spout to connect 
to the Kafka cluster. Here are the essential configuration parameters:

 n A list of the Kafka brokers
 n The number of partitions per host
 n The topic name to use to pull messages
 n The root path to ZooKeeper for the Kafka Spout to store its consumer offset
 n The ID for the consumer that will store the consumer offset in ZooKeeper

Once you have all the configuration parameters, you can initialize the KafkaSpout 
class instance as follows.

spoutConfig spoutconfig = new SpoutConfig(
    ImmutableList.of("localhost:9092", "localhost:9093"),
2,
:"testtopic",
"/kafka-storm",
"consumerID");
KafkaSpout kafkaSpout = new KafkaSpout (spoutConfig);

I provided a rudimentary introduction here to both Kafka and its integration with 
Storm and Hadoop, and there’s quite a bit more to it. LinkedIn engineers have created 
Camus, which also provides a data pipeline from Kafka to HDFS. There’s an Apache 
Camel-Kafka integration as well. You can also integrate Kafka with Apache Spark 
streaming.

Summary
Here’s what you learned in this chapter:

 n As a Hadoop administrator, you’ll be using Hadoop’s built-in HDFS file system 
commands often to move data into and out of your cluster.

 n DistCp is your friend when it comes to moving vast amounts of data fast between 
two clusters or within the same cluster.

 n Sqoop is a versatile tool for efficiently moving large data sets between your 
Hadoop cluster and just about any relational database.

 n Flume is a very popular log ingesting tool and is a mainstay of many companies 
when it comes to the processing of vast amounts of log data.

 n Kafka is a messaging system often used to ingest data into Hadoop environments 
due to its high throughput and reliability.
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Resource Allocation in 

a Hadoop Cluster

This chapter covers the following:

 n Understanding how Hadoop manages resources among its users 
 n Using the Fair Scheduler to allocate resources
 n Using the Capacity Scheduler to allocate resources
 n Comparing the Fair Scheduler and the Capacity Scheduler

This chapter and the next together deal with two very important areas of day-to-day 
Hadoop administration—resource allocation among competing users, and scheduling 
jobs in your Hadoop cluster. This chapter is dedicated to resource allocation among the 
multiple tenants of a Hadoop cluster.

Resource allocation is a crucial part of Hadoop administration. There are strict limits 
to the amount of memory and CPU cores that can be used by running jobs in your cluster. 
Since you have finite resource limits, you’re often required to prioritize jobs that various 
users submit to your cluster. In an organization, there are usually several departments or 
groups who want to use your cluster to perform various tasks. It’s your job to ensure that 
the competing groups get appropriate resources to complete their jobs within their service 
level agreements (SLAs). Hadoop’s built-in resource schedulers, such as the Fair Scheduler 
and the Capacity Scheduler, make life easy for you when it comes to allocating the finite 
resources at your command. They enable you to allocate those resources in an orderly, 
optimal, fair and balanced manner that fully uses all the available cluster resources while 
granting specific resource guarantees to user groups in the cluster.

Resource Allocation in Hadoop
Resource allocation refers to the allocation of scarce, finite computing resources, such 
as CPU time, memory, storage space and network bandwidth, among the users that utilize 
a Hadoop cluster.
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The two most important resources that you have control over are processing power 
(CPU) and memory (RAM). 

In a theoretical world, with an infinite set of resources, you can imagine all these groups 
of users, each with their own deadlines, priorities and SLAs, working happily together 
with no potential conf licts regarding individual (or group-level) resource usage. In real-
life, alas, every resource is finite—and it’s your job to apportion the limited resources 
available to you among the multiple competing user groups, so they can all “live” 
together happily, making sure that the critical jobs of each group are allocated sufficient 
resources to finish within their deadlines.

Managing Cluster Workloads
As just alluded to, as a Hadoop administrator, one of your key tasks is to balance work-
loads so you can meet both your SLAs and your users’ expectations. Hadoop makes 
it easy for you to manage cluster workloads by providing a couple of very powerful 
resource schedulers, the Fair Scheduler and the Capacity Scheduler, both of which I 
explain later in this chapter.

Hadoop resource schedulers are components that are responsible for assigning tasks 
to available YARN containers on various DataNodes. The scheduler is a plug-in within 
the ResourceManager.

You can look at Hadoop schedulers as tools that let multiple tenants of a cluster share 
a cluster and use the cluster resources in an efficacious and timely manner, while being 
mindful of the total allocated capacity of a cluster. Resources in this context usually refer 
to memory (RAM) and processing power (CPU cores), although future releases will also 
explicitly include disk storage as a resource. 

I’ll take a typical scenario in our own cluster at work, where we deal with various user 
groups with different SLAs that they need to meet. In addition to these user groups, we 
also have several data scientists that execute long-running jobs in the cluster that can 
take 24 hours or more to finish at times. The users who need to meet strict SLAs can’t 
afford jobs to run past the job windows, whereas the data scientists and analysts basically 
want us to allocate resources fairly so their jobs don’t take forever. 

Our biggest practical concern is that if we give a lot of resources to the data scientists, 
their jobs will take up so much of the resources (their data sets are usually very large) 
that the critical jobs that have strict SLAs will run past their assigned job windows. 
We use resource allocation strategies based on one of the Hadoop resource schedulers 
(specifically, the Fair Scheduler, the topic of the next section) and use weights and other 
priority allocation attributes to make sure that jobs with SLAs get done on time, and 
during the times when these jobs aren’t running, the data scientists’ resource allocation 
is ramped up, so their jobs can finish in a reasonable time.

Note

The Capacity Scheduler is the default scheduler for Apache Hadoop, although for some 
Hadoop distributions such as Cloudera’s, the Fair Scheduler is the default scheduler.

Resource scheduling lets you prioritize the various tasks running in your cluster. 
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Hadoop’s Resource Schedulers
Hadoop comes with three different types of resource schedulers that help you assign 
resources to applications and users. The three available resource schedulers are:

 n First-in, first-out (FIFO) scheduler: This is a simple early Hadoop scheduler, and 
it uses a single queue for all jobs. There’s no concept of priority in choosing a 
job for execution, with the oldest jobs getting chosen first from the head of the 
queue. 

 n Capacity Scheduler: This scheduler submits your jobs to queues, each of which is 
guaranteed a minimum amount of resources such as RAM and CPU. The queues 
with a greater gap between their used capacity and their granted resources are 
offered priority in the allocation of new resources as those resources are released 
by completing jobs. If it has excess capacity, the scheduler shares it among the cluster 
users, just as the Fair Scheduler does. It uses the concepts of reservation and preemption 
(which means that containers from other applications may need to be killed if 
necessary to make room for the new applications) to return the guaranteed 
capacity to the queues.

 n Fair Scheduler: This scheduler assigns jobs to queues (the term queues is used 
interchangeably with pools for this scheduler), with guaranteed minimum resources. 
The scheduler picks up the jobs with the greatest time deficit for allocating 
resources that are freed by other applications. This scheduler can also allocate excess 
capacity from a pool to other pools. The Fair Scheduler uses the concept of priority 
to support the importance of an application within a pool. It uses the concept of 
preemption to support fairness among different resource pools.

As you’ll learn in the following sections, except in the case of the FIFO scheduler, 
which isn’t appropriate for most production environments, all schedulers revolve around 
the crucial concept of a job queue. 

Queues are the very heart of a resource scheduler, and both the Capacity Scheduler 
and the Fair Scheduler use the concept of a queue. Why is the queue such an important 
concept in scheduling cluster jobs? The simple answer is that queues enable you to optimize 
a cluster’s resources. 

Let’s say your organization has a set of groups such as marketing, sales and human 
resources, all with different SLAs and, thus, differing expectations of how fast they 
expect their jobs to complete. Using a job queue lets you share your cluster among these 
groups in an organized manner. Queues enable you to guarantee minimum levels of 
capacity for them and also divert unused cluster resources for overloaded queues, thus 
optimizing the cluster’s resource utilization. 

The big difference between the two schedulers is that the Capacity Scheduler provides 
stringent guarantees for queues by actually reserving queue capacity. Small jobs you 
submit to a dedicated queue can start right away as their resources aren’t given to other 
queues but kept idle, so the queue can have them any time its runs an application. This 
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comes at a cost, though, since the reserved capacity isn’t allocated to other queues when 
the queue isn’t in use. 

The Fair Scheduler doesn’t reserve any resources for queues—it’s dynamic in nature, 
meaning that if you submit a job to a queue, the scheduler ensures that the job starts 
receiving resources in a fair fashion, conforming to the configurations you set in place.

By assigning jobs to predefined queues and not directly to the users, you ensure fairness 
and stability in your cluster, by preventing a single application (or a mere handful of 
them) from grabbing a disproportionate share of the cluster’s resources. Queues thus 
promote an orderly sharing of cluster resources and prevent resource usage beyond the 
guaranteed resource limits that you set for the queues.

Often, Hadoop administrators seek to find out which of the two schedulers we explained 
in this chapter is better. There’s no hard and fast answer to such a question. To be honest, 
there are more similarities than serious differences between the two schedulers, as the 
two implement the same things—priority and resource guarantees—in different ways. 
At work, we use the Fair Scheduler in our production clusters and are quite happy with 
how it helps us allocate resources to our users.

The following sections explain these three Hadoop schedulers:

 n The FIFO scheduler
 n The Capacity Scheduler
 n The Fair Scheduler

The FIFO scheduler is primitive and is really not used much in production settings. 
I therefore discuss the Capacity Scheduler and the Fair Scheduler in more detail.

The FIFO Scheduler
The first-in, first-out (FIFO) scheduler uses a simple first come, first served strategy 
to schedule the jobs. This scheduler just places all applications into a single queue and 
executes them in the order the applications are submitted to YARN. Requests that come 
in after a previous request are satisfied only after the first request is fully satisfied. Since 
this is the default scheduler, it works out of the box and you don’t need to make any specific 
configuration changes in the mapred-site.xml file.

In the FIFO scheduler, if two users submit separate jobs, and the first job needs all 
the cluster resources to complete its work, all tasks from the first job have to complete 
before the second job’s tasks are executed. The FIFO scheduler, although it’s the default 
scheduler, is really meant for use in a simple proof-of-concept or development Hadoop 
cluster, where you don’t want to bother with the configuration steps involved in using 
one of the other two schedulers—the Capacity Scheduler and the Fair Scheduler. 

Let’s take a scenario where a data scientist runs a job that requires 200,000 maps to 
complete. You can get at the approximate number of map tasks for a job by dividing 
the total size of the data by the HDFS block size. In this case, let’s say the data is about 
60TB and the HDFS block size is 256MB. Dividing 60TB by 256MB will give you 
approximately 250,000 map tasks to process the entire data. If your cluster has a 
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maximum capacity to run about 5,000 containers at any given time, this means that this 
data scientist’s job will monopolize the entire cluster for a very long time (if the average 
completion time for a map task is 5 minutes, you can expect to take at least 4 hours to 
complete), and no other jobs can start in the meanwhile. Of course, if some of the waiting 
jobs need to meet SLAs, all hell breaks loose! 

For all production servers, you should configure and use one of the other schedulers 
provided by Hadoop—the Capacity Scheduler and the Fair Scheduler. Both of these sched-
ulers are quite sophisticated and allow you to control various aspects of resource allocation 
in a shared Hadoop cluster (which most clusters are). Both of these schedulers overcome 
the drawbacks of the default FIFO scheduler and enable multiple groups to share a cluster 
while maintaining some type of guarantees regarding the resource allocation for various 
users and groups. These two schedulers are the topics for our next two sections.

The Capacity Scheduler
The Capacity Scheduler is a Hadoop-provided resource scheduler that helps you allocate 
resources while maximizing the cluster’s throughput and its utilization. Let’s take a sce-
nario where you have three different groups in your organization—sales, marketing and 
research. It’s often the case that the three groups use the Hadoop resources in different 
ways. For example, the sales team might need way more resources around the holidays. 
Similarly, the marketing group might need vastly more processing power during the time 
periods when a new sales campaign runs. 

A situation where you may want to consider the Capacity Scheduler is if you really 
know your cluster workloads and utilization patterns intimately and want to use this 
knowledge to allocate resources among your users. In some clusters this knowledge is 
easy to come by and in others not so much.

The essential concept behind the Capacity Scheduler is this: It uses dedicated queues 
to which you assign jobs. Each queue has a predetermined amount of resources allocated to 
it. However, you pay in terms of the cluster’s resource utilization, since you’re reserving 
and guaranteeing queue resource capacities.

The goal of the Capacity Scheduler is to enable multiple tenants (users) of an organiza-
tion to share the resources of a Hadoop cluster in a predictable fashion. Hadoop achieves 
this goal by using job queues. 

Clients schedule jobs by assigning them to a specific named queue, which is an ordered 
list of Hadoop jobs to be sequentially executed one after the other. 

The scheduler provides guaranteed capacity for the job queues, while providing elasticity 
for the utilization of the cluster by the queues. Elasticity in this context means that the 
assignment of the resources isn’t set in concrete. As the queues wend their way through 
the cluster, it’s common for some queues to be overloaded and for some others to be rel-
atively idle. The Capacity Scheduler realizes this and automatically transfers the unused 
capacity of the lightly used queues to the overloaded queues. What do you get as a 
result? Your cluster utilization will stay up all the time and at the same time providing a 
predictable completion time for critical Hadoop jobs.
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Let’s use a simple scenario to explain how the Capacity Scheduler functions. Let’s 
say you have set up five job queues, with each queue being assigned 20 percent of the 
total capacity of the cluster for processing jobs. If Queue 1 is overloaded, the Capacity 
Scheduler reclaims free resources from Queues 2, 3 and 4 and assigns them to Queue 1, 
which needs extra resources due to the overload to meet the capacity guarantee.

The Capacity Scheduler is designed to accommodate the needs of multiple tenants 
in an organization that shares a Hadoop cluster, ensuring that each tenant’s applications 
are allocated resources in a timely manner. The goal is to maximize the throughput 
and efficiently use the cluster’s allocated resource capacities. The Capacity Scheduler 
enables multiple units in an organization to use a single cluster by offering each unit a 
capacity guarantee. The individual units are allowed to use any excess capacity that 
isn’t being used by other units.

The Capacity Scheduler relies on job queues to facilitate the sharing of a cluster’s 
resources. It guarantees minimum capacity levels for all of a cluster’s job queues. If there’s 
any unused capacity left over from a job queue, the scheduler makes the excess capacity 
available to queues that are overloaded, thus optimizing the usage of a cluster’s resources. 
In addition to guaranteeing a minimum capacity for each queue, the scheduler also can 
specify a queue’s maximum capacity, which is the absolute ceiling on the resources 
that can be allocated to a queue above and beyond its guaranteed capacity level.

The Capacity Scheduler sets stringent resource limits to ensure that no single appli-
cation, user or queue (to be defined shortly) consumes a disproportionate amount of the 
cluster resources. It also sets limits on how many applications a single user or queue can 
run at a given time.

Queues and Subqueues
The Capacity Scheduler relies on the concept of a queue to control resource allocation in 
a cluster. A ( job) queue is an ordered list of jobs. A queue is allocated a certain portion 
of your cluster’s resources. When you create a queue, you allocate it a certain portion of your 
cluster’s resources. User applications will then be submitted to this queue to access the 
queue’s allotted resources. Here’s what you need to understand regarding queues:

 n You may configure soft limits as well as optional hard limits on a queue’s capacity. 
 n Applications submitted to a queue will run in a FIFO order.
 n Once the applications submitted to a queue start running, they can’t be preempted, 

but as the tasks complete, any free resources will be assigned to queues running 
below the capacity allowed to them. 

 n If a queue isn’t using all the resources allotted to it, it has excess resources that other 
queues in the cluster may use, thus optimizing the cluster’s resource utilization.

The Capacity Scheduler supports using hierarchical queues to ensure that that an 
organization’s (in a multitenant setup, there are multiple organizations that share the 
same cluster) resources are shared among its subqueues before other queues are allowed to 
use the free resources. 
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Creating the Queues
A job queue is where everything starts. You set up the queues in the capacity-scheduler
.xml file, which is located by default in the /etc/hadoop/conf directory. The queue 
named root is pre-defined for you, and all queues you create will be considered child 
queues under this parent root queue.

Any child queue that you create will be named relative to a queue path that shows 
the full path of a queue’s hierarchy, starting at the root queue. A top-level child queue 
is one that is directly underneath the root queue. Under each top-level child queue, you 
may create subqueues.

Use the YARN configuration property yarn.scheduler.capacity.<queue-path>
.queues to configure the queues. 

A Simple Example Showing How to Create a Queue
The following example shows you how to create a Capacity Scheduler configuration 
with three top-level child queues named queue1, queue2 and queue3. Two of the child 
queues, queue1 and queue2, also have subqueues defined under them.

<property>
  <name>yarn.scheduler.capacity.root.queues.root.queues</name>
  <value>queue1,queue2,queue3</value>
 </property>
<property>
  <name>yarn.scheduler.capacity.root.queues.queue1.queues</name>
   <value>queue1a,queue1b</value>
 </property>

<property>
  <name>yarn.scheduler.capacity.root.queues.queue2.queues</name>
  <value>queue2a,queue2b</value>
 </property>

Our configuration here creates the following queues:

 n Three child queues named queue1, queue2 and queue3 under the root queue
 n Two subqueues named queue1a and queue1b under the child queue named queue1
 n Two subqueues named queue2a and queue2b under the child queue named queue2

Note how root is always the top queue under which all queues are created. Also, a 
child queue may or may not have any subqueues underneath it.

Now that you’ve learned how to create a queue, a natural question is “How do 
I map users to a queue?” You use the yarn.scheduler.capacity.queue-mappings 
property in the capacity-scheduler.xml file to map a user, a set of users or a group to a 
queue. The following example shows how to configure this property:

<property>
   <name>yarn.scheduler.capacity.queue-mappings</name>
   <value>u:user1:queue1,g:group1:queue2,u:%user:%user,u:user2:%primary_group</
value>
</property>
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In this example, u denotes a user and g a group. The user named user1 is mapped to 
queue1 and group1 to queue2. The user named user2 is mapped to a queue with the 
same name as the primary group of the user in Linux. YARN evaluates the mappings in 
this property from left to right and uses the first valid mapping it finds.

Hierarchical Queues
In order to control resource allocation at a fine-grained level, you can also configure 
subqueues called hierarchical queues under each queue, thus allowing applications 
from a specific organizational unit to efficiently utilize all the resources allocated to 
that unit. 

A queue’s excess or free resources are allowed to be used by other queues only after 
its subqueues (called leaf queues) have satisfied their resource needs. 

In addition to the assigned and maximum capacities for a queue, an administrator can 
also limit the following:

 n The maximum amount of resources a specific user can use
 n The number of pending tasks per queue (or per user)
 n The number of active (or accepted) jobs per queue (or per user)
 n Capacity guarantees and elasticity

Capacity Guarantees
The primary goal of the Capacity Scheduler is to ensure predictability in resource 
sharing. It seeks to achieve this predictability by providing capacity guarantees for the 
job queues you configure. Applications sent to a queue will be able to access the 
queue’s capacity. 

Each queue is allocated a portion of the cluster capacity, so a specific capacity is at 
the queue’s disposal. You can configure both soft and hard (optional) limits on the capacity 
that you allocate for a queue.

Queue Elasticity
In order to fully utilize a cluster’s resources, the scheduler also provides elasticity to 
the queues—a queue can always utilize resources beyond its configured capacity if 
there are idle resources in the cluster. 

Elasticity in this context refers to the fact that the cluster can allocate resources 
that are more than (or less than) the original assignments, based on the availability (or 
non-availability) of resources in the cluster. This means that overloaded job queues can 
potentially use unused capacity of other queues in the cluster, thus leading to an optimal 
use of the cluster resources. 

Of course, as the other queues ramp up and ask for their guaranteed capacity, Hadoop 
will reclaim the excess resources allocated to the first queue. In order to prevent a 
queue from using way more resources than its allocated capacity, you can set an upper 
bound on the elasticity of a queue, as I explain later in this section.
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Elements of the Capacity Scheduler
Now that you’ve learned about the basic configuration elements of the Capacity Scheduler, 
let’s explore how you actually go about setting up a scheduler in your cluster. In order to 
get going, you need to do two things:

 n Set up the queues.
 n Configure the capacity of the queues.

The queue element in the configuration file for the Capacity Scheduler (capacity- 
schduler.xml) is the crucial unit of scheduling in the Capacity Scheduler—everything 
revolves around it. So, to configure the Capacity Scheduler, you must first configure 
the queues. You can have multiple queues in a scheduler, and each queue has the follow-
ing properties:

 n A queue name and the full queue path name
 n A list of the child queues and applications
 n A list of users and their resource allocation limits
 n The guaranteed and maximum capacities of the queue
 n The state of the queue (running or stopped)
 n Access controls to the queue in the form of Access Control Lists (ACLs)

You specify all of these properties in the configuration file for the scheduler named 
capacity-scheduler.xml, usually located in the /etc/hadoop/conf directory. The property 
yarn-admin.acl in the yarn-site.xml file governs who can update this file through the 
rmadmin –refreshQueues command.

Setting Up the Queues
Let’s use a scenario to explain how to set up job queues. Let’s say you have three major 
groups—Research, Support and Production—in your organization. Furthermore, the 
Research group also has two groups in it named Analytics and Data, and the Support 
group has two groups named Training and Services. You need to create Capacity 
Scheduler queues and subqueues for these groups and subgroups in order to allocate 
resources to them in your cluster.

The first step is to create queues for our three top-level groups, Research, Support 
and Production, as shown here:

<property>
  <name>yarn.scheduler.capacity.root.queues</name>
  <value>support,research,production</value>
  <description>The top-level queues below root.</description>
</property>
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Each of the three top-level queues is a child of the parent queue in the cluster, which 
is the root queue—that’s the reason you create the three queues as shown here with the 
yarn.scheduler.capacity.root.queues property. 

The Capacity Scheduler supports hierarchical queues. Hierarchical queues help in 
making sure that resources are used by and among a group’s subqueues before another 
group is permitted to use the first group’s unused resources. Once you create the top-
level queue, you must create the child-queues under each of them—in our case, for the 
Research and Support groups, both of which have subgroups. Here’s how you configure 
the child queues:

<property>
  <name>yarn.scheduler.capacity.support.queues</name>
  <value>training,services</value>
  <description>child queues under support</description>
</property>

<property>
  <name>yarn.scheduler.capacity.research.queues</name>
  <value>analytics,data</value>
  <description>child queues under Research</description>
</property>

It’s important to understand a bit more about how queues and child queues work with 
regards to the handling of applications submitted by the cluster’s users. Following are the 
key things you need to remember regarding the queues in our example here:

 n Queues can be either parent or leaf (child) queues.
 n The root queue represents the cluster itself and you can’t submit jobs directly to 

this queue. 
 n Two of the top-level queues—Research and Support—are also parent queues since 

they have leaf queues underneath them.
 n You can’t submit jobs directly to the parent queues.
 n There are two leaf queues under both the Research and Support queues—you 

submit jobs only to the child queues. 
 n In our case, one of the queues, Production, has no leaf queue. It’s considered a 

leaf queue of the root queue, so you can directly submit jobs to this queue.

You allocate resources to each top-level queue in terms of percentages of the total 
cluster capacity. Since top-level queues usually have leaf queues, you can also configure 
resource percentages for the leaf queues as well. The resources you guarantee to each 
top-level queue are shared among the leaf queues of that queue. At any given point in 
time, if a top-level queue is using resources below what you allocated to it, the cluster 
will allocate those “free” resources to other queues in the cluster.

Now that you’ve created the queues, it’s time to configure the resource limits for 
those queues.
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Configuring Queue Capacities
Let’s say that, based on the needs of our organizational groups, you decide to allocate 
resources in a 6:1:3 ratio to the three groups. Percentages are kind of abstract. So, let’s 
see what this means in real terms. If your cluster capacity is 1,000GB (represents the total 
memory available in the cluster), the Research group gets 600GB, the Support group 
gets 100GB and the Production group gets 300GB. 

This means that you must configure the yarn.scheduler.capacity.<queue-path>
.capacity parameter properties as follows:

yarn.scheduler.capacity.root.research.capacity = 60
yarn.scheduler.capacity.root.support.capacity = 10
yarn.scheduler.capacity.root.production.capacity = 30

The numbers 60, 10 and 30 represent percentages of the total capacity in your cluster. 
All capacities in any queue (or child queue) must always add up to 100. Note that when 
actually configuring these properties in the capacity.scheduler.xml file, you use the typical 
XML format to specify each of these properties, as in:

<property>
 <name> yarn.scheduler.capacity.root.research.capacity</name>
 <value>60</value>
</property>

You configure all the other scheduler properties I show in this section in the same 
format.

Recall that you can create subqueues or child queues within each queue. So, let’s go 
ahead and assume that the Research group has two teams, Analytics and Data, and you 
want to allocate resources to them in a 1:4 ratio, as shown here:

yarn.scheduler.capacity.root.research.analytics.capacity = 20
yarn.scheduler.capacity.root.research.data.capacity = 80

Since the Research group has been allocated 600GB (60 percent of 1,000GB),  the 
Analytics leaf queue will have 20 percent of the 600GB, which is 120GB, and the Data 
subgroups under Research will receive 80 percent of the 600GB, which is 480GB.

Similarly, the Support group has two subgroups, Training and Services. Assuming 
you want them to share the parent queue equally, you allocate resources to these 
two leaf queues in a 1:1 ratio. Here’s how you create two leaf queues for the Support 
group:

yarn.scheduler.capacity.root.support.training.capacity = 50
yarn.scheduler.capacity.root.support.services.capacity = 50

You learned earlier that the Support group is allocated 10 percent of the total cluster 
capacity, which amounts to 100GB (10 percent of 1,000GB).

The Production group has no subgroups, and therefore you don’t need to create any 
leaf queues for it. Figure 13.1 shows our simple Capacity Scheduler queues and subqueues, 
with their allocated resources.
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How the Cluster Allocates Resources
The first principle for resource allocation among the queues is that Hadoop never lets 
capacity sit idle—if a queue isn’t using its configured capacity, other queues are handed 
those resources, even if means that those queues will be using resources beyond their 
configured capacity. This is the principle of elasticity, which I described earlier, in action.

Hadoop determines how to apportion resources among the cluster’s queues based on 
how much of its configured capacity each queue is currently using. It allocates available 
resources among the queues by first allocating resources to the queues using the least 
amount of their configured capacity. 

The lower the current used capacity of a queue, the higher the priority it gets for 
receiving additional resources from the cluster. Once a parent queue receives additional 
resources, it uses exactly the same principle by allocating those resources first to those leaf 
queues that are currently using the least amount of their allocated capacity.

Let’s look at a scenario where there are no Research group jobs running, meaning that 
all of the allocated capacity of the Research group, 600GB, is free. Let’s also assume 
that the other two top-level groups, Support and Production, are fully using their con-
figured capacity. Two users, A and B, now submit an application each to the Analytics 
leaf queue, which is under the top-level queue, named Research. 

Even though the Analytics group was configured for only a total of 120GB, since no 
jobs are running in the other leaf queue of the Analytics top-level queue (Research), 
the scheduler allocates 120GB to each of the two users. 

Root

Support
10%

Production
30%

Research
60%

Analytics
20% of 60%

Data
80% of 60%

Training
50% of 10%

Services
50% of 10%

Figure 13.1 How the Capacity Scheduler queues and subqueues are set up
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This is how the principle of elasticity works—since there’s excess capacity in the parent 
queue, the users are allowed to go beyond their configured capacity. If the Support and 
Production groups are idle, then the two users from the Research group can go beyond 
the capacity limit of their immediate parent—the Research queue—and theoretically 
use all of the cluster’s resources.

Note

The most important operational element regarding the use of the Capacity Scheduler in my 
experience is the balancing of the concepts of capacity and elasticity. There’s a built-in tradeoff 
between these two: If you set rigid capacity limits (through configuring maximum capacity), the 
queues become less elastic, thus negating one of the key goals of the Capacity Scheduler.

If more users submit jobs to the Analytics queue, they can take up all of the resources 
allocated to the leaf queue named Data, since no one has submitted jobs to that queue. 

All of this is well and good when no one submits jobs to the Data leaf queue. What 
happens when someone does submit a job to this queue, since the queue’s resources have 
been commandeered by the jobs running in the Analytics leaf queue? Well, the job must 
wait until containers start getting released from the running jobs in the Analytics queue. 
Over time, the two leaf queues will stabilize at the 1:4 resource ratio you had configured. 
If you don’t want the user to wait to use the “guaranteed capacity” promised to the Data 
queue, you must enable preemption. I’ll discuss the concept of preemption in more detail 
later in this chapter.

Limiting User Capacities
Okay, so you know how to create queues and leaf queues and how to configure capacities 
for them. Now it’s time to talk about those all-important entities in a cluster—the users! 
It’s users who submit jobs to the queues that you configure. 

The Capacity Scheduler uses the FIFO principle (not the FIFO scheduler!), so jobs 
submitted earlier will be accorded a higher priority than jobs submitted later. 

You can control the resources allocated to a user running jobs within a leaf queue. 
You can limit how much of a leaf queue capacity a user can consume with the following 
parameter:

yarn-scheduler.capacity.root.support.user-limit-factor
value: 2

In the example, I show how to set the maximum capacity for a specific user within the 
Support leaf queue. If you set the value for this parameter so it’s greater than one, the user 
can consume resources beyond the leaf queue’s capacity limit. The default value for 
this parameter is one, meaning a user can consume (if it’s available) all of a leaf queue’s 
configured capacity. You can set this parameter higher or lower than one. If you set it to 
four, the user can use up to four times the queue’s configured capacity, and if you set it 
to 0.25, the user is limited to just a quarter of the configured capacity for the queue. 
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The hard limit on a user’s capacity is set with the maximum-capacity (yarn-scheduler 
.capacity.<queue-path>.maximum-capacity) parameter. You set this parameter if you 
want to ensure that a user doesn’t try and grab all of the parent queue’s capacity. In our 
case, the Analytics leaf queue has 120GB out of its parent Research queue’s configured 
capacity of 600GB. You can specify that any user submitting jobs to the Analytics leaf 
queue can’t take up more than 50 percent of the Research queues capacity, as follows:

yarn-scheduler.capacity.root.research.analytics.maximum-capacity
value:50

Let’s say you’ve configured a leaf queue that can take up 500GB of RAM altogether. 
What happens if 20 users submit jobs to this queue? Surely, you don’t want to let all 20 
users take up just 25GB of RAM for their containers—that would be too slow. You can 
configure the minimum percentage of resources allocated to a leaf queue user with the 
following property:

yarn-scheduler.capacity.root.support.services.minimum-user-limit-percent

If I set the value of this parameter (again, this applies to the Services leaf queue under the 
Support top-level group) to 20, it means that a user running applications through this queue 
is allocated a minimum of 20 percent of the capacity you’ve allocated to the Services leaf 
queue. The very first user that submits jobs to this leaf queue can use 100 percent of the leaf 
queue’s resource allocation. Finally, as other users start submitting jobs to this queue, each 
user stabilizes at 20 percent usage of the queue—that is, five users can use the queue at any 
time. Other users must wait until resources are freed up by the first five users.

Limiting the Number of Applications
It’s possible for a single user or queue to monopolize a cluster’s resources and degrade its 
performance. To avoid potential excessive use of the cluster, you can limit the maximum 
number of applications that can be scheduled in the cluster at any given time. Use the 
yarn.scheduler.capacity.maximum-applications parameter to impose a ceiling on 
the number of applications that can be submitted through the Capacity Scheduler. The 
default value for this parameter is 10,000.

Once you set the maximum number of applications you can run in your cluster through 
the yarn.scheduler.capacity.maximum-applications parameter, you can set a limit 
on the apps you can run in the queues as well. Here’s an example showing how to set 
the hard limit on the number of applications you can submit to the Research Queue:

<property>
  <name>yarn.scheduler.capacity.research.maximum-applications</name>
  <value>absolute-capacity * yarn.scheduler.capacity.maximum-applications</value>
</property>

Although you can specify a precise hard limit on the maximum number of applications 
that can be run at any given time with the yarn.scheduler.capacity.<queue-path>
.maximum-applications parameter, you can also indirectly control the number of appli-
cations running in your cluster. You do this by setting the yarn.scheduler.capacity
.maximum-am-resource-percent parameter. 
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As you learned in Chapter 3, “Creating and Configuring a Simple Hadoop 2 Cluster,” 
each application in YARN needs an ApplicationMaster container. The parameter 
yarn.scheduler.capacity.maximum-am-resource-percent sets the limit on the amount 
of the cluster resources that can be used by all running ApplicationMasters. The default 
value for this parameter is 10 percent, meaning all the ApplicationMasters together can’t 
take more than 10 percent of the cluster’s resources (RAM memory allocation for the 
AppMaster container, which is the very first container created for an application).

Preempting Applications
Preempting an application means containers from other applications may need to be 
killed if necessary, to make room for the new applications. 

If you don’t want late-arriving applications to a specific leaf queue to wait because 
the running applications in other leaf queues are taking up all the allotted resources, 
you can use preemption. Under these situations, although you’ve “guaranteed” a set 
capacity for a queue, there are no free resources available to be allocated to this leaf queue. 
The ApplicationMaster container is killed only as a last resort, with preference being 
given to killing containers that haven’t been executed yet.

YARN can preempt jobs in two ways:

 n Minimum share preemption: When a pool is operating below its configured 
minimum share

 n Fair share preemption: When a pool is operating below its fair share

Of these two, minimum share preemption is stricter and kicks in immediately when 
a pool starts operating below its minimum allocated share for a specific period, which is 
set by the minimum share preemption timeout parameter. Fair share preemption is far 
less aggressive—it kicks in only after a pool goes to below half of its fair share for a spe-
cific period (set by the fair share preemption timeout), before job preemption begins. 
Once preemption starts, a pool that’s currently below its minimum allocated share can 
go up to its minimum share, whereas a pool that’s now below 50 percent of its fair share 
will go all the way up until it hits its full fair share. 

You can set several preemption-related configuration parameters in the yarn-site.xml 
file. By default, preemption is enabled, and you can disable it by setting the yarn
.resourcemanager.scheduler.monitor.enable parameter to false. You can also 
set the speed of preemption—that is, the maximum percentage of resources preempted 
in a single round of periodic monitoring, by configuring the yarn.resourcemanager
.scheduler.monitor.capacity.preemption.total_preemption_per_round parameter.

Now that you know how the Capacity Scheduler works, it’s time to learn how to 
enable it and create queues for the scheduler. The following sections explain: 

 n Enabling the Capacity Scheduler
 n Creating the job queues
 n Configuring the job queues
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 n Modifying the queues
 n Administering the queues

Enabling the Capacity Scheduler
You must configure the ResourceManager in order to enable and start using the Capacity 
Scheduler in your cluster. Add the following value for the yarn.resourcemanager
.scheduler.class configuration property in the yarn-site.xml file, as shown here, to 
use the Capacity Scheduler:

<property>
<name> yarn.resourcemanager.scheduler.classs</name>    <value>org.apache.hadoop
.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
<property>

A Typical Capacity Scheduler
Now that you’ve learned how to set up queues and configure them, let’s see what an 
actual capacity-scheduler.xml file looks like. 

In the previous section, I created three resource queues for the Capacity Scheduler. 
However, these are very simple queues and use default values for their resource allocation, 
application limits and permissions. In order to use the Capacity Scheduler effectively in 
a production setting, you must configure a minimal set of configuration properties, as 
explained here. 

I use the same groups and queues that I had used in our examples earlier in this 
chapter in the following sample capacity-scheduler.xml file.

I break up the typically long capacity-scheduler.xml file into more easily digestible 
chunks to explain how everything works.

1. The three configuration properties listed here specify the following, respectively:
 n Maximum ApplicationMaster (AM) resource percentage
 n The maximum number of applications
 n Who can administer the queue (the value * indicates that anyone belonging to 

the specified group can administer this queue) 

yarn.scheduler.capacity.maximum-am-resource-percent=0.2
yarn.scheduler.capacity.maximum-applications=5000
yarn.scheduler.capacity.root.acl_administer_queue=*

2. The following property configures our three parent queues of Research, Support
and Production under the root queue.

yarn.scheduler.capacity.root.queues=research,support,production

3. You allocate the Research group 60 percent of the total resources and also specify
how the Research group splits its allocated resources between its component child
queues, which are the Analytics and Data leaf queues.

yarn.scheduler.capacity.root.research.capacity=60
yarn.scheduler.capacity.root.research.maximum-capacity=100
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yarn.scheduler.capacity.root.research.queues=Analytics,Data
yarn.scheduler.capacity.root.research.state=RUNNING
yarn.scheduler.capacity.root.research.user-limit-factor=1
yarn.scheduler.capacity.root.research.minimum-user-limit-percent=20
yarn.scheduler.capacity.root.research.Analytics.capacity=20
yarn.scheduler.capacity.root.research.analytics.maximum-capacity=100
yarn.scheduler.capacity.root.research.analytics.state=RUNNING
yarn.scheduler.capacity.root.research.analytics.user-limit-factor=1
yarn.scheduler.capacity.root.research.data.capacity=80
yarn.scheduler.capacity.root.research.data.maximum-capacity=100
yarn.scheduler.capacity.root.research.data.state=RUNNING
yarn.scheduler.capacity.root.research.data.user-limit-factor=1

There are several interesting things you should note regarding the configuration 
of the queues:

 n Note how the root and the leaf queues all specify the capacity of that queue with 
the yarn.scheduler.capacity.<queue-path>.capacity property. This prop-
erty sets the queue capacity in percentage terms, as in 20 (20 percent). The 
capacities of all queues at each level must sum to 100. Applications in a queue may 
consume more resources than what you configure here, providing there are 
free resources.

 n Similarly, note how you set the maximum capacity for all queues with the 
yarn.scheduler.capacity.<queue-path>.maximum.capacity property. This 
property specifies the maximum capacity of the queue in percentage terms. By 
default, the value for this parameter is -1, meaning it’s disabled (no maximum 
value). If there are free resources in the cluster, additional resources can be 
allocated to a queue until it reaches its maximum capacity.

 n You use the yarn.scheduler.capacity.<queue-path>.minimum-user-limit-
percent property to set the limit on the percentage of resources allocated to a 
user at any given time. The minimum value for the user limit is what you set with 
this property. The maximum value depends on the number of users running 
applications in the cluster. The default value is 100, meaning there are no user 
limits. For example, if you set a value of 25 for this parameter, when two users 
submit their applications to this queue, each of the users is limited to 50 percent 
of the queue’s allotted resources. When a third user submits an application to 
the queue, all three users are limited to 33 percent of the queue’s resources.

4. The following set of properties show how to allocate the Support group 10 percent
of the total resources and also specify how this group splits its allocated resources
between its component child queues, which are the Training and Services leaf queues.

yarn.scheduler.capacity.root.support.capacity=10
yarn.scheduler.capacity.root.support.maximum-capacity=100
yarn.scheduler.capacity.root.support.queues=training, services
yarn.scheduler.capacity.root.support.state=RUNNING
yarn.scheduler.capacity.root.support.user-limit-factor=1
yarn.scheduler.capacity.root.support.training.capacity=20
yarn.scheduler.capacity.root.support.training.maximum-capacity=100
yarn.scheduler.capacity.root.support.training.state=RUNNING
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yarn.scheduler.capacity.root.support.training.user-limit-factor=1
yarn.scheduler.capacity.root.support.services.capacity=80
yarn.scheduler.capacity.root.support.services.maximum-capacity=100
yarn.scheduler.capacity.root.support.Data.state=RUNNING
yarn.scheduler.capacity.root.support.Data.user-limit-factor=1

5. The following set of properties shows how to allocate the Production group the
remaining 30 percent of the cluster resources. Since the Production group has no
leaf queues, it doesn’t have to split its allotted resources among subgroups.

yarn.scheduler.capacity.root.production.capacity=30
yarn.scheduler.capacity.root.production.maximum-capacity=30
yarn.scheduler.capacity.root.production.state=RUNNING
yarn.scheduler.capacity.root.production.user-limit-factor=1

Note that the Production group can’t go beyond 30 percent of the cluster resources 
ever, since it runs long-running data-science-related Production jobs. 

Although I didn’t show them in our example capacity-scheduler.xml file, you can set 
a limit on the number of applications with the yarn.scheduler.capacity.maximum-
applications property. This property specifies a hard limit on the number of applications 
that can be active (in the running or pending state) in a cluster. Note that this parameter 
sets the limit on the total number of applications you can submit to the cluster. You can 
override this at the queue level by setting the yarn.scheduler.capacity.<queue-path>
.maximum-applications parameter.

There’s always a default queue when you use the Capacity Scheduler. Any application 
that doesn’t specify a queue goes into the default queue. You can use the default queue 
for running ad-hoc jobs that anybody in your cluster can run, and these jobs can be preempted 
to make room for the more important queues that you’ve configured, which may be 
subject to strict SLAs. This is a good way to handle excess capacity in your cluster.

Modifying the Queue Configuration
Whenever you modify the capacity-scheduler.xml file, you must let the ResourceManager 
know about the changes you made, by running the yarn command rmadmin –refreshQueues, 
as shown here:

$ $HADOOP_YARN_HOME/bin/yarn rmadmin –refreshQueues

Administering the Queues
You can stop and start queues at any time at the root, parent and leaf queue levels. 
If you stop the root or the parent queue, the leaf queues becomes inactive, though tech-
nically they’re in the running state. 

There are two formal queue states: RUNNING and STOPPPED. By setting the yarn
.scheduler.capacity.root.support.queue property in the capacity-scheduler.xml 
file to the value STOPPED or RUNNING, for example, you can stop and start the Support 
leaf queue that we discussed in our examples. 

If you stop a queue while it’s running, the currently running applications are allowed 
to complete and no new apps can be submitted to this queue. You can restart the queue 
by setting the yarn.scheduler.capacity.root.support.queue property to RUNNING.
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As with any configuration change you make to the capacity-scheduler.xml file, you 
must enable the change by running the following command:

$ yarn rmadmin –refreshQueues

You can configure Capacity Scheduler queue administrators to perform queue man-
agement actions such as submitting apps to a queue, killing applications, stopping queues 
and viewing queue information. You can configure the administrators by setting the 
yarn.scheduler.capacity.root<queue-path>.acl_administer_queue configuration 
parameter. 

For example, you can control queue administrators for the Support group as follows:

<property> 
  <name> yarn.scheduler.capacity.root.support.acl_administer_queue</name>
  <value>support-group</value>
</property>

This means that members of the support-group can administer the Support queue. 
You can also control who can submit jobs to a queue with similar ACLs. For example, 

the following property limits access to the Support queue to the users sam and nina and 
any members of the support-group only:

<property> 
  <name> yarn.scheduler.capacity.root.support.acl_submit_applications</name>
  <value>sam,nina,support-group</value>
</property>

The yarn.scheduler.capacity.<queue-path>.acl-submit-applications property 
shown in this example specifies the ACL that controls which user can submit an applica-
tion to a queue. If you don’t specify a value, the ACL is derived from the parent queue 
in the hierarchy. The default value is * for the root queue, which means any user.

Regular users are prevented from viewing or modifying the applications submitted by 
other users. As an administrator, you can do the following with regards to queues and jobs:

 n Change the definition and properties of queues at run time
 n Stop a queue to prevent new applications from being submitted
 n Start a stopped queue backup

Tip

Even when you stop a queue, already running applications in that queue will keep running 
until they finish.

You can monitor the status and settings of the Capacity Scheduler queues through 
the Scheduler page in the ResourceManager web UI’s Applications page. The Scheduler 
button is on the left, at the very end of the menu.

Now that you’ve learned how to use the Capacity Scheduler, it’s time to learn about 
the other major Hadoop resource scheduler—the Fair Scheduler. 



ptg18444370

426 Chapter 13 Resource Allocation in a Hadoop Cluster 

The Fair Scheduler
You can use the Fair Scheduler instead of the Capacity Scheduler, described in the previ-
ous section, to control how Hadoop allocates your cluster’s resources. The Fair Scheduler 
is a built-in Hadoop resource scheduler whose goal is to let smaller jobs finish fast 
(short response times) and provide a guaranteed service level for production jobs. 

Let’s take an example from a typical medium-to-large-size Hadoop cluster, say with 
500-600 nodes and 4,000-5,000 jobs running daily and about 50-100 users. You typ-
ically run various types of data-science-related applications such as statistical reports,
optimization, spam detection and so on.

The jobs aren’t usually of the same type—some are production jobs that involve 
data imports and hourly reports. Some other jobs are run by the data analysts who are 
running ad-hoc Hive queries and Pig jobs. Usually there are some long-running data 
analyses or machine learning jobs running at the same time. The question before you 
as a Hadoop administrator is how to allocate the resources of the cluster in an efficient 
manner among these competing jobs.

The essential idea behind the Fair Scheduler is this: You don’t need to reserve a pre-
defined amount of capacity to groups or queues. The scheduler dynamically distributes 
the available resources among all the running jobs in a cluster. When a large job starts 
first, and it happens to be the only job running, it starts using all the cluster’s resources 
by default (unless you specify maximum resource limits). Subsequently, when a second 
job starts up, it is allocated roughly half of the total cluster resources (by default)—now 
both jobs share the cluster resources on an equal basis. This is the concept of “fairness” 
that led to naming this scheduler the Fair Scheduler.

The Fair Scheduler ensures that resource allocation for applications is “fair,” meaning 
that all applications get roughly equal amounts of resources over time. When we talk about 
resources in the context of the Fair Scheduler, I’m referring to memory only. However, you 
can also employ a variation of the Fair Scheduler called the Dominant Resource Fairness 
(DRF) scheduler, which uses both memory and CPU as resources. Dominant Resource 
Fairness is a concept wherein the YARN schedulers examine each user’s dominant (defined 
as the higher proportion of resource usage in the cluster when compared to the resource 
usage of all other users) resource and use it as a measure of the resource usage by that user.

Note

By default, DRF isn’t used by YARN, and only memory resources are considered, with 
CPU being totally ignored. You can enable DRF for the Fair Scheduler by setting the ele-
ment defaultQueueSchedulingPolicy to drf in the fair-scheduler.xml file. To do the 
same with the Capacity Scheduler, you set the value of the element yarn.scheduler
.capacity.resource-calculator to org.apache.hadoop.yarn.util.resource
.DominantResourceCalculator in the capacity-scheduler.xml file.

The goal of the Fair Scheduler is to allow short interactive jobs to coexist with long-
running jobs. It also attempts to allocate resources proportionally to users and ensure 
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that the cluster is effectively used. Fairness in this context means that resources are allocated 
to queues that are most underserved—the scheduler always tries to allocate containers 
to queues with the fewest resources allocated. You can assign weights to the queues to 
determine which application gets what proportion of the cluster resources.

The Fair Scheduler allocates all the cluster resources to an application when that application 
is the only one running. As new applications are started up, resources are taken from the 
first application and allocated to the newer apps, so that eventually all applications are 
using about the same proportion of a cluster’s resources. However, “fair” in this context 
doesn’t mean that all queues are accorded equal importance—usually you configure 
weights for various queues, to denote priorities.

By default, the Fair Scheduler allows all applications to run. You can, however, limit 
the number of running applications on a per-user or per-queue basis. You do this to 
limit the stress on the system when a user submits a large number of applications at once. 

When you restrict the number of applications a user can submit, the additional 
applications that users submitted will wait in the queue until some of the earlier apps 
submitted by the same user finish.

The Fair Scheduler can use different scheduling policies. The default scheduling policy 
is fair sharing, using just memory as a resource. There’s also a FIFO policy that isn’t 
used much. It’s quite common to use the third type of scheduling policy, DRF, which 
allocates both memory and CPU resources to applications.

Under fair sharing, you can also prioritize applications by assigning weights that deter-
mine the fraction of the cluster resources that applications are assigned. A queue with a 
higher weight will receive greater attention compared to a queue with a lesser weight.

By default, all queues have a weight of 1. You can assign different weights to allow 
a queue to get more resources than others. For example, by setting a queue’s weight to 
four, you specify that the queue receives roughly four times the resources of all queues 
that have a weight of one, the default value for all queues.

Queues
Queues enable the scheduler to allocate resources. All cluster users are assigned to a queue 
named “default.” You can arrange queues in hierarchies and also configure them with 
weights in order to fine-tune resource allocation in a cluster. 

In order to ensure that specific users or applications always get the resources they need, 
the Fair Scheduler lets you assign guaranteed minimum shares to queues. 

An application or user is always guaranteed a minimum share, but the scheduler ensures 
that queues don’t sit idle with unused resources. When any of the queues that are assigned 
guaranteed resources turn out to have surplus resources because the queues aren’t running 
applications, the cluster assigns the surplus resources to other applications.

Applications are submitted to a specific queue, with each user getting their own 
queue by default. You can also create custom queues to guarantee minimum resources 
and set weights for each queue to set the priority.
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 The Fair Scheduler relies on resource queues or pools that are built in a hierarchical 
fashion. All queues descend from the same ancestor named the root queue. The descen-
dent queues are called leaf queues, on which the actual applications are scheduled. Leaf 
queues can have more levels of child queues of their own. 

You define queues in the fair.scheduler.xml file (also called the allocation file) and name 
them with the parent queue at the beginning of the queue name, as in root.queue1, 
root.parent1.queue2, for example. It’s understood that you can leave off the root part 
of a queue name when referring to it. Hadoop distributes the cluster resources among the 
root queue’s children in a fair manner.

  Configuring the Fair Scheduler
You enable the Fair Scheduler in your cluster by specifying the configuration parameter 
yarn.resourcemanager.scheduler.class in the yarn-site.xml file as follows:

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair
.FairScheduler</value>
</property>

Also in the yarn-site.xml file, specify the location of the allocation file (fair-scheduler.xml) 
for the Fair Scheduler, as shown here:

<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/etc/hadoop/conf/fair-scheduler.xml</value>
</property>

You configure the Fair Scheduler itself by setting scheduler-related configuration 
properties in the yarn-site.xml file. In addition, you create an allocation file for the 
scheduler, usually named fair-scheduler.xml, for specifying how the scheduler allocates 
resources by configuring properties pertaining to users and their queues, weights and 
capacities. 

Hadoop automatically reloads the fair-scheduler.xml file every ten seconds, so any 
changes you make to the Fair Scheduler configuration are made effective almost imme-
diately. There’s no need to run the yarn rmadmin command as is the case when you 
modify the configuration for the Capacity Scheduler.

Configuring the Scheduler in the yarn-site.xml file
As mentioned earlier, you use the yarn-site.xml file to configure the Fair Scheduler. 
Here’s how to configure YARN to use the Fair Scheduler as its resource scheduler:

<property>
   <name>yarn.resourcemanager.scheduler.class</name>
   <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair
.FairScheduler</value>
</property>
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By default, the property yarn.scheduler.fair.user-as-default-queue is set to 
the value true, which means that if a specific queue name isn’t specified during job 
submission, the name of the user submitting the job is treated as the queue name. If you 
set this parameter to false, all jobs submitted to your cluster will share the default queue, 
which, not surprisingly, is named “default.” 

Also by default, the yarn.scheduler.fair.preemption property is set to the value 
false, meaning that by default, there’s no preemption of applications.

An important property that you need to remember in this context is yarn.scheduler
.fair.allow-undeclared-pools. If you set this property to true, new queues can be 
created at the time applications are submitted. This could be due to the submitter 
requesting a new queue, or because of the user-as-default-queue property. If you set 
the property to false (default value), applications can’t create new queues on the f ly at 
the time they’re submitted.

Now that you’ve configured the yarn-site.xml file for the Fair Scheduler, let’s learn 
how to configure the Fair Scheduler queues by specifying various configuration prop-
erties in the fair-scheduler.xml file.

Configuring the Queues in the fair.scheduler.xml File
The fair-scheduler.xml file consists of various types of elements, such as the queue, user 
and queuePlacementPolicy elements. You can specify values for various queue, user 
and scheduling policy related elements in the fairscheduler.xml file. 

Note

The user element determines how the individual users can behave, and there’s only a 
single property named maxRunningApps that you can configure under this element.

The userMaxAppsDefault element specifies the default maximum number of running 
applications for a user if you don’t explicitly specify a limit yourself. You can control 
the maximum number of applications that a queue can run by setting the limit with the 
queueMaxAppsDefault element.

By default, the Fair Scheduler uses the “fair” scheduling policy to allocate resources 
in a fair manner across queues and applications. You can configure one of the two 
alternative scheduling policies, fifo or drf, at the cluster level by setting the 
defaultQueueSchedulingPolicy element. You can override this cluster-level setting 
by setting the schedulerPolicy element as shown here:

<property>
  <name>schedulerPolicy</name>
  <value>drf</value>
</property>

The schedulingPolicy element determines the scheduling policy of the queue. As 
discussed earlier, you can choose among the fifo, fair and drf (dominant resource 
fairness) scheduling policies. 

In the preceding, I replaced the default fair scheduling policy with the drf sched-
uling policy.
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Tip

It’s quite important to remember that the minimum and maximum amounts of memory 
and virtual cores you can configure for a pool override any weight settings you specify. It 
doesn’t really matter if a queue has a higher weight than other queues if you’ve limited its 
maximum resources. In order for an application to get disproportionally more resources 
than another queue, it must have both a higher weight and a higher minResources or 
maxResources setting.

How Jobs Are Placed into Queues
Under the Fair Scheduler, applications can run on the basis of any of the following:

 n The user submitting the application
 n The group of the submitting user
 n A specific pool
 n The default pool

Note

Remember that a pool and a queue are synonyms when we are dealing with the Fair Scheduler.

Rules help you place applications in pools based on the runtime configuration of the 
application or the name of the user running the application. For example, to submit a YARN 
application to a specific pool, a user can specify the mapreduce.job.queuename property. 

As an administrator, you can configure policies to automatically place applications in 
specific queues. The defaultQueueSchedulingPolicy element lists rules that dictate how 
applications are placed into queues. All rules accept a “create” argument that defaults to 
true, meaning the rule can create a new queue. Here are the valid rules you may specify:

 n specified: The application is placed in the queue it requests.
 n user: The application is placed in the queue that has the same name as the user 

who submits the application. This queue is under the root queue.
 n nestedUserQueue: The application is placed in a queue with the name of the 

user under a queue suggested by the nested rule. While under the user rule a 
user queue can be created only under the root queue, the nestedUserQueue rule 
allows the creation of the user queue under any parent queue.

 n primaryGroup: The application is placed in the queue named after the primary 
group (Linux or UNIX) of the user submitting the application.

 n secondaryGroupExistingQueue: The application is placed in a queue named 
after the secondary group of the user submitting the application.

 n default: The application is placed in the queue specified by the default rule’s 
"queue" attribute. If a "queue" attribute wasn’t specified, the application is placed 
in the root.default queue.

 n reject: The application is rejected when none of the rules apply.
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The scheduler evaluates the rules you specify in the fair-scheduler.xml file in the 
order in which you specify them to determine which pool an application should run in. 
If a rule is satisfied, it doesn’t evaluate any subsequent rules.

Note that there’s always a root.default queue. By placing applications in the default 
queue, you can ensure that they’re sharing resources on a fair basis. This means that 
resources are shared fairly among the applications and not the users. You can configure 
the applications to run the root.default queue in two different ways. You can set the 
following property in the fair-scheduler.xml file:

<queuePlacementPolicy>
   <rule name="default"/>
</queuePlacementPolicy>

Alternatively, you can just set the yarn.scheduler.fair.user-as-default-queue 
property to the value false in the yarn-site.xml file, to make the applications run in the 
default.root queue rather than in a queue named after the user, such as root.sam.queue.

Configuring the Scheduling Policy

You can configure policies that place an application you submit into an appropriate 
queue, based on your username and group, as well as the queue requested by the 
application. Scheduling policies use rules to sequentially evaluate and place a new 
application into a queue.

In the fair.scheduler.xml file, you can set the following values for the scheduling policies 
for a queue:

 n fifo: First-in, first-out is a policy that gives preference to applications that start 
before others. Applications starting later are granted resources only if the applica-
tions that started before them have surplus resources.

 n fair: The fair Share policy is the default.

 n drf: Dominant resource fairness is another option.

Although I said that you can specify one of the three values listed here, in reality, you 
can use any class that extends org.apache.hadoop.yarn.server.resourcemanager
.scheduler.fair.SchedulingPolicy.

Application Preemption in the Fair Scheduler
You can configure task preemption to ensure that key jobs are processed on time. 
However, preemption isn’t arbitrary—it’s used to kill containers for queues that are using 
more than their fair share of resources.

 If you enable preemption in your cluster, the Fair Scheduler will preempt applications 
in other queues if a queue’s minimum share isn’t met for some period of time. 

Preemption ensures that your key production jobs aren’t delayed because other less 
important jobs are already running in the cluster. The Fair Scheduler kills the most 
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recently launched applications to minimize the waste of resources in the cluster. To 
enable preemption, set the yarn.scheduler.fair.preemption property to true in the 
yarn-site.xml file.

Security and Resource Pools
You can set up authorization controls for resource pools so only specific users (and groups) 
can submit jobs to a specific pool. Use the <aclSubmitApps> element to specify who 
can submit jobs to a queue.

When users attempt to submit jobs to a resource pool for which they aren’t autho-
rized, you’ll see the following message in the audit log:

2016-01-20 19:48:24 INFO USER=sam IP=192.168.56 OPERATION=Submit Application Request
  TARGET=ClientRMService RESULT=SUCCESS APPID=application_1437386054526_0004
2015-10-20 19:48:24 WARN USER=sam OPERATION=Application Finished - Failed
  TARGET=RMAppManager RESULT=FAILURE  DESCRIPTION=App failed with state: FAILED
  PERMISSIONS=User sam cannot submit applications to queue root.prod
  APPID=application_1437386054526_0004

The aclSubmtApps element lets you list the users and/or groups that can submit 
applications to a queue, thus enabling you to secure your resource pools.

A Sample fair-scheduler.xml File
I fully understand if you’re a bit overwhelmed and confused at this point! In reality, though, 
the fair-scheduler.xml file isn’t hard to configure at all, as the following example shows.

<?xml version="1.0"?>
<allocations>
  <queue name="top_user_queue">
    <minResources>204800 mb,120 vcores</minResources>
    <maxResources></maxResources>
    <maxRunningApps>50</maxRunningApps>
    <weight>4.0</weight>
    <minSharePreemptionTimeout>180</minSharePreemptionTimeout>
    <schedulingPolicy>drf</schedulingPolicy>
    <aclSubmitApps>*</aclSubmitApps>
    <aclAdministerApps>*</aclAdministerApps>
   </queue
<queue name="random_user_queue">
    <maxResources>327680 mb, 600 vcores</maxResources>
    <maxRunningApps>2</maxRunningApps>
    <weight>1.0</weight>
    <schedulingPolicy>fifo</schedulingPolicy>
    <aclSubmitApps>admin</aclSubmitApps>
    <aclAdministerApps>admin</aclAdministerApps>
 </queue>
  <queuePlacementPolicy>

<rule name="specified" create="false"/>
<rule name="user" create="false"/>
<rule name="default" create="true"/>

    </queuePlacementPolicy>
</allocations>
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Here’s an analysis of our fair-scheduler.xml file:

 n top_user_queue: This queue is named root.top_user_queue and is based on the 
username top_user, which I specified with the queue_name property. For this 
queue, I’ve set up the following:

 n minResources: This property specifies the minimum resources the queue can use, 
in terms of memory and virtual cores. However, the actual minimum share is 
determined by the specific scheduler policy you choose to use. Assuming you 
chose the single-resource fairness policy (memory-based), if the memory usage 
of the queue is below its memory share, it’s considered unsatisfied. If more than 
one queue has yet to meet its minimum share, the ResourceManager allocates 
resources to the queue with the smallest ratio between its current resource 
usage and its minimum. The scheduler first allocates minimum resources to all 
queues before it offers additional resources to queues. If there isn’t enough memory 
available in the cluster to satisfy the minResources setting for a queue, that queue 
can’t launch an application—its attempt to do so will fail. When there are no 
applications running under this queue, the scheduler doesn’t allocate or reserve 
any resources for the queue. However, the moment an application is started under 
this queue, the scheduler will provide the minimum resources (200GB and 
100 virtual cores in our example) to this queue.

 n maxResources: This queue has no maximum—so, it can potentially use all of 
a cluster’s resources if there are no other queues running in the cluster. Otherwise, 
you can set the maxResources attribute to limit the maximum resources a 
queue is allowed to use (virtual cores and memory for containers) in terms of 
containers allocated to the queue. This property sets the maximum limit on 
the number of containers allocated to a queue.

 n maxRunningApps: This property sets a ceiling on the number of applications 
that can run simultaneously under a queue.

 n weight: This attribute enables you to allocate more resources to a specific queue 
in comparison with the other queues. This makes it possible for you to specify 
non-proportional sharing of the cluster resources by the various queues that 
you configure. The default weight is 1, and therefore, a queue with a weight of 
four will receive four times as many resources as a queue for which you specify no 
weights. In this case, a value of four indicates higher priority than other queues 
that are at the default weight of one.

 n minSharePremptionTimeout: the amount of time (in seconds) a queue can 
remain below its minimum share before it takes resources from other queues 
by preempting application containers. In our example, we set the timeout to 
three minutes (180 seconds)

Note

The minResources, maxResources and weight elements let you allocate 
resources across the pools.
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 n schedulingPolicy: This is set to drf.
 n aclSubmitApps and aclAministerApps: Anyone can submit apps or perform 

administrative tasks for this queue.
 n random_user_queue: This queue is named root.random_user_queue and is 

configured as follows:
 n minResources: None.
 n maxResources: 320GB RAM and 600 virtual cores.
 n weight: One.
 n schedulingPolicy: fifo.
 n aclSubmitApps and aclAministerApps: Only the admin user can submit apps 

or perform administrative tasks for this queue.
 n queuePlacementPolicy: There are three rules: specified, user and default. 

The first rule is evaluated, but since neither top_user nor random_user specify 
the pool when submitting their applications, the second rule (user) is evaluated. 
This rule says to use the root.<username> pool, but only if it exists (create=false). 
Both top_user and random_user have queues named after them (root.top_user 
and root.random_user), so this rule is satisfied for both. The third rule, which 
states that the application should run in the default pool, is ignored (not evaluated).

Submitting Jobs to the Scheduler
Once you configure the Fair Scheduler for the first time, restart the ResourceManager 
as shown here:

$ service hadoop-yarn-resourcemanager restart

You can now test drive your new resource scheduler by submitting a job to the 
random_user_queue that you just configured:

$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar 
wordcount –D mapreduce.job.queue_name=random_user_queue /input /output/

Moving Applications between Queues
An administrator can move an actively running application to a higher or lower priority 
queue by issuing the following yarn command:

$ yarn application –movetoqueue appID –queue targetQueueName

Monitoring the Fair Scheduler
As with the Capacity Scheduler, use the ResourceManager web UI at http://
<URL-for ResourceManager>/cluster/scheduler to view queues and other information 
pertaining to the Fair Scheduler. You can see the following from this UI:

 n Total resource allocation to containers within a queue
 n Number of active applications in a queue
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 n Number of pending applications waiting to receive containers
 n Minimum and maximum guaranteed resources configured for the queues
 n Instantaneous and steady fair shares

Comparing the Capacity Scheduler and the Fair 
Scheduler
The Capacity Scheduler and the Fair Scheduler have some crucial differences, but also 
many similarities. I list the key similarities and differences in this section.

Similarities between the Two Schedulers
Both the Fair Scheduler and the Capacity Scheduler have an identical goal: Allow long-
running jobs to complete in a decent time while simultaneously enabling users running 
queries to get their results back quickly. That is, we’re talking about supporting the 
coexistence of batch and short-lived jobs. 

The two schedulers have several things in common, and I list the major similarities here:

 n Both schedulers support hierarchical queues.
 n All queues descend from a root or default queue.
 n You can submit applications only to the leaf queues.
 n Both queues support minimum and maximum capacities.
 n Both queues support maximum application limits on a per-queue basis.
 n Both schedulers let you move applications across queues.

Differences between the Two Schedulers
Although there are many similarities between the Capacity Scheduler and the Fair 
Scheduler, there are important differences as well, as summarized here.

 n The Fair Scheduler contains scheduling policies that determine which jobs get 
resources each time the scheduler allocates resources. You can use the three types 
of scheduling policies—fifo, fair (the default scheduling policy) and drf—by 
specifying the policy with the defaultQueueSchedulingPolicy top-level element. 
The Capacity Scheduler, on the other hand, always schedules jobs within each queue 
with the FIFO principle.

 n The Fair Scheduler enables multiple queue placement policies, which dictate where 
the scheduler places new applications among the queues based on users, groups or 
the queue requests made by applications. You can submit applications to a non-
existent queue by setting the create f lag, which creates a new queue. 

 n The Capacity Scheduler chooses jobs with the highest gap between currently used 
and granted capacity—that is, the most underserved queues are offered resources 
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before other queues. The Fair Scheduler, on the other hand, selects jobs on the 
basis of the highest time deficit. 

 n The Fair Scheduler allocates excess capacity among jobs, whereas the Capacity 
Scheduler allocates the excess capacity among the cluster’s tenants.

 n The Fair Scheduler uses preemption to support fairness among the queues and 
assigns priorities to users through weights. The Capacity Scheduler, on the other 
hand, uses preemption to return guaranteed capacity back to the queues.

Summary
Here’s what you learned in this chapter:

 n Allocating cluster resources efficiently among the cluster’s tenants is a key task for 
Hadoop administrators.

 n Leave the FIFO scheduler alone, as it isn’t designed for supporting real-life pro-
duction environments.

 n The Fair Scheduler and the Capacity Scheduler are the two main Hadoop resource 
schedulers. While there are some differences between the two schedulers, both of 
them strive to optimally allocate the cluster resources among multiple users. 

 n It’s always a good idea to create queues and pools and assign users to these entities. 
You can then assign jobs to the queues and pools, rather than assigning jobs 
directly to users.

 n At a practical level, there are more similarities than differences between the 
Capacity Scheduler and the Fair Scheduler. Either one will work fine for most 
environments, although you can use the Capacity Scheduler where you really 
are familiar with the resource requirements of your user groups.
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Manage Job Workf lows

This chapter covers the following:

 n Setting up Apache Oozie 
 n Understanding Oozie job f lows
 n Creating and configuring Oozie workf lows
 n Creating time-based and data-based Oozie coordinators

Managing Hadoop job scheduling is probably one of the most important, if not the most 
important, tasks of a Hadoop administrator. Apache Oozie is a general-purpose job 
orchestration and workf low scheduling system for running multistage Hadoop jobs 
(MapReduce, Pig, Hive, etc.).  

In order to efficiently analyze the vast quantities of data sets you store in HDFS, 
you will need to perform multiple actions sequentially, in the form of a workf low. You 
can write your own job scripts, of course, but it’s far better to use Oozie, a workf low 
engine and job scheduler that’s been designed expressly for use with Hadoop jobs. 

Instead of you having to run the various stages of a multistage Hadoop job separately, 
Oozie lets you run the chained jobs as part of a single Oozie job, which makes the starting, 
stopping, pausing and resuming of job f lows much easier. 

Oozie lets you either run a workf low by itself or schedule it through an Oozie coor-
dinator job. You can also set job SLAs as part of an Oozie workf low or coordinator 
application.

Using Apache Oozie to Schedule Jobs
Apache Oozie is a workflow engine and scheduler built explicitly for Hadoop environments.
Oozie is especially designed to perform large-scale job orchestrations. It’s much more 
sophisticated and has numerous capabilities for job execution and management when 
compared to a mere job scheduler. 
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Apache Oozie offers a command line utility named oozie to help you execute and 
manage jobs in your cluster. The oozie command line interface is very powerful and lets 
you create and administer complex job schedules.

Oozie lets you run one-off jobs manually, in the form a workf low, or schedule the 
execution of one or more arbitrarily complex workf lows through Oozie coordinator 
jobs. Coordinator jobs can be triggered either by frequency (time-based) or by the 
availability of necessary input data (data-based).

 Oozie is a great tool for job scheduling in a Hadoop environment since it supports 
just about any type of Hadoop job you want to run, out of the box. These jobs include 
Spark, MapReduce, Pig, Hive, Sqoop and DistCp. Not only that, Oozie lets you run 
system- based jobs such as Java programs and regular shell scripts. Oozie also helps you 
set SLAs for your jobs, monitor running jobs and receive alerts when a job f low exceeds 
the SLA limits.

In the Hadoop environment, it’s often the case that you can’t completely process a set 
of data with just a single MapReduce, Hive or Pig job. It’s more likely that you’d need 
to run multiple MapReduce, Hive and Pig jobs together, with later jobs consuming the 
intermediate data produced by the initial jobs. You thus need to string together multiple 
MapReduce, Hive or Pig jobs and coordinate their execution. 

You can write complex shell scripts or other server-based solutions to put together a 
job stream, but there are several problems with this approach. Tracking the job errors 
and recovering from failures are two major issues resulting from this approach, as well 
as efficiently monitoring the progress of all the jobs. These mechanisms also usually 
don’t allow you to troubleshoot running jobs, and they can’t support thousands of con-
current jobs either.

An Oozie workf low is an application that consists of a set of actions arranged in a 
directed acyclic graph (DAG). A DAG-based workf low won’t permit loops within the 
workf low. An Oozie workf low has two types of nodes, control nodes and action nodes, 
as explained here:

 n The control nodes determine the execution f low of actions, and are named start, 
end, fork, join, decision, and kill. The start and end control nodes define when 
the workf lows starts and ends. The fork and join control nodes let Oozie execute 
the work in parallel. The decision nodes act like a switch or case statement, in that 
they select a specific execution path within a workf low, based on information 
from the job.

 n The action nodes perform the actual work, such as copying HDFS files, and include 
MapReduce, Streaming, Java, Pig, Hive, Spark and Sqoop imports and exports; 
and Shell, SSH and DistCp actions.

Oozie workf lows enable great f lexibility in job creation. They let you define 
condition- based decisions and let you specify alternate paths (with forked actions) for 
parallel execution of commands.
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 Let’s take a common scenario in a real-life Hadoop cluster that illustrates how 
condition-based decision making and forked paths of parallel execution give you the 
f lexibility you need when creating complex data-analysis jobs. 

You run a Pig job first to analyze some data in a pipeline. The Pig job execution is 
followed by a decision tree. The control f low for the job could go straight to an HDFS 
operation such as a file copy operation, or it may go to a fork action, depending on the 
output of the Pig job. If the control f low passes to the fork action instead of going straight 
to the HDFS operation, two jobs are run concurrently—a Hive query and a MapReduce 
job. Once these two jobs complete, the control f low goes to the HDFS operation, and 
once this operation completes, the workf low is deemed to be successfully completed. 

In order to successfully string multiple jobs together, you need a job coordinator, 
and that’s where Oozie shines big time. There are three types of Oozie jobs: 

 n Workf low job: This is an Oozie job (an application) you run on demand.
 n Coordinator job: This an Oozie job that you schedule for periodic execution, 

similar to jobs run by a Linux crontab.
 n Bundle job: This is a collection of coordinator jobs managed as a single Oozie job.

Oozie can help you schedule and launch tens of thousands of Hadoop jobs daily. 
Oozie job bundles help you efficiently chain together hundreds of coordinators and 
workf lows. For example, Yahoo’s Oozie team runs an Oozie bundle that consists of over 
200 coordinators and a workf low with 85 fork/join pairs. 

While Oozie isn’t the only Hadoop-related job scheduler out there (there are others, 
such as Azkaban and Luigi), it’s the most feature rich scheduling tool available by far. In 
addition, Hue and Oozie are integrated extremely well, which means you can configure, 
schedule and monitor all your Hadoop jobs from a web UI.

 Oozie Architecture
An Oozie environment consists of the following components:

 n The Oozie server
 n The Oozie client
 n The Oozie web service
 n The relational database to store the Oozie metadata (can be Derby, MySQL, 

PostgreSQL, Oracle, etc.)

In the following sections, let’s learn about these important components.

The Oozie Server
The Oozie server schedules Oozie jobs and executes them. While it acts as a server for 
Oozie clients, the Oozie server itself is a Hadoop client. You can configure the server 
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with a web UI for monitoring Oozie jobs by adding a JavaScript library called extJS. 
You can install the Oozie server on any node in the cluster, but when dealing with a 
large and busy system, it’s better to install it on a dedicated server.

Note

The Oozie server can be accessed at http://<OOZIE_HOSTNAME>:11000/oozie.

The Oozie server should use the same release Hadoop JAR files as those used by the 
Hadoop services in your cluster. In addition, you must configure the cluster’s hdfs-site
.xml file to allow the Oozie service user, which is typically an OS user named oozie, 
to serve as a proxy user for the Hadoop services.

 The Oozie Client
Oozie clients, users and applications can connect to the Oozie server using one of the 
following methods, as long as the client application has network access to the Oozie 
web service:

 n The oozie command line interface (CLI)
 n The Oozie HTTP REST API that enables you to write client applications in 

multiple languages
 n The Oozie Java client API that you can use in any Java-based application

Both the command line interface oozie and the Oozie Java API rely on the Oozie 
HTTP REST API to communicate with the Oozie server. 

In addition to the previously listed options for interacting with the Oozie server, you 
can also use the Oozie web console to get a read-only view of the current status of the 
Oozie server. You can’t do much else from this simple console, but you can monitor 
your Oozie jobs from there if you wish. 

Finally, I would be remiss if I didn’t mention the Hue interface, which is a popular 
way of working with Oozie. Hue’s Oozie editor and dashboard are excellent, both for 
creating Oozie jobs and scheduling them, as well as for monitoring their status. A big 
benefit is that the Oozie editor lets you avoid having to manually configure the Oozie 
XML files.

The Oozie Database
As I mentioned earlier, as far as the Oozie database goes, you can select any relational 
database, such as Derby, PostgreSQL, MySQL or Oracle. Oozie comes with both the 
required JAR file and the configuration for the default Derby database, and you are 
expected to modify these in order for Oozie to work with other databases. 

The Oozie server, which is a Java web application, runs on the Apache Tomcat web 
server by default. The Oozie server is stateless, and that means it doesn’t store any user 
or job information between requests. It stores the state information relating to running 
and completed jobs in the Derby database by default. Using a relational database to store 
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job information rather than storing the information in memory helps Oozie scale to very 
high levels of usage, even hundreds of thousands of jobs, with a very light footprint.

Figure 14.1 shows the Oozie server as well as other Oozie components (client, database) 
and how they interact with Oozie clients such as Java/REST APIs, web interface and 
the CLI on the one hand, all of which run applications through Oozie, and MapReduce 
and HDFS on the other.

Note

Oozie comes with an embedded Tomcat Server that manages all data flows to and from 
the Oozie server.

Deploying Oozie in Your Cluster
In order to use the Oozie server, you need to install it along with its database on some 
server, not necessarily a node in your Hadoop cluster. Oozie doesn’t require the Hadoop 
binaries for it to do its job-creation and scheduling work; it just requires the Hadoop clients. 
It’s customary to set up Oozie on one of the edge servers of a cluster. 

Figure 14.2 shows how Oozie is typically deployed in a Hadoop cluster. Since Oozie 
doesn’t absolutely require a dedicated server for itself (although in busy, large environments 
it’s good to do so), you can run Oozie from the same edge servers you run applications 
such as Hive and Pig from which interact with the Hadoop cluster.

The Oozie Server

Web
Server HDFS

MapReduce

Command Line

Web

REST API

Java API

Time-
Based

Data-
Based

Bundle

Coordinator

Workflow

Oozie
Database

Figure 14.1 The Oozie server and how it works with the Oozie clients, database and HDFS
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Installing and Configuring Oozie
In order to effectively set up Oozie in your environment, it’s important to understand 
how Oozie is installed and configured. As you learned earlier, Oozie actually consists of 
an Oozie server, an Oozie client and an Oozie database. Let’s learn how to install and 
configure these components so you can start scheduling Hadoop jobs through Oozie.

Installing Oozie
In order to install the Oozie server, you must build it. Follow these steps to install and 
build Oozie in your cluster:

1. Download the latest Oozie source code:

$ curl -O http://www.us.apache.org/dist/oozie/4.2.0/oozie-4.2.0.tar.gz

2. Unzip the source code zip file:

$ tar xvf oozie-4.2.0.tar.gz
$ cd oozie-4.2.0

3. Invoke the mkdistro utility to build the Oozie binary package:

$ bin/mkdistro.sh –DskipTests
[INFO] Scanning for projects...
....
[INFO] BUILD SUCCESS
[INFO] ----------------------------------
...
$

Installing the Oozie Server
The Oozie binary package that you installed in the previous section is missing three 
key sets of JAR and library files: 

Edge Node

Oozie
Server

Oozie
Database

Master Node

HDFS
(NameNode)

DN1

DN2

DN3

DN4

YARN
(ResourceManager)

Figure 14.2 Typical Oozie server deployment on an edge node
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 n The Hadoop JAR files
 n The JDBC JAR files
 n The extJS package you need for setting up the Oozie web UI

In the directory where you unpacked the TAR file, find the directory named libext/. 
You’ll need to copy the three sets of required JAR and library files into this directory.  
Once you do this, the Oozie setup scripts inject the libraries into the WAR file it came 
with and create a brand new WAR file that you can then deploy in a web server.

As far as the required Hadoop JAR files go, you can copy them from the directory 
specified by <HADOOP_INSTALLATION_DIR>, or use the JAR files for Hadoop that are 
found in the Oozie build directory. 

1. The JDBC JAR files you need to get depend on the type of database you want to
use. In my case, I’ll be using a MySQL database to store the job state information
for Oozie. Therefore, I need to add the MySQL JDBC driver to the Oozie WAR
file. First, I download the JDBC package as shown here:
$ curl -O http://cdn.mysql.com/Downloads/Connector-J/\
mysql-connector-java-5.1.25.tar.gz

2. Extract the mysql-connector-java-5.1.25.tar file and move it to the libext/ directory
where you unpacked the Oozie TAR file.

3. Download extJS 2.2 from http://extjs.com/deploy/ext-2.2.zip and copy it to
the same libext/ directory as in step 2. The ExtJS library isn’t bundled with Oozie
due to licensing reasons.
$ cd <INSTALLATION_DIR>/oozie-4.2.0/libext
$ cp <EXT_JS_DIR>/ext-2.2.zip .
$ ls -1
...

You’re now ready to create a new Oozie WAR file that contains the necessary
libraries and JAR files.

Tip

Oozie ignores any values you set for the OOZIE_HOME environment variable—it auto-
matically computes its home.

4. Create a new Oozie WAR files as shown here:
$ cd ..
$ bin/oozie-setup.sh prepare-war
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"

  INFO: Adding extension: <INSTALLATION_DIR>/libext/activation-1.1.jar
  INFO: Adding extension: <INSTALLATION_DIR>/libext/avro-1.7.4.jar

New Oozie WAR file with added 'ExtJS library, JARs' at 
  <INSTALLATION_DIR>/oozie-server/webapps/oozie.war

  INFO: Oozie is ready to be started
$

http://cdn.mysql.com/Downloads/Connector-J/\
http://extjs.com/deploy/ext-2.2.zip
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By default, the Oozie server uses the port 11000. The default administration port is 11001. 
Note that you can configure Oozie to use Kerberos for authentication if you’ve Kerberized 
your Hadoop cluster (as Chapter 15, “Securing Hadoop” explains, a Kerberized Hadoop 
cluster is one that uses Kerberos to authenticate its users).

Configuring Hadoop for Oozie
The owner of the Oozie service, which is usually the OS user oozie, serves as a proxy 
user for accessing Hadoop and running jobs in the cluster. You therefore need to next 
configure the cluster so Oozie can serve as the proxy user for the end users. In order 
to do this, you must add the following two properties to the core-site.xml file.

<!-- OOZIE -->  
<property>   
  <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].hosts</name>   
  <value>[OOZIE_SERVICE_HOSTNAME]</value>
</property>

<property>
  <name>hadoop.proxyuser.[OOZIE_SERVICE_OWNER].groups</name>   
  <value>[OOZIE_SERVICE_OWNER_GROUP] </value>
</property>

In my case, the core-site.xml file looks as follows after making the appropriate 
changes:

<property>   
   <name>hadoop.proxyuser.oozie.hosts</name>   
   <value>localhost</value>
</property>

<property>
   <name>hadoop.proxyuser.oozie.groups</name>   
   <value>users </value>
</property>

Now that I’ve configured Oozie for working with Hadoop, I’ll fire up Oozie so I can 
start scheduling jobs in the cluster.

Starting and Stopping Oozie
You can start and stop the Oozie server with the oozied.sh script. Start the server as 
shown here:

$ bin/oozied.sh start
Setting OOZIE_HOME: <INSTALLATION_DIR>
Setting OOZIE_CONFIG: <INSTALLATION_DIR>/conf
Sourcing: <INSTALLATION_DIR>/conf/oozie-env.sh
  setting CATALINA_OPTS="$CATALINA_OPTS -Xmx1024m"
..
Using CATALINA_PID: <INSTALLATION_DIR>/oozie-server/temp/oozie.pid
$
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The previous command will run Oozie as a background process. You can run the 
following command to start Oozie as a foreground process:

$ bin/oozied.sh start

You can check the status of the Oozie server by issuing the –status command with 
the Oozie command line tool named oozie:

$ bin/oozie admin -oozie http://localhost:11000/oozie -status

 System mode: NORMAL
$

You can examine the Oozie log file (logs/oozie.log) to ensure that the startup was 
correct. You can also check Oozie’s status through its web UI by using the following URL:

http://localhost:11000/oozie

If everything went right, you should see a NORMAL status.

Configuring a MySQL Database for Oozie
Oozie, by default, is configured to use the embedded Derby database. However, you 
can use MySQL, Oracle or PostgreSQL instead, especially if you’re using Oozie in a 
production environment. If you’re using any relational database other than the default 
Derby database, you need to configure the database for Oozie. 

Installing the Oozie Client
If you’re installing Oozie for testing purposes on a single server, you don’t need to worry 
about installing the Oozie client, since the server install also installs the client as well. 
However, in a cluster, you install the Oozie server on a master node in your Hadoop 
cluster, and install the Oozie client on servers from which users will access Oozie. 
Oozie also provides a separate client install archive that you can use to install just the 
client part of Oozie on your cluster’s nodes. Here’s how you do it:

$ tar xvf oozie-client-4.0.1.tar.gz

It’s a good idea to add the location of the Oozie client to the PATH environment 
variable:

$ export PATH=<CURRENT_WORKING_DIR>/oozie-client-4.0.1/bin:$PATH

You can verify that you installed the Oozie client correctly by running the follow-
ing command:

oozie admin –status
–oozie <OOZIEURL>

When you try to access the Oozie server through an Oozie client, it tries to find the 
Oozie web server URL either at the command line or in the Linux environment of the 
user issuing the command. Therefore, it is good to add the following to the environment:

$ export OOZIE_URL=<00ZIE_Server_URL>
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Now that you have configured the Oozie server and the Oozie client and tested them, 
it’s finally time to get to work with Oozie. This involves the creation and scheduling of 
Oozie workf lows, coordinators, and optionally, bundles.

Understanding Oozie Workflows
An Oozie job is similar to the Linux executables you use such as ls or echo. Taking 
this analogy further, an Oozie job corresponds to a Linux process. 

In order to schedule your Hadoop jobs, you create an Oozie application, and each 
execution of the application is an Oozie job. Similarly, each execution of an Oozie 
coordinator application is an Oozie job. As mentioned earlier, an Oozie job can be a 
workf low, a coordinator or a bundle. In this section, we show how to create and use 
an Oozie workf low.

An Oozie workf low is a Hadoop job with several steps or stages. In other words, 
it’s a set of tasks that are to be executed in a specific order. An Oozie workf low is the 
heart of an Oozie scheduling application—individual action nodes constitute an Oozie 
workf low and it is these action nodes that perform the actual processing of the work. 
You can build coordinators to schedule the workf lows once you create the Oozie 
workf lows.

 More formally, a workf low is a collection, or rather, a sequence of action and con-
trol nodes in a directed acyclic graph, with each action being a Hadoop job such as a 
MapReduce, Pig, Hive, Spark, DistCp or Sqoop job.  

Workflows, Control Flow, and Nodes
An Oozie workf low consists of several nodes, which can be action nodes or control 
nodes, which can include start and end control nodes, fork and join control nodes, and 
decision nodes (where control f low can go in one or another direction). The lines in 
the graph that connect the nodes show the sequence of the actions as well as the direction of 
the control f low. Since an Oozie workf low is a directed acyclic graph, you can’t have 
any loops within the workf low.

 Figure 14.3 shows the basic Oozie DAG with a start, end and kill node (and an action 
node). The job f low goes from the action node to either the end node or the kill node. 
If the action completes successfully, the job f low goes to the end node, and if it errors, 
it goes to the kill node, which has instructions on what to do in the case of an error.

There are several types of control nodes in a workf low, with the workf low type deter-
mining the order in which actions are executed. Here are the types of workf low nodes:

 n Start and end nodes: Define when a workf low begins and ends
 n Fork and join nodes: Let you run actions in a parallel fashion
 n Decision nodes: Select the execution paths within a workf low based 

on the job-processing activity
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An Oozie workf low consists of multiple stages of a job presented to a Hadoop cluster. 
As mentioned earlier, the actions can be either Hadoop jobs such as a Hive or Sqoop 
action or a non-Hadoop job such as a shell script or email notification.

Note

All Oozie job definitions—for workflows, coordinators and bundles—are written in XML. 
These XML files use the Hadoop Process Definition Language (hPDL) schema.

Defining the Workflows with the workflow.xml File
In order to create an Oozie workf low, you place the workf low definition in an XML 
file usually named workf low.xml. A workf low.xml file has the following sections:

 n Global configuration
 n Control nodes
 n Action nodes

When you have multiple action nodes, with each node representing an action such as a 
MapReduce or Hive job, the scheduler needs to know the order in which it should execute 
the actions. The actions are dependent on each other, and if a preceding action in the DAG 
doesn’t complete, the action following it won’t start. While the action nodes actually specify 
the actions which perform the work, the control nodes manage the f low of execution. 

Tip

Remember that you can’t define a workflow with looping constructs, meaning you can’t 
run the same operation over and over until it meets a specific condition.

Action
Node End (If OK)

Kill (If Error)

Start

Figure 14.3 A simple Oozie DAG showing the start, end 
and kill control nodes and an action node
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There are several types of control nodes in a workf low:

 n Two control nodes named start and end define the beginning and end of an Oozie 
workf low. 

 n Two other control nodes, named the fork and join control nodes, enable the parallel 
execution of jobs.

 n As alluded to previously, there are other control nodes called decision control nodes 
that select specific execution paths based on certain conditions within the job.

Figure 14.4 shows a typical Oozie workflow. This workflow starts by running a Pig script 
first. Once the Pig script completes running, the workf low faces a decision tree. Depending 
on the output, the control f low could transfer either to HDFS for file operations such as a 
copyToLocal operation, or it can go to a fork action. If the control f low goes to the fork 
action, two jobs—a Hive query and a MapReduce job—are started in parallel. Once these 
two jobs are completed, the control f low goes to HDFS (through an HDFS operation). The 
workf low as a whole is deemed complete after all the HDFS file operations are completed.

Tip

Action nodes are the key to an Oozie workflow because they perform the actual processing 
of work. I discuss action nodes in great detail, since that’s where the real Oozie action is! 
Understanding how to configure and parameterize the various types of Oozie actions is the most 
significant aspect of Oozie job scheduling. Once you understand how to define actions correctly, 
creating the Oozie workflows and coordinators is but a simple step, since those are mostly 
wrappers for the Oozie actions.

Pig Job HDFS

MapReduce

Hive

Start EndDecision
Node

Fork Join

Figure 14.4 How an Oozie workflow is structured with decision (action) and control nodes. 
In this case the Pig job could either just write straight to HDFS or use a fork node to 

perform a MapReduce and Hive job before writing the results to HDFS.
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Let’s first review how some common types of action nodes work before you start creating 
and scheduling an Oozie workf low.

How Oozie Runs an Action
Oozie job execution works differently from normal user job execution. When a user 
executes a job, it runs from where the client starts the job execution. A user can actually 
log into one of the cluster nodes or run the job from a gateway node. As you can recall 
from Chapter 4, “Planning for and Creating a Fully Distributed Cluster,” a gateway node 
is a server that doesn’t need to have Hadoop services running on it. Also called an edge 
server, this server is meant for launching Hadoop jobs. In either case, the client’s program 
runs the job in the cluster and retrieves the results. 

When you run the same job through Oozie, it starts a map-only Hadoop job called 
a launcher to run the job actions. When you run an Oozie job through Hue or with 
the Oozie CLI, the Oozie client submits the job to the Oozie server, but the Oozie server 
doesn’t actually launch the job on the machine where it runs. Instead, it starts the launcher 
job on the Hadoop cluster. 

The launcher job runs in the cluster and invokes the necessary client libraries for 
MapReduce, Hive or Pig, depending on the type of job action you specify. The goal here 
is to keep the Oozie server out of the job-execution process—it merely executes the work-
f low, leaving the actual execution of the action code to the Hadoop cluster.

Since the Oozie server executes the launcher job on the Hadoop cluster, you must 
make available the code for all actions and the related configuration files on HDFS so the 
launcher can access the job information. The launcher job itself runs in its own YARN 
container, and the container is killed once the Oozie actions are completed. 

Configuring the Action Nodes
Each Hadoop job you specify in an Oozie workf low, such as a Sqoop or Hive job, is 
specified as an action node in the Oozie workf low.xml file. A workf low is thus a pack-
age of action nodes, together with a set of control nodes, that specify the start and end 
of the job, as well as where the job can be forked into parallel branches that can execute 
simultaneously.

MapReduce and other Hadoop components such as Hive and Pig have their own 
specialized way of defining an Oozie action. In order to understand how to work well with 
action nodes, which are the most important part of an Oozie workf low, I’ll explain how 
to create the action nodes for four types of Oozie actions: 

 n MapReduce
 n Hive
 n Pig
 n Shell 

Working with the other Oozie actions is very similar, with minor changes.
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Each Oozie action, such as a MapReduce or a Hive action, requires an ordered sequence 
of XML elements. In order to define an Oozie action you must specify some or all of 
these XML elements for the action you want Oozie to perform. Some of the elements 
are common to all Oozie actions, but some are specific to a particular action. 

The two required elements—<job-tracker> and <name-node>—aren’t specific 
to just MapReduce action types, as you can guess. They are top-level XML elements 
common to all Oozie action types and specify the master services for Hadoop’s processing 
(YARN) and storage (HDFS) systems. In Hadoop 2, of course, there’s no job tracker, 
whose functions have been taken over by the ResourceManager. Hue lets you specify 
either job-tracker or resource-manager—there’s no difference.

Action Nodes for MapReduce Jobs
Suppose you’re running a MapReduce job from the command line as follows:

$ hadoop jar /user/sam/testApp.jar testAppClass \
   /user/sam/input  /user/sam/output test

You can convert this MapReduce job into an Oozie job with the following Oozie 
workf low action node definition (the actual complete workf low.xml file for the job 
will include additional elements such as job configuration and control nodes such as 
<start> and <end>.

<action name="testMapReduceAction">
 <map-reduce>
    <job-tracker>jt.mycompany.com:8032</job-tracker>
    <name-node>hdfs://nn.mycompany.com:8020</name-node>
    <prepare>

<delete path="hdfs://nn.mycompany.com:8020/hdfs/user/sam/data/output"/>
    </prepare>
    <job-xml>/testjob.xml</job-xml>

<configuration>
<property>
<name>mapred.mapper.class</name>
<value>org.myorg.TestJob.Map</value> 
</property>

<property>
<name>mapred.reducer.class</name>
<value>org.myorg.TestJob.Reduce</value> 

</property>
<property>

<name>mapred.input.dir</name>
<value>/hdfs/user/sam/data/input</value>

</property>
<property>

<name>mapred.output.dir</name>
<value>/hdfs//user/sam/data/output</value>

</property>
     </configuration>
     <file>testDir1/testFile.txt#file1</file>
   </map-reduce>
   <ok to="success"/>
<error to="fail"/>
</action>
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This MapReduce job action uses several, but not all, of the action XML elements 
I listed earlier. To be precise, besides the two required elements (<job-tracker> and 
<name-node>), it uses the <action>, <action-type>, <prepare>, <job-xml>, 
<configuration> and <file> XML elements. Here are the key points about the 
MapReduce action described in the worklfow.xml file:

 n The <action> element is common to all action types and starts with the <action> 
tag. The <action> element represents the application or command you want to 
execute. The name attribute lets you name the action. In this case, I named the 
action testMapReduceAction.

 n Every type of action node has three common subelements:
 n <action-type>: You don’t actually specify an element named <action-type>. 

You specify the actual type of action instead, which is MapReduce in our case. 
Therefore, everything within the <map-reduce> and </map-reduce> elements 
is part of the <action-type> element.

 n <ok>: This subelement indicates what to do following the exit of the job action 
after the action succeeds.

 n <error>: This subelement indicates what to do following an error.
 n The <job-tracker> and <name-node> elements are required elements, and they 

point to the URLs for the ResourceManager and the NameNode on the cluster 
where Oozie is executing this job action.

 n The <prepare> element is optional. In this case, I used it to delete the HDFS output 
directories before the MapReduce job is launched, since the job will fail if the 
output directory already exists in HDFS.

 n The two elements <job-xml> and <configuration> provide the Hadoop-related 
job configuration properties.

 n The <file> and <archive> attributes are optional: they let you specify the native 
Hadoop packaging for libraries, archives, scripts and data files for a MapReduce 
job. Most commonly, you package all the mapper and reducer classes for a MapReduce 
action into a JAR file and submit it to the Oozie action. 

In the action node definition shown earlier, there’s no reference to the testApp.jar that 
you had to specify at the command line. Where did it go? You must copy the JAR file 
to the /lib subdirectory under the root directory of the workf low application in HDFS. 
Oozie will automatically look for the JAR file in that directory.

Action Nodes for a Hive Job
Specifying a Hive action isn’t a whole lot different from specifying a MapReduce action. 
As with MapReduce, you must package all the necessary configuration files, libraries 
and code for any UDFs (user-defined functions) and deploy the package to HDFS. 
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All the action elements you saw earlier for a MapReduce action are present for a Hive 
action as well, such as <job-tracker> and <name-node>. You must specify the Hive 
configuration file, named hive-config.xml, as the value for the <job-xml> element. 
There are three elements that are specific to Hive—script, param and argument—
and here’s what they stand for:

 n script: This is a required element and specifies the Hive script (HQL) that you 
want Oozie to execute.

 n param: There can be multiple param elements, which let you specify Hive script 
parameters.

 n arguments: This element lets you parameterize the Hive script using variable 
substitution.

Let’s say you’re running the following Hive job from the command line:

$ hive –hivevar country=us –f hive.hql

I’m using –hivevar since I’m parameterizing this job with the variable country. My 
Oozie Hive workf low action will look as follows:

<action name="testHiveAction">
  <hive>
    <job-tracker>jt.mycompany.com:8032</job-tracker>
    <name-node>hdfs://nn.mycompany.com:8020</name-node>
    <job-xml>hive-config.xml</job-xml>
    <script>hive.hql</script>
    <argument>-hivevar</argument>
    <argument>country=us</argument>
  </hive>
 <ok to="success"/>
 <error to="fail"/>
</action>

Note how I use the <argument> elements to parameterize the Hive job. In this case, 
I specified hive-confg.xml as the value for the <job-xml> element and only specified 
some of the Hive configuration parameters for Hive. Instead I can simply point to the 
location of the complete Hive configuration file, which is the hive-site.xml file—there’s 
no difference.  

As I did earlier for MapReduce, I need to place the hive-conf.xml file, the hive.hql 
file and any related files in HDFS under the root directory of the Hive workf low.

Pig Action
A Pig action is very similar to that for Hive. Suppose you’re executing a Pig script from 
the command line as follows:

$ pig –f pig.script –param country=us \
-param output=hdfs://nn.mycompany.com:8020/hdfs/user/sam/pig/output

Here’s the Oozie Pig action configuration that corresponds to the Pig script execution
from the command line:
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check<action name="testPigAction">
    <pig>

<job-tracker>jt.mycompany.com:8032</job-tracker>
<name-node>hdfs://nn.mycompany.com:8020</name-node>
<prepare>
<delete path="hdfs://nn.mycompany.com:8020/hdfs

<script>/testpigscript.pig</script>
<argument>param</argument>
<argument>country=us</argument>
<argument>param</argument>
<argument>output=hdfs://nn.mycompany.com:8020/hdfs/user/sam/pig/output</

argument>
     </pig>
     <ok to=end"/>
     <error to="fail"/>
</action>

Note how I specify separate <param> elements for configuring the country argument 
and the output directory.

The Shell Action
You can run Linux commands as well as Perl and Python scripts through Oozie’s shell 
action. The elements for a shell action remain the same as those for a MapReduce action, 
with the following additional elements.

 n exec: This is a required element and specifies the shell command or Perl or 
Python executable.

 n argument: This lets you specify the arguments for the shell command you are 
executing.

 n env-var: This specifies the Linux environment variables such as PATH, for example.
 n capture-output: This element captures the shell command output (stdout) and 

provides it to the workf low application.

Let’s say you want to run the following Python script through Oozie: 

$ export TZ=PST
$ python test.py 05/26/2016

Here’s what the shell action for the Python script execution looks like:

<action name="testShellAction">
   <shell xmins=url:oozie:shell-action:0.2>

...
<exec>/usr/bin/python</exec>
<argument>test.py</argument>
<argument>05/26/2016/argument>
<env-var>TZ=PST</env-var>

<file>test.py#test.py</file>
<capture-output/>

   </shell>
  <ok to="success"/>
  <error to="fail/>
</action>
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The File System Action
Let’s say you want to perform some HDFS file operations as part of a workf low. You 
can run HDFS commands using the fs action. In addition to a required <name-node> 
element and the usual <job-xml> and <configuration> elements, an fs action uses 
HDFS file system commands you’re likely already familiar with: mkdir, delete, move, 
chgrp, chmod and touchz. Here’s a typical fs action inside a workf low
.xml file.

<action name="myFSAction">
  <fs>
    <name-node>hdfs://nn.mycompany.com:8020</name-node>
    <delete path='/hdfs/user/sam/logs'/>
    <mkdir path='hdfs/user/sam/' permissions='777' dir-files='true'> 
<recursive/></chmod>
  </fs>
    <ok to="success"/>
    <error to="fail/>
</action>

Tip

Unlike the other Oozie actions you’ve seen, Oozie launches the fs action commands on the 
machine where the Oozie server runs and not the launcher. If you’re performing a huge HDFS 
delete or move operation, it’s possible that the Oozie server’s performance may be nega-
tively impacted!

I’ve spent considerable time explaining how to configure Oozie actions, since they are 
really everything in an Oozie job. There are several other Oozie action types such as email 
and ssh actions, and they all basically work the same way as the actions I described here.

Now that you know how action nodes work in an Oozie workflow, it's time to move on 
to creating actual Oozie workflows by configuring the workflow.xml file for a Hadoop job.

Note

You define any of the three types of Oozie jobs—workflows, coordinators and bundles—
through individual XML files (such as workflow1.xml, coordinator1.xml and bundle1.xml). Once 
you define the workflow/coordinator/bundle job, you configure the job using a combination of 
command line options and property files.

Creating an Oozie Workflow
An Oozie workf low consists of a set of actions encoded by XML nodes. There are multiple 
types of nodes in a workf low definition, with each type of node representing a specific 
type of action or control directive. 

The workf low.xml file contains the configuration for an Oozie workf low, and it is 
in this file that you configure each Hadoop job you want to run through Oozie. The 
name workf low.xml is based on convention—you can name it anything you want. 
Here’s the structure of a simple Oozie workf low.xml file:
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<workflow-app xmlns=url:oozie:workflow:0.5 name=testWF">
<global>
     ...
</global>
<start to= />
<action name="TestPigAction">
     <pig>
     ...
    </pig>
 </action>
<ok to=done"/>
<error to="done"/
<action name ="TestFSAction">
   <FS>

..
  </FS>
<ok to=done"/>
<error to="done"/
</action>
   <end name="done"/>
</workflow-app>

As mentioned earlier, an Oozie workf low can contain multiple actions. Each action 
and control node requires a unique identifier. Oozie uses these identifiers to determine 
which node is processed next. Oozie goes down the workf low.xml file, processing each 
action based on the action’s location in the workf low.xml file. Our simple workf low 
shown here consists of the following nodes:

 n Two action nodes: There’s a Pig action that runs a Pig script and an fs action that 
performs some HDFS operations. You must always name an action node. In our case, 
the two action nodes are identified by their names: TestPigAction and TestFSAction.

 n Two control nodes: There’s a <start> and an <end> control node in the workf low, 
indicating where the workf low will begin and end. No name identifier is required 
for the <start> node, since it’s the starting point for any workf low; however, the 
<end> control node does require a name identifier.

Each workf low.xml file for a workf low you want to create must start with the root 
element <workflow-app>. Note that you provide a name for your workf low in this element. 
In our case, the workf low is named testWF. In the <workflow-app> element, the xmlns 
attribute specifies the schema URL that Oozie uses to perform XML schema validation 
of the workf low.xml file.

The workf low.xml sample shown here consists of three key sections:

 n Action nodes
 n Control nodes
 n Job configuration

You’ve already learned how to configure the action nodes for various types of Oozie 
actions such as MapReduce, Hive, Pig, file system and shell actions. Let’s learn how to 
configure the control nodes and the job configuration sections in a workf low.xml file.
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Configuring the Control Nodes
Control nodes specify how a workf low begins and ends, as well as how the execution 
f low proceeds, with optional control structures. The following sections describe the 
various control nodes you can specify.

<start> and <end>
The <start> and <end> control nodes specify the beginning and end of a workf low and 
are mandatory. There should be a matching pair of <start> and <end> nodes in each 
workf low. 

The <start> node is defined as follows:

<start to="mapReduce"/>

This <start> element uses the to attribute to make Oozie go to the action node named 
mapReduce and start executing the workf low.

Note

You don’t need to identify the <start> node with an identifier, since Oozie knows that this 
is the starting point for the workflow.

The <end> node is defined as follows:

<end name="done"/>

When the Oozie job reaches the <end> control node, it completes execution and shows the 
status as SUCCEEDED.

<fork> and <join>
The <fork> control node enables Oozie to run jobs in parallel. Multiple independent 
execution paths can be specified. The <join> control node is somewhat of an end point 
to the <fork> control node. If you specify the <fork> control node, you must also specify 
a <join> node—this control node is where all paths of a <fork> node converge. 

Figure 14.5 shows conceptually how the join, fork and decision nodes work together 
to support multiple workf lows based on what actually happens when the workf low 
commences execution.

A simple example of a <fork> and <join> control node setup is where a workflow begins 
with the <start> node and uses a set of <fork> nodes, one to run a MapReduce job 
and the other to run a Hive job. 

The <join> node is where the two jobs converge, before the <end> node completes 
the job. You can have nested <fork> and <join> nodes, but remember that each set of 
<fork> and <join> nodes is a different pair, and you must specify them together.

Here’s a workf low with a set of <fork> and <join> control nodes.

<workflow-app ...
<global>
....
<global/>
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<start to="testForkActions"/>
<fork name="testForkActions">

<path name="testPath1"/>
<path name="testPath2"/>

</fork>
<action name="testAction1">
     ...
     <ok to=testJoinActions"/>
     <error to="testJoinActions
</action>
<action name="testAction2">
     ...
     <ok to=testJoinActions"/>
     <error to="testJoinActions
</action>
<join name="testJoinActions" to="done"/>
<end name="done"/>
</workflow-app>

Here’s what you need to understand regarding the <fork> and <join> nodes in this example:

 n There’s one <fork> action named testForkActions.
 n The <fork> action contains two <path> elements.
 n Each of the two <path> elements stands for a parallel executing path of the parent 
<fork> node.

 n Each of the two <path> elements contains a single <action> node, but you can 
include multiple actions if you wish.

 n The final <action> node under each <path> element (here we have only a single 
<action> node under the <path> element) must point to the <join> node.

 n There’s a single <join> node named testJoinActions where all execution paths 
under the <fork> node testForkActions end. You can specify multiple <join> 
nodes within a workf low.

End

KillKill

Start

Action

Action

Action

Action

Fork Join

Figure 14.5 How Oozie supports multiple workflows through 
the use of the join, fork and decision nodes
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<ok>, <error> and <kill>
When you run a workf low in your cluster, you want to know if the job succeeded or failed. 
Think of a scenario when you want to perform a subsequent processing step after the job 
succeeds. You can add the logic for the subsequent steps in the workf low configuration. 

Similarly, when a job fails, you want to take specific actions, such as re-running it, for 
example. In both cases, you assign the next processing step to a different node. Here’s 
how the <ok>, <error> and <kill> nodes work:

 n If the Oozie job is successful, its status will be OK, and the workf low execution 
path moves to the node you specify in the <ok> element. 

 n If the Oozie job is unsuccessful, on the other hand, the status will be ERROR, and 
the job execution moves to the node you specify for the <error> element instead.

 n Most commonly, you want the workf low to stop running when it encounters an 
error, and you do so by specifying the <kill> node when a job receives the ERROR 
status. 

The <kill> node deals with error conditions. Here’s an example showing how to 
configure the <kill> node.

<workflow-app ....>
<start to=testMapReduce"/>
<action name="mapReduce">

...
     <ok> to="done"/>
     <error to="error"/>
</action>
<kill name="error">

<message>The 'MapReduce' action has failed</message>
<end name="done"/>
</workflow-app>

Note how the <ok> and <error> elements have to="done" or to="error" as their 
value. The to attribute determines the execution path Oozie must follow in each case. 
This means that if the job status is OK, go to the element in the workf low file that has the 
value done, and if the job status is ERROR, go to the element with the value error. In this 
case, when the status is ERROR, the <error> element says to go to the node with the value 
error, which happens to be the <kill> node.

Let’s learn a bit more about the special <kill> node, which is very helpful when you’re 
trying to handle error scenarios:

 n A <kill> node isn’t mandatory.
 n An action node can use an error transition tag to direct the control f low to a specific 

(named) <kill> node when an error occurs.
 n A control node can also point to a <kill> node based on the outcome of the decision 

predicates.
 n You can define multiple <kill> nodes to handle different types of error conditions.
 n A <kill> node results in the ending of the workf low.
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You don’t have to specify a to attribute when using a <kill> node, unlike in the case 
of an <end> node, where you do.

When the execution path of a workf low hits the <kill> node, Oozie immediately 
stops the job execution and sets the final status of the workf low to KILLED. Any running 
MapReduce jobs will continue to run to completion, but there won’t be any further actions 
following the completion of those jobs, since the workf low itself has been given the com-
pletion status of KILLED.

The OK, ERROR and KILLED states are the most useful and common action states that you 
need to be aware of, although there are several other action states, such as FAILED, PREP, 
RUNNING, START_MANUAL, END_MANUAL, START_RETRY and END_RETRY, for example.

<decision>
As you learned earlier, using the <fork> node lets you set up parallel execution paths. 
You can also specify a <decision> control node to specify an if-then-else type of course 
of action, where the satisfying of a condition will determine whether a subsequent action 
will be executed. 

Here’s a simple example that shows how to add if-then-else logic to a workf low 
execution by specifying the <decision> node.

<workflow-app....>
   <start to=decision1"/>
   <decision name=decision1">

<switch>
<case to="mapReduce">
$jobType eq "mapReduce"}

</case>
<case to="sqoop">

$jobType eq "sqoop"}
</case>
<case to="pig">
$jobType eq "pig"}

</case>
<default to="hive"/>

</switch>
    </decision>
<action name="mapReduce"> 
...
</action>
<action name="sqoop">
...
</action>
<action name="pig">
...
</action>
...
</workflow-app>

There are three types of actions in this workf low—a MapReduce action, a Sqoop 
action and a Pig action. Oozie will execute only one of them. Which one? It depends 
on what value you specify for the workflow parameter. 

The decision node is named decision1 in our example. This decision node includes 
a case statement (called switch) that will specify the action to be taken based on the 
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value of the workf low parameter jobType. Depending on the value of the jobType 
parameter, the control f low will run a MapReduce, Sqoop or Pig job.

Note

A case statement is frequently used to specify control flows in a programming language. 
What the case statement means is that in case the first comparison is true, run a specific 
function, and in case the second or third comparison is true, run a different function.

Note that the decision node named decision1 uses a switch operation, enabling you 
to define multiple cases and a mandatory default case as well. The logic inside the case 
statement itself is written using JSP Expression Language (EL) expressions. Each of these 
EL expressions evaluates to true or false.

Configuring the Job
When you specify an Oozie workf low action such as MapReduce or Hive, you must 
also specify the configuration settings for those actions. You can configure the workf low 
actions in multiple ways. You can specify the action configuration settings inline within 
the workf low action definition, as shown here.

<action name "TestHiveAction">
   <hive>

<configuraton>
<property>
<name>hive.metastore.local</name>
<value>true</value>

</property>
<property>

...
</property>

</configuration>
     ...
    </hive>
  ...
</action>

Any configuration properties that you specify with a <configuration> element within 
the action itself get the highest priority during the Oozie job execution. Alternately, if the 
action allows it, you can specify the job configuration in an XML format through the 
<job-xml> element in the workflow. If you have multiple actions, you can specify a different 
job.xml file for each action node, as shown here.

<map-reduce>
     ...
     <job-xml>TestJob1.xml</job-xml>
     <job-xml>TestJob2.xml</job-xml>
...
</map-reduce>

You must package the job.xml files along with the workflow app and deploy it to HDFS. 
If you specify the same configuration property in multiple job.xml files, the value you 



ptg18444370

461Running an Oozie Workflow Job

specify in a job.xml file listed later takes precedence over the value you specify in a job.
xml file listed before it.

Often, you may be looking at a scenario where you need to run a set of actions where 
the actions have some common elements. For example, they’ll all use the URI for the 
cluster’s NameNode. At times like this, you can cut down on your configuration effort 
by specifying the <global> element. 

The <global> element, which you always specify at the very beginning of the 
workf low.xml file, lets you specify a set of configuration parameters that are common 
to a group of actions. Here’s a short example:

<workflow-app name=....>
   <global>
     <job-tracker>localhost:8032</job-tracker>
     <namenode>hdfs://localhost:8020</name-node>
     <configuration>

<property>
<name>mapred.job.queue.name</name>
<value>certification</value>

</property>
     <configuration>
   </global>
   ...
</workflow-app>

In this scenario, we specify the job-tracker and namenode properties inside the 
<global> element, since these two properties have the same value for all our actions. 
You can override the values you set here for the two properties by specifying different 
values for them further down in the workf low.xml file.

If you specify any configuration properties inline in the body of the workf low action, 
they take precedence over values you specify under the global section.

Running an Oozie Workflow Job
Okay, you know how to configure the action nodes with the various configuration set-
tings each action type requires, and you also know how to configure the control nodes. 
You’re getting very close to being able to run the Oozie job from the command line, 
but there’s one final step left. 

Each time you invoke an Oozie workf low application, you must also let Oozie know 
the configuration properties for the job itself. You use the properties.xml file (you can 
name it something else if you so desire) to specify the workf low job properties. 

Specifying the Job Properties
Earlier, you learned that you need to package the various files necessary to run a workf low 
application and place them in HDFS. How does Oozie know where that directory is? 
You specify this and other job properties in the job.properties file. Unlike the actual 
workf low files, you don’t store this file in HDFS—you save it in the local file system.
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Be sure to understand the difference between the job.properties file and the 
workf low.xml file:

 n The job.properties file includes the parameters that you want to pass to Oozie 
at runtime. 

 n The workf low.xml file contains the actual instructions for running the Oozie job, 
whether it be a workf low or a coordinator job. You must store the workf low.xml 
file in HDFS. This is to make sure that the application running the Oozie job 
can find the workf low.xml file. 

Note

In addition to the workflow.xml file, HDFS must also store the Oozie library directory that 
contains the JAR files and other files necessary to run the applications that constitute the 
Oozie job flow.

The job.properties file helps you do two things:

 n It enables you to specify key paths. The most important property of all is the location of 
the application root directory where you stored a workf low’s packaged files. Use the 
oozie.wf.application property to specify this directory or the actual workf low.xml 
file itself. The other property relating to paths is the oozie.use.system.libpath 
property, which tells Oozie where to find the JAR files and libraries in the sharelib 
path. Several actions such as Hive and DistCp require you to specify this option.

 n It helps you parameterize the workf low.xml file. You can use the job.properties file 
to parameterize the workf low.xml file by specifying variables for some settings in 
the workf low.xml file, with the actual values listed in the job.properties file. For 
example, your workf low.xml file can define the NameNode using variables, as in 
the following:

<name-node>${nameNode}</name-node>

You can then include the actual value for the nameNode variable in the 
job.properties file.

You can create a job.properties file in the XML format or in the text format. 
Here’s a simple job.properties file in the name=value format:

nameNode=hdfs://localhost:8020
jobTracker=localhost:8020
oozie.wf.application.path=${namenode}/user/sam/oozie/testJob
oozie.use.system.libpath=true

You can specify the same properties in the XML format by using the <property>, 
<name> and <value> elements, as shown here:

<configuration>
  <property>
    <name>nameNode</name>
    <value>hdfs:localhost:8020</value>
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  </property>
  <property>

...
  </property>
</configuration>

Suppose you parameterize your workf low.xml file by specifying two variables: 
NameNode and JobTracker. When you submit the workf low to Oozie, it’ll then substi-
tute the actual values for the two parameters by reading the values you specified in the 
job.properties file.

Tip

Remember that you can also configure an Oozie workflow with command-line parameters 
when you run a workflow. You can use the command line to specify parameters for a specific 
invocation of a workflow. Any parameter values you specify at the command line will override 
the parameter’s values in the job.properties file.

Deploying Oozie Jobs
In order to run a job, Oozie reads the XML file where you defined the application. 
Since Oozie requires all of the application files in HDFS, you deploy Oozie applications 
by copying the directory containing the application files to HDFS.

Every Oozie application consists of a file with the application code and other files such 
as configuration files, JAR files and scripts. An Oozie workf low, an Oozie coordinator 
and an Oozie bundle job are each a separate application. Thus, a workf low application 
is represented by a workf low.xml file together with the supporting files, a coordinator job 
with a coordinator.xml file and its supporting files, and a bundle job with a bundle.xml 
file and its supporting files.

Each Oozie application is organized in a directory, with the directory containing all 
the files required by the application. Since the files of an application often reference each 
other, it’s customary to use relative paths for the files. For example, the JAR files are 
placed in the lib/ subdirectory of the main application directory (in HDFS). This makes 
it quite easy for you to move the application to another directory. 

Creating Dynamic Workflows
A dynamic workflow uses parameterization to save time and effort and avoid unnecessary 
repetition. In this context, parameterization refers to using parameters instead of hard 
coded values so you can use the same job for multiple purposes. 

For example, you may want to move data into your cluster from a Teradata or Oracle 
database using Sqoop import jobs. You may want to perform the same job but with slight 
modifications throughout the day or week. In cases such as these, you can enhance your 
productivity and cut back on tedious writing of workf low and coordinator configuration 
files by using dynamic workf lows. 
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Oozie offers support for parameterizing its workf lows, coordinators and bundles 
by letting you use variables, functions and even expressions as the parameters. Using 
extensive parameterization in your Oozie workf lows, for example, makes for a dynamic 
workf low rather than a static workf low that you need to reconfigure each time you want 
to run it.

Oozie enables the use of the JSP EL syntax, and the variables, constants, functions 
and expressions you specify in the EL syntax are called EL variables, EL constants, EL 
functions and EL expressions, respectively. Most often, you’ll be using EL variables to 
parameterize Oozie workf lows and coordinators. Here’s one example of an EL variable.

<name-node>${nameNode}</name-node>

When you submit the workf low for execution, Oozie replaces the variables defined by 
you with the values you specify for the variable in the job.properties files, as I explained 
earlier.

Oozie also provides a set of EL constants, such as KB, MB, GB, TB and PB, to represent 
kilobytes, megabytes and so on. In an Oozie coordinator, Oozie also supports system 
variables such as ${YEAR}, ${MONTH}, ${DAY} and ${HOUR}. In a workf low, you can specify 
system variables to represent Hadoop job counters such as FILE_BYTES_READ, MAP_IN and 
MAP_OUT. Your workflow can make use of the job counters as shown here:

${hadoop:counters("testMRNode")["FileSystemCounters"]["FILE_BYTES_READ"]}

You can use the Hadoop counters either to print out information in the log file or 
to take a specific action based on the values of the mapper and reducer counters following 
the completion of the mapper/reducer processing.

Oozie offers several EL functions that let you perform useful tasks. For example

 n The built-in function wf:id() lets you get the ID of the workf low you’re executing. 
 n The timestamp function supplies the current UTC time in the format 
YYYY-MM-DDThh:mm:ss:sZ. 

 n The fs: fileSize(String path) function is an HDFS EL function that returns 
the size of the file you specify, in bytes. 

EL expressions are quite powerful, and you’ve already seen them in action during the 
discussion of the <decision> control node earlier on.

Oozie Coordinators
While the Oozie workf lows contain all the job logic, there’s something missing in them—
workf lows don’t offer any scheduling capabilities. 

Oozie workf lows help you run Hadoop applications in a specified sequence. So the 
workf lows are good for manually running the applications. However, in practice, most 
commonly you’d need to schedule pre-created, stored Oozie workf lows. You can schedule 
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Oozie workf lows for execution through an Oozie coordinator, and schedule the jobs 
either at specific time intervals or base the job execution on the availability of application 
data. Oozie coordinators are what you use to schedule your Oozie workf lows.

The time-interval-based coordinator scheduling works very similar to the familiar 
Linux crontab. 

You define an Oozie coordinator with the following entities:

 n Start and end time
 n Frequency
 n Input and output data
 n The workf low to run 

For example, you can create a coordinator job that runs a workf low at 1 A.M. daily, 
starting on January 1, 2016 and ending on December 31, 2016.

Once you create an Oozie coordinator, it continues to run workf lows automatically 
until it reaches the end time you define for it. Workf lows within a coordinator may or 
may not be dependent on the availability of input data. If the workflow run depends on input 
data being available, the workf low won’t start until the input data becomes available. 

Note

When an Oozie coordinator’s workflows don’t define any input data, the job is run on a 
fixed time schedule, just as a Linux cron job.

 A coordinator, as its name indicates, simply acts as a wrapper around the actual 
workf low—it doesn’t contain any type of job execution logic. A coordinator can start 
a workf low based on the times you specify or upon the availability of the necessary input 
data for running a workf low. Coordinators also facilitate the monitoring and controlling 
of workf low execution. In the following sections, I quickly review the two basic types of 
Oozie coordinators:

 n Time-based coordinators
 n Data-based coordinators

Time-Based Coordinators
A time-based coordinator is one where you schedule jobs to execute at a certain time. 
A time-based coordinator is very similar to how you schedule jobs through the Linux 
crontab.

 When do you use a time-based coordinator? Scenarios for using time-based coordi-
nators are easy to come by. In our own clusters, we have several daily and weekly jobs 
that are designed to produce reports for management and other groups of our companies. 
We schedule Oozie jobs at night so the reports are completed by the time people log into 
work early in the morning the next day. 
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You specify three important items when you create a time-based coordinator:

 n Start time: This is not the actual start time of the workf low—it’s the first time the 
workf low is executed (e.g., January 1, 2016).

 n End time: This specifies the last time a workf low is run by this coordinator 
(e.g., December 31, 2016).

 n Frequency: This specifies how often the coordinator must run the workf low. 

Each time you run a coordinator application, it runs a separate coordinator job. So, 
you can submit the same coordinator multiple times with different parameters if you wish.

A Simple Time-Based Oozie Coordinator
Oozie coordinators are quite easy to configure when compared to the configuring of an 
Oozie workf low. Just as you created a workf low.xml file for defining the workf low, you 
create a coordinator.xml file (you can give it a different name if you wish) to define 
your Oozie coordinator. 

Here’s a basic Oozie job coordinator.xml file.

<coordinator-app name="test_coord_job" 
start="2016-01-01T02:00Z " 
end="2016-12-31T02:00Z" 
frequency="1440"  
timezone="UTC" 
xmlns="uri:oozie:coordinator:0.4">

   <controls>...</controls>
   <action>

<workflow>
<app-path>${appBaseDir}/app/</app-path>
<configuration>
<property>

<name>nameNode</name>
<value>${nameNode}</value>

</property>
<property>
<name>jobTracker</name>
<value>${jobTracker}</value>

</property>
<property>
<name>testDir</name>
<value>${appBaseDir}</value>

</property>
</configuration>

</workflow>
   </action>
</coordinator-app>

Similar to how you used the workflow-app element to start and end an Oozie workf low 
application, you use a coordinator-app element to start and end the Oozie coordinator 
application. Here are the start time, end time, and frequency for the coordinator.

start="2016-01-01T02:00Z" 
end="2016-12-31T02:00Z" 
frequency="1440"
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Here’s how the start, end and frequency parameters work:

 n The start time here specifies when the coordinator should begin executing the 
workf low by creating a coordinator action. Note that start time isn’t the same 
thing as the scheduled time at which the coordinator runs. 

 n The end time specifies when the coordinator should stop creating new coordinator 
actions to run the workf low embedded in the coordinator.

 n The frequency parameter species how often the workf low ought to be run, in 
minutes (every 24 hours, in our example here). 

The workf low that this coordinator will run is included between the <workflow> 
and the </workflow> elements. The workf low can include any of the action types I 
discussed in the previous section. 

Note that I’ve parameterized the workf low in this case. The coordinator simply uses 
these parameters to automate job submission, as in the case of the workf lows you saw 
earlier. The big difference is that whereas in the case of a workf low application I used the 
oozie.wf.application.path property to specify the location of the workf low application 
files, here I use the app-path property to specify the workf low application path. 

As with workf lows, you can use EL functions that relate to time and frequency in 
order to provide benefits such as making applications portable across time zones and 
handling Daylight Saving Time–related changes in time.

Tip

Most of the time, you submit an Oozie coordinator through the Hue interface. Hue makes it 
very easy to create both Oozie workflows and coordinators and does all the heavy lifting for 
you. However, you can run a workflow embedded in a coordinator by running the coordinator 
from the Oozie command line interface or through the Oozie web UI.

Data-Based Coordinators
A data-based coordinator is one which uses the availability of specific data as the trigger 
for launching a job. Often you need to execute a job only after a specific data file or direc-
tory is available, either through another workf low or after an external data ingest. 

You use the concept of a dataset to represent data produced by an upstream job or 
application. Datasets represent data that’s generated and sent to Hadoop at fixed intervals. 
A data-based Oozie coordinator can have one or more datasets. Following are the five 
attributes of a dataset you need to define:

 n name: The name of the dataset
 n initial-instance: The first (time) instance of valid data in a dataset
 n frequency: How often the data instances occur
 n uri-template: The template of the data directory defined for the dataset, contain-

ing the year, month, day, hour and minute to signify the timestamp when the 
data was created
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 n done-flag: The filename that indicates that the data is ready for use by the Oozie 
workf low

Here’s a simple example showing how to define a dataset:

<dataset name="test_input1" frequency={coord:hours(4)}"
<initial-instance="2015-12-31T02:00Z">

    <url-template>
${baseDataDir}/data_feed/${YEAR}-${MONTH}-${DAY}-${HOUR}

    <url-template>
    <done-flag>_trigger</done-flag>
</dataset>

Okay, so the dataset element in the coordinator.xml file defines the data the workf low 
is dependent on. How does Oozie know when the data is ready for the workf low? You 
use yet another element called input-events to handle the dataset dependency. Within 
the input-events section, of which there is only one in a coordinator.xml file, you can 
specify one or more data-in sections to let Oozie know about the availability of the 
data defined in the dataset element(s).

If your job depends on three sets of datasets, you’ll need to configure three separate 
data-in sections under the input-events element. All of this must be quite confusing 
by now, so here we go with a snippet showing how to define an input-events element 
in the coordinator.xml file.

<input-events>
  <data-in name=testevent_input1" dataset="test_input1">
    <start-instance>${cord:current(-3)}</start-instance>
    <end-instance>${coord:current(-1)}</end-instance>
  </data-in>
</input-events>

 n The <input-events> section contains the one data-in element present in this 
example, although it could contain more elements if you wish, each with a 
unique name of course.

 n The data-in element with the name testevent_input1 specifies three instances 
of the dataset named test_input1 (I used the EL function current() for this).

 n The Oozie coordinator for which you define this input-events section will wait 
to run its workf low until three batches of data arrive from the dataset named 
test_input1.

Note

Oozie also lets you configure an element analogous to input-events called output-events 
to specify the data instance produced by the coordinator action. This is mostly for use in 
cleaning up data during a coordinator reprocessing action.

Suppose you schedule a data-based coordinator to run at a specific time—you can 
do so because even a data-based coordinator can use the frequency parameter to run at 
set times. If the necessary data is available at the time you schedule the coordinator to 
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run, say 3 A.M., the workf low is kicked off right away. If the data isn’t available at 3 A.M., 
the coordinator job waits for the input data before starting up the workf low. 

What happens if the data isn’t available for several days due to a problem with a data 
ingest f low or something else? No problem so far as the coordinator is concerned—it 
keeps track of all the missed days and sets off the workf low to process data for each day 
as it finally arrives into your system. It’s helpful that the output data is dated the same as 
the date of the input data generation.

Time-and-Data-Based Coordinators
Frequently, you want to schedule a coordinator job to execute at a specific time based 
on whether some data files or directories are available for processing. Following is an 
Oozie coordinator that is based on both time and the availability of specific data.

<coordinator-app name="sampleCoordinator"
frequency="${coord:days(1)}"
start="${startTime}"
end="${endTime}"
timezone="${timeZoneDef}"
xmlns="uri:oozie:coordinator:0.1">

   <controls>...</controls>
   <datasets>

<dataset name="input" frequency="${coord:days(1)}" initial-
instance="${startTime}" timezone="${timeZoneDef}">

<uri-template>${needDataDir}</uri-template>
</dataset>

   </datasets>
   <input-events>

<data-in name="sampleInput" dataset="input">
<instance>${startTime}</instance>

</data-in>
   </input-events>
   <action>

<workflow>
<app-path>${workflowAppPath}</app-path>

</workflow>
   </action>     
</coordinator-app>

This coordinator job will run at a specific start time and data and executes once every 
day—but only if the data set named needDataDir is available. It continues to run daily 
until the end time you specified.

Submitting the Oozie Coordinator from the Command Line
As with the submission of the Oozie workf lows, you must upload the coordinator job 
definition to HDFS. Again, as with the workf low submission, you use a job.properties 
file (you can name it anything you want) but store it on the local file system. 

The job.properties f ile specifies the values for all the variables you parameterize in 
the coordinator.xml file. Here are the contents of the job.properties file for our coordi-
nator, which I had named test-coord-job in the coordinator.xml file earlier.

namenode=hdfs://hadoop01.localhost.com:8020
jobTracker=hadoop01.localhost:8030
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appBaseDir=${nameNode}/user/{user.name}/test-coord-job
oozie.coord.application.path=$appBaseDir}/app

The job.properties file is easy to figure out—it does the following:

 n Specifies values for the nameNode and jobTracker parameters that you used in 
the coordinator.xml file

 n Defines the directory pointed to by the appBaseDir variable as the HDFS direc-
tory where the coordinator job definition files are stored

 n Defines the coordinator application path as the directory under the appBaseDir 
directory in HDFS

Once you’re done with configuring the job.properties file, upload the coordinator 
job definition, which includes the coordinator.xml file, to the HDFS directory you 
specified with the oozie.coord.application.path property in the job.properties file. 

Before you upload the job definition, place the coordinator.xml file as well as the 
workf low.xml file for the workf low in a local directory named test-coord-job.

$ hdfs dfs –put test-coord-job/ .
$ hdfs dfs –ls –R test-coord-job/

-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/app
-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/app/coordinator.xml
-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/app oozie-app/workflow.xml
-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/data
-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/data/input
-rw-r--r--   3 sam hadoop 4314 2016-06-08 21:53 /user/sam/search/
test-coord-job/data/input/input1.txt
$

Now that your job.properties file is configured and you’ve also uploaded the coordinator 
job definition to HDFS, submit the coordinator job as follows:

$ export OOZIE_URL=http://hadoop01:11000/oozie
$ oozie job –run –config job.properties

This oozie job -run command looks similar to the one you used for submitting 
an Oozie workf low. Oozie will look in the HDFS location you specified with the 
oozie.coord.application.path property and run the coordinator job using the job 
definition in the coordinator.xml you placed in that location.

Managing and Administering Oozie
In the example shown in the previous section, I exported the OOZIE_URL before invok-
ing the Oozie CLI. You need to specify this so the Oozie client can communicate with 
the Oozie server. The location of the server acts as the end point for contacting the Oozie 
server’s web service. 
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If you don’t want to specify this environment variable each time you invoke the 
Oozie CLI, you can simply define the OOZIE_URL variable on the client machine. You can 
alternatively pass the location of the Oozie server by adding the –oozie option when 
you invoke the Oozie CLI. So, all of the following ways of invoking the Oozie CLI 
will work:

$ export OOZIE_URL=http://hadoop01:11000/oozie
$ oozie job –run –config job.properties
...
$ oozie job –run –config job.properties
...

Here’s what I had to do to run an Oozie workf low using the Oozie CLI:

1. I exported the OOZIE_URL environment variable.

2. I added the variable to the .bashrc file for the user executing the command.

Alternatively, I can specify the location of the Oozie server with the –oozie option, 
as shown here:

$ oozie job –run –config job.properties –oozie http://hadoop01.localhost
.com:110000/oozie

Note that you use exactly the same command (oozie job –run ...) to run an Oozie 
workf low job or an Oozie coordinator (or bundle job, which I don’t show here). 
Oozie will know whether it’s a workf low or a coordinator/bundle from reading the 
job.properties f ile you specify at the command line.

Common Oozie Commands and How to Run Them
Oozie comes with several highly useful commands that you can run to manage the Oozie 
jobs in your cluster. Of course, the oozie –help command shows all the available Oozie 
commands.

You can check the job progress with the oozie job –info <jobID> command and 
kill the coordinator job with the oozie job –kill <jobId> command. In both cases, you 
must supply the Oozie coordinator job ID. You can find the job ID in the Oozie job 
output following a successful submission of a coordinator job. 

You can check the status of an Oozie job with the following command:

$ oozie job –info 0000001-00000001234567-oozie-W

The output of the –info command shows the status as RUNNING, KILLED or SUCCEEDED. 
Alternatively, you can use Oozie’s web UI (http://localhost:110000/oozie) to find 
the same information.

If you want to find the status of all the running workf low jobs in your cluster, run the 
following command:

$ oozie jobs –oozie http://localhost:8080/oozie -localtime -len 2 -filter 
status=RUNNING
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In this command, the valid filter names are the name of the workf low application, 
the user that submitted the job, the group for the job and, finally, the status for the 
job. We chose the status (RUNNING) f ilter value in this example.

In order to check the status of multiple coordinators, run the following command:

$ oozie jobs –oozie http://localhost:8080/oozie -jobtype coordinator

You can check the Oozie system itself with the admin option:

$ oozie admin –oozie http://localhost:8080/oozie -status

You can validate a workf low.xml file with the following command:

$ oozie validate testApp/workflow.xml

The validate command will perform an XML schema validation of the workf low.xml 
file you specify.

You can perform a dry run of a coordinator job with the dryrun option:

$ oozie job –oozie http://localhost:8080/oozie job -dryrun -config 
job.properties

The dryrun option is extremely useful in many scenarios in a production cluster. There 
are many occasions when you modify one or more attributes of a coordinator and want 
to see if your changes are going to do what you expect them to do.

You can kill a running Oozie job in the following way:

$ oozie job –kill 0000001-00000001234567-oozie-W

The suspend command lets you suspend a running Oozie job:

$ oozie job –suspend 0000001-00000001234567-oozie-W

To resume a suspended job, execute the resume command:

$ oozie job –resume 0000001-00000001234567-oozie-W

You can get the records of SLA events by issuing the following command:

$ oozie sla –oozie http://localhost:8080/oozie -len 1

You can run a Pig job through HTTP in the following way:

$ oozie ping –oozie http://localhost:8080/oozie -file pigScriptFile -config  job
.properties –X –param_file params

Suspending Jobs and Handling Oozie Job Failures
Let’s quickly learn how you can suspend Oozie jobs and how to handle Oozie job failures.

Suspending Running Jobs
You may suspend, or pause a running coordinator job. As with workf lows, coordina-
tors can finish with a SUCCEEDED or FAILED state, with several other states as well, such 
as DONE_WITH_ERROR and PAUSED_WITH_ERROR, for example.
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Handling Job Failures
If an Oozie workf low should fail for any reason, you can simply rerun the workf low. 
Oozie is fine with rerunning failed jobs, since it doesn’t run the already successful por-
tions of the workf low you’re running the second time. 

Why is this a big deal? As production system administrators, we’re all too familiar with 
scenarios where a job fails and we would have to re-execute the failed job. Oozie’s capa-
bility to pick up precisely from the point of failure is a very welcome feature for us adminis-
trators who are responsible for efficiently completing all jobs within their assigned SLAs.

Note

You can use the Oozie web UI to run your Oozie workflows and coordinators. Oozie will create 
the workflow.xml and coordinator.xml files for you once you specify the details of the workflows 
and coordinators you want to create. You can also view the status of running jobs and find 
out when the job is scheduled to run again.

Troubleshooting Oozie
In order to troubleshoot the performance of the Oozie server, you should be able to check 
the Oozie configuration files, as well as the log files generated by Oozie. Here’s a summary 
of the files you may need to check often:

 n Oozie configuration files:
 n oozie-site.xml: The Oozie server configuration file
 n oozie-env.sh: Configures the Oozie environment
 n adminusers.txt: Configures the administrative users
 n oozie-log4j.properties: Configures logging

 n Oozie log files:
 n oozie-ops.log: Monitoring messages for administrators
 n oozie.log: Log file for web services
 n oozie-instrumentation.log: Instrumentation data
 n oozie-audit.log: Audit data

Oozie Bundles

Oozie bundles are an even higher abstraction than Oozie coordinators. They let you 
bundle together multiple coordinator applications, with the bundles specifying when 
a coordinator must run. Thus, an Oozie bundle consists of one or more coordinators, 
with each of the coordinators in turn consisting of one or more workflow actions.

Oozie bundles are highly useful when handling large data pipelines. They offer a conve-
nient way to group together related coordinators. Since a bundle consists of a related 
set of coordinators, you can start and stop multiple coordinators in unison. 
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In smaller environments the use of bundles may not be easily apparent to you, but in 
large Hadoop environments, especially such as the ones run by Yahoo! and similar 
large-scale data processors, there are hundreds of thousands of workflows running on 
a daily basis. Bundles offer a major operational convenience in such environments. 

You create a bundle by defining a bundle and using the bundle-app element within which 
you define multiple coordinators. The specification of the job.properties file and how you 
submit an Oozie bundle job is quite similar to how you do so for an Oozie coordinator job.

Oozie cron Scheduling and Oozie Service Level Agreements
Oozie gives you the option to choose a cron-like syntax to schedule your coordinators, 
and it also lets you specify SLAs for your production jobs. I brief ly explain the two 
concepts in the following sections.

Oozie cron Scheduling
Although time-based coordinators are useful for scheduling jobs at set intervals or 
frequencies, they’re limited in their scheduling capabilities. For example, you can’t use 
time-based scheduling to schedule workf lows that need to be run only on specific days 
of the week or just once every so many days. Luckily, Oozie comes with Linux-like 
capabilities, which let you schedule operations in a highly f lexible fashion.

Here’s a time-based coordinator that uses the cron syntax for f lexible scheduling.

<coordinator-app name="test_app" start="${startTime}" end="{endTime}"
   frequency="0 11-14" * * MON, WED" timezone="UTC"
   xmlns="url:oozie:coordiantor:0.4:>

This coordinator runs a workf low only on Monday and Wednesday between the hours 
of 11 A.M. and 2:00 P.M. The 0 before 11-14 means that the workf low job is kicked off 
at 0 minutes after the hour.

Oozie SLAs
In production settings, meeting agreed upon SLAs is critical—Oozie lets you set up SLAs 
for all of your workf lows. Just add the <sla:info> element to the workf low.xml file for 
a job, as shown here.

</workflow-app>...
...
<sla:info>
 <sla:nominal-time>${nominal_time}</sla:nominal-time>
 <sla:should-start>${10 * MINUTES}</sla:should-start>
 <sla:should-end>${60 * MINUTES}</sla:should-end>
 <sla:max-duration>${60 * MINUTES}</sla:max-duration>
 <sla:alert-events>start_miss,end_miss,duration_miss</sla:alert-events>
 <sla:alert-contact>prod.support@mycompany.com</sla:alert-contact>
 <sla:notification-msg>Data Loading Job has encountered an SLA Event.</
sla:notification-msg>
  </sla:info>
</workflow-app>
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Once you set the SLA for a workf low or coordinator job as shown here, Oozie will 
actively track the SLA in the job. You can access the SLA information through the Oozie 
web console dashboard, REST APIs, JMS messages or email alerts.

Summary
Here’s what you learned in this chapter:

 n Oozie is a very powerful tool that lets you create sophisticated workf lows in a 
Hadoop cluster.

 n While an Oozie workf low lets you configure the actual job you want to run, the 
coordinator lets you schedule those workf lows and the Oozie bundles let you 
gather together, in one compact place, all related workf lows and coordinators.

 n You can configure Oozie jobs so that you’ll get notifications when SLAs are 
violated.
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15 
Securing Hadoop 

This chapter covers the following:

 n Authentication in Hadoop through Kerberos
 n Authorization in Hadoop and the Sentry service
 n Auditing in Hadoop
 n Securing Hadoop data through encryption

  Hadoop, as we know, is an open-source project that includes various modules that 
were independently developed over time to add various types of functionality to its core 
capabilities. Security was really an afterthought, and Hadoop lacks a coherent security 
model. By default, Hadoop assumes a trusted environment. As Hadoop has matured, 
corporations are of course concerned with the security of sensitive business data that 
they’re increasingly storing in Hadoop-based environments.

Unlike in the case of a regular database, in Hadoop there’s no central authentication 
server or mechanism. If users can manage to access the server running the NameNode 
and have appropriate permissions on the Hadoop binaries, they can potentially read 
data they weren’t authorized to read and even delete that data. There are no role-
based access control (RBAC), object-level or other granular authentication features in 
Hadoop. 

Since you store data in multiple DataNodes, each of them is a potential entry point 
for an attacker, and you  must secure all the nodes in a cluster. In order to encrypt 
data f lowing between clients and the DataNodes, you must use Kerberos or a Simple 
Authentication and Security Layer (SASL) framework. Communication between the 
DataNodes and the NameNode also needs to be protected.

Encryption is an important requirement for protecting sensitive data. Lack of encryp-
tion at rest and encryption of in-f light data means that internode communications can 
be intercepted, and private information stored on disk can be accessed. 
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Hadoop security involves three main concepts—authentication, authorization and 
auditing. 

 n The best and accepted way to provide authentication for Hadoop is through Kerberos 
security. Kerberos provides strong authentication of users and services that work 
with a Hadoop cluster. 

 n Authorization, which determines who can access a Hadoop cluster’s data, is a key 
security concern in any environment. You use access control lists (ACLs) to configure 
authorization. Apache Sentry lets you configure strong, fine-grained authentica-
tion for your data. 

 n Auditing is the tracking of activity within the cluster and can include both user 
and administrative activity. Encrypting data in transit via the network and data at 
rest (on disk storage) is extremely important, especially when you’re dealing 
with what’s known as personally identifiable information (PII) such as social 
security numbers. 

Hadoop Security—An Overview
                   With almost daily announcements of major data breaches involving credit card data, 
social security numbers, medical and other personal data, corporations are extremely 
concerned about protecting data. 

Protecting your data involves securing your networks, web servers, web application 
servers and database, among other things. Together, the security measures used currently 
by companies constitute what’s known as defense in depth, a concept that has gained 
tremendous ground over the past several years, with frequent painful reminders provided 
by sensational and catastrophic corporate security breaches.

Complete security of corporate data is a goal that may never be reached, but defense-
in-depth strategies seek to minimize an organization’s security vulnerabilities. In order to 
protect your data, you put in place all the standard corporate security features such as network 
security, intrusion detection and intrusion prevention systems and so on. On top of this, you 
add other security layers that control access to the system and limit access to the data. 

As Hadoop administrators, you need to learn how to put in place authentication, 
authorization and accounting policies for accessing and using data stored in the Hadoop 
clusters, as well as to secure the data in transit and at rest. 

Securing Hadoop not only involves securing access to Hadoop and securing the stored 
data itself (data at rest), but also the whole gamut of security that all IT operations use, 
such as network security and operating system security. Following are some general prin-
ciples that underlie enterprise security in a Hadoop environment:

 n Ideally, a Hadoop cluster should be in its own network segment, separated from the 
rest of the IT environment with appropriate firewalls, as well as security measures 
such as intrusion detection and intrusion protection systems. 

 n It’s common practice to configure a secured VLAN for a Hadoop cluster and 
limit connections to those initiated from the gateway or edge servers only. 
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 n In general, the network firewalls should permit FTP traffic from a set of FTP 
servers to the edge nodes. They should also allow the worker nodes to connect to 
the database servers to send and receive data over specific ports.

 n Ingest mechanisms such as Apache Flume should be able to access log events from 
web servers over specific ports. 

 n Depending on how clients are allowed to access your cluster—some organizations 
permit clients to directly access the cluster and some don’t—you need to set up the 
appropriate network firewall policies between the applications and the Hadoop cluster, 
as well as between the applications and the actual users. In some places, users execute 
MapReduce and Hive scripts from the command line on one of the cluster’s nodes, and 
in other places users use Hue or a different tool to connect to and work with the cluster.

Hadoop Roles

Each node in a Hadoop cluster hosts different types of services, and the types of 
services it hosts determines the role the node plays in the Hadoop cluster. You devise 
security polices for the various nodes based on the type of role they play in the clus-
ter. Clients can be users or third-party tools such as Hue and will access the cluster to 
perform their work. There are also services such as the Hive metastore, for example, 
that need to access the cluster. 

Let’s summarize the various types of roles in a Hadoop cluster as shown here:

 n HDFS: NameNode, DataNode, JournalNode, HttpFS, NFS Gateway

 n YARN: ResourceManager, NodeManager, JobHistoryServer

 n Hive: Hive Metastore Server, HiveServer2, WebHCat Server

 n Hue: Hue Server, Beeswax, Kerberos Ticket Renewer

 n ZooKeeper: ZooKeeper Server

 n Oozie: Oozie Server

 n Management Services: Apache Ambari, Ganglia, Nagios, Puppet, Chef

The list shown here isn’t by any means exhaustive: There are other roles such as the 
ones required for HBase, for example. You can classify the cluster nodes into various 
types based on the type of role they host. Here’s one way to do this:

 n Master nodes: These nodes run the main Hadoop services. 

 n Worker nodes: These nodes run the services that store and process data.

 n Management nodes: These nodes run the services that help you configure, manage 
and monitor your cluster and include services such as the Ambari Server, Ganglia, 
Nagios, Puppet and Chef. 

 n Gateway nodes: Also known as edge nodes, gateway nodes are where you store 
the client configuration files and install the client-facing roles such as Hue and 
Oozie, for example. The following nodes run various types of services that help 
clients access and work on the cluster:

 n Data gateway nodes: HDFS, HttpFS, NFS Gateway and Flume agents



ptg18444370

480 Chapter 15 Securing Hadoop 

 n SQL gateway nodes: Hive, HiveServer2, WebHCat Server

 n User gateway nodes: Client configurations, Hue Server, Oozie Server, Ker-
beros Ticket Renewer

In the following sections, I review the broad areas of Hadoop security, which include the 
following concepts:

 n Authentication, authorization and accounting
 n Securing data at rest
 n Securing data in transit

Authentication, Authorization and Accounting 
Hadoop (or any other) security involves the three well-known concepts of authentication, 
authorization and accounting, which I alluded to in previous sections. In the following 
sections, I discuss how these three essential security concepts are addressed in a Hadoop 
environment.

Authentication
Authentication is the process through which a server or an application knows exactly 
who is accessing the server or application. During the authentication process, the burden 
is on a user accessing the system to provide their identity. In a Linux system, for exam-
ple, when you log in, the system compares your user/password credentials with those in 
the /etc/password file. When this is successful, you’re said to be authenticated with your 
identity, which is your Linux username.

Kerberos is the most popular security model in today’s IT environment. Kerberos is 
an open-source network authentication protocol that lets the cluster nodes verify their 
identity with each other. Kerberos is a pure authentication protocol, so it doesn’t manage 
file and directory permissions. 

When you implement Kerberos, users wanting access to your cluster will first contact 
the central Kerberos server named Key Distribution Center (KDC), which contains the 
credentials database. If the user provided credentials are okay, the KDC grants access to the 
Hadoop cluster. To summarize, the authentication process through Kerberos has three steps:

 n The Authentication Server grants the clients seeking access to the Hadoop cluster 
a Ticket Granting Ticket (TGT).

 n The client decrypts the TGT using their credentials and, using the TGT, gets a 
service ticket from the Ticket Granting Server (TGS)—the TGS grants access to 
the Hadoop cluster.

 n Clients use the service tickets granted by the TGS to access the Hadoop cluster.
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Note

The Kerberos protocol is implemented as a series of negotiations among the clients, the 
Authorization Server and the Ticket Granting Server.

Authorization
Authorization is the process by which a system determines whether the user has the 
necessary permissions to use a resource or access specific data. Authorization typically 
follows successful authentication by the users. The type of authorization varies, and 
passwords may be required in some cases but not in others. 

Authorization is complex in Hadoop. Since Hadoop stores its data in a file system like 
a Linux system and not in tables like a relational database, it’s not possible to restrict users 
by granting them partial access to the data. There’s no central authorization system in 
Hadoop to help you limit the data access by granting partial access to the data files, but 
you can do this with Apache Sentry, as I show later in this chapter, or with Apache Ranger.

Services such as Apache Sentry and Apache Ranger enable you to configure fine- 
grained authorization in Hadoop through a database such as Hive, along with an autho-
rization mechanism. Sentry lets you create rules that specify the possible actions on a 
table and also create roles, which are sets of rules. Using Sentry, you can specify portions 
of file data as Hive tables, and Sentry can then help you with the configuration of fine-
grained permissions for specific portions of data. 

Hadoop’s ACL capabilities help you specify fine-grained read and write permissions 
for specific users without altering the file permissions for all users. The section “HDFS 
Access Control Lists” in this chapter explains HDFS ACLs, which work quite similarly 
to Linux (POSIX) ACLs.

Auditing
Auditing privileged actions is the third key component of security. Since even authorized 
users may at times perform (or try to perform) unauthorized actions, you need to track user 
activity somehow. 

Hadoop’s audit log mechanism helps you track specific user actions in the system for 
security purposes. It’s interesting to note here that you can analyze the humongous 
Hadoop audit logs by storing them in HDFS if you wish and use tools such as Hive to 
process them. HDFS audit logs help you track all HDFS access activity, and the YARN 
audit logs enable you to audit job submission activity.

   In the following sections, I show you how to set up authorization, authentication and 
accounting, as well as data security in a Hadoop cluster. Let’s start with how you can set 
up authentication through Kerberos.

Hadoop Authentication with Kerberos
Kerberos is an absolute requirement for user authentication in Hadoop. Kerberos is the 
most common way of securing a Hadoop cluster, through its robust user authentication 
mechanism. 
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Kerberos and How It Works
In Greek mythology, Kerberos (in Greek, Cerberos) is the ferocious multiheaded dog 
that guards the gates of Hades (Hell) to make sure nobody leaves. In the security world, 
Kerberos has acquired fame as a strong authentication mechanism, while also intimidating 
many administrators with its apparent complexity. 

Kerberos is an authentication protocol where the hosts are trusted but the network isn’t. 
Kerberos works on the premise that the hosts in a cluster are trusted and its secret key isn’t 
compromised. Kerberos security design involves three key entities: 

 n Users who want to authenticate themselves.
 n The service to which the user is attempting to authenticate.
 n Kerberos security server (Key Distribution Center or KDC), trusted by both the user 

and the service. It’s the KDC that stores the secret keys for the users and services.

Kerberos uses a central server. Since a failure of this server means no one can log into 
your cluster, you are allowed to set up more than one server. Passwords are highly secure, 
since Kerberos saves them on the central server and doesn’t replicate the password infor-
mation anywhere else. 

Once a user logs into a system authenticated by Kerberos (also called a Kerberized 
cluster), that user can continue to access all authorized services without having to authenti-
cate again during that session. In this sense, it’s similar to the familiar concept of single 
sign-on.

In a Kerberized cluster, you can’t log in to your cluster with the usual user credentials. 
In order to log in to any of the cluster nodes, you must use the kinit utility. The kinit 
utility isn’t present on your server unless your server already has a Kerberos installation. 
If you try to use the kinit utility without installing Kerberos, you’ll receive an error. 
Even if Kerberos is already present on a server, the command will result in an error if you 
haven’t completely configured Kerberos for authorization:

# kinit
kinit(v5): Cannot resolve network address for KDC in realm EXAMPLE.COM while
 getting initial credentials
#

Kerberos uses a set of unique terms, and to understand how Kerberos authentication 
works, it’s important to grasp what these terms mean. It also employs several unique 
administrative entities for enforcing security. Understanding these entities is crucial to 
configuring and managing Kerberos-based security. I brief ly explain the key Kerberos 
terms and administrative entities in the following sections.

Key Distribution Center (KDC)
A KDC is a Kerberos server that contains an encrypted database wherein it stores all the 
principal entries pertaining to users, hosts and services, including their domain information.

Besides the database, which is stored in the form of a file, a KDC also contains two 
important components, named the Authentication Service (AS) and the previously 
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discussed TGS. The AS and TGS together handle all of the authentication and access 
requests made to a Kerberos-secured Hadoop cluster. The Kerberos database stores the 
principal and realm information.

Authentication Server (AS)
Once a user successfully authenticates to the AS, the AS grants TGTs to clients with 
which to authenticate to other services in a secure cluster. The tickets are time-limited 
cryptographic messages that are used by clients to authenticate with the server. The 
principals will then use the TGT to request authentication and access to a Hadoop 
service.

Ticket Granting Server (TGS)
The Ticket Granting Server validates a TGT passed along by a client and in turn grants 
a service ticket to the client so they can access a Hadoop service. It’s the service ticket 
that enables the authenticated principal to use the services in the cluster.

Keytab File
A keytab file is a secure file that contains the passwords of all the service principals in 
a domain. Each Hadoop service requires that you place a keytab file on all their hosts. 
When Kerberos needs to renew the TGT for a service, it looks up the keytab file.

Key Kerberos Terms
Following are the three key Kerberos-related terms you must be familiar with:

 n Realm: A realm is the basic administrative domain for authenticating users and 
serves to establish the boundaries for an administrative server to authenticate users, 
hosts and services. Each Hadoop user is assigned to a specific domain. It’s customary 
to specify a realm in upper case letters, such as EXAMPLE.COM. There can be multiple 
KDCs and, therefore, multiple realms in a single network.

 n Principal: A principal is a user, host or service that’s part of a given realm. It’s 
common to refer to users as user principals and principals pertaining to services 
as service principals. User principal names (UPNs) denote regular users. Service 
principal names (SPNs) are logins that are necessary to run Hadoop services or 
background processes and include Hadoop services such as HDFS and YARN. 

 n Ticket: When a user wants to authenticate to a Kerberos-supported cluster, the 
administration server generates a ticket. This ticket contains information such as 
the username (usually the same as the user’s principal), the service’s principal, the 
IP address of the client and a timestamp. A ticket has a configurable maximum 
lifetime and a session key. Users can also renew their tickets up to a specified time.

The Kerberos Authentication Process
The Kerberos authentication process is pretty straightforward and involves three key 
steps: the initial client login to a cluster which gets it a TGT from the AS, the granting 
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of service tickets from the TGS and the final step of user authentication to a service. In 
order to explain the authentication process, I use the following components.

 n Realm: EXAMPLE.COM
 n User principal: sam@EXAMPLE.COM
 n Service principal: testservice/host1.example.com@EXAMPLE.COM
 n KDC: kdc.example.com

The user named sam, with the UPN of sam@EXAMPLE.COM, follows these steps to 
authenticate to the Kerberized Hadoop cluster and access a service named testservice.

1. When a user logs into a cluster, he or she contacts the AS at kdc.example.com,
using his or her UPN—for example, sam@EXAMPLE.COM.

2. The authentication server grants the user a TGT, which is a token with which
the user can authenticate itself. The TGT is encrypted with a key that’s the same as
the password for user sam. For service principals, the credentials are passed to the
authentication server from the keytab file stored on the host.

3. The user decrypts the TGT using the password for the principal sam@EXAMPLE.COM.
In our example here, user sam presents the TGT to the TGS at kdc.example.com
to request a service named testservice/hadoop01
.example.com@EXAMPLE.COM. This service ticket enables the client to access the
secure cluster. The client continues to use the same TGT for multiple requests to
the TGS until the expiry of the TGT.

4. Once the TGS validates the TGT presented by user sam, it provides sam a service
ticket encrypted with the key of the UPN named testservice/hadoop01.example
.com@EXAMPLE.COM.

5. The user sam authenticates to a specific service in the secure cluster with the service
ticket received in step 4. Once user sam presents the service ticket to the service
named testservice, the service decrypts it with the key of the UPN testservice/
hadoop01.example.com@EXAMPLE.COM to validate the service ticket.

6. Now that user sam has been successfully authenticated, the service named testservice
will allow user sam to use the service.

Kerberos Trusts
In real life, organizations may use multiple realms to separate different parts of the enter-
prise or for other reasons. Each of these realms will have their own KDCs, with each KDC 
aware of principals that are part of its own realm. 

If a user from realm A wants to use a service that’s in realm B, obviously, one must 
set up a way for the two realms to work together. Kerberos trusts are the way to establish 
a trusted relationship between two realms, making it possible for principals from one 
realm to access services from the other.
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Suppose you have two different Kerberos realms within your organization. You 
can name them SALES.EXAMPLE.COM and HR.EXAMPLE.COM. You can configure a trusted 
relationship between these two realms, which enables a user from SALES.EXAMPLE.COM 
to trust information coming from the HR.EXAMPLE.COM realm. Of course, setting up 
this trust enables the second realm to trust information coming from the f irst realm 
as well.

Note

Refer to principals in the format username@REALM or username/role@REALM. For a 
service principal, the naming format is service/hostname@REALM—for example, yarn/
hadoop01.localhost@EXAMPLE.COM.

A Special Principal
There's a special principal in each Kerberos database that plays a critical role in establish-
ing a trusted relationship between two realms. This principal has the format krbgt/
<REALM>@<REALM>, for internal use by the AS and the TGS. 

For our EXAMPLE.COM realm, this’ll be krbgt/EXAMPLE.COM@EXAMPLE.COM. Kerberos 
uses the key for this special principal to encrypt the TGT issued by it. This is to ensure 
that the TGT issued by an AS can be validated only by the TGS and nobody else.

When you set up a one-way or two-way trust between realms, the special principal 
I described here must exist in both realms. The password for this principal needs to be 
the same in both realms as well.

One-Way Trust and Two-Way Trust

A one-way trust allows principals from realm A to access realm B but doesn’t allow the 
users stored in realm B to access realm A. One-way trusts are the most commonly used 
trust relationship between two realms. Most commonly, organizations want to use the 
end user information that’s stored in the company’s Active Directory to access the 
Hadoop cluster. In such a case you set up a KDC in the Hadoop cluster to hold all the 
SPN information and the UPN information will be in Active Directory.

In a one-way trust, the user principals exist in a single realm only. Let’s say you have 
two realms that you’ve named HR.EXAMPLE.COM and SALES.EXAMPLE.COM, between 
which you want to establish a one-way trust. You must set up the special principal 
krbtgt in both realms. That is, for the HR realm to trust the SALES realm, you must 
set up the principal krbtgt/HR.EXAMPLE.COM@SALES.EXAMPLE.COM in both realms.

In a two-way trust, principals in both realms can access the other realm. This requires 
that the user principals exist in both realms. Therefore, you must create the principal 
krbtgt/SALES.EXAMPLE.COM@HR.EXAMPLE.COM and the principal krbtgt/HR.EXAMPLE
.COM@SALES.EXAMPLE.COM in both realms. This will establish full trust between the 
realms SALES and HR.
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I understand if at this point all this discussion about realms, KDCs, principals, TGTs 
and so on is probably a bit confusing. Once I explain how you actually set up Kerberos 
authentication in a Hadoop cluster, however, you’ll realize that this isn’t really as hard 
as you might have imagined! 

The next section shows how to Kerberize (the configuring of authorization through 
Kerberos) your Hadoop cluster.

Adding Kerberos Authorization to your Cluster
While there are numerous configuration parameters and settings involved, it’s really 
quite straightforward to Kerberize a Hadoop cluster. You can confidently go about 
securing your cluster by first making sure you thoroughly understand the Kerberos 
concepts I explained in the previous sections. 

Securing Hadoop through Kerberos involves the following steps.

1. Installing Kerberos in the Hadoop cluster

2. Configuring Kerberos

3. Setting up Kerberos for Hadoop, which involves creating the Kerberos database,
the Kerberos Admin user and the service principals and their keytabs

4. Starting up the Kerberos daemons

5. Configuring Hadoop for Kerberos, which involves the mapping of service prin-
cipals to OS usernames and the addition of several Kerberos-related parameters to
Hadoop configuration files such as hdfs-site.xml and yarn-site.xml

6. Starting up the Hadoop Cluster (such as HDFS and YARN ) in the secure mode

7. Testing secure connections to the Hadoop cluster

Let’s start with the installation and configuration of Kerberos in your cluster.

Installing Kerberos
In order to configure Kerberos authentication, you must first install and configure Kerberos. 
This configuration precedes the configuration of the Hadoop cluster with Kerberos. 

Installing Kerberos involves the installation of the Kerberos software, of course, but 
it really means installing the KDC on one of the cluster nodes. You then install the 
Kerberos client on all the cluster nodes.

Kerberos configuration means you configure various aspects of the KDC pertaining 
to the administration of the KDC, the lifetime of tickets and so on. Once you do this, 
you can create the realms, user and service principals and set up your cluster for Kerberos 
authentication. 

Install Kerberos on the master node as shown here:

1. Download the latest release of Kerberos from the MIT website:

# wget http://web.mit.edu/kerberos/dist/krb5/1.10/krb5-1.10.6-signed.tar

http://web.mit.edu/kerberos/dist/krb5/1.10/krb5-1.10.6-signed.tar
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2. Unpack the source code and the encrypted TAR file:

# tar –xvf <downloaded release>

3. Unpack the krb5-1.11.3.tar.gz file:

# tar –xvf krb5-1.11.3.tar.gz

4. Move to the installation directory and compile the source code:

# cd <installation directory>/src
./configure

5. Create the executable with the make command:

# make

Once you install the Kerberos server, install the Kerberos client on all cluster nodes, 
including the master and the worker nodes, as shown here:

# yum install lkrb5-libs krb5-workstation

Once you install all the Kerberos packages and install the Kerberos KDC, the next 
step is to configure the KDC by editing its configuration files. In what follows, I’ll use 
example.com as my domain name and EXAMPLE.COM as my realm name. 

Kerberos uses two main configuration files, named krb5.conf (usually /etc/krb5.conf) 
and kdc.conf (usually /var/Kerberos/krb5kdc/kdc.conf ). There’s also a third file called 
kadm5.acl, usually under the /var/krb5kdc directory. 

Configuring Kerberos (krb5.conf)
The krb5.conf file is the Kerberos high-level configuration file that lets you configure 
the location of the KDC, the admin servers and the mapping of Kerberos realms with 
hostnames. This file is the Kerberos client configuration file and is read whenever a client 
attempts to authenticate through the KDC using the kinit utility. The default krb5.conf 
file is usually in the /etc directory, and you can use the default values for most of the 
configuration parameters in this file.

Configure the krb5.conf file as shown here:

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[kdc]
profile = /var/kerberos/krb5kdc/kdc.conf



ptg18444370

488 Chapter 15 Securing Hadoop 

[realms]
 EXAMPLE.COM = {
  kdc = kdc.example.com // the hostname of the KDC
  admin_server = kdc.example.com     // the hostname of the Kerberos Server 
(kadmin process)
 }
CERT.EXAMPLE.COM = {
  kdc = kdc.cert.example.com
  admin_server = kdc.cert.example.com 
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .dev.example.com = EXAMPLE.COM
 dev.example.com = EXAMPLE.COM

As you can see here, there are multiple sections in a krb5.conf file. Here’s what the 
sections mean:

 n logging: Logging method used by Kerberos daemons.
 n lib_defaults: Default values used by the Kerberos library. The default_realm 

parameter specifies the Kerberos realm to be used if you don’t specify one when 
you authenticate yourself.

 n kdc: Location of the kdc.conf file.
 n realms: Realm-specific information such as the location of the Kerberos servers 

for a realm: there could be several of these, one for each realm. You can specify a 
port for the KDC and the admin server, and if you don’t, it’s understood that port 88 
will be used for KDC and port 749 for the admin server.

 n domain_realm: Specifies the mappings between DNS domain names and Kerberos 
realm names. Given a server’s FQDN, the domain_realm parameter’s value(s) 
determines the realm to which a host belongs.

 n forwardable: Tickets can be forwardable if this parameter is set to true, meaning 
if a user with a TGT logs into a remote system, the KDC can issue a new TGT 
without the user having to authenticate again.

And here are the key configuration items I edited in the krb5.conf file:

 n I edited the kdc and realm sections to point to my KDC server and my realm, 
which is EXAMPLE.COM.

 n I set the ticket_lifetime attribute to 24 hours. 
 n The renew_lifetime attribute is set to 7 days. This allows Hadoop components 

such as Oozie and Hue to renew their Kerberos tickets. Once they’re issued, tickets 
can be renewed for a period of 7 days.

In the krb5.conf file shown here, there are two realms under the <realms> section, 
EXAMPLE.COM and CERT.EXAMPLE.COM. This helps establish a one-way trust between the 



ptg18444370

489Hadoop Authentication with Kerberos

two realms. You can include all the UPNs in the EXAMPLE.COM realm and the CERT.
EXAMPLE.COM realm can contain all the SPNs for a Hadoop cluster used for testing 
purposes. This setup helps UPNs in the test cluster to access the EXAMPLE.COM realm by 
using their credentials in the CERT.EXAMPLE.COM realm.

Once you complete configuring the krb5.conf file, you must copy this to every node 
in your Hadoop cluster.

Configuring the Key Distribution Center
The next step is to configure the Kerberos server, which you do by configuring the KDC. 
This involves configuring the database, AS and TGS, all of which are components of 
the KDC. 

In order to configure the KDC, edit the kdc.conf (/var/kerberos/kerb5kdc/kdc.conf ) 
file as shown here:

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 EXAMPLE.COM = {
  profile = /etc/krb5.conf
  supported_enctypes = aes128-cts:normal des3-hmac-sha1:normal
arcfour-hmac:normal des-hmac-sha1:normal des-cbc-md5:normal des-cbc-crc:normal
allow-null-ticket-addresses = true
database_name = /var/Kerberos/krb5kdc/principal
#master_key_type = aes256-cts
  acl_file = /var/kerberos/krb5kdc/kadm5.acl
  admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
  dict_file = /usr/share/dict/words
  max_life = 2d 0h 0m 0s
  max_renewable_life = 7d 0h 0m 0s
  admin_database_lockfile = /var/kerberos/krb5kdc/kadm5_adb.lock
  key_stash_file = /var/kerberos/krb5kdc/.k5stash
  kdc_ports = 88
  kadmind_port = 749
  default_principle_flags = +renewable

In the kdc.conf file configuration, note the following:

 n There are two major sections in the kdc.conf file. The kdcdefaults section contains 
configuration that’s common to all realms you list within this file. The section 
named realms lists the configuration for each realm separately. In our case, we 
have two realms, but I’m showing the configuration for a single realm named 
EXAMPLE.COM.

 n The kdc_ports and kdc_tcp_ports parameters specify the UDC and TCP ports 
for the KDC.

 n The supported_enctypes parameter specifies the various encryption types sup-
ported by this KDC.
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 n The max_life parameter specifies a value of 2 days. This shows the maximum 
life for a ticket.

 n The max_renewable_life parameter specifies the maximum time within which 
a ticket can be renewed.

 n The master_key_type entry is disabled, but if you need 256-bit encryption, you 
can download the Java cryptography extension ( JCE) to install it. By disabling 
this parameter, I’m using the default 128-bit encryption.

 n The acl_file parameter lets you specify an ACL for UPNs with an admin access 
to the Kerberos database. For example, if your ACL is of the format */admin@
EXAMPLE.COM, all UPNs with the /admin extension have full access to the Kerberos 
database.

 n The dict_file parameter points to the file containing potentially easily guessable 
or breakable passwords. 

The acl_file parameter needs special mention here for administrators. Earlier, you 
learned about the kadmin utility for Kerberos administrators. Since the kadmin utility 
itself uses Kerberos to authenticate, you specify the UPNs you want to allow to perform 
administrative actions in the kadm5.acl file, whose location you specify with the acl_file 
parameter in the kdc.conf file. Here’s an example showing how you specify the UPNs 
that can perform administrative tasks within the kdc.conf file:

*/admin@EXAMPLE.COM   *

Note the following:

 n The first * means any principal from the EXAMPLE.COM domain can perform 
administrative actions provided they use the format <user_name>/
admin@EXAMPLE.COM 

 n The second * means that the UPNs can perform any action. If you want to limit 
the privileges for an administrative user through the kadm5.acl file, you can do so, 
as shown here:

sam/EXAMPLE.COM    * hdfs/*@EXAMPLE.COM

This means that that user sam can perform any action but can do so only on the 
SPNs starting with hdfs.

Setting Up Kerberos for Hadoop
You have now configured Kerberos, but you aren’t there yet! You need to perform the 
following tasks to prepare Kerberos for authorizing connections to your Hadoop cluster.

1. Create the Kerberos database and the first user principal (root).

2. Start the Kerberos services.
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3. Create the service principal (SPN).

4. Create the keytab files.

The following sections show how to perform these tasks.

Creating the Kerberos Database
As you learned earlier, Kerberos consists of three components—a database, the AS and 
the TGS. By default, there’s no database, and you must create it. You can use a f lat file 
or an LDAP directory as the database. Here's how you create the Kerberos database: 

$ kdb5_util create –r EXAMPLE.COM –s
Loading random data
Initializing database '/var/kerberos/krb5kdc/principal' for realm 'EXAMPLE.COM',
master key name 'K/M@EXAMPLE.COM'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:
$

The –s option stores the master server key for the database in a stash file, which lets 
you regenerate the master server key automatically each time you start the KDC. Make 
a note of the master key, as you’ll need it later on.

The kdb5_util create command creates the following five files under the /usr/local/
var/krb5kdc directory:

 n Two Kerberos database files named principal and principal.ok
 n The Kerberos administrative database file named principal.kadm5
 n The administrative database lock file named principal.kadm5.lock
 n A stash file named k5.EXAMPLE.COM

The stash file is a copy of the encrypted master key stored on the KDC’s local disk. 
KDC uses this stash file to automatically authenticate itself when it starts the Hadoop 
daemons.

Creating the Administrator Principal for KDC
You’re almost there! Before you can start up the Kerberos services, you must also create 
the first user principal on the KDC server. This user principal is the root user on the 
Linux server.

$ sudo kadmin.local -q
Authenticating as principal root/admin@EXAMPLE.COM with password.
kadmin.local:  addprinc root/admin
Enter password for principal "root/admin@EXAMPLE.COM":
Re-enter password for principal "root/admin@EXAMPLE.COM":
Principal "root/admin@EXAMPLE.COM.COM" created.
kadmin.local:
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Starting the Kerberos Services
Now that I’ve configured Kerberos, I’m ready to start the Kerberos daemons. Start up the 
Kerberos services as shown here, with the kadmind and the krb5kdc utilities.

# /sbin/service kadmind start
# /sbin/service krb5kdc star

The first of the two commands here enables the Kerberos administrator to connect 
from a remote server to perform Kerberos administration using the kadmin client. The 
second command (krb5kdc) starts the KDC server. 

Now you’re ready to create the set of service principals.

Creating the Service Principals
You must create a service principal to represent each of the Hadoop services such as HDFS 
and YARN. This enables Hadoop daemons such as hdfs (for the HDFS service), mapred 
(for MapReduce) and yarn (for YARN) to be authenticated by Kerberos. 

You need to create an SPN for every service/daemon pair in your cluster. You must 
also create service principals for component services such as Hive, Oozie and so on. I show 
only the creation of the service principals for users hdfs, yarn and mapred here to keep 
things concise, but you can create the other principals using the same procedure.

In addition to HDFS and YARN, I also create a service principal for HTTP, which 
is a required web communication protocol implementation for using Kerberos. All three 
service principals here—hdfs, yarn and mapred—expose HTTP services. By provision-
ing these principals with an HTTP service name you can enable Kerberos authentica-
tion for the web interfaces you use in your day-to-day work.

I use the same addprinc command that I had used earlier to create my first user 
principal (for the root user) to create the following service principals. The command is 
named addprinc (add_principal) since it adds the principals to the Kerberos database.

[root@hadoop01]# kadmin
Authenticating as principal root/admin@EXAMPLE.COM with password.
Password for root/admin@EXAMPLE.COM:
kadmin:  addprinc -randkey hdfs/hadoop01@EXAMPLE.COM
Principal "hdfs/hadoop01@EXAMPLE.COM" created.
kadmin:  addprinc -randkey mapred/hadoop01@EXAMPLE.COM
Principal "mapred/hadoop01@EXAMPLE.COM" created.
kadmin:  addprinc -randkey yarn/hadoop01@EXAMPLE.COM
Principal "yarn/hadoop01@EXAMPLE.COM" created.
kadmin:  addprinc -randkey HTTP/hadoop01@EXAMPLE.COM
Principal "HTTP/hadoop01@EXAMPLE.COM" created.
kadmin:
#

In this example, the addprinc command helped me create a new principal in the 
Kerberos database. You can display the details of a principal by issuing the getprinc 
command, as shown here:

kadmin: getprinc sam@EXAMPLE.COM

You can list all principals in the Kerberos database with the listprinc command:

kadmin: listprinc
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Finally, you can delete a principal from the Kerberos database with the delprinc 
command:

kadmin: delprinc sam@EXAMPLE.COM

Note

It’s important to understand that in order to implement Kerberos security in a Hadoop cluster, 
you must provision all the cluster users on all the cluster nodes. Alternatively, you can 
provision all users in Active Directory and have the Hadoop servers access that directory 
service. You can restrict the privileges of the provisioned users by restricting them, for exam-
ple, with a nologin shell.

I used the addprinc command earlier to create a set of service principals. However, 
this set of SPNs is by no means comprehensive. You must create an SPN for each service 
running on each node in the cluster, such as the following:

 n NameNode (or NameNodes in a high-availability setup)
 n JournalNode
 n Secondary NameNode (if not high availability)
 n ResourceManager
 n NodeManager
 n JobHistoryServer

You also need to create user principals for services such as Hue, as shown here:

kadmin:  addprinc -randkey hue/hadoop03@EXAMPLE.COM

Here, hue is the principal the Hue server is running as, and hadoop03 is the server 
where the Hue server is running.

Make sure that all directories used by HDFS, such as the NameNode, DataNode and 
log directories, have hdfs as both the owner and the OS group. Similarly, the directo-
ries used exclusively by the MapReduce daemons, such as the MapReduce local and log 
directories, should have mapred as both the user and the group. And finally, directories 
used by both hdfs and mapred daemons should be under the group hadoop.

Creating the Keytab File
Each service principal requires a keytab file to store its passwords. A keytab file contains 
pairs of Kerberos principals and the encrypted key derived from their Kerberos password. 
It is used for authenticating with the KDC when the services run without any intervention.

A UPN will need to use kinit to log into the secure cluster and then provide a password 
for authentication. However, SPNs can’t make an interactive login attempt. The keytab 
file stores the encryption keys that can be used for a specific SPN, and you can store 
multiple SPN keys in the same keytab file. In fact, a regular user (UPN) can also use a 
keytab file in lieu of providing their password during a login, as shown here:

$ kinit –kt sam.keytab sam/admin@EXAMPLE.COM
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Here, the –kt f lag indicates that the keytab file should be used instead of a password 
being entered at the command line. 

Tip

You must protect the keytab files carefully, since they hold the keys to the kingdom, 
especially for administrative principals!

The users yarn, hdfs and mapred all run background Hadoop daemons, so you need 
to create a keytab file for these service principals. In addition, you need to create a keytab 
file for the http principal so Kerberos can authenticate Hadoop’s web UIs.

Use the kadmin utility to create the keytab files. You really don’t need to formally 
create the keytab files. Using the kadmin utility, you can specify the xst –k options to 
extract the keytab file for each service principal and place it in the keytab directory for 
that service principal. 

Each service principal’s keytab file is uniquely named after the principal, such as 
yarn.keytab, http.keytab, oozie.keytab and hive.keytab. You must export a separate 
keytab file for each of the Hadoop daemons running on a Hadoop node.

For example, to create the keytab file for the service YARN, do the following:

root@hadoop01]# kadmin
Authenticating as principal root/admin@EXAMPLE.COM with password.
Password for root/admin@EXAMPLE.COM:
kadmin: xst -k yarn.keytab hdfs/hadoop01@EXAMPLE.COM HTTP/hadoop01@EXAMPLE.COM
Entry for principal hdfs/hadoop01@EXAMPLE.COM with kvno 5, encryption type 
aes128-cts-
Entry for principal HTTP/hadoop01@EXAMPLE.COM with kvno 4, encryption type 
des-cbc-md5 added to keytab WRFILE:yarn.keytab
...
root@hadoop01]#

In a similar fashion, create keytab files for all the other service principals. 
You may want to verify that the service principals are associated correctly by issuing 

the klist command as shown here, from the NameNode server in your cluster:

$ kinit
Enter password for sam@EXAMPLE.COM:
$ klist
Ticket Cache: FILE:/tmp/krb5cc_5000
If the service principal name's first component (hdfs in this example) is the 
same as its username, there's no need to create any further rules, since the 
DEFAULT rule Default principal:  sam@EXAMPLE.COM
...
$

Similarly, you can issue the following command to ensure that the hue service principal’s 
keytab file was created correctly:

$ kinit -k -t /etc/hue/hue.keytab hue/hue.server.fully.qualified.domain.name@
YOUR-REALM.COM

If the user hasn’t authenticated first, there will be no credentials in the cache, and they’ll 
receive the “No credentials cache found” message when they issue the klist command.
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Once you create the keytab files for the service principals, move the files to the
 /et/hadoop/conf directory and secure the files, as shown here:

# mv hdfs.keytab yarn.keytab mapred.keytab /etc/hadoop/conf
# chown hdfs:hadoop /etc/hadoop/conf/hdfs.keytab
# chown yarn:hadoop /etc/hadoop/conf/yarn.keytab
# chown mapred:hadoop /etc/hadoop/conf/mapred.keytab
# chmod 400 /etc/hadoop/conf/hdfs.keytab /etc/hadoop/conf/yarn.keytab 

As mentioned earlier, you must do this on every node where the service represented 
by the service principal is running. Use an automated deployment tool to move the keytab 
files to all the cluster nodes. You can store the keytab files in the $HADOOP_CONF_DIR 
directory, such as /etc/hadoop/conf, for example.

Now that I’ve configured Kerberos and set it up to work with Hadoop by creating 
all the necessary service principals and their keytab files, it’s time to configure Kerberos 
to work with my Hadoop cluster.

Securing a Hadoop Cluster with Kerberos
So far, I’ve configured Kerberos and prepared it for authorizing Hadoop users. To secure 
my cluster with Kerberos, I need to link this Kerberos configuration with Hadoop, by 
adding the Kerberos information to the relevant Hadoop configuration files. These are 
the same Hadoop configuration files you’re familiar with, such as the core-site.xml and 
the hdfs-site.xml files. 

I need to do the following to complete authorization through Kerberos:

 n Map the service principals to their operating system usernames
 n Add the Kerberos information to the Hadoop configuration files

The following sections show how to map service principals to their OS usernames 
and configure the Hadoop configuration files with Kerberos-related information.

Mapping Service Principals
Kerberos uses rules configured in the core-site.xml file, by specifying the hadoop.security
.auth_to_local parameter, to map service principals to their operating system usernames. 

The default rule, named DEFAULT, simply translates a service principal’s name to the 
first component of their name. Remember that a service principal’s name has either 
two components, such as sam@EXAMPLE.COM, or can use a three-part string such as 
hdfs/namenode.example.com@EXAMPLE.COM. Hadoop maps Kerberos principal names 
to their local usernames. 

If the service principal name’s first component (hdfs in this example) is the same as its 
username, there’s no need to create any further rules since the DEFAULT rule is sufficient 
in this case. Note that alternatively, you can also map principals to usernames in the krb5.conf 
file by configuring the auth_to_local parameter there.

If your service principal’s name is different from its OS username, you must config-
ure the hadoop.security.auth_to_local parameter to specify rules for translating the 
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principal names to the operating system names. As explained earlier, the default value of 
this parameter is simply DEFAULT. A rule provides the mechanism to translate the ser-
vice principal names and consists of the following three parts or components:

 n Base: The base specifies the number of components in the service principal’s name, 
followed by a colon and a pattern for building the username from the service 
principal’s name. In the pattern, $0 means the realm, $1 refers to the first component 
in the service principal’s name and $2 refers to the second component. The format is 
specified as [<number>:<string>] and is applied to the principal’s name to arrive at 
the translated principal name, also called the initial local name. Here are a couple of 
examples:

 n If the base format is [1:$1:$0], then the UPN of sam@EXAMPLE.COM is given 
the initial local name of sam.EXAMPLE.COM.

 n If the base format is [2:&1@$0], then the SPN hdfs/namenode.example.com
@EXAMPLE.COM is given the initial local name of hdfs@EXAMPLE.COM.

 n Filter: The filter (or acceptance filter) is the component that uses a regular 
expression that matches the generated string in order to apply the rules. For example, 
the filter (.*EXAMPLE\.COM) matches all strings ending in @EXAMPLE.COM, such as 
sam.EXAMPLE.COM and hdfs.EXAMPLE.COM.

 n Substitution: This is a command that uses sed-like substitution to translate a regular 
expression pattern with a fixed replacement string. The full specification of the rule is 
RULE:[<number>:<string>](<regular expression>)s/<pattern>/<replacement>/. 

You can surround a part of the regular expression with parentheses and reference 
this in the replacement string by a number, such as \1. The substitution command, 
s/<pattern>/<replacement>/g, works just like a regular Linux substitution 
command, with the g specifying a global substitution. Here are some examples of 
how the substitution command translates the expression sam@EXAMPLE.COM under 
various rules:

s/(.*)\.MYCOMPANY.COM/\1/:     sam
s/.MYCOMPANY.COM// :     sam
s/M/E :     sam.EXAMPLE.COM

You can provide multiple rules, and once a principal matches a rule, the rest of 
the rules are skipped. You can include a DEFAULT rule at the end, so it’ll match if 
none of the earlier rules do.

You can map users to groups through the hadoop.security.group.mapping parameter. 
The default mapping implementation looks up the user and group mappings through 
local shell commands. 

Since this default implementation uses the Linux interfaces to establish a user’s group 
membership, you must provision the group on all servers that run the services involved 
in authentication decisions, such as the NameNode, ResourceManager and DataNodes—
essentially, your group information must be consistent throughout the cluster. 
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In cases where you need to use groups that are provisioned on an LDAP server 
such as Active Directory and not on the Hadoop cluster itself, you can use the 
LDAPGroupsMapping implementation. 

Adding Kerberos information to Hadoop Configuration Files
In order to enable Kerberos authentication in a Hadoop cluster, you must add the 
Kerberos- related information to the following configuration files:

 n core-site.xml
 n hdfs-site.xml 
 n yarn-site xml

Each of these files will configure various aspects of HDFS and YARN to work together 
with Kerberos. Let’s take these configuration files one by one.

core-site.xml File Additions
You need to add the following configuration parameters to the core-site.xml file. 

 n hadoop.security.authentication: This parameter sets the authentication type 
for the cluster. The default value is simple. For Kerberos authentication, specify 
the value kerberos.

 n hadoop.security.authorization: This parameter enables authorization for the 
security protocols to check for file permissions.

 n hadoop.security.auth_to_local: This parameter determines how to map 
Kerberos principal names to OS usernames with mapping rules.

 n hadoop.rpc.protection: This parameter determines the protection level. Following 
are the three possible values for this parameter:

 n authentication: Client/server mutual authentication only
 n integrity: Guarantees the integrity of data in addition to authentication
 n privacy: Provides authentication and integrity of data, and also encrypts the 

data f lowing between clients and server

Once you configure all of the parameters in the core-site.xml file, the additions 
will look like the following:

<property>
  <name>hadoop.security.authentication</name>
  <value>kerberos</value>
</property>
<property>
  <name>hadoop.security.authorization</name>
  <value>true</value>
  </property>
<property>
  <name>hadoop.security.auth_to_local</name>
  <value>[2:$1]kerberos</value>
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</property>
<property>
  <name>hadoop.rpc.protection</name>
  <value>privacy</value>
</property>

YARN-Related Configuration Changes
You need to edit the yarn-site.xml file to add both keytab locations and principal infor-
mation for YARN-related services such as the users who start the ResourceManager and 
the NodeManager daemons. Here are the parameters you add to the yarn-site.xml file:

 n yarn.resourcemanager.principal: This is the name of the principal (yarn) that starts 
the ResourceManager in the cluster (suggested value: yarn/_HOST@EXAMPLE.COM).

 n yarn.resourcemanager.keytab: This is the location on the local file system where 
the yarn user’s keytab file is stored. (suggested value: /etc/hadoop/conf/yarn.keytab).

 n yarn.nodemanager.principal: This is the yarn principal that starts the NodeManager 
(suggested value: yarn/_HOST@EXAMPLE.COM).

 n yarn.nodemanager.keytab: This is the location of the keytab file for the yarn user.
 n yarn.nodemanager.container-executor.class: This specifies the class for 

launching applications in yarn (suggested value: org.apache.hadoop.yarn
.server.nodemanager.LinuxContainerExecutor).

 n yarn.nodemanager.linux-container-executor.group: This is the group to 
which the Linux container belongs (suggested value: yarn).

The last two parameters help the NodeManager use the LinuxContainerExecutor, 
which enables YARN to run containers using the same UID as that of the user that 
submitted the job. After editing the yarn-site.xml file, you must configure the 
LinuxContainerExecutor by creating a file named container.executor.cfg and adding 
the following parameters to it:

 n yarn.nodemanager.log-dirs: Specifies the Hadoop log directories. The reason 
you specify this parameter is to ensure that log file permissions are correctly set. 
Suggested value: /var/log/yarn (same as the values you specify in the yarn-site.xml 
file for the log directories).

 n yarn-manager.local-dirs: The list of paths to the local NodeManager directories. 
These should be the same as the values you specify for local directories in the 
yarn-site.xml file.

 n yarn.nodemanager.linux-container-executor.group: The value should be yarn.
 n banned.users: This list of users prevents jobs from being submitted to the cluster 

via these accounts. Default values: hdfs, yarn, mapred and bin.
 n min.user.id: Specifies the value of the user ID above which jobs are allowed to be 

submitted to the cluster.  (suggested value: 1000). By convention, Linux super users 
have a user ID less than 1000, so this prevents jobs from being submitted with those IDs.
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HDFS-Related Configuration Changes
You need to configure the keytab locations and principal names for the HDFS daemons 
in the hdfs-site.xml file. How do you manually configure a potentially large number of 
DataNodes? You don’t! Hadoop offers a variable named _HOST that you can use instead 
of having to separately configure each HDFS daemon on every node in the cluster. 

The HOST variable resolves to the FQDN of the server when a user or service connects 
to the cluster. Do remember that ZooKeeper and Hive don’t support the specification 
of the HOST variable.

You must add three types of Kerberos-related configuration parameters to the 
hdfs-site.xml file: 

 n Kerberos principal information
 n Keytab file location information
 n Addresses and ports of the http/https services.

Configure the Kerberos service principals with the following set of configuration 
parameters:

 n dfs.namenode.kerberos.principal: Specifies the Kerberos principal name 
for the NameNode. (value: hdfs/_HOST@EXAMPLE.COM)

 n dfs.secondary.namenode.kerberos.principal: Specifies the principal for 
the secondary NameNode web server (value: hdfs/_HOST@EXAMPLE.COM).

 n dfs.web.authentication.kerberos.principal: HTTP principal name 
(value: HTTP/_HOST@EXAMPLE.COM)

 n dfs.namenode.kerberos.internal.spnego.principal: The http principal 
for the HTTP service (value: HTTP/_HOST@EXAMPLE.COM)

 n dfs.secondary.namenode.kerberos.internal.spnego.principal: The http 
principal for the HTTP service (value: HTTP/_HOST@EXAMPLE.COM)

 n dfs.datanode.kerberos.principal: Principal for the DataNode service 
(value: hdfs/_HOST@EXAMPLE.COM)

You specify the keytab file locations with the following parameters:

 n dfs.web.authentication.kerberos.keytab: Kerberos keytab file location for 
the http service principal (value: /etc/hadoop/conf/spnego.service.keytab)

 n dfs.datanode.kerberos.principal: Kerberos principal for the user that starts 
and stops the DataNode (value: hdfs, specified as hdfs/_HOST@EXAMPLE.COM)

 n dfs.namenode.keytab.file: Keytab file with the credentials of the NameNode 
service and host principals

 n dfs.journalnode.kerberos.keytab.file: Keytab file for the JournalNode 
(value: hdfs.keytab)
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 n dfs.secondary.namenode.keytab.file: Keytab file with the credentials of 
the NameNode service and host principals

 n dfs.datanode.keytab.file: Location of the keytab file for the DataNode

In order to configure WebHDFS for a Kerberized cluster, you need to add the 
following two parameters to the hdfs-site.xml f ile on the NameNode and all the 
DataNodes.

dfs.web.authentication.kerberos.keytab (value=hdfs.keytab)
dfs.web.authentication.kerberos.principal (value=HTTP/_HOST@EXAMPLE.COM)

Securing the DataNodes
Before you can fire up the cluster in the secure mode, there’s one last thing you must do—
secure the DataNode. You must set the following environment variables for Jsvc, a 
set of libraries and applications that help Java applications run easily on Linux, so the 
DataNode can run in the secure mode.

$ export HADOOP_SECURE_DN=hdfs
$ export HADOOP_SECURE_DN_PID_DIR=/var/lib/hadoop-hdfs
$ export HADOOP_SECURE_DN_LOG_DIR=/var/log/hadoop-hdfs
$ export JSVC_HOME=/usr/lib/bigtop-utils  // if this directory doesn't 
exist, use /usr/libexec/bigtop-utils

Make sure you set the environment variables on all DataNodes in your cluster.
Finally, you’re ready to start cluster operations in the secure mode, with Kerberos 

authentication.

Starting the Cluster in the Secure Mode
We’ve finally reached the fun part! Now you can start your cluster in the Kerberized or 
secure mode. Start the NameNode as shown here after logging in as root:

# /usr/lib/hadoop/sbin/hadoop-daemon.sh start namenode

You should see the following Kerberos-related messages, which confirm that Kerberos 
is successfully authenticating the principals hdfs and http using their keytab files:

2016-06-08 18:48:11,405 INFO  security.UserGroupInformation 
(UserGroupInformation.java:loginUserFromKeytab(844)) - Login successful for user 
hdfs/hadoop01.localhost@EXAMPLE.COM using keytab file /etc/hadoop/conf/hdfs.keytab
2016-06-8 18:48:11,506 INFO  server.KerberosAuthenticationHandler 
(KerberosAuthenticationHandler.java:init(185)) - Login using keytab /etc/hadoop/
conf/hdfs.keytab, for principal http/hadoop01.localhost@EXAMPLE.COM

Start the DataNodes and NodeManagers on all servers as shown here:

#/usr/lib/hadoop/sbin/hadoop-daemon.sh start datanode
#/usr/lib/hadoop/sbin/hadoop-daemon.sh start nodemanager

Start the Secondary NameNode, ResourceManager and JobHistoryServer services.
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#/usr/lib/hadoop/sbin/hadoop-daemon.sh start secondarynamenode
#/usr/lib/hadoop/sbin/hadoop-daemon.sh start historyserver

You have successfully implemented Kerberos for secure authentication if you’ve come 
this far!

How Kerberos Authenticates Users and Services
Once you configure authentication through Kerberos, all Hadoop services will use it. 
That is, all Hadoop services will authenticate themselves through Kerberos and the clients 
will, of course, need to authenticate as well with the KDC. 

Users authenticate to the NameNode and the ResourceManager services through 
Hadoop’s RPC calls using the Simple Authentication and Security layer (SASL) framework. 
Within SASL, Kerberos will act as the authentication protocol to authenticate users that 
need access to a Hadoop service. Three types of authorization tokens help this process—
delegation tokens, job tokens and the Block Access Token. I will explain these tokens 
in the following sections.

Delegation Token
Delegation tokens are used to authenticate users to the NameNode. The NameNode 
provides the delegation token to the user once the user authenticates to the NameNode 
through Kerberos. After the user authenticates, the delegation token is shared with the 
ResourceManager, which will use this token to access HDFS resources on behalf of 
the user, and which also renews the token for long-running jobs. 

Job Token
When a user submits a job to the ResourceManager, it creates a secret key that it shares with 
all the DataNodes that run this MapReduce job. The job token ensures that authenti-
cated users can access only authorized jobs and authorized directories in the local file 
system of the DataNodes. DataNodes also use the job token for securely communicating 
with each other.

Block Access Token
The Block Access Token ensures that only authorized users access HDFS data on the 
DataNodes. As explained in Chapter 8, “The Role of the NameNode and How HDFS 
Works,” clients retrieve data from the DataNodes once they receive the block IDs from 
the NameNode. The NameNode also issues a Block Access Token that the client sends to 
the DataNode along with the request for the data blocks, to show that they’re authenti-
cated for the data access. 

Managing a Kerberized Hadoop Cluster
Now that you have a Kerberized cluster, it’s useful to learn more about some of the key 
administrative utilities that you’ll need for administering Kerberos. I brief ly describe 
the most important administrative tools in the following sections.
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Kerberos Utilities and Daemons
Kerberos provides several utilities to help you work with the KDC, as listed here.

 n kdb5_util: This is the maintenance utility for the Kerberos database, and it helps 
you create a Kerberos realm and perform other tasks such as updating and viewing 
the keytab files.

 n kpasswd: This utility helps you change user passwords.
 n klist: This utility helps you view Kerberos tickets currently in the client’s local 

credential cache.
 n kadmin.local: This administrative utility is for directly accessing the Kerberos 

database. This utility enables the root user of the server where the Kerberos database 
is stored to update the Kerberos database.

 n kadmin: This administrative utility is used for remote administration.
 n kinit: This Kerberos client authenticates with Kerberos and retrieves the TGT.

There are two key Kerberos daemons with which you should be familiar:

 n The kdadmind daemon is the Kerberos admin server daemon and performs oper-
ations such as adding new principals and changing passwords.

 n The krb5kdc daemon represents the Kerberos AS and is responsible for authenti-
cating users and granting tickets.

Key Administration Commands
Once you Kerberize your Hadoop cluster, users can’t just issue commands such as the 
following after logging into a cluster node:

[sam@hadoop01 ~] $ hdfs dfs –cat test.txt

The user receives an error message stating that the system “failed to find any kerberos tgt.” 
This means that the user didn’t obtain a TGT before issuing the HDFS command. The 
user needs to first obtain his or her TGT by issuing the kinit command. Once users 
obtain the ticket by successfully authenticating themselves, they can issue all the HDFS 
commands as usual.

[sam@hadoop01 ~] $ kinit
Password for sam@EXAMPLE.COM: 
[sam@hadoop01 ~] hdfs dfs –cat test.txt

It may seem cumbersome to have to issue the kinit command to perform HDFS 
operations in a secure cluster, but don’t despair! There are multiple ways in which you 
can reduce your burden:

 n Once a user authenticates successfully with the kinit command, the user can con-
tinue to use various services without having to authenticate again in that session. 
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 n Alternatively, you can configure the Linux system to obtain the Kerberos TGT and 
run all subsequent HDFS commands without having to issue the kinit command 
again in that session.

 n Finally, you can also configure the Linux system so you can obtain your TGT during 
the login to the Linux server itself.

As you’ve seen, users need to issue the kinit command to authorize themselves with 
Kerberos. There are three other useful Kerberos commands users need to be familiar with, 
as explained here.

 n klist: This command lists a user’s ticket cache, which includes the TGT and 
both current and expired tickets. The default location and name of the cache file 
is /tmp/krb5cc_<uid>, with uid being the user’s numeric ID on the local server.

 n kpasswd: This command allows users to change their Kerberos password.
 n kdestroy: This command allows users to clear their ticket cache. As time goes by, 

users accumulate expired tickets in their ticket caches and the kdestroy command 
cleans those tickets out. Once a user clears the ticket cache, the user is expected 
to authenticate again with the kinit command. You can also use the kdestroy 
command when you’re making up a new configuration.

The kinit command isn’t just a command you use when you authenticate with 
Kerberos. Typically, a ticket’s lifetime is 24 hours, but you can request a renewable ticket 
that can be renewed for up to 7 days. A user can ask for a renewable ticket by executing 
the following command:

[sam@hadoop01 ~] $ kinit –r7d

This kinit command asks for a renewable ticket good for 7 days.

Setting Up One-Way Trust with Active Directory 
Once you Kerberize a Hadoop cluster, all users must be provisioned through Kerberos 
as user principals (UPNs). What do you do if you have potentially hundreds or thou-
sands of users? 

Users are already centrally managed in a corporate LDAP directory such as Active 
Directory (AD). You simply set up a one-way trust between the AD realm and the KDC 
realm in your Hadoop cluster. 

Service principals (SPNs) such as yarn, hdfs and mapred can be defined in the Hadoop 
cluster within its local KDC. Since server principals can generate large amounts of traffic, 
especially when all the DataNodes start up at once, it’s a good idea not to set them on 
the corporate AD to avoid potential service denial issues.

Normally, Hadoop utilizes the user groups defined in the Linux (or other OS) system 
to authorize users within the Hadoop cluster. However, Active Directory also uses security 
groups to manage user credentials and roles. You can set up user and role management 
in Active Directory for this reason. 
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When users want to connect with the Hadoop cluster, they contact AD first, and it 
issues a Kerberos ticket for the user. Using mapping rules defined in the KDC stored in 
the Hadoop cluster, the user IDs are mapped to the appropriate user groups. 

User and group information is synchronized between AD and the Hadoop KDC to 
enable the Hadoop daemons to retrieve group information from the local KDC without 
having to contact AD. Here’s a summary of how all of this works:

1. The user provides credentials and authenticates with AD.

2. AD authenticates the user and issues a Kerberos ticket to the user.

3. The user presents the Kerberos ticket to the Hadoop cluster.

4. Hadoop daemons retrieve the user group information from AD to authorize the user
access. In cases where the user ID and the Kerberos principal are different, Hadoop
looks up the mapping of user IDs to user principals from the core-site.xml file.

The important thing to note here is step 2. How does Hadoop accept a ticket that 
was issued by AD? This is where the concept of trust, which we discussed earlier, comes in. 
If you set up a one-way cross-realm trust between AD and the local Hadoop KDC, all 
Hadoop daemons will trust all tickets issued by AD. 

Integrating AD with Hadoop to Set Up a One-Way Trust
Following is a brief description of how to integrate AD with Hadoop and set up a one-
way trust between AD and the local Hadoop KDC. Note that some of these tasks are 
performed by the AD administrator. Before you perform these steps, make sure you add 
the AD Kerberos realm (corporate realm) to the krb5.conf file, under the <realms> section.

1. Add your Hadoop KDC to AD by executing the following command on the
AD server:

ksetup /addkdc TESTREALM.COM kdc-server TESTCORPORATEDOMAIN.COM

2. Enable trust between the KDCs in Hadoop and AD by running the following
on the AD server:

netdom trust TESTREALM.COM /Domain:TESTCORPORATEDOMAIN.COM /add /realm
/passwordt: <password>

3. Configure the encryption protocol for communications between AD and the
local KDC:

ksetup /SetEncTypeAttr TESTREALM.COM <enc_type>

4. Add the necessary user principals in AD:

kadmin:   addprinc –e "rc4-hmac:normal des3-hmac-sha1:normal"
krbgt/testcorporatedomain.com@TESTCORPORATEDOMAIN.COM

5. Add the Hadoop service principals on the Hadoop local KDC server:

kadmin:  addprinc –e "rc4-hmac:normal des3-hmac-sha1:normal" krbgt/
testdomain.com@TESTREALM.COM
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6. Use the LDAP Synchronization Connector (LSC) to enable the synchronization
of the user groups between AD and the Hadoop local KDC.

A final step remains: To correctly translate the usernames in the corporate directory, 
add the following parameter to all nodes in the cluster:

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
    RULE:[1:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\
.COM$/$1/g
    RULE:[2:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\
.COM$/$1/g
    DEFAULT
  </value>
</property>

The configuration shown here translates the UPNs in the corporate realm to just the 
first part of the UPN.

Hadoop Authorization
Authenticating yourself to the cluster doesn’t guarantee access to the cluster resources. 
While authentication ensures that users and services are who they claim to be, authori-
zation ensures what users can actually do once they gain access to your system. You can 
deny or grant access to Hadoop data and services through the configuration of authori-
zation policies. 

In a Hadoop cluster, you have several services such as HDFS and YARN, and each 
of these services may support a different authorization model. Let’s start with authori-
zation at the HDFS level, which constitutes the permissions users need to access files 
stored in HDFS.

HDFS Permissions
HDFS file permissions serve as an authorization check for every attempt to access an HDFS 
file or directory. HDFS file permissions are quite similar to those you normally use in a 
Linux or UNIX file system. 

There are several similarities; however, there are also significant differences between 
the HDFS and the POSIX model used by Linux and other operating systems. In Linux, 
for example, every file and directory has a user and a group. There’s really no concept 
of a user or group in HDFS itself—HDFS simply derives the user and group from the 
underlying operating system entities, such as the users and groups you create in a Linux 
file system. 

In a Kerberized cluster, a user’s Kerberos credentials determine the identity of the client 
process. In the default mode of operation called simple security mode, the user’s identity 
is determined by the host operating system.
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As with a Linux file system, you assign separate file permissions for the owner of a file 
or directory, the members of a group and the rest of the world. You use the familiar r, w 
and x permissions as in Linux, and this is how they work:

 n r: Lets a user read a file and list a directory’s contents
 n w: Lets a user create or delete a file or directory
 n x: Lets you access a child of a directory 

As with a Linux file system, you can use the octal representation (numbers) to set 
the mode of a file, such as 755 or 777, for example. In Linux the x denotes a permission 
to execute a file, but there’s no such concept in HDFS. 

Also similar to the Linux file system is the concept of a umask, which you can specify 
for files and directories. The default umask is 22, but you can set a lower value, such as 18, 
for key configuration files in the hdfs-site.xml file in the following way:

<property>
  <name>dfs.permissions.umask-mode</name>
  <value>0018</value>
</property>

Configuring HDFS Permissions
You can configure HDFS permissions by setting the parameter dfs.permissions.enabled 
to true in the hdfs-site.xml file. Since the default value for this parameter is true, and 
thus permission checking is already turned on, you don’t need to really do anything else 
for HDFS to use its permission checks as explained in this section. 

Configuring HDFS Super Users
Unlike in the Linux file system, the host root user isn’t the super user of HDFS. The super 
user is simply the username under which you started the NameNode, which is usually the 
operating system user hdfs—hence the user hdfs is commonly the super user for HDFS. 

You can configure a super user group by setting the dfs.permissions.superusergroup 
parameter in the hdfs-site.xml file, as shown here:

<property>
  <name>dfs.permissions.supergroup</name>
  <value>supergroup</value>
</property>

I used the name supergroup as the group for super users. However, you can specify 
any name you wish to denote the super user group. Any users you assign to this group 
will be an HDFS super user. 

Tip

Be careful about adding users to a super user group. Any member of this group, as well as 
the user named hdfs (typically the username under which the NameNode runs in a cluster) 
can read and write to any file as well as delete any file or directory in HDFS.
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How HDFS Performs a Permissions Check
A client’s identity consists of the client (user) name and a list of groups that it’s a member of. 
HDFS performs a file permissions check to ensure that the user is the owner or a mem-
ber of the groups list with appropriate group permissions. If neither checks out, HDFS 
checks the “other” file permissions of the user and if that check also fails, it denies the 
client’s request for access to HDFS.

As mentioned earlier, in the default simple operation mode, it is the client process ID 
identified by its operating system username and in the Kerberos mode, it is the Kerberos 
credentials that determine the client identity. 

Depending on the mode you are running your cluster in, once HDFS determines a 
user’s identity, it determines the list of groups the user belongs to using the hadoop
.security.group.mapping property from the core-site.xml file. The NameNode per-
forms the mapping of users to groups.

If your groups don’t exist on the Linux servers but are provisioned only on a corporate 
LDAP server, you must configure an alternate group mapping service called org.apache
.hadoop.security.LdapGroupsMapping, not the default group mapping implementation.

Changing HDFS File Permissions
You can use the following commands to change file modes in your cluster.

code  chmod [-R] mode file ... // you must be the owner of the file or a 
super owner
chgrp [-R] group file ... // the user must be a member of the group 
and own the file, or be the super user
chown [-R] [owner][:[group]] file ...  // only the super user can do this

You can issue the command lsr <file_name> to view the owner, group and mode of a file.

HDFS Access Control Lists
HDFS supports the use of ACLs to set finer-grained permissions for specific users and 
groups. ACLs are a good way to go when dealing with complex file permission and access 
requirements and you want to grant privileges in a fine-grained manner.

By default, ACLs are disabled in HDFS. In order to use HDFS ACLs, enable them on 
the NameNode by adding the following property to the hdfs-site.xml file:

<property>
  <name>dfs.namenode.acls.enabled</true>
  <value>true</value>
</property>

An ACL includes a set of ACL entries, and you can use the entries to grant or deny 
read and write (or execute) permission to specific users or groups. Each ACL entry has 
a type and a permission string as well as an optional name. Here’s a sample ACL showing 
the permissions:

user  :rw-
user:sam:rwx
group::r-x
group:sales:rwx
mask:r—
other::r—
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It’s much easier to understand how HDFS ACLs work by using some examples: 

1. Check the file permissions on a directory owned by a user named sam, as follows:

bash-3.2$ hdfs dfs -ls /data/sam
Found 3 items
drwxr-xr-x   - hdfs supergroup 0 2015-05-20 11:27 /data/sam
drwxr-xr-x   - hdfs supergroup 0 2015-05-20 11:27 /data/sam/test
drwxr-xr-x   - hdfs supergroup 0 2015-05-24 15:44 /data/sam/test2
bash-3.2$

2. Check the current ACLs, if any, on the directory with the getfacl command, which
enables you to view permissions:

$ bash-3.2$ hdfs dfs -getfacl /user/sam
# file: /user/sam
# owner: hdfs
# group: supergroup
user::rwx
group::r-x
other::r-x
bash-3.2$

The getfacl command displays ACLs of files and directories.

3. Issue the –setfacl command to grant the user sam read and write permissions on
the directory /data/sam. In addition, grant rwx permissions to the analysts group
on the same directory:

[sam@hadoop01 ~]$ hdfs dfs -setfacl -m user:data:r-x /data/sam
[sam@hadoop01 ~]$ hdfs dfs -setfacl -m group:developers:rwx /data/sam

The setfacl command lets you set ACLs for files and directories.

4. Check the new file permissions that have changed as a result of the new ACL you
created:

[sam@hadoop01 ~]$ hdfs dfs -ls /data
Found 1 items
drwxr-xr-x+   - sam analysts          0 2016-06-06 16:04 /data/sam

The file permission list has a plus (+) sign added at the end, to denote an ACL entry
for this file’s permissions.

5. Check the new ACL you just created with the –getfacl command:

[sam@hadoop01 ~]$ hdfs dfs -getfacl /data/sam
# file: /data/sam
# owner: sam
# group: analysts
user::rwx
user:sam:r-x
group::r-x
group:developers:rwx
mask::rwx
other::r-x

Even though you may grant user-specific permissions on a file or a directory with
an ACL, those permissions must be within the ambit of the file mask. In the output
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of the –getfacl command, there’s a new entry named mask, and its value is rwx 
in this case, meaning that the user sam will indeed have rwx permissions on this 
directory. The mask property defines the most restrictive permissions on a file. 
If the mask were to be r-x instead, although user sam has rwx permissions, the 
effective permissions will be just r-x.

6. Change the file permissions with the chmod command as shown here, and then
check the ACL with the -getfacl command again to see what it does to the new
ACL’s mask:

[sam@hadoop01 ~]$ hdfs dfs -chmod 750 /data/sam
[sam@hadoop01 ~]$ hdfs dfs -getfacl /data/sam
# file: /data/sam
# owner: sam
# group: analysts
user::rwx
group::r-x
group:developers:rwx    #effective:r-x
mask::r-x
other::---

7. Remove all the ACLs you created on a directory with the –setfacl command with
the –b option, as shown here:

[sam@hadoop01 ~]$ hdfs dfs -setfacl -b /data/sam
[sam@hadoop01 ~]$ hdfs dfs -getfacl /data/sam
# file: /data/sam
# owner: sam
# group: analysts
user::rwx
group::r-x
other::---

Up until now, I discussed how you can set up ACLs that are enforced during permis-
sion checks. You can also apply a default ACL to a directory. A default ACL doesn’t have 
any impact on permission checking for currently existing files and directories. Instead, 
the default ACL you create for a directory determines the ACL that new files (and direc-
tories) will receive when you create them under the parent directory. 

HDFS Extended Attributes
HDFS enables you to add additional metadata with files and directories called extended 
HDFS attributes, so applications can store additional information in an inode. For example, 
extended HDFS attributes help an application specify the character encoding for a doc-
ument. HDFS extended attributes can be seen as an extension to the traditional HDFS 
file system permissions. 

Although there are five types of namespaces with different access restrictions, only the 
user namespace is used by client applications. There are three other types of namespaces—
system, security and raw—for internal HDFS and other system use. The trusted 
namespace is reserved for the HDFS super user. HDFS extended attributes in the user 
namespace are managed through HDFS file permissions.
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By default the HDFS extended attributes are enabled, and the parameter dfs.namenode
.xattrs.enabled in the hdfs-site.xml file is what you’d need to set to true/false to 
enable/disable the feature. Use the setfattr command to associate a name and value 
for an extended attribute with a file or directory:

hdfs dfs –setfattr –n name [-v value] | -x name <path>

You can view the name and values of the extended attributes for a file or directory thus:

hdfs dfs -getfattr [-R] –n name –d [-e en] <path>

Service Level Authorization 
When a client connects to a Hadoop service, access is granted based on whether the 
user has the necessary permissions and is authorized to access the service. For example, 
a user may have the necessary permissions to submit a YARN job to the cluster. Service 
level authorization is the first access control check and comes before checking file 
permissions.

Enabling Service Level Authorization
You can enable service level authorization by setting the hadoop.security.authorization 
property in the core-site.xml file, as shown here:

<property>
  <name>hadoop.security.authorization</name>
  <value>true</value>
</property>

Once you turn on service level authorization in your cluster, you need to configure 
the various Hadoop services through an ACL for each of the services.

Using ACLs for Configuring Server Level Authorization
In order to configure service level authorization, you configure an ACL for each of the 
Hadoop services in the $HADOOP_CONF_DIR/hadoop-policy.xml file. In each ACL 
for a service, you list the users and groups to whom you wish to grant access in a comma 
separated list as shown here:

user1,user2,user3 group1,group2,group3

Note that the user and group lists in the ACL definition for a service are separated 
by a space. You can also specify just a set of users or a set of groups, as shown here:

user1,user2,user2
group1,group2,group3

Here’s how the users and groups are allowed to access a Hadoop service based on the 
ACL you list for that service:

 n A value of * means that all users can access the Hadoop service and a value of " " 
means no users have access.
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 n If you don’t specify an ACL for a service, the default value you specify with the 
optional property security.service.authorization.default.acl is used to 
determine access.

 n If you don’t specify the security.service.authorization.default.acl property, 
all users are allowed to access that service (this is the same as specifying a value 
of * for the ACL).

Note the following about how you can control group access:

 n If you specify user1,user2 salesgrp, user1, user2, all users in the group named 
salesgrp are allowed access.

 n If you specify user1,user2 , with a space at the end, no groups are allowed access.
 n If you specify salesgrp with a leading space, only users from this group are 

allowed access.

Configuring Service Level Authorization
As mentioned in the previous section, you configure service level authorization through 
the ACLs you specify in the hadoop-policy.xml file. You can configure ACLs for 
DataNode and NameNode protocols, as well as client protocols that specify whether users 
can communicate with a Hadoop service. You can classify the protocols into two types: 
administrative and client protocols. 

The following example shows how you can set the client protocol ACL to allow users 
to submit YARN jobs to the cluster.

<property>
  <name>seccurity.job.client.protocol.acl</name>
  <value>sam,nick,nina mapreduce/value>
</property>

The security.job.client.protocol.acl property allows you to create a whitelist 
of users and groups allowed to run jobs in the cluster. The configuration shown in the 
example here specifies that only the users sam, nick and nina from the MapReduce 
group are allowed to submit YARN jobs to the Hadoop cluster. 

Note how I separate the user and group lists with a space. Clients use this value to 
communicate with the ApplicationMaster service for a job, and the recommended values 
are yarn, mapred and hadoop-users, for example, where hadoop-users is a group you 
create for users that run Hadoop jobs.

The configuration property security.job.task.protocol.acl specifies the protocol 
used by YARN jobs to report the progress of tasks (map and reduce tasks can speak 
to the NodeManager using this protocol). Since the ID of the user using this protocol 
is set to the ID of the YARN job, you must always set this property to the value "*"/. 
The reason is that, by doing so, the user and the job ID are linked together. Jobs will 
fail if you set a different value for this parameter.
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Blocking Access to Specific Users and Groups
You can specify a blocked ACL control list for a Hadoop service to specify a list of 
users/groups that are not allowed to access the service. You may specify both an access 
control list and a blocked access control list for the same user or group. In such a case, 
the user must be listed in the ACL but not in the blocked ACL. The following example 
shows how to block the user jim from submitting YARN jobs to the cluster.

<property>
  <name>.blocked.hadoop.job.client.protocol.acl</name>
  <value>jim/value>
</property>

As you can see, all you need to do is add the term .blocked to the configuration of 
the ACL.

Controlling HDFS Administrative Access
Although you configure ACLs in the hadoop-policy.xml file as explained earlier, Hadoop 
can limit some administrative actions, such as performing a manual failover of the NameNode 
in an HA setup to just HDFS cluster administrators. This could be the HDFS super 
user but need not be. You can configure HDFS cluster administrators by setting the 
dfs.cluster.administrators property in the hdfs-site.xml file, as shown here:

<property>
  <name>dfs.cluster.administrators</name>
  <value>hdfs admin_group</value>
</property

The default value for this parameter is an empty space, meaning no users have 
administrative access.

Refreshing a Service Level Authorization Configuration 
You can dynamically modify the service level configuration for the NameNode and 
the ResourceManager without restarting those daemons. You can refresh the authoriza-
tion configuration for the NameNode and the ResourceManager by issuing the 
dfsadmin –refreshServiceAcl commands, as shown here:

$ bin/hdfs dfsadmin –refreshServiceAcl
$ bin/yarn dfsadmin –refreshServiceAcl

Role-Based Authorization with Apache Sentry
There are many services in a Hadoop cluster, and the list only grows with time. In the 
long run, you simply can’t keep up with the configuration and management of service 
level authorization by configuring at the component level. Fortunately, there’s Apache 
Sentry to the rescue! Apache Sentry provides fine-grained role-based authorization for 
data you store in HDFS. Sentry provides role-based authorization control (RBAC) for 
HDFS data. Sentry currently works with Hive and Impala.
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While HDFS authorization schemes and the usage of ACLs to provide service level 
authorization do serve a vital role in authorizing Hadoop users, there’s really no overarching 
authorization system in Hadoop. 

Apache Sentry is an attempt to provide a unified and consistent means of authorization 
across the Hadoop environment, so Hadoop administrators can specify exactly what a 
user is allowed to do in a Hadoop system. 

Sentry’s role-based access system enables the administrator to control user access at a 
granular level. In order to set up fine-grained authorization in your cluster, you must 
classify the data for access and determine the users who need access to specific sets of 
data and also the levels of access that are required. You can specify granular authorization 
by using Hive and Sentry together.

Key Sentry Concepts
Sentry uses several types of privilege models to make its authorization decisions. It applies 
the SQL model, for example, to Hive and the Bigtable model to HBase and Accumulo. 
Hadoop components such as Hive and HBase use a Sentry binding to delegate authori-
zation decisions to Sentry. The Sentry binding applies the appropriate model for determining 
authorization.

When users wish to perform an action such as reading a file, Sentry relies on users, 
groups and privileges to authorize the user requests:

 n A user is any user that has access to a Hadoop component such as Hive or HBase.
 n A group is a set of users with similar needs and privileges.
 n A privilege in the context of Sentry consists of two components: an object and 

the action the user wants to perform on that object. For example, an object could 
be a database and the action could be a read or write operation.

Note

By default, Sentry denies access to all objects.

Once you define the logical groups that require access to specific parts of data, you 
can design roles to define fine-grained authorization policies, with each role specifying 
a set of permissions. You then assign the roles to the groups.

Sentry Policies
Sentry determines authorization based on authorization policies that you configure. 
Two entities—a policy providers and a policy engine—work together in making autho-
rization decisions:

 n Policy providers store the authorization policies in a text file or in a database. 
 n Sentry uses its policy engine to check the policy provider to determine whether 

an action requested by a user is authorized.
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Sentry Roles
Sentry doesn’t grant privileges directly to users. Rather, it groups a set of privileges in a role. 
Thus, a role can be seen as a set of privileges, such as an “administrator” or “analyst” role, for 
example. Users are assigned to groups and a role is always assigned to a group, not to a user. 
Here’s what you need to know with regard to Sentry roles, privileges and groups:

 n A role is granted privileges.
 n Users belong to a group.
 n Roles are assigned to a group, never to a user.
 n Privileges can’t be granted directly to a group.
 n Users can belong to multiple groups.
 n The same role can be assigned to multiple groups.

Sentry Privilege Models
Sentry uses specific privilege models for each service for which it provides authorization. 
Each privilege model specifies a set of privileges and a set of object types to which the 
privileges can be applied. 

The available privileges in each privilege model determine the granularity of the 
Sentry authorization controls. You can select the appropriate Sentry authorization policies 
for your environment by understanding the privilege models Sentry uses.

In this section, I focus on Sentry’s SQL privilege model, since that’s what Sentry uses 
for Hive authorization. 

Sentry provides the SELECT, INSERT and ALL privileges for SQL access. The SQL privilege 
mode is hierarchical, meaning, for example, if you grant SELECT privileges on a table, 
implicitly you’re also granting privileges on any view based on that table. 

The Sentry Service
Hive and Impala can utilize the Sentry service, which uses a database for storing Sentry 
policies rather than using a text file. Although you can continue to use the older way 
of configuring a Sentry policy file (without a Sentry service), the best approach is to 
use the Sentry service. 

The Sentry service is a daemon process that lets the various Hadoop ecosystem com-
ponents perform policy lookups. You can configure the components in Sentry so they 
can delegate authorization decisions based on Sentry policies.

When a client accesses HiveServer2, it connects to the Sentry service using the Sentry 
binding inside HiveServer2. The Sentry service will consult the Sentry policy database to 
determine whether the clients are authorized to perform the actions they are trying to per-
form in Hive. This is so because the Sentry policy database stores all authorization policies.

You use the sentry-site.xml file for configuring the Sentry service. 

Sentry and Hive Authorization
When clients access Hive tables, the only controls in place are the HDFS file permissions, 
which aren’t very strong. A user can easily make changes to the Hive metastore. There 
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are no restrictions on a user’s ability to create tables, insert data into tables or run queries 
based on any Hive tables. Hive authorization through Sentry allows you to install fine-
grained authorization policies. 

Although Hive uses familiar database terminology such as tables, rows and partitions, 
Hive tables are in fact HDFS directories, and the partitions for a Hive table are subdi-
rectories under the main HDFS Hive directory. You can assign various Hive privileges 
such as select, update and alter to users, groups or roles, at the database or table level. 

However, Hive has serious deficiencies when it comes to permissions:

 n Hive doesn’t have a built-in capability to prevent a mismatch between the meta-
data stored in the Hive metastore and the HDFS file permissions, since you can 
change the HDFS permissions directly. 

 n Hive can’t limit permissions to parts of a table’s data, and it also can’t provide 
column- level permissions or define server-level roles. 

Sentry enables you to create roles at the server, database and table level. You can use 
these roles to provide partial access to a table’s data to users, if you so wish.

A key security concern is the protection of the Hive metastore database from arbitrary 
changes made by clients. 

The purpose of HiveServer2 is to support requests coming from clients through JDBC 
and ODBC user interfaces. HiveServer2 accesses the Hive metastore to get the metadata 
information and also performs the necessary Hive actions for clients. Using Sentry, you 
can ensure that all HiveServer2 contacts are authorized and also that users must use 
HiveServer2 to work with Hive databases.

In summary, when configuring Sentry authorization for Hive, you must secure both 
HiveServer2 and the Hive metastore.

In this chapter, I show you how to set up Sentry authorization for Hive. If you’re using 
Impala, you must set up appropriate configuration for enabling Impala authorization 
through Sentry.

Configuring the Sentry Server for Hive Authorization
In order for Hive to use Sentry authorization, both the Hive metastore and HiveServer 
2 should be able to use the Sentry service. You must enable the Sentry service for Hive in 
the sentry-site.xml file, using the configuration properties I explained earlier. Later, I’ll 
point to the location of this sentry-site.xml file in the hive-site.xml configuration file, 
which I also need to configure so Hive can work with Sentry.

A couple of important properties of the sentry-site.xml file merit an explanation:

 n The hive.sentry.provider property specifies how Sentry determines the group infor-
mation. The value I specified here, HadoopGroupResourceAuthorizationProvider, 
means that Sentry will use the method you configured the Hadoop cluster with. 
For example, Sentry can read the groups from the local operating system or get 
the group information from LDAP if you’ve configured Kerberos security.
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 n The sentry.metastore.service.users configuration property specifies the users 
can directly connect to the Hive metastore, bypassing Sentry authorization. Thus, 
users hive, hue and hdfs, all service users, can bypass Sentry in our example here.

Configuring Hive for Sentry
As mentioned earlier, you need to configure both HiveServer2 and the Hive metastore 
to work with the Sentry service if you want to use Sentry authorization. The config-
uration of the necessary properties to enable HiveServer2 communication with the 
Sentry service will look like the following in the hive-site.xml file:

<configuration>
...
  <property>
    <name>hive.server2.enable.doAs</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.server2.session.hook</name>
    <value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
  </property>
  <property>
    <name>hive.sentry.conf.url</name>
    <value>file:///etc/hive/conf/sentry-site.xml</value>
  </property>
  <property>
    <name>hive.security.authorization.task.factory</name>
    <value>org.apache.sentry.binding.hive.SentryHiveAuthorizationTaskFactoryImpl
</value>
  </property>
</configuration>

Note the following:

 n The hive.server2.enable.doAs configuration property disables impersonation. 
This means that queries are executed as the user that runs the HiveServer2 service.

 n The hive.sentry.conf.url configuration property points to the location of the 
Sentry configuration file.

 n The hive.server2.session.hook configuration property specifies the binding 
that passes along the authorization decisions to Sentry.

While impersonation is disabled with this configuration, the HDFS permissions on the 
Hive warehouse are still open. In order for Sentry to authorize a client’s data access, you must 
also tighten HDFS permissions, as shown here:

$ hdfs dfs –chown –R hive:hive  /user/hive/warehouse
$ hdfs dfs –chmod –R 771        /user/hive/warehouse

The Hive warehouse directory is usually /user/hive/warehouse. In the example shown 
here, I set the permissions on the warehouse directory to 771 (-rwxrwx--x). This means 
that users who don’t belong to the group hive have no permissions on this directory. 
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Once you change the HDFS file permissions as shown here, only the user hive can access 
the Hive tables (HDFS files) when end users run their queries.

Two more things:

 n In order to let the Hive user submit YARN jobs, you must add the following 
property to the container-executor.cfg file:

allowed.system.users = nobody, hive

 n Next, you must configure the Hive metastore so it can work with the Sentry service, 
as shown here (in the hive-site.xml file):

<configuration>
...
  <property>
    <name>hive.metastore.client.impl</name>
    <value> org.apache.sentry.binding.metastore.SentryHiveMetaStoreClient</value>
  </property>
  <property>
    <name>hive.metastore.pre.event.listeners</name>
    <value>org.apache.sentry.binding.metastore.MetastoreAuthzBinding</value>
  </property>
  <property>
    <name>hive.metastore.event.listeners</name>
    <value>org.apache.sentry.binding.metastore.SentryMetastorePostEventListener
</value>
  </property>
</configuration>

Administering Sentry Policies
Sentry roles and how you assign permissions to them play a crucial role in Sentry policy 
administration. You can configure Sentry permissions by issuing the Sentry policy 
commands interactively from the Sentry server. You can also do so through Beeline, 
the HiveServer2 SQL command line interface. Note that once you enable Sentry, you 
can only use Beeline for executing Hive queries (not Hive CLI). A couple of examples:

 n GRANT privilege on object TO ROLE role_name: Grants a specific privilege 
on an object to a role

 n REVOKE privilege ON object FROM ROLE role_name: Revokes a granted 
privilege on an object from a role

Sentry Policy Administration Examples
In the previous section I listed several Sentry authorization policies. Following are some 
examples showing how to set those policies. Perform these operations as the user hive 
from the beeline CLI.

1. Create a role for the hive administrators:

0: jdbc:hive2://hadoop01.localhost:10000> CREATE ROLE hive_admin;

The CREATE ROLE command creates a role with the name that you specify. You can
remove a role from the Sentry database with the DROP ROLE command.
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2. Grant the newly created role to the sqladmin group:

0: jdbc:hive2:// hadoop01.localhost10000> GRANT ROLE hive_admin TO GROUP

sqladmin;

The GRANT ROLE command grants a role to a group.

3. Grant the role hive_admin permissions on the server:

0: jdbc:hive2:// hadoop01.localhost:10000> GRANT ALL ON SERVER hadoop01 TO

ROLE hive_admin;

4. Show all roles in the database:

0: jdbc:hive2:// hadoop01.localhost:10000> SHOW ROLES;

The SHOW ROLES command shows all roles in the database for the Sentry admin user.

5. Show all the privileges for the hive-admin role:

0: jdbc:hive2:// hadoop01.localhost:10000> SHOW GRANT ROLE hive_admin;

6. Set current role to the hive_admin role:

0: jdbc:hive2:// hadoop01.localhost:10000> SET ROLE hive_admin;

7. List the roles in the current session:

0: jdbc:hive2:// hadoop01.localhost:10000> SHOW CURRENT ROLES;

The SHOW CURRENT ROLES command shows the roles in effect in the current session.

8. List all tables:

0: jdbc:hive2:// hadoop01.localhost:10000> SHOW TABLES;

9. Remove all roles in the current session:

0: jdbc:hive2:// hadoop01.localhost:10000> SET ROLE NONE;

The SET ROLE NONE command disables all roles for a specific user. The SET ROLE
command enables a specific role for a user for the current session, and the SET ROLE
ALL command enables all roles for a specific user.

Auditing Hadoop 
While Kerberos authentication ensures that only authorized users and services can log 
in and perform actions inside the Hadoop cluster, and authorization policies control what 
these users and services can actually do in the cluster, you must also ensure that you can 
track user and service actions through appropriate auditing. Auditing is also referred to 
as accounting and is a key component of IT security.

In a Hadoop cluster, you can track actions performed in HDFS, HBase, MapReduce, 
Hive, Impala and so on. For example, HDFS audits will cover actions that read and 
write data to HDFS. Hadoop lets you configure audit logging of all of its components 
separately.
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Auditing HDFS Operations
You can configure two separate audit logs for HDFS actions. User activity such as creating 
f iles and changing their permissions is tracked by the hds-audit.log f ile, and the 
SecurityAuth-hdfs.audit file tracks server-level authorization actions.

Hadoop uses Log4j for logging. You configure Log4j for Hadoop by specifying 
the logging attributes in the log4j.properties file, located in the /etc/hadoop/config 
directory. 

When you set up Log4j logging, Hadoop records all HDFS operations in the 
hdfs-audit.log file. Here are the partial contents of an hdfs-audit.log file, showing 
how it tracks HDFS operations performed by the user sam.

...

...INFO FSNamesystem.audit: allowed=true  ugi=sam@EXAMPLE.COM
 (auth:KERBEROS) ip=/192.168.56.1 cmd=listStatus src=/user/sam dst=null r-----
...INFO FSNamesystem.audit: allowed=true  ugi=sam@EXAMPLE.COM
 (auth:KERBEROS) ip=/192.168.56.1  cmd=setPermission src=/user/sam/test 
dst=null

This log reveals that the user sam was successfully authorized by Kerberos 
(auth:KERBEROS). It also shows that the following HDFS operations performed by user 
sam were allowed:

 n listStatus: Directory listing of the directory /user/sam
 n create: Creating a file named test in the /user/sam directory (I deleted some 

output)
 n setPermission: Changing permissions on the file /user/sam/test to rw-r-----

Auditing YARN Operations
Hadoop logs YARN operations by users in two different log files. The ResourceManager 
log file includes activities performed by the ResourceManager such as submitting applica-
tion requests and allocating containers. The NodeManager log files track events performed 
by each NodeManager involved in the YARN application, such as container requests, 
for example.

You configure YARN audit event tracking by specifying the configuration properties 
in the YARN log4j.properties file.

Let’s say user sam submits a MapReduce application through YARN. Here’s what 
the ResourceManager log file shows (partial output):

... INFO USER=sam IP=192.168.56.1  OPERATION=Submit Application Request
  TARGET=ClientRMService  RESULT=SUCCESS  APPID=...
... INFO USER=sam OPERATION=AM Released Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=...
...INFO USER=sam OPERATION=Application Finished - Succeeded
  TARGET=RMAppManager RESULT=SUCCESS  ...
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You can see that YARN successfully authorized the following types of YARN 
applications for the user sam:

 n Application request
 n Allocated container
 n Released container
 n Application finished—successful

Note

As with HDFS and YARN operations, you can also audit Hive and Oozie operations

Securing Hadoop Data
Data encryption is the most common way to protect key corporate data stored in a database 
or in HDFS. Protecting data stored in devices such as the hard drives that form the basis for 
HDFS storage is called the encryption of data at rest. 

However, data isn’t always stationary—Hadoop operations continually move data 
around over the internal networks as well as on the Internet. Protecting data on the move 
is called encrypting data in transit (also called over-the-wire encryption).

Whether it’s on disk or in transit data encryption, you choose among several well-known 
encryption algorithms and standards such as AES, DES and Tripe DES.

Hadoop offers native HDFS encryption. You can encrypt data at the application, 
database and the file system or disk level. Each of these encryption levels involves a tradeoff 
between performance and data protection. HDFS native encryption, also called HDFS 
Transparent Encryption, is somewhere in between a database-level and a file system-level 
encryption. It offers good performance and transparent encryption of data without having 
to configure application- level encryption, which involves code changes to support 
encryption.

HDFS encryption protects you from attacks aimed at both the file system and OS levels, 
since HDFS encrypts data stored on the disk system.

In order to fully protect your data, in addition to encrypting data stored in HDFS, 
you must also think about how to encrypt data in motion, the intermediate data stored 
in the local file system, MapReduce shuff le data, and external data ingested by Hadoop 
through data ingestion tools such as Sqoop and Flume.

HDFS Transparent Encryption
HDFS native encryption is both transparent and end to end. It’s transparent because users 
don’t need to make any changes to their code to encrypt data—Hadoop takes care of all 
the encryption and decryption work. It’s also end-to-end encryption because only the 
client encrypts (and decrypts) data, without HDFS ever having to store the unencrypted 
data or the unencrypted data encryption keys.
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Architecture
HDFS uses a new concept termed encryption zones to encrypt its data. Each encryption 
zone is an HDFS directory (could also be multiple directories) designed for automatic 
encryption and decryption of data stored in that directory. Encryption keys are stored 
and managed by a dedicated server called the Hadoop Key Management Server (KMS).

Here’s what you need to know about encryption zones and how they work with 
encryption keys:

n Each encryption zone you create has a unique encryption zone key (EZK).
n Each file within an encryption zone has a unique data encryption key (DEK).
n HDFS only handles an encrypted data encryption key (EDEK) and not the DEK.
n In order to read or write data, HDFS clients need to decrypt the EDEK to get the 

DEK for that file to read from or write data to that file.

How Encryption Works
The NameNode, the KMS and the DFS client interact to encrypt and decrypt HDFS 
data. When you create a file in HDFS, the NameNode requests the KMS to generate a 
new EDK, which the NameNode will then store as part of the file’s metadata. 

The Hadoop client uses both the EDEK and the DEK to finally decrypt an encrypted 
HDFS file stored in an encryption zone (EZ).

Figure 15.1 shows Hadoop’s TDE architecture.

HDFS Client

HDFS Files
in the 

Encryption
Zone

YARN
Key Provider API

Key Provider API

Key Provider API

NameNode

Key
Management

Server

DEKs EZKs

Figure 15.1 Architecture of Hadoop’s transparent data encryption
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Even if an unauthorized user tries to access an HDFS encrypted file, the user can get 
the encrypted keys but not the encryption zone keys, which are managed separately by 
the KMS, thus keeping your data secure.

Configuring KMS
Hadoop KMS is a cryptographic key management server and is a Java web application 
that runs on the Tomcat web application server that’s bundled with Hadoop. KMS acts 
as the mediator between HDFS and its clients and the key server. KMS generates both 
EZKs and DEKs and decrypts the EDEKs as well. It communicates with the key server 
through the KeyProvider Java API.

Due to the key role (no pun intended) the KMS plays in HDFS encryption, you must 
run this server on a host that’s separate from all the other Hadoop components. KMS 
lets you configure multiple instances for scalability and for high availability. In order to 
work with KMS for encrypting HDFS, you must configure the KMS backing KeyProvider 
properties. 

In addition, it’s advisable to set up KMS with Transport Layer Security (TLS) wire 
encryption. You can do this by adding the environment variables KMS_SSL_KEYSTORE_FILE 
and KMS_SSL_KEYSTORE_PASS to the kms-env.sh file. These two properties specify the 
location of the KeyStore file and its password, respectively.

Once you set up these configuration properties, start up the KMS server as shown here:

$ sbin/kms.sh start

Now that you’ve configured and started up the KMS Server, it’s time to configure 
the KeyProvider.

Configuring Encryption
After configuring KMS, you must also configure the KeyProvider. Following are the 
two key configuration parameters for the KeyProvider:

 n hadoop.encryption.key.provider.url: The URI the KeyProvider uses when 
dealing with encryption zones; for example, kms://https@kms.example
.com:16000/kms. You must set this property on all the DataNodes and NameNodes 
in the core-site.xml file.

 n hadoop.security.key.provider.path: The URI for the KeyProvider to use when 
dealing with encryption keys as a client; for example, kms:/https@kms.example
.com:16000/kms. You must set this property in the core-site.xml file on all the 
DataNodes and the client node as well.

There are also several cryptography-related configuration parameters you can set in 
the core-site.xml file on all the DataNodes and the NameNodes, such as hadoop.security
.crypto.cipher.site. For now, you can just use the defaults for all the cryptography- 
related parameters.
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Encrypting HDFS 
With the configuration of the KMS and the NameNode and HDFS clients behind us, 
you’re ready to create the HDFS encryption zones. Use the hadoop key command first 
to create the encryption keys and the hdfs crypto command to create the encryption 
zones, as shown here:

# hadoop key create testkey     // do this as a regular user, not the super user

Log in as the super user (hdfs) and create an encryption zone, which involves creating 
a new directory first and then making it an encryption zone, with the help of the
–createZone command option.

# hdfs dfs –mkdir /testzone
# hdfs crypto –createZone –keyName testkey –path /testzone

You can check that the new encryption zone has been created with the –listzones 
option:

# hdfs crypto –listZones
/testzone
#

Note that the directory you’re making into an encryption zone must be empty. 
Finally, as the super user again, change the ownership of the zone to that of a regular user.

# hdfs dfs –chown testuser:testuser  /testzone

Once you create an encryption zone as shown here, all files created in that zone will 
be encrypted. If a client needs to read a file in the encryption zone, the file needs to be 
decrypted. If you want to encrypt currently existing data, you can do so by moving that 
data into a new encryption zone with DistCp or by other means.

If you’re interested in encrypting data produced by the various Hadoop components 
that aren’t stored in HDFS itself, you can do so either by using full disk encryption with 
a tool such as the open source LUKS, or by encrypting at the file system level with a 
tool such as ecryptFS, Dataguise for Hadoop (DG) or Gazzang zNcrypt, all of which are 
open-source encryption solutions.

Encrypting Data in Transition
Hadoop moves around quite a bit of data, so encrypting data in transit is a key security 
concern. In earlier days, it was common to use the Secure Socket Layer (SSL) for encrypting 
data in transit, but now, TLS is the established cryptographic protocol for encrypting data 
in transit. 

You need to configure the encryption of data in transit differently based on the method 
of communication (RPC, TCP/IP, etc.) used by YARN, HDFS and other clients. You can 
configure Hadoop’s RPC encryption by setting the hadoop-rpc.protection property in 
the core-site.xml file, as shown here:

<property>
   <name>hadoop.rpc.protection</name>
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   <value>privacy</value>
</property>

By setting the value privacy for the hadoop.rpc.protection parameter, I’m putting 
the Java SSL implementation used by Hadoop in the auth-conf mode, which provides 
authentication, integrity and confidentiality. Two other modes, authentication and 
integrity, provide only authentication and integrity respectively.

When DataNodes exchange data between them or send it to a client, they use the 
HDFS data transfer protocol and use a direct TCP/IP socket for the communica-
tion. You can configure HDFS data transfer encryption by configuring the following 
two properties in the hdfs-site.xml file:

<property>
  <name>hadoop.encrypt.data.transfer</name>
  <value>true</value>
</property>

<property>
  <name>dfs.encrypt.data.transfer.cipher.suites</name>
  <value>AES/CTR/NoPadding</value>
</property>

The second configuration parameter sets AES as your encryption algorithm. Make sure 
you configure the hadoop.rpc.protection property as shown earlier (value=privacy) 
first, to enable RPC encryption for the encryption keys.

For encrypting data in transit that uses the HTTP protocol, you can use the HTTPS 
protocol, which is HTTP with either SSL or TLS, to encrypt the HTTP endpoints. 
HTTPS configuration involves several steps such as creating the private keys, security 
certificates and so on and saving them in a Java KeyStore. 

Other Hadoop-Related Security Initiatives
Providing security for Hadoop is vital, and there’s a lot of work going on in this area, 
with new security projects coming on board all the time. In this section, I brief ly describe 
the most useful of the new security projects.

Securing a Hadoop Infrastructure with Apache Knox Gateway
Apache Knox Gateway, usually referred to as Knox, provides perimeter security for con-
trolling Hadoop access while adhering to your corporate security policies. Knox provides 
server-level authorization at the perimeter. It provides authentication and token verification 
at the perimeter and integrates its authentication with corporate identity management and 
SSO systems, letting you use identities you provision in the corporate systems to securely 
access the Hadoop cluster.

Knox isn’t a substitute for Kerberos. Knox encapsulates Kerberos and simplifies the 
Kerberos security model by doing away with the complex client-side configuration usually 
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required for Kerberos. Knox is a stateless reverse-proxy framework that aggregates the 
REST/HTTP calls to the Hadoop components. Knox allows enterprise users to securely 
use REST APIs without having to deal with Kerberos. However, implementers still have to 
deploy and manage the SSL certificates, which isn’t much easier than managing Kerberos.) 
Knox provides authentication, authorization, auditing and other security services.

Apache Ranger for Security Administration
Apache Ranger provides centralized administration of security policies and also provides 
centralized access control and auditing services. It integrates with various Hadoop com-
ponents such as HBase, HDFS, Hive, Knox and Storm and ensures consistent coverage 
across the stack.

Ranger consists of a Policy Admin Server and a User/Group Synchronization Server. 
The admin server serves as the main interface for security administration. The synchro-
nization server helps pull users and groups from an LDAP server such as Active Directory 
and stores it within the Ranger administration policy database for defining security policies 
for them. Ranger plugins help it secure various Hadoop components.

Once you define polices on files and directories, the Ranger Plugin evaluates all HDFS 
requests and grants appropriate access. Similarly, when you integrate with Hive, the 
Ranger Plugin acts as the authorization provider for HiveServer2 and evaluates all requests 
for Hive access based on the specific ranger policies you create. 

As with authorization, Ranger also lets you configure auditing through security policies. 
It provides for the auditing of both resource access and administrative operations.

Finally, you can integrate Ranger with Knox—the Ranger Knox Plugin enforces 
server-level authorization through Ranger policies by acting as the authorization provider 
inside the Knox Gateway.

Summary
Here’s what you learned in this chapter:

 n In order to secure your Hadoop environment, you must take care of authentica-
tion, authorization and auditing.

 n Kerberos is the accepted authentication solution for Hadoop, and this chapter 
explained how you can go about setting up Kerberos authentication in your 
environment.

 n While you can use HDFS ACLs for authorization, in order to set up a policy- 
based authorization system, you must use something like the Sentry service. 

 n Auditing events is quite critical, and you can audit all events for YARN and HDFS.
 n Encryption of data is essential for securing data at rest, and Hadoop comes with 

built-in encryption capabilities.
 n To complete the circle of security, you must also secure data in transit.
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16 
Managing Jobs, Using Hue 

and Performing Routine 
Tasks

This chapter covers the following:

 n Using YARN commands to manage Hadoop jobs
 n Decommissioning and recommisssioning nodes
 n Setting up a high-availability ResourceManager
 n Performing common management tasks
 n Implementing specialized HDFS features
 n Managing the MySQL database
 n Backing up key data
 n Using Hue to manage your cluster

This chapter is kind of a grab bag, in the sense that it discusses several Hadoop admin-
istration tasks that an administrator is frequently called upon to perform. I start off with an 
explanation of the set of YARN commands that help you manage Hadoop jobs. Chapter 17, 
“Monitoring, Metrics, and Hadoop Logging,” explains how to use Hadoop’s web UI to 
manage jobs, but it’s good to learn how to work with the yarn command as well.

I next explain typical administrative tasks such as decommissioning and recommission-
ing nodes. I didn’t get a chance earlier on to show how to set up high availability for 
the ResourceManager, so I stuck it in this chapter! 

Although I’ve devoted several chapters to managing HDFS, there are some important 
HDFS features that you may want to set up in your cluster, such as short-circuit local 
reads and mountable HDFS. This chapter introduces these useful features.

Hue is a wonderful interface, highly useful to Hadoop  users and to you, the adminis-
trator, for creating, scheduling and managing jobs through the Oozie job scheduler. 
I show how to install, configure and use Hue to help manage your cluster.
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Although you don’t (and really, can’t, due to the size of the data) perform HDFS backups as 
you do for the data in a relational database, you do need to back up the NameNode metadata. 
Similarly, you must back up the metadata for several common components such as Hue, Hive, 
Sqoop, Oozie and Sentry. I show you how to back up data from the MySQL database, which 
happens to be the most commonly used relational database in Hadoop environments.

Let’s start with a review of the Hadoop yarn command and learn how to use it to 
manage     jobs.

Using the YARN Commands to Manage Hadoop 
Jobs
Hadoop’s yarn command is very helpful in managing various aspects of YARN. Although 
the ResourceManager web UI is quite useful, when things break down, you need the 
command line to fix things. The command has a wide operational scope, in the sense that it 
helps you manage a large range of Hadoop tasks with it, such as reporting and killing running 
applications, obtaining job and daemon logs and even managing the ResourceManager. 

You can find out all the available options for the yarn command by issuing the yarn 
command without any parameters, as shown here.

# yarn
Usage: yarn [--config confdir] COMMAND
where COMMAND is one of:
  resourcemanager -format-state-store   deletes the RMStateStore
  resourcemanager run the ResourceManager
...
Most commands print help when invoked w/o parameters.
#

You can use yarn commands to monitor and manage your applications from the 
command line. For example, you can view the status of running jobs with the yarn 
application command. Similarly, you can kill a running application gracefully from 
the command line with the yarn administration –kill command, instead of hacking 
the process to death with the Linux kill command. 

One of the handiest yarn commands is the yarn top command, which lets you quickly 
see the cluster usage at a point in time. As Figure 16.1 shows, the yarn top command pro-
vides summary information about the number of submitted, running and completed jobs. It 
also shows you the amount of memory and CPU cores allocated for all jobs in the cluster. 

In this chapter, our focus is on monitoring and managing the cluster, so let’s learn how you 
can monitor YARN using the yarn command. You can view basic job information and per-
form other tasks such as kill a running job by issuing the yarn application command. The 
yarn application command is helpful in performing the following administrative tasks:

 n Listing the applications that are running in the cluster
 n Killing running applications
 n Getting the status of running applications

The following sections show how to use the key application-related yarn commands.
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Viewing YARN Applications
You can issue the command yarn application with the -list option to view all the 
applications (what you call a job, YARN calls an application) in the cluster right now, 
as shown here:

# yarn application -list
15/12/23 05:11:37 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
Total number of applications (application-types: [] and states: 
[SUBMITTED, ACCEPTED, RUNNING]):2

Application-Id Application-Name Application-Type 
User Queue State Final-State
Progress Tracking-URL
application_1448106546957_4368    PriceAggregatorJob MAPREDUCE   
salesuser       root.produser RUNNING UNDEFINED 
55.07%  http://hadoop02:40417
application_1448106546957_4369  DataSorter-Xml2AvroTransformerJob
MAPREDUCE        produser      root.produserproduser RUNNING 
UNDEFINED                   5% http://hadoop03:27264
#

The application –list command retrieves the list of all jobs regardless of their 
state. A job can have the following states: ALL, NEW, NEW_SAVING, SUBMITTED, ACCEPTED, 
RUNNING, FINISHED, FAILED and KILLED.

You can filter the list of applications by specifying its state, (or a comma-separated 
list of application states, with the –appStates option). For example, you can limit the 

Figure 16.1 The yarn top utility
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list of jobs to a specific state, such as RUNNING or FAILED, by specifying the -appStates 
option with the yarn application –list command, as shown here:

# yarn application -list -appStates running
15/12/23 05:12:10 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
Total number of applications (application-types: [] and states: [RUNNING]):2
...
#

The output for this command shows just those YARN jobs that are in the RUNNING 
state.

Similarly, the output from issuing the following command shows all failed jobs:

# yarn application -list -appStates FAILED
16/07/10 08:12:05 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
Total number of applications (application-types: [] and states: [FAILED]):12

Application-Id      Application-Name        Application-Type 
User Queue                   State             Final-State
Progress Tracking-URL
application_1462081872415_4296  MY_POS Spark Data Exploration
SPARK        bdaldr      root.bdaldr                 FAILED
FAILED 100% http://hadoop:8088/cluster/app/
application_1462081872415_4296
...

You can view all applications, including those that have completed, by adding the all 
option to the -list command, as shown here:

$ yarn application –list –appTypes all

Note that YARN shows the application ID for an application when you issue the yarn 
application –list command. This application ID is very useful for running other yarn 
commands, such as those that retrieve the status of a specific job or a command that kills a job.

Checking the Status of an Application
You can view the status of a specific application by specifying its application ID, along with 
the -status option.

$ yarn application –status <application ID>

You can also check the status of an application attempt by issuing the yarn 
applicationattempt command, which has the following syntax:

$ yarn applicationattempt  -list <Application Id> -status <Application Attempt Id>

Killing a Running Application
When you start a YARN application from the command line, you can’t terminate it by hit-
ting CTRL-C on your terminal. You’ll get the prompt back, but the job continues to run in 
the cluster! You can kill the JVM for the application from the Linux command line, but the 
right way to terminate a job is to issue the application –kill command as shown here.
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$ yarn application –kill application_1389385968629_0025
16/07/10 16:53:30 INFO client.YarnClientImpl: Killing application application_
1389385968629_0025
16/07/10 16:53:30 INFO service.AbstractService: Service:org.apache.hadoop.yarn
.client.YarnClientImpl is stopped.

When you issue the yarn application –kill command, you’ll get back the prompt 
immediately, with no messages of any kind to let you know that your bidding was done! 
The job will have been killed, and you can confirm this by checking the ResourceManager 
web UI or by simply issuing the following yarn command:

$ yarn application –list –appTypes running

Ch ecking the Status of th e Nodes
The yarn node command lets you list all the cluster’s nodes and check their status, as 
shown here:

# yarn node -all  -list
16/06/30 10:26:25 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
Total Nodes:70

Node-Id                     Node-State   Node-Http-Address
Number-of-Running-Containers

hadoop01.localhost:8041 RUNNING hadoop02.localhost:8042   17
hadoop03.localhost:8042 RUNNING hadoop02.localhost:8042   20
hadoop02.localhost:8041 RUNNING hadoop03.localhost:8042   18
hadoop04.localhost:8042 RUNNING hadoop04.localhost:8042   24  
...
#

Checking YARN Queues
You can check the status of a job queue with the yarn queue command:

# yarn queue -status produser
16/06/30 21:20:16 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
Queue Information :
Queue Name : root.produser

State : RUNNING
Capacity : 50.0%
Current Capacity : 15.9%
Maximum Capacity : -100.0%
Default Node Label expression :
Accessible Node Labels :

#

Getting the Application Logs
The logs option for the yarn command helps you access logs for completed YARN 
applications. Here’s the syntax of the yarn logs command:

$ yarn logs
Retrieve logs for completed YARN applications.
usage: yarn logs -applicationId <application ID> [OPTIONS]
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general options are:
-appOwner <Application Owner>   AppOwner (assumed to be current user if

not specified)
-containerId <Container ID>     ContainerId (must be specified if node

address is specified)
-nodeAddress <Node Address>     NodeAddress in the format nodename:port

(must be specified if container id is
specified)

$

You can get the logs only for jobs that have finished running. You can first list all the 
completed jobs with the following command:

# yarn application -list -appStates finished

From the output of this command, retrieve the application ID for the job you’re inter-
ested in, and get the logs for that application by issuing the yarn logs –applicationId 
command as shown here:

$ yarn logs -applicationId application_1462081872415_7661 sg224323 

Hadoop assumes that the user issuing this command is the application owner as well. If 
that’s not the case, you must specify the application owner with the –appOwner option, as 
shown here:

$ yarn logs –applicationId application_1462081872415_7661 sg224323 –appOwner alapati

Alternatively, you can specify a container ID (-containerId) and a node address 
(-nodeAdress). Note that you must specify both of these parameters together, as 
shown here:

$ yarn logs –containerId 123456 –nodeAddress hadoop01.localhost:port

If you haven’t enabled log aggregation, you’ll see a message similar to the following 
when you try to retrieve application logs through the yarn logs command.

# yarn logs -applicationId application_1447271764045_0377
16/072/09 07:54:59 INFO client.ConfiguredRMFailoverProxyProvider: 
Failing over to rm219
/tmp/logs/root/logs/application_1447271764045_0377does not exist.
Log aggregation has not completed or is not enabled.
#

Hadoop 2’s log aggregation feature is explained in Chapter 17, in the section titled 
“Understanding Hadoop Logging.”

Yarn Administrative Commands
The commands you’ve learned about in the previous section are termed YARN user com-
mands by Hadoop. In addition to these commands that let you check the application status 
and get the application logs and so on, there’s a set of important yarn administrative commands 
that help you manage the ResourceManager in a high availability configuration. You can 
perform several ResourceManager-related tasks with the yarn rmadmin command.
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The key yarn administrative commands are the following:

 n yarn rmadmin refreshNodes

 n yarn rmadmin –transitionToActive

 n yarn rmadmin –transitionToStandby

 n yarn rmadmin –failover

 n yarn rmadmin –getServiceState

 n yarn rmadmin –checkHealth 

Later in this chapter, in the section “Setting Up ResourceManager High Availability,” 
I show you how to use the yarn administrative commands.

De            commissioning and Recommissioning Nodes
Once in a while you may need to take a non-master node—that is, a node running a 
DataNode and/or a NodeManager service—out of the cluster, because you’re shrinking the 
cluster size, or you want to remove a failed node or for general maintenance.

You can add or remove nodes while the cluster is running. Instead of just yanking 
a node out of the cluster, which could lead to potential data loss issues (if the removed 
node happens to hold the only copy of a file block), it’s wise to decommission them first 
before taking the server out of the cluster. Decommissioning DataNodes allows the cluster 
to gracefully recover. If you’re decommissioning several nodes, it allows the replication 
to be preserved and not disrupt running jobs.

When you decommission a node, Hadoop ensures that the node doesn’t contain 
any blocks that aren’t replicated on the other nodes. When you decommission a node, 
Hadoop automatically replicates the data blocks stored in the retired node to ensure that 
it satisfies the data replication level you chose (the default, as you know by now, is three 
replicas). 

Note

If you’re running a test cluster with just three nodes and the replication factor for the 
cluster is at the default level of three replicas, you can’t decommission the DataNode.

If the NodeManager is decommissioned, the ResourceManager is made aware of it 
and it won’t schedule any new tasks on that node. It also reschedules any tasks that it has 
already assigned to this NodeManager. 

Let’s say a node runs both a DataNode and a NodeManager service, as is common 
in a Hadoop environment. It’s normal to decommission and recommission both the 
DataNode and the NodeManager together in this case. 

You can decommission a DataNode or a NodeManager even when the server on which 
the DataNode or the NodeManager runs doesn’t have any issues. For example, there may 
be situations where you want a NodeManager to stop accepting new tasks; decommis-
sioning the NodeManager is the way to do this.
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Including and Excluding Hosts
Before you can decommission our example node that runs both a DataNode and a 
NodeManager, let’s review the concept of excluding and including nodes in a cluster. 

While it’s not mandatory, you can choose to include or exclude either the DataNode 
or the NodeManager services that usually run on each worker node. You specify all 
eligible nodes with the /etc/hadoop/conf/dfs.include file and all ineligible nodes with 
the /etc/hadoop/conf/dfs.exclude file. Using the include and exclude files is optional—
if you don’t use a dfs.include file, all DataNodes are included in the cluster unless you 
explicitly exclude the nodes by specifying them in the dfs.exclude file. 

You specify the location of the include and exclude files by providing the file names 
as the value for the dfs.hosts.include and dfs.hosts.exclude properties in the 
hdfs-site.xml file.

By default, all NodeManagers running on every node in the cluster are included 
in the cluster, if you don’t specify a yarn.include file. This is true unless you specifically 
exclude a node by adding it to the yarn.exclude file. As is the case with HDFS, you 
can point to your yarn.include and yarn.exclude f iles by specifying the yarn
.resourcemanager.nodes.include-path and the yarn.resourcemanager.nodes
.exclude-path properties in the yarn-site.xml file. Here’s what the two parameters 
enable you to do:

 n yarn.resourcemanager.nodes.include-path shows the path to the nodes you 
wish to include.

 n yarn.resourcemanager.nodes.exclude-path shows the path to the nodes 
you wish to exclude.

Once you specify the include/exclude files in the yarn-site.xml file, run the following 
command on the server where the ResourceManager is running:

# yarn rmadmin –refreshNodes

Before you can decommission either a DataNode or a NodeManager service, you must 
set or modify a couple of properties by editing the hdfs-site.xml file (for the DataNode) 
and the yarn-site.xml file (for the NodeManager), as explained here:

1. For the DataNode, edit the hadoop-site.xml file, ensuring that there’s a reference
to the exclude file wherein you’ll list the soon-to-be-decommissioned node. You
can do this by adding the parameter dfs.hosts.exclude in the hdfs-site.xml file:

<property>
   <name>dfs.hosts.exclude</name>
    <value>$HADOOP_CONF_DIR/dfs.exclude</value>
</property>

2. For the NodeManager, edit the yarn-site.xml file, as shown here:

<property>
  <name>yarn.resourcemanager.nodes.exclude-path</name>
  <value>$HADOOP_CONF_DIR/yarn.exclude</value>
 </property>
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Decommissioning DataNodes and NodeManagers
You follow basically the same procedures for decommissioning both a DataNode and a 
NodeManager, as explained in the following sections.

Decommissioning a DataNode
Follow these steps to decommission a DataNode.

1. On the node running the NameNode service, edit the $HADOOP_CONF_
DIR/dfs.exclude file and add the name of the node you wish to decommission.
If you wish to decommission multiple nodes at the same time, you can do so by
listing each node on a separate line in this file.

2. From the same node, reload the NameNode configuration so it’s made aware of
the excluded DataNodes by running the following command:

$ su $HDFS_USER
$ hdfs dfsadmin –refreshNodes

In this case, HDFS_USER is the user that owns HDFS, which is normally the user
named hdfs.

The NameNode will read all of its configuration when you run this command,
including the contents of the exclude file. It’ll then start decommissioning the nodes
you specified in the exclude file.

The decommissioning process can take some time, with the time depending on
the size of the disk drives. As part of the decommissioning, Hadoop needs to replicate
the HDFS data blocks on the soon-to-be-decommissioned node to other nodes in
the cluster. You can check the progress of the decommissioning by issuing the
dfsadmin –report command at intervals. This command will show you the nodes
that are connected to the cluster. At the bottom of the dfsadmin report, you’ll see
the status of the node you are currently decommissioning:

 n Before starting the decommissioning:
Name: 10.192.2.37:50010 (hadoop011node17.example.com)
Hostname: hadoop011node17.example.com 
Rack: /prod011
Decommission Status : Normal
Configured Capacity: 34892832342016 (31.73 TB)

 n After starting the decommissioning:
Decommissioning datanodes (1):

Name: 10.192.2.37:50010 (hadoop011node17.example.com)
Hostname: hadoop011node17.example.com
Rack: /prod011
Decommission Status : Decommission in progress
Configured Capacity: 34892832342016 (31.73 TB)
DFS Used: 22083549471327 (20.08 TB)
Non DFS Used: 18905551136 (17.61 GB)
DFS Remaining: 12790377319553 (11.63 TB)



ptg18444370

538 Chapter 16 Managing Jobs, Using Hue and Performing Routine Tasks

DFS Used%: 63.29%
DFS Remaining%: 36.66%
Configured Cache Capacity: 25391267840 (23.65 GB)
Cache Used: 0 (0 B)
Cache Remaining: 25391267840 (23.65 GB)
Cache Used%: 0.00%
Cache Remaining%: 100.00%
Last contact: Sun Jul 10Dec 31 13:26:27 CST 2016

 n After the completion of the Decommissioning:
$
Name: 10.192.2.38:50010 (hadoop011node18.example.com)
Hostname: hadoop011node18.example.com
Rack: /prod011
Decommission Status : Decommissioned
Configured Capacity: 0 (0 B)
DFS Used: 0 (0 B)
Non DFS Used: 0 (0 B)
DFS Remaining: 0 (0 B)
DFS Used%: 100.00%DFS Remaining%: 0.00%
S

You can also check the DataNode web UI for the DataNode that’s being decom-
missioned (http://<DataNodehost:50070) and check its admin state. The admin 
state should be changed to “Decommission in progress” at this point.

When you see that the decommissioning of the DataNode is completed, all of its 
blocks have been replicated to other nodes. The DataNode web UI at this point 
should report the state of the DataNode as “Decommissioned,” as well.

3. If you’re using a dfs.include file for your cluster, delete the decommissioned node
information from that file and refresh the nodes again, as shown here:

$ su $HDFS_USER
$ hdfs dfsadmin –refreshNodes

4. Once the DataNode decommissioning is completed you can shut down the node
on which the DataNode was running.

Decommissioning a NodeManager
Follow these steps to decommission a NodeManager:

1. Add the name of the NodeManager host to the $HADOOP_CONF_DIR/yarn
.exclude file on the server where the NameNode is running. Make sure you specify the
FQDN of the hostname(s).

2. Remove the decommissioned node information from the $HADOOP_CONF_
DIR/yarn.include file, if you’re using the yarn.include file.

3. Refresh the ResourceManager by executing the following command:

# su $YARN_USER
$ yarn rmadmin –refreshNodes
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In this command, the user YARN_USER is the user that owns YARN, which usually 
is the user named yarn.

4. As with the DataNode decommissioning, once the NodeManager decommissioning
is completed, you are free to shut down the node on which the NodeManager
was running.

Recommissioning Nodes
Recommissioning a node means you want to add it back to the cluster. Recommission-
ing, as you can tell, is the opposite of decommissioning, and hence, requires you to trace 
your steps back.

Let’s assume that the node you want to recommission runs both a DataNode and a 
NodeManager service. Start up the host first. In order to recommission it, remove the host 
name from the exclude file in both HDFS and YARN (dfs.exclude and yarn.exclude). 
Then run the following two commands, and you’re good to go:

$ hdfs dfsadmin –refreshNodes 
$ yarn rmadmin –refreshNodes

In a high-availability HDFS environment where you have two NameNodes, you must 
run the dfsadmin –refreshNodes command on both NameNodes, as shown here:

sudo -u hdfs hdfs dfsadmin -fs hdfs://hadoop01.localhost:8020 -refreshNodes
sudo -u hdfs hdfs dfsadmin -fs hdfs://hadoop02.localhost:8020 –refreshNodes

Similarly, in a high-availability ResourceManager environment, explained later in 
this chapter, you must run the following command on both nodes:

sudo -u hdfs yarn rmadmin -refreshNodes

Things to Remember about Decommissioning and Recommissioning
While the procedures for decommissioning and recommisssioning nodes are pretty 
straightforward, there are a couple of things you ought to keep in mind to make these 
processes more efficient.

Decommissioning a NodeManager is pretty straightforward and is usually completed 
virtually immediately. However, as alluded to earlier, decommissioning a DataNode could be 
a time-consuming affair. Recall that when you decommission a DataNode, the NameNode 
makes sure that all the blocks on that DataNode are going to be available in the other nodes, 
up to the number of replicas you configured (or the default replication factor, which is three). 
To do this, the NameNode copies the DataNode’s data blocks in small batches, and if the 
DataNode has a substantial number of data blocks, it could take several hours for the decom-
missioning process to complete. Meanwhile, you’ll be wondering if the decommissioning 
process has failed (you can monitor the decommissioning  process via the DataNode’s web 
UI). In order to avoid this, it’s a good idea to tune HDFS first by doing the following:

 n Raising the DataNode Java heap size using the Java option –Xmx.
 n Setting or raising the DataNode balancing bandwidth with the dfs.balance
.bandwidthPerSec parameter, which determines the maximum amount of network 
bandwidth (in bytes per second) a DataNode can use for balancing HDFS data.
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 n Raising the replication maximum threads and maximum replication thread hard 
limits by setting the  dfs.datanode.max.transfer.threads property in the 
hdfs-site.xml file. This parameter controls the maximum number of threads to 
be used for transferring data into and out of a DataNode. The default value is 4,096.

 n  Raising the replication work multiplier per iteration (the default value is 2, but 
you can raise it to 10 or more) by setting the dfs.namenode.replication.work
.multiplier.per.iteration parameter, which is deemed an advanced parameter 
by Hadoop, meaning you ought to exercise care when setting this parameter. 
This parameter determines the total block transfers that can begin in parallel at any 
DataNode. The number of blocks is determined by multiplying the value of this 
parameter by the total number of active nodes in the cluster. The resulting number is 
the number of data blocks to be transferred immediately, per DataNode heartbeat.

Adding a New DataNode and/or a NodeManager
You can add new DataNodes to increase the storage capacity of your cluster. Adding 
NodeManagers, on the other hand, will increase your cluster’s processing capacity. In 
most cases, you run both a DataNode and a NodeManager service on all worker nodes 
(except the master nodes), so let’s learn how to perform this task, which is probably going 
to be a common task as most Hadoop clusters grow over time by adding more nodes to 
the cluster.

Here are the basic steps in adding new nodes to a cluster:

1. Install Hadoop software on the new node(s). Copy the Hadoop configuration
files to the new node, using a tool such as rsync or scp, as shown here:

$ rsync –a <master_node_IP>:$HADOOP_HOME/etc/hadoop/$HADOOP_HOME/etc/hadoop

2. Setting up passwordless SSH between the master nodes and the new nodes is
optional, but you can go ahead and do it.

3. Add the IP address of the node to the $HADOOP_HOME/etc/hadoop/slaves
file on the master node.

Once you perform these steps, Hadoop will add the node to your cluster, but you 
can’t yet store data on that server or run jobs on it. In order to do the former, you must 
start the DataNode service, and to do the latter, you must start up the NodeManager 
service, as shown here:

$ $HADOOP_HOME/sbin/hadoop-deamons.sh start datanode
$ $HADOOP_HOME/sbin/yarn-daemons.sh start nodemanager

When it comes to recommissioning, the NodeManager doesn’t need any special 
attention, with the ResourceManager immediately starting the scheduling of new tasks 
on this NodeManager. As for the newly recommissioned DataNode, while Hadoop 
immediately starts storing new HDFS data on the DFS directories of this DataNode, 
it won’t move any existing HDFS data over to this node. Therefore, especially when 
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you’re adding a bunch of DataNodes to the cluster, it’s a good idea to start the HDFS 
balancer after the node addition, to ensure that the HDFS data is spread evenly across 
your cluster.

ResourceManager High Availability
While setting up high availability for the NameNode ensures that clients will always be able 
to access HDFS data, that’s only half the battle as far as high availability goes. As you know, 
in a Hadoop cluster, in addition to HDFS, you also need the ResourceManager (RM) to 
be running for clients be able to do anything. If the node on which the ResourceManager 
is running crashes, YARN is inaccessible and your clients can’t run anything on the 
cluster. Thus, configuring high availability for the ResourceManager is highly recom-
mended in a production setting, and the following sections show how to set it up. 

ResourceManager High-Availability Architecture
As with NameNode high availability, you configure a pair of active/passive 
ResourceManagers to avoid the single point of failure risk in running a single 
ResourceManager. The active ResourceManager writes its state to a ZooKeeper instance 
in the ZooKeeper ensemble. If the active ResourceManager fails for any reason, Hadoop 
uses the state stored in ZooKeeper, enabling the standby ResourceManager to start 
with the correct state. 

You can move an RM from the standby to the active state manually or configure the 
failover to happen automatically with Hadoop’s automatic failover feature. If you want 
to manually transition the states, you must use the yarn rmadmin command and transi-
tion the active ResourceManager to the standby status and the standby ResourceManager 
to the active status.

If you enable automatic failover between the active and standby ResourceManagers, 
Hadoop uses the ZooKeeper-based ActiveStandbyElector to help decide which of the 
two RMs should be active at any time by detecting RM failures and selecting another 
ResourceManager as the active ResourceManager. Unlike in the case of NameNode HA, 
you don’t use a daemon such as ZFKC, since the ActiveStandbyElector is embedded in 
the two ResourceManagers. 

You list both the active and the standby RM in the yarn-site.xml file. When 
ApplicationMasters and NodeManagers can’t connect to the active RM, they will keep 
trying the connection until they hit the new active RM. When the standby RM receives 
any web requests, it redirects them to the active RM.

Assuming you’ve enabled RM restart, when a failover occurs the new active RM 
continues its work from where the previous active RM stopped functioning, using the 
state of the active RM that’s stored in ZooKeeper. All applications that were submitted 
to the previous RM will have a new attempt automatically spawned. The state of the 
RMs is persisted to a state-store that’s accessible by both ResourceManagers. You can use 
either a file-based store or a ZooKeeper-maintained store called the ZKRMStateStore.
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 Unlike in the case of NameNode high availability, you don’t need to set up a fencing 
mechanism, because the state-store saves the state of the RMs in the ZKRMStateStore, 
preventing any split-brain situations where multiple ResourceManagers may try to 
assume the active role.

Setting Up ResourceManager High Availability
You can set up ResourceManager high availability by configuring several high-availability 
related parameters in the yarn-site.xml file. There are other parameters, as well, but these 
are the minimal set of parameters you’ll need to configure.

<property>
  <name>yarn.resourcemanager.ha.enabled</name>
  <value>true</value>
</property>
<property>
  <name>yarn.resourcemanager.cluster-id</name>
  <value>prodcluster1</value>
</property>
<property>
  <name>yarn.resourcemanager.ha.rm-ids</name>
  <value>rm100,rm140</value>
</property>
<property>
  <name>yarn.resourcemanager.hostname.rm1</name>
  <value>master1</value>
</property>
<property>
  <name>yarn.resourcemanager.hostname.rm2</name>
  <value>master2</value>
</property>
<property>
  <name>yarn.resourcemanager.zk-address</name>
  <value>zk1:2181,zk2:2181,zk3:2181</value>
</property>
</property>
<property>
  <name>yarn.resourcemanager.recovery.enabled</name>   
  <value>true</value>
</property>

The following property is mandatory when you enable ResourceManager recovery.

<property> 
    <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop
.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> 
 </property> 
<property> 
   <name>yarn.client.failover-proxy-provider</name> 
   <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value> 
 </property>

The very first parameter in the list, yarn.resourcemanager.ha.enabled, lets you 
enable ResourceManager high availability in your cluster. For the property yarn
.resourcemanager.ha.rm-ids, I used rm100 and rm140 as the ResourceManager IDs, 
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but you can specify any pair of numbers. The yarn.resourcemanager.recov-
ery.enabled parameter enables job recovery on a restart or failover of the 
ResourceManager.

ResourceManager Failover
Automatic failover of the ResourceManager is enabled by default. If you prefer manual 
failovers and want to prevent automatic failovers from happening, you can do so by setting 
the value of the yarn.resourcemanager.ha.automatic-failover.enabled parameter 
to false in the yarn-site.xml file. Note that although automatic failover is enabled by 
default, you must configure it, as shown in the following section.

Configuring Automatic RM Failover
You can configure the automatic ResourceManager failover process by setting the 
parameters yarn.resourcemanager.ha.automatic-failover.zk-base-path and 
yarn.resourcemanager.cluster-id in the yarn-site.xml file.

<property>
  <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
  <value>/yarn-leader-election</value>
<description>Optional setting. The default value is /yarn-leader-election
</description>
</property>

<property>
   <name>yarn.resourcemanager.cluster-id</name>
   <value>yarn-cluster</value>
</property>

The ResourceManager Restart Feature

The ResourceManager restart feature is unrelated to the ResourceManager high-availability 
feature, although it does sound like it has something to do with it. The restart feature 
ensures that the ResourceManager performs seamlessly between restarts, without 
affecting applications running in the cluster. The application state is persisted, and 
upon recovery, the ResourceManager reloads the state. The ResourceManager doesn’t 
need to kill the ApplicationMaster and start running the applications from the begin-
ning again.

When you restart the ResourceManager, it won’t kill any of the applications running in 
the YARN cluster. The ResourceManager recovers its running state that existed at the 
time it was stopped by using the container statuses it receives from the NodeManagers 
in the cluster. When a NodeManager resynchronizes with the ResourceManager, it doesn’t 
kill the running containers. It sends the status of all containers to the ResourceManager 
after registering with it again following a restart of the ResourceManager. The Application-
Master will resend outstanding resource requests to the ResourceManager, as well, so 
that those requests aren’t lost. 
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The configuration property yarn.resourcemanager.recovery.enabled enables the 
ResourceManager restart feature, as shown here.

<property>
  <name>yarn.resourcemanager.recovery.enabled</name>   
  <value>true</value>
</property>

Deploying a High-Availability ResourceManager Cluster
Earlier, I showed the configuration properties you must use to set up RM high availability. 
There are a few things you must do to activate your high-availability ResourceManager 
configuration. Here are the steps:

1. Make sure both of the nodes where the ResourceManager runs have identical
yarn-site.xml files.

2. The value you’ve set for the clientPort parameter in the ZooKeeper configuration
file (zoo.cfg) must match the port value in the yarn-site.xml files.

    <property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>localhost:2181</value>

    </property>

3. Start the ZooKeeper service with the following command:

/usr/lib/zookeeper/bin/zkServer.sh start

4. Start all HDFS services, including the NameNodes (in an HA environment there
are two NameNodes), the Standby NameNode (if you haven’t set up an HA
NameNode service) and all DataNodes, in that order.

5. Start all YARN services, including the primary and secondary ResourceManagers
on the two nodes where they run, as well as the JobHistoryServer and the Node-
Manager services.

$ yarn start resourcemanager   // on primary RM server
$ yarn start resourcemanager   // on secondary RM server

$ yarn start historyserver     // on server where JobHistoryServer runs
$ yarn start nodemanager     // on all servers where NodeManager service runs

6. If you’ve chosen the default feature of automatic ResourceManager failover, you’re
all set, as Hadoop will select the active ResourceManager by itself. If you’ve instead
disabled automatic failover, both RMs will now be in the standby state. You must
transition one of them to the active mode with the following command:

$ yarn rmadmin –transitionToActive rm100

The ResourceManager identified by the ID rm100 (in our example) will transi-
tion into the active state, and the other ResourceManager, identified by the ID
rm140 (in our example), will run in the standby mode.



ptg18444370

545Performing Common Management Tasks

Using the ResourceManager High-Availability Commands
In addition to configuring automatic failover, you can also perform a manual transition 
of a ResourceManager to a different status (from active to standby and vice versa). 
Use the yarn rmadmin command for administering RM high availability. Use the 
ResourceManager IDs you set earlier with the yarn.resourcemanager.ha.rm-ids 
parameter to distinguish between the two ResourceManagers.

You can get the current state of the two ResourceManagers in an HA architecture 
by issuing the getServiceState command:

# yarn rmadmin -getServiceState rm100
active
# yarn rmadmin -getServiceState rm140
standby
#

Provided you haven’t enabled automatic failover, you can manually transition an 
RM from one state to another with the following commands:

$ yarn rmadmin –transitionToStandby <serviceId> [--forceactive]

$ yarn rmadmin -transitionToStandby <serviceId>

$ yarn rmadmin -failover [--forcefence] [--forceactive] <serviceId> <serviceId>

        Performing Common Management Tasks
As a Hadoop administrator, there are several routine tasks you need to perform in your 
cluster. The earlier chapters have explained the key areas of Hadoop administration. 
Here, we provide several common administrative tasks which weren’t part of the earlier 
discussion of various topics. 

Moving the NameNode to a Different Host
Let’s say the server on which the NameNode is running is experiencing hardware problems 
and you want to move the NameNode to a healthy host. Here are the steps you must 
follow to move the NameNode over to a new host:

1. If the server on which you want to run the NameNode service already has all the
Hadoop and other software installed, you can proceed to the next step. Otherwise,
you must first install all the necessary software packages such as Apache Hadoop
and the rest that are on the current host.

2. Shut down the NameNode and all the DataNodes, if they are not already down.

3. Make a backup of the directories specified by the dfs.name.dir parameter on the
current NameNode host.

4. Using an OS utility such as scp, copy the directories over to the new host.

5. Start the NameNode service and the DataNodes.
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Managing High-Availability NameNodes
Chapter 11, “NameNode Operations, High Availability and Federation”, explained 
NameNode high availability in detail, so we aren’t going to explain that again here. 
However, from the point of view of managing high-availability NameNodes, it is important 
to understand how to transition a NameNode to the active state, should you find both of 
your NameNodes in the standby state, and you haven’t configured automatic failover.

If both NameNodes are in the standby state, you can transition one of the NameNodes 
to the active state by doing the following:

$ sudo –u hdfs haadmin –transitionToActive nn1

You can force a manual failover by doing the following:

$ sudo -u hdfs haadmin –failover nn1 nn2

When you run this command, the currently active NameNode nn1 will become the 
new standby and the current standby, nn2, will take over as the new active NameNode.

Using a Shutdown/Startup Script to Manage your Cluster
When you have a test cluster with a handful of clusters, it’s not really a big deal how 
you go about starting and shutting down the Hadoop daemons. However, when you’re 
dealing with real-life Hadoop clusters with many nodes, it’s good to automate every-
thing, including the starting and stopping of the Hadoop services. The following code 
shows how to automate the starting of the Hadoop daemons in a cluster. It’s very easy 
to add the corresponding code for shutting down the cluster on your own!

start_service() {
    test -f /etc/init.d/$1 && echo "Starting $1" && service $1 start
}

start_hadoop() {
    start_service hue
    start_service oozie
    start_service hive-server2
    start_service hive-metastore
    start_service hadoop-yarn-resourcemanager
    start_service hadoop-hdfs-namenode
    start_service hadoop-hdfs-httpfs
    start_service hadoop-mapreduce-historyserver 
    start_service hadoop-hdfs-journalnode
    start_service hadoop-yarn-nodemanager
    start_service hadoop-hdfs-datanode
}

In order to automate the cluster startup, you should run this code on every node of 
your cluster. This script will start up all the Hadoop daemons, plus all the third party 
tools such as Hive and Oozie as well.

Balancing HDFS
Chapter 9, “HDFS Commands, HDFS Permissions and HDFS Storage,” explained 
the importance of periodically balancing HDFS and also demonstrated how to use the 
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hdfs balancer utility to balance the HDFS data. It’s a good idea to set up a simple 
cron job to run the balancer job on a regular basis. You can run the hdfs balancer 
every day, but there’s no hard and fast rule as to the best frequency for the balancing 
job. The best way to figure out whether the frequency of balancing is okay is to issue 
the hdfs dfsadmin –report command and check how closely the nodes are balanced 
in terms of HDFS data. The following example shows how to check how balanced the 
HDFS data is in a cluster:

# sudo -u hdfs hdfs dfsadmin -report | cat <(echo "Name: Total") - | grep '^\
(Name\|Total\|DFS
 Used\)' | tr '\n' '\t' | sed -e 's/\(Name\)/\n\1/g' | sort --field-separator=: 
--key=5,5n

Name: Total     DFS Used: 2141803616206687 (1.90 PB)    DFS Used%: 59.08%
Name: 10.192.0.106:50010 (hadoop03.example.com)    DFS Used: 46065068713731 (41.90 
TB)     DFS Used%: 50.25%
Name: 10.192.0.108:50010 (hadoop05.example.com)    DFS Used: 46077744360551 (41.91 
TB)     DFS Used%: 50.26%
Name: 10.192.0.110:50010 (hadoop07.example.com)    DFS Used: 46176056279144 (42.00 
TB)     DFS Used%: 50.37%
...
#

In this case, the DFS Used percentage is pretty much the same on most nodes, so no 
balancing is required. If you run the balancer now, there’s no harm—it wraps up very 
quickly since there’s not much for it to do.

Sometimes a balancer job gets stuck, or is just too slow. You can restart the balancer 
in such a situation. First find out the process ID (PID) of the running balancer process 
with the following command:

# ps aux | grep '\-Dproc_balancer' | grep -v grep

Once you find the PID of the balancer job, kill it, and also remove the balancer lock 
file, as shown here:

# rm /tmp/hdfs-balancer.lock

Balancing the Storage on the DataNodes
By default, a DataNode writes new block replicas to disk in a round robin fashion. How-
ever, at times you may want the DataNodes to consider the available free space on each of 
the disk drives when deciding where to write new replicas. In order to do this, you config-
ure a policy that lets the DataNodes choose the disk volumes according to specific policies.

Ordinarily you want to configure HDFS so the DataNodes distribute their writes in 
a way that balances the available storage among the DataNode’s disk drives.

You can configure the following two aspects of HDFS to accomplish this:

 n The amount of bytes of free space by which DataNode disks can differ before 
they’re considered imbalanced

 n The percentage of new block allocations that will be sent to disk drives with 
more free space than other drives
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The following configuration properties enable you to set up storage balancing in 
your cluster.

 n dfs.datanode.fsdataset.volume.choosing.policy: This property enables storage 
balancing among the volumes of a DataNode. The default value is org.apache.hadoop
.hdfs.server.datanode.fsdataset.availableSpaceVolumeChoosingPolicy.

 n dfs.datanode.available-space-volume-choosing-policy.balanced-space- 

threshold: The value you set for this property determines the amount by which 
volumes can differ from each other in terms of free disk space before they’re considered 
imbalanced. The default value is 10,737,418,240 (10GB). If the free space on each of the 
disk drives in a DataNode is within this range compared to the other disk volumes, 
the block assignments are done on the default basis of a pure round-robin policy.

 n dfs.datanode.available-space-volume-choosing-policy.balanced-space- 

preference-fraction: This property determines the proportion of new block 
allocations that’ll be sent to volumes with more free disk space than others. The 
default value is 0.75, and you can set this property in the range of 0.0–1.0.

 Managing the MySQL Database
You’ll need to use a relational database for storing various types of data, including the 
metadata for Hue, Hive, Oozie and other Hadoop components. While you can use any 
relational database, such as Oracle, Postgres, or MySQL, it appears that MySQL is a popular 
choice. I therefore brief ly show how to manage the MySQL database in your cluster. 

This section covers the following topics:

 n Configuring a MySQL database
 n Configuring MySQL high availability

Configuring a MySQL Database
Since the component metadata stored in the relational database is highly critical, it’s a 
best practice to set up high availability for the database service. Let’s configure a simple 
MySQL server database by following the steps listed here:

1. Download the MySQL binaries from here:
http://dev.mysql.com/downloads/

2. Create a mysql user and group:
# groupadd mysql
# useradd –r –g mysql mysql

I chose to use mysql for the group as well as the owner, but you can specify other
names if you wish. Since this user is required for ownership purposes only and not
for logging into MySQL, I specified the –r option when creating the user, mean-
ing this user won’t have any login permissions to the server hosting MySQL.
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3. Unzip the downloaded MySQL binaries zip file. Here, I unzip the file into the
/usr/local directory:

# cd /usr/local
# tar xzvf /path/to/mysql-VERSION-OS.tar.gz
# ln –s full-path-to-mysql-VERSION-OS-mysql

Unpacking the distribution will create the installation directory named
mysql-VERSION-g. You must create a symbolic link to that directory. You
can then access the installation directory as /usr/local/mysql.

4. Change the owner and group. If you don’t have the root privileges, you must prefix
the following commands with sudo:

# cd mysql
# chown –R mysql .
# chgrp –R mysql .
# scripts/mysql_install_db  --user-mysql
# chown –R root .
# chown –R mysql data

5. Start the MySQL server:

# bin/mysqld_safe  --user=mysql &

When running this command as the root user, in order to ensure that MySQL
runs as an unprivileged non-root user, include the –user option. If you run this
command as the mysql user, you don’t need to specify the –user option when
starting the server.

6. Run a few simple tests to ensure that MySQL is performing correctly:

# bin/mysqladmin version
# bin/mysqladmin variables

7. Shut down the MySQL server to make sure it shuts down correctly, and then start
it back up again so you can start using it:

# bin/mysqladmin –u root shutdown
# bin/mysqld_safe  --user=mysql &

Now that we have MySQL configured to run in your cluster, it’s time to set up high 
availability for it, in light of its importance as a metadata repository for critical components 
such as Hive.

Configuring MySQL High Availability
You can set up a replicated MySQL environment using one of two modes: master-slave 
or master-master in active-passive mode. The master-slave model is simple and lets you 
create a cold standby that you can use to replace the master server when the master goes 
down for any reason. You must manually switch the slave to a master mode when the 
master fails. The master-master replication is also referred to as multimaster replication.

You’re mostly likely to use the MySQL database as a backend to the Hive metastore. 
It’s recommended that you configure the master-master replication mode where one 
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service is active and the other server passive. In this mode, transactions are written to any 
one server at a given time, avoiding any inconsistences in transaction updates if you update 
both the databases at the same time. Although you can set up things such that transac-
tions are written to both databases simultaneously, it’s advisable to use the active master 
server for transaction writes and the passive master server for reading data, as well as for 
use as an active master if the original master server fails. It’s easy to turn the passive server 
into an active master very quickly, using appropriate monitoring scripts. In the following 
section, let’s learn how to set up a master-master replication in the active-passive mode.

Setting Up a Master-Master MySQL Replication
Follow these steps to configure your master-master replication for MySQL:

1. On both the master servers, which I refer to as Master1 and Master2, create an
account for the replication user that you’ll use for replicating data.

> Grant replication slave, replication client on *.* to 'replicat'@'
<server_name>'
   identified by 'replpasswd';

2. Edit the /etc/my.cnf file on the Master1 server, as shown here:

[mysqld]
server-id=1
replicate-same-server-id = 0
auto-increment-increment = 2
auto-increment-offset =1
master-connect-retry =1
master-connect-retry = 60
log-bin = /var/log/mysql/mysql-bin
log-bin-index = /var/log/mysql/bin-log.index
log-error = /var/log/mysql/relay.log
relay-log-index = /var/log/mysql/relay-log.index
expire-log-days=14

3. Edit the /etc/my.cnf file on the Master2 server. Specify the same attributes as you
did for Master1 with two changes (server-id and auto-increment-offset), and a new
attribute, read-only.

server-id=1
auto-increment-offset=2
read-only = 1

Note

The commands to start the MySQL database assume a Red Hat Enterprise Linux server. 
If you’re using other Linux distributions, the commands may be slightly different.

4. Start the MySQL service on the active master, Master1, as shown here, and run
the following commands:

# service mysql start
# mysql –user=root -p
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> change master to master_host='master2.mydomain';
> master_user='replicat',
> master_password='replicatpass',
> master_log_file='mysql-bin.000001',
> master_log_pos=0;
> start slave;

5. On the passive server, Master2, start the MySQL daemon and run the same set of
commands as you did in step 4, modifying the set of commands as follows.

# service mysql start
# mysql –user=root –p
> change master to master_host='master1.mydomain';

You’ve now configured a master-master MySQL replication setup, with server Master1 
as the active server and server Master2 as the passive server, ready to take over from 
Master1 at a moment’s notice.

Switching the Active and Passive Roles
It’s easy to switch a passive master to the role of an active master server. Assuming that 
Master1 is the active master and Master2 is the passive master, here are the steps to follow 
to switch the active and passive roles between the two servers.

1. Make sure any services using the MySQL database in your cluster, such as the
Hive’s Metastore server, are shut down. This way, you keep new transaction
writes from coming in to be written to the active master database.

2. In the active master (Master1) configuration file, add the line read-only = 1.

3. After waiting for a sufficient amount of time for the previously passive master,
Master2, to catch up with the replication of changes from the active master,
switch its read-only f lag off by removing the line read-only = 1 from its config-
uration file.

4. In all the applications, such as the Hive metastore, that use the MySQL database,
point to the new active master server and restart those applications.

Backing Up Important Cluster Data
HDFS data is almost invariably not backed up—Hadoop’s built in redundancy through 
replication of data should take care of most data-protection requirements. If you do want 
to ensure that some small portion of the cluster’s data is backed up to a different cluster or 
offsite, you can do that with the help of a utility such as DistCp, as explained in Chapter 8, 
“The Role of the NameNode and How HDFS Works.”

What you must back up, however, are two things: the HDFS metadata and the 
metastores for components such as Oozie, Sqoop, Hive, Sentry and Hue (and Ambari, 
as well, if you happen to use it). The following sections explain how to handle these 
backups.
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Backing Up HDFS Metadata
HDFS metadata is serious business—if you lose it for any reason and your NameNode 
happens to go down, the NameNode can’t find the HDFS data when you restart it. You 
must therefore periodically (at least once a day) back up the HDFS metadata.

You can back up the HDFS metadata using Hadoop’s commands and/or by backing up 
the relevant directories using an OS utility. I show both strategies in the following sections.

Backing Up the HDFS Metadata on the NameNode
In order to back up the HDFS metadata from the NameNode server, go to the directory 
listed in the NameNode data directories property ( dfs.datanode.data.dir) on the server 
running the active NameNode. If you have multiple directories listed, you need to back 
up only one directory, since it’ll be an exact copy of the other directories.

Assuming your NameNode data directory is named /data/dfs/nn, here are the steps 
to back up the HDFS metadata.

1. Log in as the root user and shut down the active NameNode.

2. Change the directory to /data/dfs/nn.
# cd /data/dfs/nn

3. Back up all the folders in this directory using the following command.
# tar –cvf /backup/nn_backup data.tar .
./
./current/
./current/fstime
./current/VERSION
./current/edits
. /image/
./image/fsimage

Backing Up the Metadata Using the -fetchImage Command
You can also use the Hadoop-provided -fetchImage command to back up the HDFS 
metadata. Follow these steps to back up the HDFS metadata:

1. Place the active NameNode in safe mode so HDFS is in a read-only state when
you back up its metadata. Also verify that the cluster is in safe mode.
# su hdfs
bash-3.2$ hdfs dfsadmin -fs hdfs://hadoop011node01.example.com -safemode enter
Safe mode is ON
$

$ hdfs dfsadmin -fs hdfs://hadoop11node01.example.com -safemode get
Safe mode is ON
$

2. Run the –saveNamespace command, which will save the current in-memory
image file to a new fsimage file and reset the edits file, as well:
$ hdfs dfsadmin -fs hdfs://hadoop011node01.example.com -saveNamespace
Save namespace successful
$



ptg18444370

553Using Hue to Administer Your Cluster

3. Issue the -fetchImage command to back up the HDFS metadata to disk.

$ mkdir /tmp/Backups_node01
$ hdfs dfsadmin -fs hdfs://hadoop011node01.example.com -fetchImage /tmp/
Backups_node01
16/08/26 11:41:01 INFO namenode.TransferFsImage: Opening connection to
http://bdaolc011node01.sabre.com:50070/imagetransfer?getimage=1&txid=latest
16/08/26 11:41:01 INFO namenode.TransferFsImage: Image Transfer timeout
configured to 60000 milliseconds
16/08/26 11:41:04 INFO namenode.TransferFsImage: Transfer took 3.45s at
72463.81 KB/s
$

4. Verify the metadata backup.

$  ls -altr /tmp/Backups_node01
total 250552
drwxrwxrwt 22 root root 4096 Aug 26 11:40 ..
-rw-r--r--  1 hdfs hadoop 256297032 Aug 26 11:41 fsimage_0000000000490831699
drwxr-xr-x  2 hdfs hadoop 4096 Aug 26 11:41 .
$

5. Take the active NameNode out of safe mode.

$ hdfs dfsadmin -fs hdfs://hadoop011node01.example.com -safemode leave
Safe mode is OFF
$

Backing Up the Metastore Databases
Although you can set up a separate metastore database for each Hadoop component that 
requires it, you don’t need to do so as it makes for more complex management. Simply 
use a single database such as MySQL as the repository for storing the metastore data for 
all of Hadoop’s components that need a metastore. 

The metastore for Sqoop, Hive and Sentry is relatively small, and that for Hue depends 
on the number of users and the activity of the users in Hue. The Oozie server metastore 
can grow very large over time. To back up the metadata for all the components, you 
must first stop all the services and then back up the database.

Assuming you’re using the MySQL database as the repository for the metastores of 
the Hadoop components, issue the mysqldump command to back up the MySQL database. 
Here’s the syntax:

$ mysqldump –hhostname –uusername –ppassword database > /backup/mysql/mysql_backup.sql

Using Hue to Administer Your Cluster
Hue (which stands for “Hadoop user experience”) is a web application that lets users 
access the Hadoop cluster components, such as Hive, Pig and Sqoop, through the web. 
It’s also a platform for building custom applications. Hue acts as a sort of a container 
application that hosts a suite of applications and communicates with the servers that 
represent the various Hadoop components. As an administrator, probably the single 
biggest use for Hue is to manage your Oozie jobs through Hue’s excellent interface to 
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Oozie. In Chapter 14, “Working with Oozie to Manage Job Workf lows,” you learned 
how you can create Oozie workf lows and coordinators. After looking at the Oozie work-
f low and coordinator XML files, you’re probably thinking: “I love this Oozie thingy, 
but I don’t like all the manual configuration and the messing around with yucky-looking 
XML configuration files!” Well, with Hue, you don’t need to worry. You can create 
powerful Oozie workf lows and coordinators through Hue without ever editing a single 
configuration file.

Figure 16.2 shows how useful Hue is to an administrator in tracking running Oozie 
jobs and identifying the status of jobs. You can check the start and end times for completed 
jobs to ascertain whether they ran within their expected time windows. For running jobs, 
you can figure out from this page approximately when a job will complete its execution. 
If a job failed, you can click on that job on this page and check its configuration as well 
as its job logs. Now, that’s an awesome productivity improvement for a busy Hadoop 
cluster admin, who doesn’t usually have the time to log into various servers and check the 
logs manually and pore over Oozie XML workf low (and coordinator) configuration 
files to troubleshoot job failures! Similarly, the Oozie Editor makes it mere child’s play 
to create complex workf lows, coordinators and bundles.

Hue is of great use to both regular users and Hadoop administrators. Hue is commonly 
used by analysts and others to run Hive and Pig jobs in the Hadoop cluster—not only 
can users see the job progress but they can access their past queries and applications, too. 
From the administrator’s point of view, you can not only run Hadoop jobs but also 
schedule them as well as monitor their progress and status through Oozie. Hue provides 
a comprehensive interface through which to schedule your Oozie workf low and coordi-
nator jobs and view the status of those jobs.

The big thing about Hue is that it’ll let users access Hadoop’s HDFS data directly from 
a browser without ever having to log into the command line. 

Allowing Your Users to Use Hue
You must create Hue accounts for any users that you want to grant the ability to use the 
various applications hosted by Hue. Typically, users will want a Hue login to work with 
the Hive, Impala or Pig interfaces to Hadoop to perform data-analysis tasks. Many such 
users in a real-life cluster use Hue as their only tool to work with a Hadoop cluster. To 
create a user login, do the following:

1. Log into Hue as an administrator.

2. Select the Manage Users dropdown in the upper right hand side, under the
administrator’s username.

3. Select Add User to create a new user. Navigate through three screens to create
a user by supplying information such as the user name and password and the
group to which you want to assign the user.

As a cluster administrator, you’ll have super user status. Super users can launch any 
of the Hue applications, such as Oozie and Sqoop, as well as manage users and their 
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privileges. For non-administrative users, you need to assign them to specific groups that 
you create beforehand. A typical scenario is where you create three or four groups, such 
as developers, analysts and data scientists, and give each of those groups permission to 
launch specific Hue applications. Each user you create will be assigned to one of these 
groups and thus inherit that group’s permissions. For example, you can allow the analyst 
group to invoke the Hue, Hive and Impala Editors. These users can then connect to Hive, 
Pig and Impala to analyze HDFS data.

The Hue shell application, by default, lets you access the Pig, HBase and Sqoop 2 
command-line shells and is similar to a Linux terminal. You can also configure other 
applications that offer a CLI as part of the Hue shell application. For example, you can 
configure access to the Flume shell through the shell application. Hue offers a convenient 
way to run extract, transform and load (ETL) chains that involve multistage processing, 
such as pulling data from an RDBMS and running a Pig script on that data before moving 
it to a Hive table. You can manually run all the ETL chain components from Hue or just 
schedule an Oozie job from Hue to do all the work for you.

The Hue server stores session, authentication and Hue application data in a database, 
which by default is the open-source Derby database. In a production environment, as 
with the other Hadoop components that require a database to store their metadata, you 
should use a professional-grade database such as MySQL instead of the default Derby 
database. 

Hue applications can also run Hue-specific daemon processes, such as the Beeswax 
server, that track the query states. Hue applications use Thrift or the states stored in this 
database to communicate with these daemons.

Installing Hue
In a pseudo-distributed Hadoop cluster, you can run the Hue server on the same machine 
as the Hadoop cluster. You can install the Hue server on a remote node or on one of 
the nodes that are part of your Hadoop cluster. In small to medium clusters, you can use 
one of your master nodes to run the Hue server. 

Follow these steps to install Hue.

1. Download the latest Hue binaries as shown here:

# wget https://dl.dropboxusercontent.com/u/730827/hue/releases/3.8.1/
hue-3.8.1.tgz

2. Untar the tarball and change to the installation directory.

3. Use the make utility to install Hue:

# make install

4. The make command will usually install Hue in the /usr/local/hue directory. Since
the root user owns the Hue installation directories, change the permissions to an
appropriate user if you need to.

# chown –R sam:sam /usr/local/hue
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Hue is usually deployed in a gateway node in the Hadoop cluster, so you don’t need 
to have any core Hadoop services or clients running on the Hue host. Hue provides a 
“view on top of Hadoop” and you can install it on any server. You install Hue and then 
configure it so it points to a Hadoop cluster. By default, Hue is aware of only a single 
local machine. In order for it to work with a Hadoop cluster, you need to let Hue know 
where the Hadoop services are running in your cluster.

Configuring Your Cluster to Work with Hue
You configure Hue in the hue.ini file, so it knows about your Hadoop cluster and how 
to connect to the various components. Before you can configure the hue.ini file, however, 
you must first configure your Hadoop cluster so it is ready to accept connections from 
Hue. Once you do this, you can specify your cluster configuration in the hue.ini file.

Configuring Hadoop for Hue
In order for HDFS to work with Hue, you must do the following:

 n Enable WebHDFS or HttpFS
 n Add the necessary proxy user hosts and groups for Hue
 n Optionally, enable HDFS ACLs (I discuss ACLs in Chapter 15, “Securing Hadoop”

In order to configure WebHDFS and HttpFS and add the required proxy users, you 
must add a few properties to multiple Hadoop configuration files. You must configure 
Hue to work either with WebHDFS or HttpFS. In a high-availability NameNode 
architecture, you must use HttpFS. For Hue to work with WebHDFS and HttpFS, you 
need to configure WebHDFS and also configure Hue as a Proxy user, as shown here:

 n Configuring WebHDFS: Make sure the property dfs.webhdfs.enabled is set to 
true in the hdfs-site.xml file. This will enable the WebHDFS REST API on the 
NameNode as well as the DataNodes. You need to do this in order to list or create 
HDFS files.

 n Configuring Hue as a proxy user: It’s important to configure Hue as a proxy user 
for all users and groups, so it can submit requests to the cluster on behalf of any 
of the users. What you need to configure to ensure that Hue acts a proxy user 
varies, depending on whether you’re going to let Hue use WebHDFS or HttpFS.

If you want to let Hue use WebHDFS, add the following to the core-site.xml file.

<property>
  <name>hadoop.proxyuser.hue.hosts</name>
  <value>*</value>
</property>

Specifying * as the value means that users from any host can submit work to the Hadoop 
cluster through Hue. 
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In the same file, configure Hue as a proxy user for all users and groups—this allows 
Hue to impersonate all end users and submit requests on behalf of them. Here’s how to 
set this up:

<property>
  <name>hadoop.proxyuser.hue.groups</name>
  <value>*</value>
</property>

These two parameters ensure that Hue can act as a proxy user for any user or group 
(this is also called user impersonation) and submit work on behalf of those users and groups.

If Hue is using HttpFS instead, add the same two configuration parameters shown 
above to the /etc/hadoop-httpfs/conf/httpfs-site.xml file. You must restart the HttpFS 
daemon after making the two changes. Regardless of whether Hue is going to use 
WebHDFS or HttpFS, make sure you also add these two configuration properties to the 
core-site.xml file, as well, also making sure to restart the cluster services once you edit 
the file.

In order to allow user impersonation in Oozie through Hue, add the following two 
parameters to the oozie-site.xml file.

<property>
 <name>oozie.service.ProxyUserService.proxyuser.<default_user>.hosts</name>
  <value>*</value>
</property>

<property>
<name>oozie.service.ProxyUserService.proxyuser.<default_user>.groups</name>
  <value>*</value>
</property>

Finally, if you’re using HCatalog, you also need to add the following two parameters 
to the core-site.xml file:

<property>
  <name>hadoop.proxyuser.hcat.hosts</name>
  <value>*</value>
</property>

<property>
  <name> hadoop.proxyuser.hcat.groups</name>
  <value>hadoop</value>
</property>

These two parameters specify the host and group access for HCatalog. 

Configuring Hue
So far, I’ve just configured the Hadoop cluster for Hue. In order for Hue to function 
properly with your cluster components, you must configure the Hue configuration file, 
named hue.ini (/usr/share/desktop/conf/hue.ini). This file consists of several sections, 
such as Desktop, Hadoop, YARN, Beeswax, Pig Editor, Oozie Editor/Dashboard, Job 
Browser and so on, and you specify the configuration parameters pertaining to each 
component under the appropriate section. Essentially what the Hue configuration file 
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contains are the addresses and ports of crucial Hadoop services such as HDFS, YARN, 
Oozie and Hive. 

As you can see, the hue.ini file contains a separate section for each Hadoop component. 
Let’s review the main configuration parameters you must set in each of these sections.

Configuring Desktop Features
Under the <desktop> section, the secret_key parameter is for enabling security for Internet 
browser cookie sessions and could be any random string between 30-60 characters long. In 
the <desktop> section, you must also define the web host and its port as follows:

http_host:=hadoop01.localhost
http_port=8888

You must also set up the URL for the web services to access Hue:

webhdfs_url=http://hadoop01.localhost:50070/v1/

You can optionally blacklist an application, preventing it from running in the cluster 
through Hue, by adding the following under the [desktop] section:

# Comma-separated list of apps not to load at server startup.
# Note that rdbms is the name used for dbquery.
app_blacklist=spark,impala,sqoop,rdbms

It’s easy to re-enable a blacklisted application—simply remove the application name 
from the list of blacklisted applications specified by the attribute app_blacklist and 
restart the Hue Server.

Configuring the Hadoop Cluster (Hadoop and YARN)
The Hadoop cluster configuration is under two sections—hadoop for configuring HDFS 
and the yarn_clusters section for configuring YARN. Here are parts of the hadoop 
and yarn_clusters portions of a typical hue.ini file.

[hadoop]
# Configuration for the HDFS Namenode
[[hdfs-clusters]]
   [[[default]]]
     # Enter the filesystem uri
     fs_defaultfs=hdfs://hadoop01.localdomain:8020
    # Use WebHdfs/HttpFs as the communication mechanism.
    # Domain should be the NameNode or HttpFs host.

webhdfs_url=http://localhost:50070/webhdfs/v1
#   Configuration for YARN  (MR2)
  [[yarn_clusters]]
   [[[default]]]
     # Enter the host on which you are running the ResourceManager
     resourcemanager_host=hadoop02.localdomain
     # The port where the ResourceManager IPC listens
     resourcemanager_port=8030
     # Whether to submit jobs to this cluster

submit_to=True

     # URL of the ResourceManager API
     resourcemanager_api_url=http://hadoop02.localdomain:8088
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     # URL of the HistoryServer API
     history_server_api_url=http://hadoop02.localdomain:19888

# URL of the ProxyServer API
     proxy_api_url=http://hadoop02.localdomain:8088

Note the following:
 n The submit_to=True configuration under the yarn_clusters section allows 

Oozie to submit YARN jobs to the Hadoop cluster.
 n The ResourceManager often runs on http://localhost:8088 by default.
 n You must specify the ProxyServer- and the JobHistoryServer-related informa-

tion, so you can later list and kill running YARN applications and retrieve their 
logs through Hue’s Job Browser.

Configuring Oozie 
The liboozie section is where you configure Oozie within Hue by specifying the URL 
where the Oozie service runs. To submit and monitor workf lows, the Oozie server 
should be running, of course.

 [liboozie]
 # The URL where the Oozie service runs. This is required in order for
 # users to submit jobs. Empty value disables the config check.
 oozie_url=http://hadoop02.localdomain:11000/oozie

Configuring Beeswax
You’ll need a running HiveServer2 instance to access Hive through Hue. If the 
HiveServer2 is running on a different server, it’s a good idea to copy the hive-site.xml 
from that server to the server where Hue is running. This is to ensure that Hue knows 
about the security and other custom HiveServer2 configuration properties. Within the 
beeswax section of the hue.ini file, you need to set two important properties:

 n hive_server_host=hadoop01.localdomain: The server where HiveServer2 is 
running

 n hive_server_port=10000: The port where the HiveServer2 Thrift server is 
running

Configuring ZooKeeper
Specify the following settings to configure the ZooKeeper ensemble.

[zookeeper]
 [[clusters]]
   [[[default]]]
     # Zookeeper ensemble. Comma separated list of Host/Port.
     # e.g. localhost:2181,localhost:2182,localhost:2183
     host_ports=hadoop02.localdomain:2181
     # The URL of the REST contrib service (required for znode browsing)
     rest_url=http://hadoop02.localdomain:9998

Now that you’ve configured Hue to work with various components, you’re ready to 
start working with it.
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Managing Hue
A running Hue server usually needs very little in terms of regular management. Once 
you complete the configuration of Hue as explained in the previous sections, you need 
to know how to start and stop the Hue server. In this section, I will show you how to 
start and stop the Hue server.

You can start the Hue server with the supervisor command, as shown here:

$ /usr/local/hue/build/env/bin/supervisor
[INFO] Not running as root, skipping privilege drop
Starting server with options {'ssl_certificate':None, 'workdir':None,...
$

You can also specify the –d switch to start the Hue supervisor in the daemon mode.
You can start and stop the Hue server as follows:

$ sudo /etc/init.d/service hue start
$ sudo /etc/init.d/service hue stop

Whenever you modify Hue configuration through the hue.ini file, restart the Hue 
server as shown here:

$ sudo /etc/init.d/service hue restart

Working with Hue
Working with Hue is a breeze! You can set up non-administrative users in Hue so they 
can run their Hive, Impala and Pig jobs from there without requiring a login to the cluster 
nodes. You can access HBase tables as well as move data around with Sqoop (and Sqoop 2) 
directly from Hue. In addition, you can manage HDFS data. There are various scenarios 
for which you can put Hue to good use. One of the most important of these is the use 
of the Oozie Editor/Dashboard application. You can use this application to perform 
the following administrative tasks:

 n Check the running and completed workf low and coordinator jobs.
 n Check the configuration of the Oozie workf lows and coordinators.
 n See which workf lows are available.
 n Create and import workf lows, coordinators and bundles.

You can access various Hadoop components through Hue. For example, you can access 
HDFS through the File Browser and Hive and Pig through the Query Editors tab and 
Oozie workf lows through the Workf lows tab. Let’s take a scenario where you want to 
create an Oozie job by creating Oozie workf lows and coordinators for the job. If you 
aren’t using Hue, you’ll really have to get your hands dirty! You’ll have to muck with 
umpteen XML (ugh!) configuration files and job property files and so on, as explained 
in Chapter 14. Using Hue, you can set up a job in a few short minutes—Hue, through 
its excellent Oozie interface, takes care of the creation of all the XML files, job 



ptg18444370

562 Chapter 16 Managing Jobs, Using Hue and Performing Routine Tasks

properties and other files and even lets you quickly configure a service level agreement 
(SLA) for your job. 

Or, take a different scenario where you want to monitor running Oozie jobs and restart 
any jobs that failed. Hue makes it a breeze to do this through the Oozie interface—
you can check the status of both running and finished jobs, review the logs for failed 
jobs to find the root cause for the failure and fix the issues and restart the job. In real life 
situations, quick troubleshooting is the key to maintaining your critical SLAs, and Hue 
makes it very easy to troubleshoot jobs.

From the administrator’s point of view, probably the biggest benefit of using Hue is 
that you can schedule and manage all your Oozie workf lows, coordinators and bundles 
from the Hue interface—without having to deal with complicated XML files. You don’t 
even need to use the Oozie web UI to manage the Oozie jobs. In addition to creating 
workf lows and scheduling them, you can also monitor the progress of running jobs 
and suspend or kill those jobs from the Hue Oozie interface. The Oozie Editor and the 
Oozie Dashboard in Hue are true blessings for any Hadoop administrator since they make 
your life so easy when it comes to managing Hadoop jobs!

Implementing Specialized HDFS Features
Although you can use HDFS straight out of the box, so to speak, you can also avail 
yourself of several special features provided by Hadoop to enhance the performance 
and ease of use of HDFS. In the following sections, I discuss these additional capabili-
ties of HDFS: 

 n Deploying HDFS and YARN in a multihomed network
 n Short-circuit local reads
 n Mountable HDFS
 n Using NFS Gateway to mount HDFS to a local file system

Deploying HDFS and YARN in a Multihomed Network
By default, you specify HDFS endpoints as specific IP addresses or hostnames, meaning 
HDFS daemons will bind to a single IP address. You can set up things so that the cluster 
nodes are connected to multiple network interfaces, for security or performance reasons. 
Security is enhanced because you can restrict the traffic between the nodes to a separate 
network from that used for the cluster’s network traffic. High-bandwidth interconnects 
like InfiniBand or Fibre Channel enhance network performance. Support for more than 
one network interface is called a multihomed network. You can also do this to provide 
redundancy by letting a node use multiple network adapters to connect to a single 
network, to protect against a network adapter failure.

You mustn’t confuse a multihomed network with the use of NIC bonding, which 
presents only a single logical network to the clients. With a multihomed network, you 
can connect to the HDFS daemons from more than one network. HDFS endpoints, 



ptg18444370

563Implementing Specialized HDFS Features

by default, are specified as hostnames or IP addresses, and this means that the HDFS dae-
mons always bind to a single IP address. In order to make the daemons reachable from other 
networks you must force the bonding of the server endpoints to the wildcard IP address 
INADDR_ANY, which is 0.0.0.0. You don’t need a port number with this specification. You 
need to configure the following parameters in the hdfs-site.xml file, so they all have a 
value of 0.0.0.0.:

 n dfs.namenode.rpc.bind-host

 n dfs.namenode.servicerpc-bind.host

 n dfs.namenode.http-bind-host

 n dfs.namenode.https-bind.host

You can configure YARN for a multihomed environment. You control the binding 
argument passed to the Java socket listener so it can be forced to listen on interfaces 
other than the interface pointed to by the client-facing endpoint address. You can force 
YARN services to listen on all of a multihomed host's interfaces by setting the bind-host 
parameter to the all-wildcard value 0.0.0.0. You don’t specify a port number because 
the port is either based on the port configured for the service or falls back to the in-code 
default. For example, if you set the value of the yarn.resourcemanager.bind.host 
parameter to 0.0.0.0, and the yarn.resourcemanager.address is configured as 
rm.prodcluster.internal:9999, the ResourceManager will listen on all host addresses 
on the port 9999.

By configuring the bind-host parameter (in the yarn-site.xml file) in the following 
way, you ensure that all ResourceManager services and web applications listen on all the 
interfaces in a multihomed network.

<property>
    <name>yarn.resourcemanager.bind-host</name>
    <value>0.0.0.0.</value>
</property>

Similarly, you configure the yarn.nodemanager.bind-host, also in the yarn-site.xml 
file, and the mapreduce.jobhistory.bind-host parameter (mapred-site.xml file) to the 
value 0.0.0.0 to ensure that the main YARN and MapReduce daemons listen on all 
addresses and interfaces of a multihomed cluster.

Configuring the bind-host parameter is transparent to users, and they just connect 
to a service based on the address you configured for it. They may connect to different 
interfaces based on their network locations and on name resolution.

Short-Circuit Local Reads
If the client reading HDFS data is located on the same server as the DataNode, it can 
directly read the files, which is quicker than the DataNode transmitting the data to the 
client. Short-circuit reads are reads made by clients directly from the local file system 
while bypassing the DataNode using UNIX domain sockets, which offer a pathway for 
communication between clients and DataNodes. 
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Short-circuit reads aren’t enabled by default. In order to use short-circuit reads, you 
need to configure the following properties on the client as well as on the DataNode:

  <property>
    <name>dfs.client.read.shortcircuit</name>
    <value>true</value>
  </property>
  <property>
    <name>dfs.domain.socket.path</name>
    <value>/var/lib/hadoop-hdfs/dn_socket</value>
  </property>

Short-circuit local reads offer both improved performance and enhanced security. A 
key principle of Hadoop is data locality, whereby HDFS attempts to handle most reads as 
local reads by reading data where the client (reader) is located on the same node as the 
data they’re reading. 

When a client performs a local read, clients transfer data by connecting to the DataNode 
through a TCP socket. For each client reading a block, the DataNode needs to keep a 
thread around the TCP socket, leading to overhead in the kernel. Short-circuit reads 
optimize data transfer and speed up applications. Since the client and data are located on 
the same node, this optimization bypasses the DataNode in the data path and enables the 
client to read local data directly from disk.

The short-circuit local read mechanism is made secure because it uses Linux’s “file 
descriptor passing” mechanism. This allows the DataNode to open the block and metadata 
files and pass them to the client directly. The client can’t modify the files it receives from 
the DataNode, since the file descriptors are read-only. The client is never passed the block 
directories, so it can’t read data it doesn’t have access to.

Short-circuit reads make use of a file descriptor cache (name FileInputStreamCache) 
to avoid reopening files to read the same blocks again. You can tune the cache with the 
following parameters:

 n dfs.client.read.shortcircuit.streams.cache.size: This controls the cache 
size. If you set this to 0 you turn off the cache.

 n dfs.client.read.shortcircuit.streams.cache.expiry.ms: This controls cache 
timeout.

You can stick to the defaults for both parameters, unless you have a large amount of active 
data and a high file-descriptor count, in which case you can increase the parameter values.

Mountable HDFS
Often, you’ll need to merge several MapReduce job output files and send them to external 
teams. Ideally, it’ll be nice to have these files on the local system. You could set up a 
special mount point called mountableHDFS or Filesystem in Userspace (FUSE), in such 
scenarios. FUSE lets you implement mountable file systems in user space. You can use 
the hadoop-hdfs-fuse package to set up mountable HDFS, which lets you use your HDFS 
file system as if it were a regular Linux file system. FUSE allows several basic file oper-
ations but won’t turn HDFS into a POSIX-compliant file system.
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Using Mountable HDFS
Once you set up FUSE, you can view the HDFS directories from a local mount point, 
as seen in the following example.

[machine1] ~ > df -kh /export/hdfs/
Filesystem Size  Used Avail Use% Mounted on
fuse 4.1P  642T  3.5P  21% /export/hdfs
[machine1] ~ > ls /export/hdfs/
home  tmp  Trash  user  usr  va

You can mount HDFS on most Linux systems as a standard file system, using the 
Linux mount command. Once you mount the HDFS directories, you can use regular Linux 
file system commands, such as ls, cp, cd, find and grep. Although you can export 
FUSE mounts using NFS, meaning you can mount HDFS on one machine and then 
export it using NFS, for performance reasons, you are better off auto-mounting FUSE 
on all machines from which you want to access HDFS.

Configuring Mountable HDFS
In this example, I show how to install hadoop-hdfs-fuse on a Red Hat compatible system. 

1. Use yum to install the hadoop-hdfs-fuse package, as shown here:

$ sudo yum install hadoop-hdfs-fuse

2. You can now start mounting your HDFS directories on the local Linux file system.
First, create a directory where you want to mount HDFS on the Linux file system.

$ mkdir –p /export/hdfs

3. You can test that your mount point works by issuing the following command:

$ hadoop-fuse-dfs dfs://hadoop01.localhost:5500 /export/hdfs

The server name and port numbers are for the NameNode address. If you’re running
a HA NameNode service, you must specify just the nameservice ID—you don’t
need to provide the port number.

4. Make the following changes to the /etc/fstab file:

hadoop-fuse-dfs#dfs://hadoop01.localhost:5500 /export/hdfs fuse –
allow_other,rw,usetrash, 2 0

Adding the mount information to the /etc/fstab file makes the new mount points
persist through server reboots.

5. Mount the directory using the following command:

$ mount /export/hdfs

You can mount multiple HDFS instances by changing the directory mount point
in the previous command.

6. If you run the following command from a different terminal, you’ll see your HDFS
directories on the local Linux file system:

$ ls /export/hdfs
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You’re now viewing your HDFS mount point as if it were a local Linux directory. You 
can get help for the FUSE feature by typing in hadoop-fuse-dfs –help at the command 
line. Note that both reads and writes will be slower than usual when using FUSE. 
Although the recommended approach to mounting a FUSE system is through adding 
the mount-point information to the /etc/fstab directory, you can also manually mount 
it with the following command:

$ hdfs –o server=namenodee,port=9000,allow_other,rdbuffer=131072, /mnt/hadoop

If you receive a message stating that the “Transport endpoint is not connected” on 
the node(s) where you mounted FUSE, the FUSE mount has apparently died. You must 
connect to that node (s) and remount the file system:

umount /mnt/hadoop
mount /mnt/hadoop

It’s a good idea to run the FUSE mount in the debug mode to spot errors and problems 
with the mount, as shown here:

$ hdfs –o server=namenode,port=9000,allow_other,rdbuffer=131072,-d /mnt/hadoop

Using an NFS Gateway for Mounting HDFS to a Local File System
A client can mount HDFS as part of their own Linux file system by configuring an NFSv3 
Gateway. The client uses a gateway machine, which can be any host in your cluster or 
any other HDFS client. Once a client mounts HDFS to their local file system, they can 
work with HDFS just as if it were another Linux local file system.

Configuring an NFSv3 Gateway
In order to use the NFSv3 Gateway, you must configure it by following these steps:

1. On a Red Hat Linux compatible server, install the following three required pack-
ages on the NFSv3 Gateway Machine.
# yum install nf-utils nfs-utils-lib hadoop-hdfs-nfs3

Add the following property to the hdfs-site.xml file on the server acting as the
NFSv3 Gateway machine.
<property>
  <name>dfs.nfs3.dump.dir</name>
  <value>/tmp/.hdfs-nfs</value>
</property> 

The NFS Gateway server uses the directory specified by the dfs.nfs3.dump.dir 
parameter to save writes from the client, which can be in random order until it can 
correctly reorder them. 

2. On the server hosting the NameNode, add the following to the hdfs-site.xml file.
<property>
  <name>dfs.namenode.accesstime.precision</name>
  <value>3600000</value>
</property>
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The dfs.namenode.accesstime.precision parameter ensures that the access 
time for HDFS files is precise up to the value you specify for this parameter. The 
default value for the parameter is one hour (3,600,000 milliseconds). If you set a 
value of 0, it disables the access times for HDFS.

3. Finally, you need to configure the user, such as hdfs, that will be running the
gateway, so the user can serve as a proxy for all users. By setting * as the value for
the following two parameters in the core-site.xml file on the NameNode server,
you allow the gateway user to proxy any group and also allow requests from any
hosts to be proxied.
<property>
   <name>hadoop.proxyuser.hdfs.groups</name>
   <value>*</value>
</property>

<property>
    <name>hadoop.proxyuser.hdfs.hosts</name>
    <value>*</value>
 </property>

You can now restart the NameNode to let the configuration changes take effect.

Using the NFSv3 Gateway
Now that you’ve configured the gateway, you must start the NFS server. To start your 
newly configured NFSv3 Gateway, first shut down any NFS servers that are running, and 
start the new HDFS-related NFS services:

$ sudo service nfs stop
$ sudo service hadoop-hdfs-nfs3 start

You can verify that the HDFS namespace is ready to be mounted with the following 
showmount command:

$ showmount –e <nfs_server_ip_address>

The NFS client can import the HDFS file system with the mount command as 
shown here.

$ mount -t nfs -o vers=3,proto=tcp,nolock <nfs_server_hostname>:/ /hdfs_nfs_mount

Summary
Here’s what you learned in this chapter:

 n Although you may use Hadoop’s web UIs and a vendor-provided administrative 
tool such as Cloudera Manager for routine administration, it’s good to learn how 
to use the YARN command line tools (such as the yarn command) to work with 
Hadoop jobs. When troubleshooting clusters, sometimes the command line tools 
are all you have.
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 n Decommissioning and recommisssioning DataNodes (and NodeManagers) is always 
going to be a common chore for Hadoop administrators, as you’re dealing with large 
numbers of commodity servers that could fail at any time, due to the well-known 
MTTF factor. The key thing here is to learn how to minimize the time it takes 
to move a DataNode back into the cluster, and this chapter explains several things 
you can do in this regard.

 n Managing and backing up the relational database that stores all the metadata for 
Hadoop’s components is a more critical task than it might appear. If you lose the 
component metadata, you’ll lose access to the data the components such as Hive 
and Oozie need to function. Backups are boring, but they are life savers.

 n Hue can be of great help in monitoring jobs, creating Oozie jobs and managing 
them, besides being a great tool for users who work with HDFS, Hive, Impala, 
Spark and other tools.

 n You may or may not be currently implementing any of the “specialized” HDFS 
features I discussed in this chapter, but it’s good to know that they’re there for you 
to implement if the need arises.
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Monitoring, Metrics and 

Hadoop Logging

    This chapter covers the following:
 n Monitoring Linux servers
 n Hadoop metrics
 n Monitoring with Ganglia
 n Hadoop logging
 n Using Hadoop’s web UIs for monitoring

This chapter deals with monitoring your cluster health. Along with Chapter 16, 
“Managing Jobs, Using Hue and Performing Routine Tasks,” Chapter 18, “Tuning 
the Cluster Resources, Optimizing MapReduce Jobs and Benchmarking,” Chapter 19, 
“Configuring and Tuning Apache Spark on YARN,” Chapter 20, “Optimizing Spark 
Applications,” and Chapter 21, “Troubleshooting Hadoop—A Sampler,” this chapter is part 
of the core set of chapters that describes the day-to-day work of a Hadoop administrator, 
which involves monitoring, managing, tuning and troubleshooting the cluster and the 
jobs that run in that cluster.

I start off with a quick review of how to effectively monitor the Linux servers on which 
most Hadoop clusters run. Monitoring Hadoop includes the tracking of system resource 
utilization and identifying performance bottlenecks. In order to do this, you must track 
things such as the levels of I/O bandwidth, data transfer rates, network latency, swap space 
utilization and the number of disk I/O operations per second. Linux has several easy-
to-use, yet very powerful, system performance monitoring tools, and I provide an 
introduction to those tools.

Once your cluster gets to a meaningful size, start thinking about using centralized 
configuration management tools to manage your cluster. Tools such as Puppet and Chef 
are a must for performing various tasks, such as copying files and generally keeping the 
cluster configuration in sync. Similarly, tools such as Nagios and Ganglia help you monitor 
the performance and health of your cluster and also put in place an alerting system for 
administrators (and, more and more, for developers as well). If you’re using a third-party 
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cluster management tool such as Cloudera’s Cloudera Manager, or Hortonworks’s Ambari, 
you don’t need to use these other tools as much, since the management tools provide 
most of the functionality you need to perform all the cluster-wide operations. This chapter 
explains how to set up Ganglia to monitor your cluster.

Logging is extremely important in managing Hadoop environments. Administrators 
should be able to take full advantage of the many types of logs emitted by the Hadoop 
daemons and the YARN jobs that run in your cluster. Understanding Hadoop’s logging 
framework is critical to your success as an administrator, so this chapter dedicates sub-
stantial space to the discussion of logging. 

In addition to Hadoop logging, you also need to understand where all the Hadoop 
components such as ZooKeeper, Hive, Pig and Impala store their logs, so you can trouble-
shoot failed or poorly performing jobs. 

In addition to tracking system resource usage, you must also use Hadoop’s performance 
counters to estimate whether the task response times are acceptable. For example, if the 
shuff le time is slow, the reduce tasks will take longer. Hadoop has a rich set of built-in 
metrics, and this chapter explains Hadoop’s metrics.

Monitoring Linux Servers
Most Hadoop installations run on Linux systems and thus it is imperative that you under-
stand the key aspects of Linux monitoring and also become familiar with useful Linux 
system-monitoring tools. A slow system could be the result of a bottleneck in processing 
(CPU), memory, disk or bandwidth. 

System-monitoring tools help you to clearly identify the bottlenecks causing poor 
performance. Monitoring Linux involves tracking key system resources such as the storage 
subsystem, CPU, memory and network. In the following sections, I explain what you 
ought to monitor and how to use various monitoring tools to get the job done.

Basics of Linux System Monitoring
Monitoring a Linux system from a performance point of view mainly involves moni-
toring the following:

 n CPU
 n Memory
 n Disk storage
 n Bandwidth

I’ll address each of these areas and explore exactly what monitoring these entities 
involves.

Monitoring CPU Usage
As long as you aren’t utilizing 100 percent of the CPU capacity, you still have juice left 
in the system to support more activity. Spikes in CPU usage are common, but your goal 
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when checking out excessive CPU usage is to track down which processes are causing 
excessive usage of the CPU. Following are the key factors to remember while examining 
CPU usage:

 n User versus system usage: You can identify the percentage of time CPU is being 
used for user applications as compared with time spent servicing the operating system’s 
overhead. Obviously, if the system overhead accounts for an overwhelming propor-
tion of CPU usage, you may have to examine it further.

 n Runnable processes: At any given time, a process is either running or waiting for 
resources to be freed up. A process that is waiting for the allocation of resources is 
called a runnable process. The presence of a large number of runnable processes 
indicates that your system may be facing a power crunch—it’s CPU-bound.

 n Context switches and interrupts: When the operating system switches between 
processes, it incurs some overhead due to the so-called context switches. If you 
have too many context switches, you’ll see a deterioration in CPU usage. You’ll 
incur similar overhead when you have too many interrupts caused by the operating 
system when it finishes certain hardware- or software-related tasks.

Monitoring Memory Usage
Memory is one of the first places you should look when you have performance problems. 
If you have inadequate memory (RAM) on the server, your system may slow down due 
to excessive swapping of memory. Memory swapping means that the system is transfer-
ring memory pages to disk devices to free up memory for other processes.

Here are some of the main factors to focus on when you are checking system memory 
usage:

 n Page ins and page outs: If you see a high number of page ins and page outs in 
your memory-usage statistics, it means that your system is doing an excessive amount 
of paging, which involves the moving of pages from memory to disk due to 
inadequate available memory. Excessive paging could lead to a condition called 
thrashing, which means you are using critical system resources to move pages back 
and forth between memory and disk.

 n Swap ins and swap outs: The swapping statistics also indicate how adequate your 
current memory allocation is for your system.

 n Active and inactive pages: If you have too few inactive memory pages, it may mean 
that your physical memory is inadequate.

Monitoring Disk Storage
When it comes to monitoring disks, you should look for two things. First, check to 
make sure you aren’t running out of room—applications add more data on a continuous 
basis, and it is inevitable that you will have to constantly add more storage space. Second, 
watch your disk performance—are there any bottlenecks due to slow disk input/output 
performance?
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Here are the basic things to look for:

 n Checking for free space: Using simple commands, a system administrator or a DBA 
can check the amount of free space left on the system. It’s good, of course, to do 
this on a regular basis so you can head off a resource crunch before it’s too late. 
You can use the df and the du commands to check the free space on your system.

 n Reads and writes: The read/write figures give you a good picture of how “hot” 
your disks are running. By examining the read/write numbers, you can tell whether 
your system is handling its workload well or whether it’s experiencing an extraor-
dinary I/O load at any given time.

Monitoring Bandwidth
By measuring the network bandwidth usage, you can measure the efficiency of the transfer 
of data between devices. Bandwidth is harder to measure than simple I/O or memory 
usage patterns, but it’s very useful to collect bandwidth-related statistics.

Your network is an important component of your system—if the network connections 
are slow, everything appears to run slowly. Simple network statistics like the number of 
bytes received and sent will help you identify network problems.

High network packet collision rates, as well as excessive data transmission errors, will 
lead to bottlenecks. You need to examine the network using tools like netstat (discussed 
later) to see if the network has any bottlenecks.

Monitoring Tools for Linux Systems
In order to find out what processes are running, you’ll most commonly use the well-known 
Linux process command, ps. Of course, to monitor system performance, you’ll need 
more sophisticated tools than the elementary ps command. The following sections cover 
some of the important tools available for monitoring your system’s performance.

Monitoring Memory Use with vmstat
The vmstat utility helps you monitor memory usage, page faults, processes and CPU 
activity. Here is some sample output from the vmstat command. The S parameter indicates 
the setting of the unit size, M indicates the unit size (1048576) and the integer 1 is the 
inteval between updates (in this case, every second).

# vmstat -S M 1
procs ---------memory------------swap-------io------system-------cpu-------
r  b  swpd free    buff  cache   si  so  bi   bo   in  cs   us sy id  wa st
0  0    0  11601   3980  72370   0   0   781  1016   0    0 15 1   83 1  0
0  0    0  11601   3980  72370   0   0     0    0  795 1470  0 0  100 0  0
0  0    0  11601   3980  72370   0   0     0   28  818 1543  0 0  100 0  0
0  0    0  11601   3980  72370   0   0     0    0  867 1558  0 0  100 0  0
#

Under the procs subheading in the CPU part of the output, the first column, r 
refers to the run queue. If your system has 24 CPUs and your run queue shows 20, that 
means 20 processes are waiting in the queue for a turn on the CPUs, and it’s definitely 
not a bad thing. If the same r value of 24 occurs on a machine with 2 CPUs, it indicates 
the system is CPU-bound—a large number of processes are waiting for CPU time.
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In the CPU part of vmstat’s output, us stands for the amount of CPU usage attributable 
to the users of the system, including your database processes. The sy part shows the 
system usage of the CPU, and id stands for the amount of CPU that is idle. In our example, 
most or all of the CPU is idle for each of the four processors. 

In the vmstat output, the CPU statistic cs stands for the number of context switches, 
and the column in indicates the number of interrupts (per second). 

The vmstat utility can help you identify performance bottlenecks. For example, if the 
vmstat output shows that memory is being swapped to disk (column so) or swapped 
from disk (column si) then you may need to either add more physical memory to the 
node or lower the number of mappers and reducers running on that node.

Viewing Memory Usage with meminfo and free
An easy way to check memory usage on a server is through the /proc/meminfo com-
mand. Many Linux tools such as top, ps and free use the data in the meminfo file as 
their source. The following example gets you the first five pieces of information from the 
file, but there are a large number of other statistics in this file. 

# head -5 /proc/meminfo
MemTotal: 98934060 kB
MemFree: 2954400 kB
Buffers: 3695172 kB
Cached: 46993320 kB
SwapCached: 0 kB
#

The free command, which uses the data in the /prc/meminfo file, is a quick way to 
get memory usage information:

# free
total used free     shared    buffers     cached

Mem: 98934052   74366552   24567500 0    4652432   52999412
-/+ buffers/cache:   16714708   82219344
Swap: 0 0 0
#

Viewing I/O Statistics with iostat
The iostat utility gives you input/output statistics for all the disks on your system. The 
iostat command takes two parameters: the number of seconds before the information 
should be updated on the screen and the number of times the information should be 
updated. The output is displayed in four columns.

 Here’s an example of the iostat output:

# iostat 4 5
Linux 2.6.39-400.249.3.el5uek (hadoop09.examplecom) 12/06/2016

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
15.15    0.00    1.09    0.53    0.00   83.22

Device: tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
sda 23.30 3580.03 3900.79 10756271178 11720007348
sda1 0.01 0.69 0.00    2064167 1036
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sda2 8.51 608.52 130.81 1828323145  393030664
sda3 0.00 0.00 0.00      11879          0
sda4 14.78 2970.81 3769.98 8925860707 11326975648
sdb 20.13 2709.73 2908.45 8141441164 8738485276
#

Disk I/O issues can affect Hadoop processes negatively since Hadoop uses disk I/O 
during multiple phases during the MapReduce pipeline process. It’s a good idea to use 
the TestDFSIO benchmark (explained in Chapter 18) to understand the throughput 
capabilities of the storage system. Often, a CPU or RAM issue may masquerade as a 
storage bottleneck. It’s therefore a good idea to first rule out a CPU or memory bottle-
neck before investigating the storage subsystem. 

Analyzing Read/Write Operations with sar
The Linux sar (system activity reporter) utility offers a very powerful way to analyze 
how the read/write operations are occurring from disk to buffer cache and from buffer 
cache to disk. By using the various options of the sar command, you can monitor disk 
and CPU activity, in addition to buffer cache activity.

The output for the sar -b command (buffer activity) has the following columns:

 n bread/s: The number of read operations per second from disk to the buffer cache
 n lread/s: The number of read operations per second from the buffer cache
 n %rcache: The cache hit ratio for read requests
 n bwrit/s: The number of write operations per second from disk to the buffer cache
 n lwrit/s: The number of write operations per second to the buffer cache
 n %wcache: The cache hit ratio for write requests

Here’s the output of a typical sar command, which monitors your server’s CPU activity, 
using the -u option (the 1 10 tells sar to refresh the output on the screen every second for 
a total of ten times):

# sar -u 1 10
Linux 2.6.39-400.249.3.el5uek (hadoop01.localhost) 12/06/2016

08:59:10 AM CPU     %user     %nice   %system   %iowait    %steal     %idle
08:59:11 AM all 0.00 0.00 0.04 0.00 0.00     99.96
08:59:12 AM all 0.04 0.00 0.04 0.00 0.00     99.92
08:59:13 AM all 0.04 0.00 0.04 0.00 0.00     99.92
08:59:14 AM all 0.04 0.00 0.04 0.00 0.00     99.92
08:59:15 AM all 0.00 0.00 0.04 0.00 0.00     99.96
...
#

Using the top Command for Monitoring Resource Usage
top is a great tool for finding out which user/processes are using the most resources on 
a server. Here’s an example:
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# top
top - 08:59:52 up 34 days, 18:37,  1 user,  load average: 0.44, 0.26, 0.29
Tasks: 323 total,   2 running, 320 sleeping,   0 stopped,   1 zombie
Cpu(s): 15.2%us,  1.0%sy,  0.0%ni, 83.2%id,  0.5%wa,  0.0%hi,  0.1%si,  0.0%st
Mem:  98934060k total, 87217948k used, 11716112k free,  4076468k buffers
Swap:        0k total,        0k used, 0k free, 74271600k cached

  PID USER PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
15827 hdfs 20   0 59132  716  480 R 45.1  0.0   0:00.23 du
   59 root 20   0     0    0    0 S  2.0  0.0   3:37.10 ksoftirqd/13
11223 root 39  19     0    0    0 S  2.0  0.0  86:26.51 kipmi0
11536 flume     20   0 1902m 115m 5276 S  2.0  0.1  27:06.52 java
    1 root 20   0 10416   96    0 S  0.0  0.0   1:14.33 init
    2 root 20   0     0    0    0 S  0.0  0.0   0:00.43 kthreaddtop

...
#

CPU bottlenecks are easy to recognize—you’ll see very high processor load times, 
such as 80 or 90 percent, or even higher. You are also likely to see a total processer load 
time that’s more than 50 or 60 percent across the cluster. It’s possible for a single process 
to grab too much CPU due to a poorly designed Hadoop job. Tuning the map or reduce 
tasks will lower the CPU usage in such cases. Of course, switching to faster processors 
or adding more processors will also help relieve CPU contention.

You can check for CPU contention by looking at the numbers for context switches 
and interrupts. The Linux operating system is a multitasking system with multicore CPUs. 
The OS stores the CPU state, called the context, when it switches between processes, 
so it can resume execution from the point where it left off. Restoring the context is called 
a context switch. If the number of context switches is high, it’s an indication that the CPU 
is busy and is spending a lot of time storing/restoring the process states. Often this is 
due to assigning too many map or reduce tasks per node. 

Network Monitoring with dstat
Hadoop uses the network heavily when the reduce tasks get the map task outputs during 
the shuff le phase. Network utilization is also higher when the reduce jobs output the 
results to HDFS. Monitoring the network helps identify potential network bottlenecks. 
A good network monitoring tool such as dstat can reveal the workload of the network. 
A couple of useful rules of thumb:

 n If the network data rate is about 20 percent of the network bandwidth or higher, it 
indicates an overloaded network.

 n A high rate of interrupts indicates that the network traffic is overloading the network.

The dstat tool reveals both the network data rates and the number of interrupts, as 
shown in the following example:

# dstat
----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--
usr sys idl wai hiq siq| read  writ| recv  send|  in   out | int   csw
 15   1  83   1   0   0|  38M   48M|   0     0 |   0     0 |7263  7142
  0   0 100   0   0   0|   0    48k|2829k 2067k|   0     0 |1040  1680
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  0   0 100   0   0   0|   0    24k|2828k 1932k|   0     0 | 929  1473
  0   0 100   0   0   0|   0  9576k|2829k 1808k|   0     0 |1047  1685
  0   0 100   0   0   0|   0   176k|2571k 1679k|   0     0 |1000  1585
  0   0 100   0   0   0|   0    16k|2957k 2061k|   0     0 | 993  1620 
#

Hadoop Metrics
Hadoop metrics are collections of information about various Hadoop daemons. For example, 
the ResourceManager daemon produces metrics about the job queues. Hadoop Metrics 
(formally called Metrics 2) are vital when you are analyzing the performance of Hadoop’s 
services. Hadoop provides extremely useful metrics, which help you monitor, tune and 
debug MapReduce and other jobs. Each of the Hadoop daemons emits metrics. 

Hadoop 2’s metrics and its logging system are highly useful during performance investiga-
tions and tuning exercises. Hadoop’s distributed architecture makes it inherently difficult to 
monitor the cluster and diagnose the problems, compared to how you monitor and trouble-
shoot a database running on a single server. Hadoop’s application logs and job metrics provide 
insights about various aspects of a job, but they lack metrics regarding disk and network utili-
zation per job or per task. Similarly, cluster-level resource utilization by task or application isn't 
available either. Thus, raw logs and metrics aren’t highly useful in their original state. 

There are several open-source monitoring systems that help you consolidate the metrics 
and logs provided by Hadoop into useful service-related performance summaries and 
graphs, as well as alerts. In addition to Ganglia, you may also want to consider tools such 
as Chukwa, which is a data-collection system for monitoring large distributed systems, 
and Apache Ambari, which helps you deploy and manage Hadoop clusters.

Hadoop’s web UIs for its various services, such as the NameNode web UI and the 
DataNode web UI, rely on the internal metrics that Hadoop automatically collects to 
help you understand how those services are performing. 

Hadoop conveniently groups its metrics into several named contexts, such as the jvm 
context for the Java Virtual Machine metrics and rpc for debugging RPC calls.

Hadoop metrics are a veritable treasure-trove of useful real-time and historical informa-
tion that’ll help you troubleshoot the performance of your cluster and debug issues pertaining 
to both Hadoop services and the applications they support. In this context, it’s important to 
distinguish between Hadoop metrics and the well-known MapReduce job counters: 

 n MapReduce job counters provide information such as the total bytes read and written 
by an application, while Hadoop metrics have a much broader range of focus and show 
you information about all the Hadoop services, such as the NameNode, JournalNode 
and DataNode, as well as user- and group-related information. 

 n As an administrator, you review MapReduce counters to help understand issues such 
as a slow-running MapReduce job. Hadoop metrics have a much broader domain, 
so to speak—they help you troubleshoot and tune the entire range of administrative 
issues, such as the NameNode startup duration, authentication failures, number of 
current connections, file creation and deletion operations, current space used free 
space left and so on.
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Hadoop Metric Types
Hadoop’s daemon metrics fall into various groups, based on the context in which they’re 
emitted, as explained here:

 n JVM metrics: These metrics are emitted by the JVMs running in the cluster and 
include JVM heap size and garbage collection related metrics, such as the current 
heap memory used (MemHeapUsedM) and the total GC count (GcCount).

 n RPC metrics: Metrics in the rpc context contain metrics such as host name and 
ports and include metrics such as the number of sent bytes (SentBytes), current 
number of open connections (NumOpenConnections) and number of authentication 
failures (RpcAuthenticationFailures).

 n DFS metrics: Metrics in the dfs context include the metrics that pertain to the 
NameNode, the HDFS file system, the DataNodes and the JournalNodes.

 n The NameNode-related dfs metrics show the total number of files created 
(CreateFileOps) and the time it takes to load the fsimage file after a startup 
of the NameNode (FsImageLoadTime). 

 n The FSNameSystem metrics show various things related to the HDFS blocks and 
HDFS capacity, such as the current number of missing blocks (MissingBlocks), 
the current number of corrupt blocks (CorruptBlocks) and the current used 
capacity in all the DataNodes (CapacityUsedGB). 

 n JournalNode-related metrics include sync-latency-related information as well 
as metrics related to the number of transactions and bytes written.

 n DataNode metrics show metrics relating to the number of data blocks read 
and written, average times for each operation and the total number of volume 
failures.

 n YARN metrics: Metrics in the YARN context include cluster metrics, such as the 
current number of active and unhealthy NodeManagers, and queue metrics relating 
to the ResourceManager application queues, such as the current number of running 
applications (AppsRunnning) and the current number of active users (ActiveUsers). 
Metrics in the YARN context also include NodeManager-specific metrics, such 
as the total number of launched, killed and failed containers, as well as the current 
allocated and available memory.

 n User and group metrics: The user- and group-related metrics context shows infor-
mation such as the total number of successful and failed Kerberos logins and the 
times for group resolution.

 n Default context: These are metrics that reveal the statistics for the NameNode 
startup and show the precise time it took for the various phases of the NameNode 
startup process, such as loading the fsimage and edits files, the checkpoint saving 
phase and the time it takes for the NameNode to get out of safe mode.
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Using the Hadoop Metrics
The previous section provided a glimpse into the wide variety of metrics that can be 
generated by Hadoop daemons. What do you do with all these metrics? You can use 
these metrics to find out how your cluster is performing. For example, JVM metrics 
such as GcCount and GcTimeMillis indicate high JVM memory activity, and a high 
ThreadsWaiting counter means the JVM may require additional memory. DFS-related 
metrics can tell you if there are a high number of file creations and deletions in the cluster. 
RPC authentication failure metrics show if there are any suspicious attempts to authen-
ticate to the cluster. Similarly, other metrics can point out an unusually high usage of 
system memory, CPU or local and HDFS storage.

Capturing Metrics to a File System
To collect the metrics and use them for tuning and troubleshooting purposes, you must 
configure the various Hadoop daemons to gather the metrics at specified intervals and 
output the metrics. You output the metrics using a plug-in. The metrics emitted by 
the Hadoop daemons are called sources and the plug-ins are called sinks. So, sources 
produce data, and sinks consume the data or output it. 

There are various types of plug-ins available, with the default plug-in being FileContext, 
which writes the metrics to a file. A NullContext will discard the metrics and the 
GangliaContext will send the metrics to the Ganglia monitoring system (explained in 
the section titled “Using Ganglia for Monitoring”).

In order to capture the metrics generated by Hadoop, you need to configure the 
hadoop-metrics2.properties file, which is normally located in a directory such as /etc/
hadoop/conf. The following example shows how to store metrics pertaining to the 
NameNode and the DataNodes in this file. You can add other metrics, such as JVM 
metrics, for example, to the same file.

# The following entries show how to capture metrics from the NameNode and 
# DataNodes to a sink named "tfile" (output to file).
# Defining sink for file output
*.sink.tfile.class=org.apache.hadoop.metrics2.sink.FileSink
# Filename for NameNode metrics capture
namenode.sink.tfile.filename = namenode-metrics.log
# Filename for DataNode metrics 
datanode.sink.tfile.filename = datanode-metrics.log

In this example, I’m using a local file to capture metrics from the NameNode and the 
DataNode. When I show how to send metrics to a Ganglia sink later, I show the entries 
you should add to this file for capturing data to a Ganglia sink.

In order to focus on key metrics and to avoid getting lost in a sea of metrics, you can 
filter the Hadoop metrics on the basis of source, context, record and metrics. Within 
a source, you can filter on the basis of a pattern such as include or exclude, with the 
include pattern being accorded precedence over the exclude pattern. Filters let you 
manage metrics efficiently by limiting the output to the metrics file you configured 
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in the hadoop-metrics2-properties file. Following are some examples showing how to 
limit metric output through various custom filters.

Before you can set up custom filters, add the following parameters to the 
hadoop-metrics2-properties file:

# Syntax: <prefix>.(source|sink).<instance>.<option>

*.sink.file.class=org.apache.hadoop.metrics2.sink.FileSink
*.source.filter.class=org.apache.hadoop.metrics2.filter.GlobFilter
*.record.filter.class=${*.source.filter.class}
*.metric.filter.class=${*.source.filter.class}

# The following limits metrics to just those from the dfs context.
bcl.sink.file0.class=org.apache.hadoop.metrics2.sink.FileSink
bcl.sink.file0.context=dfs
# The following will filter out metrics from the specified host.
jobtracker.source.dfs.record.filter.exclude=hadoop01.localhost*
# The following will filter out metrics matching the pattern cpu*.
jobtracker.sink.file.metric.filter.exclude=cpu*

It isn’t realistic to hope to manually review the numerous files in all the cluster nodes 
to examine the performance of the Hadoop daemons. There are a couple of ways you 
can go about this. You can store the data in a Hive external table or in HBase tables. 
You can then set up an alert mechanism to send appropriate alerts. However, the best way 
to access Hadoop metrics is by sending the alerts to a Ganglia sink. Sending metrics 
to a Ganglia sink involves no extra work (after configuring Ganglia, of course) and is 
very similar to how you direct the alerts to a file as shown earlier. Ganglia is a popular 
tool for monitoring the state of a system. Nagios, an open-source product like Ganglia, 
is good for setting up alerts. In the next section, I explain the basics of using Ganglia 
to monitor your system and also how to integrate Ganglia with Hadoop to configure 
critical alerts based on various Hadoop daemon metrics.

Using Ganglia for Monitoring
The open-source software Ganglia is a great tool that’s widely used by enterprises for metric 
collection and tracking, as well as for the aggregation of metrics. You can set up Ganglia to 
run on your cluster nodes, so Hadoop can send its metrics data to the Ganglia sinks. You 
can then set up Nagios to use these metrics as the basis for sending out critical alerts to you.

Ganglia can monitor very large clusters. Ganglia collects metrics such as CPU 
usage and free disk space and can also help monitor failed nodes. Ganglia provides useful 
graphical information about the state of the cluster and its nodes. The Ganglia collector 
runs the monitoring daemons and collects the metrics. The collector presents a real-time 
view of memory and disk and network usage through a web user interface, along with 
metrics pertaining to running processes. The following sections explain:

 n The architecture of Ganglia
 n How to integrate Ganglia with a Hadoop cluster
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Ganglia Architecture
There are four main components in a Ganglia monitoring system: gmond, gmetad, 
rrdtool and gweb. Here’s what these four key components do.

 n gmond: Each host in your cluster will run the gmond daemon, whose job it is to 
collect the metrics data from all the cluster nodes. Every node runs the gmond 
daemon, and the node will receive metrics from the rest of the cluster nodes. This 
means that the polling process (gmetad, which is explained next) needs to poll just 
a single node to get the cluster metrics and also that node failures won’t affect the 
polling process.

 n gmetad: This is the daemon that polls the nodes for metric data. It can get a metric 
dump for the entire cluster from any one node in the cluster. The gmetad daemon 
creates RRD tables to store the metric data.

 n RRDtool: This component stores the metric data polled by the gmetad daemon. 
You can configure rrdtool to aggregate metric data values so that you can easily 
access not only current data but also historical data, using very little storage space.

 n gweb: This is the web interface to the metrics collected by the Ganglia monitor-
ing system through the data stored in the RRD databases. You can view specific 
metrics using graphs and also create custom graphs by drilling down into the details 
for a specific metric or host. You can also extract metric data using CSV, JSON 
and other formats through the gweb visualization interface. The gweb process is 
actually a PHP program that runs on the Apache web server.

Setting Up the Ganglia and Hadoop Integration
In order to get going with Ganglia in your Hadoop cluster, you need to do the following:

 n Install Ganglia (server and clients)
 n Extract the Ganglia configuration files
 n Configure the Ganglia components (gmond, gmetad, etc.)
 n Set up the Hadoop metrics

Let’s start by learning how to install and work with Ganglia so you can direct the 
Hadoop alerts to a Ganglia sink instead of to a file on the local system (but you can send 
the metrics to both a file and to the Ganglia sink, if you need to).

Installing Ganglia
In order to install Ganglia, select a node in your Hadoop cluster as the node to host the 
Ganglia server. It’s on this server node that the gmetad, gweb and rrdtool daemons will 
run.

1. Install the server RPMs on the Ganglia server as shown here (for a RHEL/
CentOS system):

# yum install ganglia-gmond-3.2.0-99 ganglia-gmetad-3.2.0-99 gweb-2.2.0-99
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2. Install the client RPMs to run the gmond process on all the cluster nodes as shown
here.

# yum install ganglia-gmond-3.2.0-99

Extracting the Configuration Files
Once you install the Ganglia software, extract the configuration files in the configuration_
files.zip folder and copy the files in the ganglia folder to a temporary directory such as 
/tmp/ganglia. 

On the node serving as your Ganglia server host, create a directory named objects 
and copy the Ganglia object files to that directory:

# mkdir-p /usr/libexec/ganglia
# cp /tmp/ganglia/ganglia/objects/*.*  /usr/libexec/ganglia
# cp /tmp/ganglia/scripts/*  /etc/init.d

Configuring the gmetad and gmond Daemons
The gmond.conf file consists of several sections such as global, cluster, host, upd_
receive_channel, tcp_receive_channel and modules. Most of these are self-explanatory, 
and you can use the default values for them. You can set up custom metric collection 
groups for the metrics you consider critical, such as free memory (mem_free), system load 
(load_five—load averaged every 5 minutes) and total free disk space (disk_free). 
You can set up metric-collection groups as shown in the following example, which sets 
up a group for the amount of free memory:

collection_group {
  collect_every = 40
  time_threshold = 300
  metric {
    name = "mem_free"
    value_threshold = 1024
    title = "Free Memory"
   metric {
    name = "bytes_out"
    value_threshold = 4096
    title = "Sent Bytes"

 }
}

As mentioned earlier, the gmetad daemon, which polls the metric data, runs only on 
a single server (the Ganglia server). Set up the data sources from which gmetad should 
poll the metric data in the gmetad.conf file, as shown here:

# Format:
# data_source "service name" [polling interval] address1:port addreses2:port ...
data_source "NameNode" 50 ahdoop01.localhost:8658
data_source "ResourceManager" 50 hadoop03.localhost:8664
data_source "JobHistoryServer" 50 hadoop02.localhost:8659
data_source "DataNode" 50 hadoop02.localhost:8662

With the Ganglia infrastructure all configured and ready to go, it’s time to add the 
Hadoop metrics to the mix.
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Setting Up the Hadoop Metrics
In order to set up your Hadoop cluster for working with Ganglia, you need to perform 
the following tasks on each node in the cluster:

1. Stop all Hadoop services.

2. Copy the Ganglia metrics file to the Hadoop configuration directory:
$ cd $HADOOP_CONF_DIR
$ mv hadoop-metrics2.properties-GANGLIA  hadoop-metrics2.properties

3. Edit the metrics properties file to configure the hostname of the Ganglia server:
namenode.sink.ganglia.servers=test.ganglia.server.hostname:8661
datanode.sink.ganglia.servers=test.ganglia.server.hostname:8660
jobtracker.sink.ganglia.servers=test.ganglia.server.hostname:8662
tasktracker.sink.ganglia.servers=test.ganglia.server.hostname:8660
maptask.sink.ganglia.servers=test.ganglia.server.hostname:8660reducetask
.sink.ganglia.servers=test.ganglia.server.hostname:8660

4. Restart all the Hadoop services.

 Using Nagios for Alerting

Nagios is an open-source monitoring system that helps you check the health of your 
system and is a very good alerting and monitoring tool. You can use Nagios to monitor 
the cluster resources and the status of applications as well as system resources such as 
CPU, disk and memory. While Ganglia is more about gathering and tracking metrics, 
Nagios relies on its built-in notification system to focus on alerts. Nagios can help you 
with the following:

 n Getting up-to-date information about the cluster infrastructure

 n Raising failure alerts

 n Detecting potential issues 

 n Monitoring resource availability 

Understanding Hadoop Logging
Hadoop logs are of great help when troubleshooting failed jobs. Jobs may fail due to issues 
within the applications, or due to hardware and platform bugs. Hadoop daemon logs 
reveal the sources of any issues within the daemon processes that affected a job. You can 
analyze the application logs to pinpoint the root cause of performance issues such as a 
slow-running job. 

Unlike an Oracle database, for example, which has but a single alert log that tracks 
changes and logs issues, Hadoop has a complex logging structure. This complex logging 
structure does appear bewildering when you first start dealing with it. Not to fear, however, 
as once you understand the Hadoop logging structure, you’ll find it a breeze to navigate 
through the logging framework and learn how to mine the logs to your best advantage.
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Troubleshooting issues in your cluster may require you to review both application logs 
and Hadoop daemon logs—I discuss both types of logs in the following sections. But 
first, a note about the different types of application logs and how to view logs.

Hadoop Log Messages 
You can access Hadoop log messages for your Spark, Hive and other jobs through 
perusing the individual log files or through Hadoop’s excellent built-in web interfaces. 
It’s easier to access the logs through the web interfaces most of the times since they 
save you time and help you to quickly get to the root cause of a performance issue or 
job failure. Once I explain the Hadoop logging infrastructure, I explain how to use 
Hadoop’s various web UIs to track jobs and analyze their performance.

Types of Logs
There are three types of logs produced by each task in a Spark or MapReduce job:

 n stdout: All system.out.println() messages are directed to the log file named 
stdout. You can use custom messages for the stdout log.

 n stderr: All system.err.println() messages are directed to the log file named 
stderr. You can use custom messages for the stderr log.

 n syslog: All Log4j (standard logging library) logs are sent to the log file named syslog. 
You can have your custom messages sent here. This is the most significant log 
for understanding how a task has fared and why it’s slow, has failed to start or has 
stopped running in the middle of the job. Any unhandled exceptions during job 
execution are trapped by syslog, so it’s where to go to understand map and reduce 
task failures.

Note

The syslog file always contains logging information—the stdout and stderr files are 
empty unless your code specifies stdout- and stderr-type logging.

Let’s say a mapper program contains the following code:

logger.info("Mapper Key =" + key);

In this case, the mapper uses only Log4j logging and doesn’t log to the standard output 
streams. So, you expect to see logging messages from this job recorded only in the syslog 
file—this file will always contain information, regardless of whether you have custom 
Log4j logging code or not, since it’s the log for all Log4j messages from the system. In 
this case, you won’t see any logging information in the stdout and stderr files—they’ll 
be there but will be empty.

The reducer code has the following logging-related code:

logger.info("Reducer Key =" + key);
System.out.println("Reducer system.out >>> " + key);
System.err.println("Reducer system.err >>> " + key);
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Since the reducer has specified all three types of logs, you may find logging infor-
mation in all three log files (stdout, stderr and syslog) for the reducer tasks. 

You can learn how to review logs through Hadoop’s web UIs in the section titled 
“Using Hadoop’s web UIs for Monitoring.” You can learn how to review the logs man-
ually in the section titled “Multiple Ways of Viewing the Application Logs.”

Note

Configure Log4j logging by editing the log4j.properties file. This file is, by default, located in 
the directory specified by the $HADOOP_CONF_DIR variable. When you change the logging 
properties, the changes take place immediately without requiring a cluster restart.

Daemon and Application Logs and How to View Them
Application developers and administrators who are relatively new to Hadoop are sometimes 
confused when it comes to the reviewing of daemon and application logs. If you’re using 
Cloudera or Hortonworks and use their management interfaces such as Cloudera Manager 
or Ambari, you can get to the logs with the click of a button. Otherwise, you’re often 
left scratching your head as to exactly where the various logs are stored and which of the 
many logs that are available to you are really significant. 

Hadoop generates two main types of logs:

 n It generates logs for all of its daemons such as the NameNode and DataNode. The 
daemon logs are useful mostly for administrators, since they help troubleshoot 
issues such as unexpected failures of key Hadoop services like the DataNodes and 
the NameNode. 

 n Hadoop also generates logs for every application you run in the cluster. Hadoop 
application logs are very important to application developers as well as admin-
istrators, since they help you understand the root causes of a job failure and a 
performance slowdown, among other things.

You can view Hadoop application logs in multiple ways:

 n From the Hadoop web UIs (specifically the ResourceManager web UI). The 
ResourceManager web UI saves you the bother of going to where the logs 
are stored and viewing the log f iles. You can also view the logs through the 
JobHistory web UI.

 n By examining the log information directly from the log files. 
 n For some application logs, from HDFS, where they’re stored if you enable log 

aggregation, which I highly recommend. 
 n Via the yarn command (explained in Chapter 16).
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So, there are two major types of logs that you need to focus on as a Hadoop 
 administrator—application logs and the Hadoop daemon logs. The following sections 
explain application logging first, and then I discuss how to manage the Hadoop daemon logs.

How Application Logging Works
Application logs are critical in analyzing the performance of Hadoop jobs and in trouble-
shooting issues with job execution. In order to understand how to use Hadoop application 
logs, it’s useful to understand how exactly the logs are generated in the first place. So, we 
start by explaining the steps involved in the processing of a MapReduce job, which culminate 
in the generation and storing of the log files for each job processed by Hadoop.

Where Hadoop Stores Its Logs
In order to efficiently analyze Hadoop logs, it’s important to understand that Hadoop 
uses several locations in your system to store job-related information and logs, both 
while the job is running and after the job is completed. The three locations are the 
following:

 n HDFS: This is the location where Hadoop creates a staging directory for storing 
job execution files such as the job.xml file that contains the Hadoop parameters 
used in running a job. If you configure Hadoop’s log aggregation feature, (which 
is explained later in this chapter), Hadoop also uses HDFS for long term (the actual 
duration being configurable by you) storage of the Hadoop job logs.

 n NodeManager local directories: These are directories you create on the local file 
system where Hadoop stores the shell scripts generated by the NodeManager 
service to execute the ApplicationMaster container. You can create the NodeManager 
local directories anywhere in the local Linux file system. It’s not uncommon to create 
them under the same file system as the Hadoop HDFS file system, as shown here:

/u05/hadoop/dfs //create HDFS files under this directory
/u05/hadoop/nm //create local directories for NodeManager

//under this directory

You specify the location of the NodeManager local directories with the yarn
.nodemanager.local.dirs parameter in the yarn-site.xml file.

 n NodeManager log directories: These are the local directories on Linux where the 
NodeManager stores the actual log files for the applications a user runs. All the 
containers (for Spark, MapReduce and other job tasks) that a job is executing on 
the NodeManager for this node store their application logs in this directory. The 
default value for this parameter is ${yarn.log.dir}/userlogs. It’s important to 
understand that yarn.log.dir is really not an OS environment variable (like the 
JAVA_HOME variable, for example). This is a Java system property that you configure 
through the yarn-env.sh file. By default, the yarn.log.dir property is set to the 
same value as the OS environment variable YARN_LOG_DIR.
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Specify the location of the NodeManager log directories with the yarn
.nodemanager.log-dirs parameter in the yarn-site.xml file. For example, take a look 
at the following:

<property>
   <name>yarn.nodemanager.log-dirs</name>
   <value>/var/log/hadoop-yarn </value>
</property>

The HDFS staging directories and the NodeManager local directories contain fields 
with the job parameters and the shell scripts that execute the ApplicationMaster. It is the 
NodeManager log directories that are of much more importance to you on a day-to-day 
basis, since these directories contain the actual application log files. 

What the NodeManager Log Directories Contain
Log files for an application actually mean the container logs. Each application’s localized 
log directory will have the following directory structure:

${yarn.nodemanager.log-dirs}/application_${appid}/

The appid variable stands for the application ID of the MapReduce job. Each container’s 
log directories will be underneath this directory and will use the following directory 
naming convention:

container_{$contid}

Each of a container’s directories will contain the actual log files that we’re interested 
in—these are the three types of Hadoop logs generated by this container, which we 
described earlier in this chapter: stderr, stdin and syslog. The individual container log 
directories will be placed under the ${yarn.nodemanager.log-dirs}/application_${appid} 
directory, in directories that are named container_{$containerId}. Each container directory 
will contain files named stderr, stdout and syslog. This is where you find out information 
about the container’s errors during its run. 

As mentioned earlier, the default value for the yarn.nodemanager.log-dirs property 
is ${yarn.log.dir}/userlogs. Let’s say you want to examine the log files for an appli-
cation with the application ID of 1423588006739_0015. Here’s the directory structure 
you’ll need to traverse to get to the container log files for this application.

${yarn.nodemanager.log-dirs}=/var/log/hadoop-yarn
${appid}= 1423588006739_0015
{contid}= 1423588006739_0015_01_001667

The full name of this container will be container_1423588006739_0015_01_001667, 
and you can access its syslog, stderr and stdout log files by going to the following 
directory:

/var/log/hadoop-
yarn/container/application_1423588006739_0015/container_1423588006739_0015_01_001667
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How Hadoop Uses HDFS Staging Directories and Local Directories 
During a Job Run
When you launch a Yarn job, Hadoop makes use of both HDFS (we’re not talking about 
using the data stored in HDFS—here we’re discussing how Hadoop uses HDFS for logging 
and storing job-related information) and the local directories on various nodes in the cluster. 
Hadoop uses HDFS for staging the job and the local directories for storing various scripts 
that are generated to start up the job’s containers (which will run the map and reduce 
tasks). The following sections explain how Hadoop uses HDFS and the local directories 
during job execution.

How HDFS Is Used for Staging a Job
When users execute a MapReduce job, they usually invoke a Job Client to configure the 
job and to launch it. As part of the job execution, the Job Client does the following things:

 n It first checks to see if there’s a staging directory under the user’s name in HDFS. 
If not, it creates it. The staging directory has the format /user/<username>/
.staging.

 n The Job Client creates a file named job_<jobID>_conf.xml under the .staging 
directory, within a directory named after the job (such as ./staging/ job_ 
1437150959773_3620) and a file named just job.xml. These files include the 
Hadoop parameters used in executing this job. 

 n In addition to the job-related files, a file from the Hadoop JAR ( Java archive) 
file named hadoop-mapreduce-client-jobclient.jar is also placed in the .staging 
directory, after renaming it to job.jar.

In the following example, a user named produser has the following contents inside 
the user’s staging directory after submitting a new job:

bash-3.2$ hdfs dfs -ls /user/produser/.staging/job_1437150959773_3620/
Found 7 items
-rw-r--r--  10 produser produser    7781304 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job.jar
-rw-r--r--  10 produser produser 1767 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job.split
-rw-r--r--   3 produser produser        145 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job.splitmetainfo
-rw-r--r--   3 produser produser     430268 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job.xml
-rw-r--r--   3 produser produser 310 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job_1437150959773_3620.summary
-rw-r--r--   3 produser produser 10242 2016-01-0207:20 /user/produser/.
staging/job_1437150959773_3620/job_1437150959773_3620_1.jhist
-rw-r--r--   3 produser produser     451071 2016-01-0207:19 /user/produser/.
staging/job_1437150959773_3620/job_1437150959773_3620_1_conf.xml
bash-3.2$
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Once the staging directory is set up, the Job Client submits the job to the Resource-
Manager. The Job Client also sends back to the console the status of the job progression, 
by showing the percentages of completion for the map and reduce phases of the job 
(map 5%, reduce 0%, etc.).

Note that all of this is happening in the HDFS file system and not on the local directo-
ries of the Linux server. Once the job is launched by the Job Client, the Application-
Manager for this job swings into action.

How the NodeManager Uses the Local Directories
The ResourceManager’s ApplicationsManager (not to be confused with the Application-
Master for the job!) service selects a NodeManager on one of the cluster’s nodes to launch 
the ApplicationMaster process, which is always Container #1 (the very first container 
to be created) in a YARN job. Which NodeManager the ResourceManager chooses will 
depend on the available resources at the time of launching the job—you can’t specify 
the node on which to start the job.

The NodeManager service starts up and generates various scripts in the local applica-
tion cache (the appCache directory) to execute the ApplicationMaster container. The 
ApplicationMaster’s directories are stored in the locations that you’ve specified for the 
NodeManager’s local directories with the yarn.nodemanager.local-dirs configura-
tion property in the yarn-site.xml file. In our case, this property is configured in the 
following way:

<property>
  <name> yarn.nodemanager.local-dirs</name>
  <value> /u01/hadoop/yarn/nm, /u02/yarn/hadoop/nm, /uo3/hadoop/yarn/hadoop/nm</value>
</property>

The yarn.nodemanager.local-dirs property lets you provide a list of directories 
wherein the NodeManager can store its localized files. Underneath these directories, you’ll 
find the actual application’s localized file directory with the following directory structure:

${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}

To get to the individual container work directories, you must drill down a level further. 
The container work directories will be subdirectories under the application’s root directory 
and will be named after the container, as shown here:  

container_${contid} 

The default value for this parameter is ${hadoop.tmp.dir}/nm-local-dir.
The following output shows the contents of the ApplicationMaster container’s directory 

(note the container’s number, xxxx_000001):

#cd 
/u07/hadoop/yarn/nm/usercache/produserproduser/appcache/application_1448106546957_
4813/container_e158_1448106546957_4813_01_000001
# ls -altr
total 60
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drwx--x--- 2 yarn yarn 4096 Dec 27 12:09 tmp
-rw-r--r-- 1 yarn yarn   12 Dec 27 12:09 .container_tokens.crc
-rw-r--r-- 1 yarn yarn   99 Dec 27 12:09 container_tokens
-rw-r--r-- 1 yarn yarn   48 Dec 27 12:09 .launch_container.sh.crc
-rwx------ 1 yarn yarn 4721 Dec 27 12:09 launch_container.sh
-rw-r--r-- 1 yarn yarn   16 Dec 27 12:09 .default_container_executor.sh.crc
-rwx------ 1 yarn yarn  720 Dec 27 12:09 default_container_executor.sh
-rw-r--r-- 1 yarn yarn   16 Dec 27 12:09 .default_container_executor_session
.sh.crc
-rwx------ 1 yarn yarn  666 Dec 27 12:09 default_container_executor_session.sh
lrwxrwxrwx 1 yarn yarn   97 Dec 27 12:09 job.xml -> /u04/hadoop/yarn/nm/usercache/
produser/appcache/application_1448106546957_4813/filecache/13/job.xml
lrwxrwxrwx 1 yarn yarn   97 Dec 27 12:09 job.jar -> /u06/hadoop/yarn/nm/usercache/
produser/appcache/application_1448106546957_4813/filecache/11/job.jar
drwx--x--- 4 yarn yarn 4096 Dec 27 12:09 .
drwxr-xr-x 2 yarn yarn 4096 Dec 27 12:09 jobSubmitDir
drwx--x--- 7 yarn yarn 4096 Dec 27 12:09 ..
#

Two files in this directory are worth noting:

 n The job.xml file contains the configuration properties that this job will use for 
YARN, MapReduce and HDFS. For each of Hadoop’s configuration properties, 
the file lists the property’s name, value and source. The source of the configura-
tion properties could be one of the following:

 n One of the *-default.xml files
 n One of the *-site.xml files
 n Programmatically set by the user

Here’s some sample output from a job.xml file:

<property><name>mapreduce.output.fileoutputformat.compress.codec
</name><value>org.apache.had
oop.io.compress.DefaultCodec</value><source>programatically</source>
</property><property><na
me>map.sort.class</name><value>org.apache.hadoop.util.QuickSort
</value><source>prgramaticall
y</source></property><property><name>mapreduce.job.classloader.system
.classes</name><value>j
ava.,javax.,org.apache.ommons.logging.,org.apache.log4j.,
org.apache.hadoop.,core-
default.xml,hdfs-default.xml,          mapred-default.xml,yarn-
efault.xml</value><source>programatically</source></property>

 n The launch_container.sh script is used by the NodeManager to launch a con-
tainer, in this case the ApplicationMaster container (the container that’s always 
numbered *-000001).

The NodeManager will execute the launch_container.sh script to execute the 
ApplicationMaster class and run the ApplicationMaster container. The ApplicationMaster 
starts up and sends requests to the ResourceManager for the allocation of containers for 
hosting the necessary number of mappers and reducers needed for this application. 
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Launching the NodeManager and Creating the Map/Reduce Containers
The ResourceManager replies to the requests made by the ApplicationMaster for con-
tainer allocation with a list of available NodeManagers. The ApplicationMaster will 
contact those NodeManagers running on various cluster nodes to launch the mapper/
reducer containers it needs to complete the job. 

Each NodeManager will generate various scripts in the local application cache under 
the NodeManager local directory (as explained earlier, this is set with the yarn
.nodemanager.local-dirs property), and these scripts are very similar to the ones 
created for the ApplicationMaster service, as explained in the previous section. That 
is, the application cache directory for each container will contain files named job.xml, 
launch_container.sh and so on. The appCache directory will be named after the map 
or reduce containers, as shown here:

# pwd 
/u01/hadoop/yarn/nm/usercache/produser/appcache/application_1437683566204_0050/
container_e103_1437683566204_0050_01_000922

You don’t need to worry about the nm-local-dir directory filling up with the job 
files under the appCache subdirectory—the files are removed automatically when the 
job completes. However, some jobs do contain large files, and when the appCache direc-
tory doesn’t have sufficient room to accommodate them, the job fails. 

The configuration property yarn.nodemanager.delete.debug-delay-sec determines 
for how long (in seconds) the local log directories are retained after an application com-
pletes. Once the configured time elapses, the NodeManager’s DeletionService process 
deletes the application’s local file directory structure, including its log directory. You must 
set the value of this parameter high enough (such as at least 30 minutes = 1,800 seconds), 
so you have sufficient time to review the application’s logs.

This concludes our explanation of the use of an HDFS staging directory when you 
execute a job and how the local directories (NodeManager local directories) are used 
for storing the various scripts generated by the NodeManager during job execution, 
for both the ApplicationMaster container and the map and reduce containers. The next 
step is learning where the actual job logs go and how to access them for trouble-
shooting a job.

Application Logs
As the application runs, it generates logs and stores them under the directory you specified 
with the yarn.nodemanager.log-dirs parameter (in the yarn-site.xml file), as explained 
earlier. In my case, this is the directory named /var/log/hadoop-yarn. Here’s a typical list 
of files found under this directory:

# pwd
/var/log/hadoop-yarn/container
# ls
application_1421391094042_1789  application_1423526287495_0063
application_1421391094042_1790  application_1423526287495_0101
...
#
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To get to the containers belonging to an application that ran on a node, here’s what 
I need to do:

# cd application_1424873694018_2360
# ls
# [root@bdaolp013node03 application_1424873694018_2360]# ls
container_1424873694018_2360_01_000063  container_1424873694018_2360_01_011880
container_1424873694018_2360_01_000074  container_1424873694018_2360_01_012775
...
#

Under the directory that belongs to each container, you’ll find the stderr, stdout and 
syslog files pertaining to that container, as shown here:

# cd container_1424873694018_2360_01_021986
# ls -altr
total 13840
-rw-r--r-- 1 yarn yarn 0 Feb  8  2015 stdout
drwx--x--- 9 yarn yarn     4096 Feb  8  2015 ..
drwx--x--- 2 yarn yarn     4096 Feb  8  2015 .
-rw-r--r-- 1 yarn yarn 14137434 Feb  8  2015 syslog
-rw-r--r-- 1 yarn yarn 0 Feb  8  2015 stderr
#

In this case (and this is fairly common) the stdout and stderr logs are empty since the 
application’s code didn’t use them. However, as I mentioned earlier, the all-important 
syslog file will always log the job execution details, as well as any custom logging messages 
that the developers configured through custom Log4j loggers. Here are the partial con-
tents of a typical syslog file:

2016-06-28 22:39:36,403 INFO [main] org.apache.hadoop.mapred.Task: 
Task:attempt_1421391094042_1789_m_000002_0 is done. And is in the process of committing
2016-06-28 22:39:36,431 INFO [main] org.apache.hadoop.mapred.Task: Task attempt_
1421391094042_1789_m_000002_0 is allowed to commit now
2016-06-28 22:39:36,437 INFO [main] org.apache.hadoop.mapreduce.lib.output
.FileOutputCommitter: Saved output of task 'attempt_1421391094042_1789_m_000002_
0' to hdfs://bdaolp01-ns/data/lfsearch/work/batch_00002/output/transformer/_
temporary/1/task_1421391094042_1789_m_000002
2016-06-28 22:39:36,464 INFO [main] org.apache.hadoop.mapred.Task: Task 'attempt_
1421391094042_1789_m_000002_0' done.
~

Remember that a typical job runs on several nodes, each with a separate NodeManager. 
On each of the nodes, you’ll find the logs pertaining to just those containers (maps/
reducers) from the job that ran on that node.

Logging Levels for Map and Reduce Tasks
The standard logging levels you set for the entire cluster may not be appropriate for all 
jobs and tasks. You can set custom logging levels for both map and reduce tasks, with 
the help of the following properties:

 n mapreduce.map.log.level: Sets the logging level for the map task. The allowed 
levels are OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL. 
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 n mapreduce.reduce.log.level: Sets the logging level for the reduce task. The 
allowed levels are OFF, FATAL, ERROR, WARN, INFO, DEBUG, TRACE and ALL. 

The default logging level for both map and reduce tasks is INFO. You can override both 
logging level settings at the cluster level by setting a different value in the mapreduce
.job.log4j-properties-file.

Retention Duration for the Application Logs (without Log Aggregation) 
As the application continues to run, the NodeManager will append log data to the log 
files for each container running on that node. Once the job completes, the NodeManager 
retains the application logs for 3 hours (10,800 seconds) and then deletes them. You can 
change the retention period by setting the yarn.nodemanager.log.retain-seconds 
parameter in the yarn-site.xml file, as shown here:

<property>
   <name>yarn.nodemanager.log.retain-seconds</name>
   <value>86400<value>
<property>

This configuration saves the logs for 24 hours after job completion and deletes them 
after that. Often you need to examine logs for a job that completed several hours, or even 
days, ago. You can ensure access to older logs by configuring log aggregation, as explained 
in the next section. If your log retention time is over or if you’ve set up log aggregation in 
your cluster, you may encounter the following error when you try to access a log:

# cd application_1448106546957_5313
-bash: cd: application_1448106546957_5313: No such file or directory
#

Log aggregation saves the log files by moving them from the local file system to HDFS 
and retaining them there for the duration of the interval you configured. Retaining 
the job logs for a longer term in this fashion significantly aids you in understanding job 
performance as well as during troubleshooting exercises. The following section shows 
how to set up log aggregation in your cluster.

Note

Log aggregation is disabled by default—this means that unless you explicitly configure log 
aggregation, all of an application’s logs are automatically deleted after three hours by default!

Storing Job Logs in HDFS through Log Aggregation
By default, Hadoop stores all logs on the nodes where a job’s tasks have run. You learned 
in the previous section that the application logs are deleted automatically after a specific 
time period. You can configure log aggregation to ensure that you can retain the logs 
by storing them in HDFS. Log aggregation means that once a job completes, Hadoop 
will automatically aggregate the job logs from all the nodes where tasks for a job have 
run and move them to HDFS. Logging is a YARN-related property. Log aggregation is 
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disabled by default, and you can enable it by setting the yarn.log-aggregation-enable 
parameter in the yarn-site.xml file:

<property>
   <name>yarn.log-aggregation-enable</name>
   <value>true</value>
</property>

Since log aggregation is disabled by default, the default value for the yarn.log
-aggregation-enable parameter is false. Once you enable log aggregation, there are
a few other things for you to take care of to ensure that log aggregation works correctly,
as explained in the following sections.

Where (in HDFS) Hadoop Stores the Aggregated Logs
Once you enable log aggregation, the NodeManager concatenates all the container logs 
into a single file and saves them in HDFS. It also deletes the logs immediately from the 
local directory (specified by the yarn.nodemanager.log-dirs parameter). You configure 
where in HDFS Hadoop stores the logs it aggregates with the yarn.nodemanager
.remote-app-log-dir parameter, as shown here:

<property>
  <name>yarn.nodemanager.remote-app-log-dir</name>
  <value>/tmp/hadoop/logs</value>
</property>

The yarn.nodemanager.remote-app-log-dir parameter specifies where exactly in 
HDFS the NodeManagers should store the aggregated logs. The default location is /tmp/logs 
in HDFS. If you store the aggregated logs in the local file system, the JobHistoryServer 
and other Hadoop daemons won’t be able to access and serve these logs. This is the reason 
for storing them in HDFS.

While the yarn.nodemanager.remote-app-log-dir parameter sets the location of 
the root HDFS directory that stores the aggregated log files, the actual log files are stored 
one directory deeper, under subdirectories named for the user executing the job. Each 
user will have their aggregated logs stored in HDFS in the following folder:

${yarn.nodemanager.remote-app-log-dir parameter}/${user.name}/

And here’s an example:

 $ hdfs dfs -ls /tmp/logs/produser
Found 1 items
drwxrwx---   - produser hadoop 0 2016-07-10 09:00 /tmp/logs/produser/logs
$

            The related logging configuration property yarn.nodemanager.remote-app-log-
dir-suffix (default value is logs) obviously is helpful in setting the name of the 
remote log directory in HDFS. Hadoop creates the remote log directory in HDFS at the 
location arrived at by this formulation: 

{yarn.nodemanager.remote-app-log-dir}/${user}/{thisParam}
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Again, the default value for the suffix is logs. The actual HDFS location for a 
specific application is ${yarn.nodemanager.remote-app-log-dir}/${user.name}/logs/ 
<application ID>. Here’s an example showing the log files in HDFS for a user named 
produser:

$ hdfs dfs -ls /tmp/logs/produser/logs/
[hdfs@hadoop013node03 ~]$ hdfs dfs -ls /tmp/logs/produser/logs/
Found 293 items
drwxrwx---   - produser hadoop 0 2015-12-19 23:22 /tmp/logs/produser/
logs/application_1448106546957_4016
drwxrwx---   - produser hadoop 0 2015-12-20 00:22 /tmp/logs/produser/
logs/application_1448106546957_4018
...
$

I next drill down to the log directory for a single application (application_1448106546957_ 
4016) and see what’s under that directory:

$ hdfs dfs -ls /tmp/logs/produser/logs/application_1448106546957_4016
Found 60 items
-rw-r-----   3 produser hadoop   12739972 2015-12-19 23:22 /tmp/logs/produser/
logs/application_1448106546957_4016/hadoop01.example.com_8041
...
-rw-r-----   3 produser hadoop   13532113 2015-12-19 23:22 /tmp/logs/produser/
logs/application_1448106546957_4016/hadoop08.example.com_8041
$

I’m trying to get the aggregated application logs for a single application run by the user 
produser, but I’m seeing 60 files. What gives? This is correct, since Hadoop aggregates 
the job logs into per-node log files consisting of the logs for all containers that were 
executed on each node that was part of the application execution. There simply isn’t a single 
aggregated log file for the entire application.

Configuring Log Retention
As mentioned earlier, by default, log aggregation isn’t enabled. Under this configuration, 
the following two parameters determine the log retention and log deletion behavior.

 n yarn.nodemanager.log.retain-seconds: The time in seconds to retain user logs 
on the individual nodes. Note that this parameter comes into play only when log 
aggregation isn’t in force. When you enable log aggregation, Hadoop removes the user 
logs stored in the local directories immediately after it bundles them and moves 
them to HDFS. The default value for this parameter is 10,800 seconds (3 hours).

 n yarn.nodemanager.log.deletion-threads-count: The number of threads used 
by the NodeManagers to clean-up logs once the log-retention time is up.

As explained earlier, if you enable log aggregation by setting the parameter yarn
.log-aggregation-enable to true, the files are aggregated and stored in HDFS after 
the application completes. The following additional log retention configuration param-
eters come into play if you enable log aggregation:
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 n yarn.log-aggregation.retain-seconds: The value you set for this property 
determines the length of time (in seconds) for which the aggregated logs must be 
retained, after which they’re automatically deleted. Any negative number, such as -1, 
will disable log deletion. You can set the value to 604,800 for this parameter to 
retain the aggregated application logs for 7 days. If you set a very high retention 
period, you’ll be using up valuable HDFS storage for retaining the logs.

 n yarn.log.server.url: The URL where aggregated logs can be accessed after the 
application completes. NameNodes redirect the web UI users to this URL, and it 
currently points to the MapReduce Job History. Here’s an example showing how 
to set this property:

<property>
 <name>yarn.log.server.url</name>
 <value>http://hadoop03.localhost:19888/jobhistory/logs/</value>
</property>

Note

Job history files older than the value you configure for the mapreduce.jobhistory
.max-age-ms property (in milliseconds) will be deleted when the job history cleaner runs. 
The default value for this property is 604,800,000 (1 week).

Accessing the Log Files Stored in HDFS
Finally, it’s time to get to an actual log file in HDFS! You can do this by accessing the 
aggregated logs from a specific node, as shown here.

[hdfs@hadoop03 ~]$ hdfs dfs -ls /tmp/logs/produser/logs/
application_1448106546957_4791/hadoop01.localhost_8041
-rw-r-----   3 produser hadoop   20022565 2015-12-27 10:41 /tmp/logs/produser/
logs/application_1448106546957_4791/hadoop01.localhost_8041
[hdfs@bdaolp013node03 ~]$

To examine the contents of the log stored in HDFS, you can issue a command such as 
the following, which saves the file in a local directory:

[hdfs@hadoop03 ~]$ hdfs dfs -get 
/tmp/logs/produser/logs/application_1448106546957_4791/hadoop03.localhost._
8041 test.log

15/12/27 14:16:56 WARN hdfs.DFSClient: DFSInputStream has been closed already

[hdfs@hadoop03 ~]$ ls
test.log
[hdfs@hadoop03 ~]$

Following are the sample contents from a typical aggregated log file from a specific 
node for a job:

2015-12-27 10:33:32,117 INFO [main] org.apache.hadoop.mapred.Task: 
Task:attempt_1448106546957_4791_m_000056_0 is done. And is in the process of committing
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2015-12-27 10:33:32,162 INFO [main] org.apache.hadoop.mapred.Task: Task attempt_
1448106546957_4791_m_000056_0 is allowed to commit now
2015-12-27 10:33:32,168 INFO [main] org.apache.hadoop.mapreduce.lib.output
.FileOutputCommitter: Saved output of task 'attempt_1448106546957_4791_m_000056_
0' to hdfs://bdaolp01-ns/data/ /work/batch_00001/output/transformer/_temporary/
1/task_1448106546957_4791_m_000056
2015-12-27 10:33:32,214 INFO [main] org.apache.hadoop.mapred.Task: Task 'attempt_
1448106546957_4791_m_000056_0' done.

Log aggregation serves many useful purposes, and it’s a best practice to configure it. 
Users and administrators often need to perform a historical analysis of job logs. Rather than 
trying to set up a custom log-collection process, you simply enable log aggregation so you 
can automate the storing of the job logs for the length of time that you desire, in HDFS.

Multiple Ways of Viewing the Application Logs
You can view the application logs in three different ways:

 n View the aggregated logs by getting them from HDFS (as shown in the previous 
section titled “Accessing the Log Files Stored in HDFS”)

 n View them through the Hadoop web UIs
 n Once the job completes, view them from the JobHistoryServer UI

Once the (aggregated) application logs are in HDFS, it’s a simple matter of copying 
them to a local directory to review them, as shown here:

$ hdfs dfs –copyToLocal ............ application_123456789/*    ./tmp

You can also view the logs while the application is still running, by going to the 
ResourceManager UI. 

After the application completes, the logs are managed by the JobHistoryServer, so you 
can go to the JobHistoryServer UI to view the logs of completed applications.

As I explained in Chapter 16, you can also issue the yarn logs command to get at 
the logs. The yarn logs command helps retrieve logs for completed applications:

$ $HADOOP_YARN_HOME/bin/yarn logs
Retrieve logs for completed YARN applications.
usage: yarn logs -applicationId <application ID> [OPTIONS]

general options are:
-appOwner <Application Owner>   AppOwner (assumed to be current user if

not specified)
-containerId <Container ID>     ContainerId (must be specified if node

address is specified)
-nodeAddress <Node Address>     NodeAddress in the format nodename:port

(must be specified if container id is
specified)

You can print the logs for a completed application by providing its application ID:

$ yarn logs -applicationId <application ID>
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You can view the application logs for a specific container by doing this:

$ yarn logs -applicationId <application ID> -containerId <Container ID> 
-nodeAddress <Node Address>

Working with the Hadoop Daemon Logs
Hadoop daemons such as the ResourceManager, the NodeManager and the DataNodes 
all produce log files that are highly useful during the troubleshooting of a cluster issue. 

Setting the Location for the Daemon Logs
You specify the log file location in the yarn-env.sh and hadoop-env.sh files with the 
YARN_LOG_DIR and the HADOOP_LOG_DIR parameters, respectively.

I specify the two parameters as follows:

 n In yarn-env.sh, export YARN_LOG_DIR=/var/log/hadoop-yarn
 n In hadoop-env.sh, export HADOOP_LOG_DIR=/var/log/hadoop-mapred

The various Hadoop daemons will use the following log directories after this:

 n JobHistoryServer: /var/log/hadoop-mapred on the server where the 
JobHistoryServer runs

 n NameNode: /var/log/hadoop-mapred on the server where the NameNode(s) run
 n Secondary NameNode—/var/log/hadoop-mapred on the server where the 

NameNode(s) run
 n DataNodes: /var/log/hadoop-mapred on all servers where the DataNodes run
 n ResourceManager: /var/log/hadoop-yarn on the node(s) where the Resource-

Manager runs
 n NodeManager: /var/log/hadoop-yarn on all nodes where the DataNodes run

hadoop.job.history.location specifies the location to store the job history files of 
running jobs. This path is on the host where the NodeManager runs. For each of the 
Hadoop daemons in the respective log directory, there’s a log file with the .out extension, 
as shown here:

 n hadoop-mapred-historyserver-<HistoryServer_Host>.out
 n yarn-yarn-yarn-nodemanager-<nodemanager_host>.out
 n yarn-yarn-resourcemanager-<resourcemanager_host>.out

The log files with the .out extension are written to during the startup of a daemon. 
If you have trouble starting up any of the Hadoop daemons, here’s where you ought to 
be looking. Once the daemon starts up, there’s no more information about the daemons 
written to these .out log files.
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For each of the Hadoop daemons, in the log directory you’ve configured for them, 
there’s also a log file with the .log extension, as shown here:

 n hadoop-mapred-historyserver-<HistoryServer_Host>.log
 n yarn-yarn-yarn-nodemanager-<nodemanager_host>.log
 n yarn-yarn-resourcemanager-<resourcemanager_host>.log

It’s the .log files that are crucial for troubleshooting any errors with the Hadoop 
daemons, such as a daemon crashing unexpectedly. Chapter 21 shows examples of log 
files with typical errors. You can get the actual stack trace of the error encountered by 
the daemons by going through these log files.

Rotation and Deletion of Log Files
You control the rotation of the log files through the /etc/hadoop/conf/.log4j.properties 
file. Older rotated log files can be appended with a data stamp or a number such as 1 
through 10, for example. 

Hadoop’s default DailyRollingFileAppender doesn’t have a maxbackupIndex to limit 
the logs, as is the case with the RollingFileAppender. If you decide to stick with the 
default, you need to set up a script to clean up the logs regularly. You can schedule a cron 
job such as the following for this purpose:

find /var/log/hadoop/ -type f -mtime +14 -name "hadoop-hadoop-*" –delete

This script will delete all log files older than 14 days.

Note

You can set the mapreduce.job.tags property to configure tags for a YARN job. At job-
submission time, the tag is passed to YARN, and your queries to YARN for applications 
can be filtered using these tags.

Setting the Log Level for Hadoop Daemons
You can view the current log level of Hadoop daemons or change them with the yarn 
daemonlog command. The command has the following basic syntax:

# yarn daemonlog

Usage: General options are:
[-getlevel <host:httpPort> <name>]
[-setlevel <host:httpPort> <name> <level>]

#

The –getlevel command option prints off the log level of the daemon running at 
the host and port you specify. Here’s an example: 

# yarn daemonlog -getlevel hadoop03:8042 NodeManager
Connecting to http://hadoop03:8042/logLevel?log=NodeManager
Submitted Log Name: NodeManager
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Log Class: org.apache.commons.logging.impl.Log4JLogger
Effective level: INFO
[root@hadoop03 ~]#

You can modify the current log level with the –setlevel command option for the 
daemon running on the host and port you specify, as shown here:

# yarn daemonlog -setlevel hadoop02:8042 NodeManager ERROR
Connecting to http://hadoop02:8042/logLevel?log=NodeManager&level=ERROR
Submitted Log Name: NodeManager
Log Class: org.apache.commons.logging.impl.Log4JLogger
Submitted Level: ERROR
Setting Level to ERROR ...
Effective level: ERROR

#
# yarn daemonlog -getlevel hadoop02:8042 NodeManager
Connecting to http://hadoop02:8042/logLevel?log=NodeManager
Submitted Log Name: NodeManager
Log Class: org.apache.commons.logging.impl.Log4JLogger
Effective level: ERROR
#

Using Hadoop’s Web UIs for Monitoring 
Hadoop provides several very useful web UIs that help you monitor various aspects of 
your cluster. Both YARN and HDFS come with web UIs for monitoring the status of the 
daemons as well as the jobs. For example, the ResourceManager web UI shows you 
the status of all running jobs and their progress, as well as the history of completed jobs. 
In this section, you'll learn how to monitor your cluster, including the jobs running 
within it, with the help of Hadoop’s web UIs.

The Hadoop web UIs most useful to you are the following:

 n The ResourceManager web UI
 n The Job History web UI
 n NameNode web UI

In the following sections, you'll learn how to use the Hadoop web UIs to monitor and 
manage your cluster.

Monitoring Jobs with the ResourceManager Web UI
The ResourceManager web UI is a great tool for monitoring YARN jobs. Using this UI, 
you can view the status of the running jobs, as well as the history of completed jobs. 
The UI helps you locate the failed Hadoop jobs and lets you easily access the Hadoop 
daemon logs directly through the UI, helping you quickly troubleshoot job errors.

The URI for the ResourceManager web UI is http://<RM_Host_Server>:8088/.
Of course 8088 is the default port but you can change it if you need to. Figure 17.1 

shows the ResourceManager web UI.
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Figure 17.1 The ResourceManager web UI
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Here are the things that the ResourceManager shows: 

 n On the landing page (All Applications), you can see key facts such as the following:
 n Number of containers in use
 n Total amount of available memory and number of virtual cores (vcores)
 n Amount of memory and number of vcores currently being used
 n The amount of virtual memory in use
 n The number of active, decommissioned and lost nodes 

This overall view is something I always take a quick look at before plunging into 
the details of the jobs. You can get a bird’s eye view of the cluster health status right 
from here. You can immediately, within seconds, ascertain whether your cluster is 
healthy and has enough resources to handle the current workload. It also tells you 
right away whether the nodes are healthy and gainfully employed or whether they have 
been decommissioned or have been made “unusable nodes” for whatever reason by 
Hadoop.

 n All jobs, whether they’re running or have completed, have the following infor-
mation listed in the All Applications page:

 n Start time
 n Finish time (if it has completed running)
 n State—RUNNING or FINISHED
 n Final Status—SUCCEEDED or FAILED for completed jobs (for currently 

running jobs, this column has the value UNDEFINED)

You can use the ResourceManager web UI to perform various tasks, such as the following:

 n Finding failed and killed jobs
 n Reviewing the YARN job logs
 n Drilling into both failed and completed jobs to review the job details 

(mappers, reducers, etc.)

The following sections show how to perform these tasks with the ResourceManager 
web UI.

Finding Failed and Killed Jobs
In order to find all the jobs that failed, you need to look in a couple of different places 
in the ResourceManager web UI, as explained here.

 n First, sort on the State column to find all jobs with the State and Final Status showing 
the value FAILED. (You can do the same thing by clicking on the FAILED link 
on the left hand side of the ResourceManager web UI, shown in Figure 17.2.) This 
takes you to the FAILED applications page, which lists all the failed jobs. A failed 
job in this context is really a job that failed to launch for whatever reason—the job 
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Figure 17.2 Identifying Failed Jobs in the ResourceManager web UI
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was initiated, but it never got to the processing stage. You can f ind the reason 
for the failure by clicking the application ID under the ID column. In the appli-
cation page that appears, you can see a summary of the reason for the job failure, 
as shown here:

Diagnostics:

Application application_1447271764045_0096 failed 2 times due 
to AM Container 

for appattempt_1447271764045_0096_000002 exited with exitCode: 
-1000

For more detailed output, check application tracking page:

http://hadoop04.localhost.com:8088/proxy/application

_1447271764045_0096/Then, click on links to logs of each attempt.

Diagnostics: No space available in any of the local directories.

Failing this attempt. Failing the application.

 n Next, on the All Applications page, again sort the State column, but this time, 
check for those jobs whose Status column shows FINISHED, but whose Final 
Status column shows FAILED. When you click on the Job ID of this type of job, 
you’ll see a generic statement stating that the job is considered failed since one or 
more of the job’s tasks have failed:

Diagnostics:
Task failed task_1448106546957_3947_r_000088

Job failed as tasks failed. failedMaps:0 failedReduces:1

 n Unlike in the previous case, where the jobs never launched, jobs with the 
FINISHED/FAILED status have actually launched and run to completion but 
encountered one or more task failures (usually a handful, but sometimes it could 
be a large number of tasks). You can click on the logs link on the application page 
to review the reasons for the task failures. Chapter 21, which deals with trouble-
shooting your cluster, explains how to fix various types of job and task failures.

In addition to the failed jobs and tasks, you may also view jobs that show the State 
and Final Status values of KILLED. These are usually jobs that were terminated mid-
way by users but not necessarily always so.

Reviewing the Job Logs
The job logs for a job are kept in the YARN logs on the servers where a job launches. 
Instead of logging into that server and viewing the log files, you can do so with the help 
of a couple of clicks from the ResourceManager web UI.

For a running job (a job whose Final Status columns has the value UNDEFINED), 
click on the job’s ID, such as Application_1448106546957_3979 in the ID column, 
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which is the very first column in Figure 17.2. This will take you to the application page, 
where you click on the link named “logs” at the bottom right of the page. This will take 
you to a web page that shows the three types of logs—stderr, stderr and syslog—as 
shown here: 

Log Type: stderr
Log Upload Time: Thu Dec 31 07:23:34 -0600 2015
Log Length: 243
log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2
.impl.MetricsSystemImpl).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

Log Type: stdout
Log Upload Time: Thu Dec 31 07:23:34 -0600 2015
Log Length: 0

Log Type: syslog
Log Upload Time: Thu Dec 31 07:23:34  -0600 2015
Log Length: 25542
Showing 4096 bytes of 25542 total. Click here for the full log.
 In stop, writing event JOB_FINISHED
2015-12-19 07:45:29,909 INFO [Thread-77] org.apache.hadoop.mapreduce.jobhistory
.JobHistoryEventHandler: Copying hdfs://hadoop01--ns:8020/user/produser/.staging/
job_1448106546957_3982/job_1448106546957_3982_1. 
...
org.apache.hadoop.mapreduce.v2.app.TaskHeartbeatHandler: TaskHeartbeatHandler thread 
interrupted

Note that in this case the stderr and stdout log files are empty since the code hasn’t 
used any custom stdout and stderr logging. You can click on the “here” link to get the 
complete syslog file for this job. This is where you normally find the root cause for a 
job slowdown or failure.

For a completed job (a job whose State shows FINISHED), the process to get to the 
log files is pretty similar. Instead of clicking on the job ID link, however, you click on 
the history link at the far end of the ResourceManager web UI page that corresponds 
to the Job ID of the job you’re troubleshooting.

Finding Details about Running and Completed Jobs
The ResourceManager web UI offers several means of checking the status of running 
jobs. By clicking on a Job ID on the All Applications page, you can get to the Job page 
of the application, shown in Figure 17.3.

Actually, you can get the Job page for an application in a couple of ways. Here’s one way:

1. On the left side menu of the All Applications page, click RUNNING JOBS.

2. Click the Job ID under the ID column for the job you want to drill into.

3. On the next page, click the ApplicationMaster link in the Application Overview
section.

4. On the next page, click the Job ID link (there’s only one since this is the page for
the job you’re interested in).
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Figure 17.3 The Job page in the ResourceManager web UI
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The Job page of a YARN application allows you to click on the Logs link to quickly 
check the job’s logs. More importantly in some ways, it lets you check how a currently run-
ning job is progressing. Here’s a summary of the information you can get from this page:

 n The start time and the length of time the job has been running
 n The total number of map and reduce tasks in the job
 n The number of completed maps/reducers
 n The number of successful map/reduce tasks
 n The number of failed map/reduce tasks
 n The number of killed map/reduce tasks

On the Job page, for both map and reduce tasks under the RUNNING link, you 
can click the link to check the progress of the map or reduce job. You can get some 
highly useful information from here, such as

 n The progress of the task in terms of the percentage of work completed.
 n The elapsed time thus far for the map/reduce task.
 n The status of the map or reduce task. For a map task, the status is map. For a 

reduce task, there are three states: copy, merge and reduce.

The capability to drill down into the tasks and see what they’re actually doing right 
now lets you gain a pretty good picture of where exactly a slow-running job is stuck. 
For MapReduce jobs, it’s not uncommon for all the map or reduce tasks to complete except 
for a single straggler process. This is usually due to issues pertaining to a data skew, as 
explained in Chapter 18, “Tuning the Cluster Resources, Optimizing MapReduce Jobs 
and Benchmarking.”

The JobHistoryServer Web UI
You can access the logs of completed jobs through the JobHistory Server. You do this by 
entering the following URL in your browser’s address bar: 

http://hadoop03.localdomain:19888/jobhistory

Make sure you replace the server name with the name of the server that runs the 
JobHistory service in your cluster. You can access details about completed jobs from the 
JobHistoryServer web UI, shown in Figure 17.4. The JobHistoryServer contains infor-
mation only pertaining to completed jobs. The time period for which you can go back 
depends on the value you’ve configured for the yarn.log-aggregation.retain-seconds 
parameter. If you’ve configured 7 days as the value for this parameter, the JobHistoryServer 
stores history for the past 7 days. Note that you can also access the JobHistoryServer 
from the ResourceManager web UI by clicking the History link on the All Applica-
tions page.

By clicking on the application’s Job ID, you can view the same details for a com-
pleted job that I listed in the previous section for a running job.
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Figure 17.4 The JobHistoryServer showing information about completed YARN jobs



ptg18444370

608 Chapter 17 Monitoring, Metrics and Hadoop Logging

Monitoring with the NameNode Web UI 
You can monitor a lot of things with the NameNode web UI, which you can access at 
http://<namenode_host>:50070. The Overview page shows a summary of the storage 
space and the health of the DataNodes. 

There are two very useful pages you can view in the NameNode web UI. The DataNode 
Information page, shown in Figure 17.5, provides a useful summary of the current used 
and free HDFS storage. It also shows a bit of information that’s hard to come by—the 
number of failed volumes, if any, for each of the DataNodes.

The other page I find quite useful in the NameNode web UI is the Browse Directory 
page, which you can access by clicking on Utilities in the main page. The Browse 
Directory page offers as good a visual summary of HDFS storage as any. Figure 17.6 
shows the Browse Directory page.

Figure 17.5 The DataNode Information page in the NameNode web UI
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Monitoring Other Hadoop Components
As a Hadoop administrator, you’ll need to monitor many components of Hadoop. 
I touch on a couple of them here. Chapter 19 will review Spark monitoring in depth.

Monitoring Hive
Chapter 16 showed you why you need to use an external database such as MySQL for 
storing the Hive metastore data, so multiple users can connect to Hive through the Hive 
prompt. As a Hadoop administrator, you’ll be supporting a large number of Hive users 
often, so it’s important for you to monitor the health of the Hive metastore.

In order to stay on top of things with Hive monitoring, it’s a good idea to regularly 
check the following:

 n Checking client connectivity to the metastore
 n Testing basic Hive operations, such as creating and dropping databases and tables
 n Monitoring the Hive logs for errors and issues

The Hive temporary space, called the Hive scratch free space, can fill up often due 
to the saving of large amounts of intermediate data during Hive job executions. That, 

Figure 17.6 The Browse Directory page in the NameNode web UI
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of course, will result in the failure of all subsequent and currently running Hive jobs 
that need to use the scratch space. If you’re using a tool such as Nagios, be sure to add 
the hosts running both the Hive metastore and Hive clients to Nagios’s list of host checks. 
In addition, Nagios can check database health, so you can add the Hive metastore database 
health check to Nagios, as well.

Monitor ing Spark
The best way to monitor Spark jobs in your cluster is through the Spark web UI. When 
you run a Spark job, you’ll also get the URL for the Spark web UI from the job’s output. 
I’ll explain the Spark web UI in detail in Chapter 19, which is devoted entirely to the 
tuning and monitoring of Spark applications. Figure 17.7 shows the Spark web UI.

Summary
Here’s what you learned in this chapter:

 n Monitoring a Hadoop cluster is quite important—after all, you set up the cluster 
only once but monitor it every day! Fortunately, you can employ a wide array of 
tools to monitor a Hadoop environment, and I explained the most important of 
these tools.

 n Although I haven’t discussed them in this chapter, tools such as Cloudera Manager 
and Ambari help you effectively manage a Hadoop cluster. Even if you’re using 
one of these tools in your cluster, it’s worth investing the effort to set up monitor-
ing with a third-party tool such as Ganglia or Zabbix.

 n Lots of Hadoop users get confused about Hadoop logs, but in reality it’s quite straight-
forward to access all the logs you need for your troubleshooting exercises. Configuring 
log aggregation is a best practice as it provides several benefits when compared with the 
default logging. Understanding how Hadoop metrics work and integrating them with a 
tool such as Nagios goes a long way in troubleshooting various issues.

 n Last, but definitely not the least, make good use of the amazing web UIs offered 
by Hadoop. The most useful of these web UIs may be the ResourceManager web UI, 
which helps track the status of running jobs and identify failed jobs, and also 
helps you drill down to the logs of the failed jobs without having to log into the 
servers or look in HDFS.

Figure 17.7 The Spark web UI
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Tuning the Cluster 

Resources, Optimizing 
MapReduce Jobs 

and Benchmarking

This chapter covers the following:

 n Allocating memory and CPU in your cluster
 n Optimizing MapReduce
 n Optimizing Hive and Pig
 n Understanding Hadoop counters
 n Benchmarking your cluster

As Chapter 2, “An Introduction to the Architecture of Hadoop 2,” points out, admin-
istering Hadoop 2 involves configuring a dizzying array of configuration parameters at 
the cluster, storage and processing levels. Consequently, this and the next two chapters 
explain a large number of Hadoop 2 performance configuration properties and show you 
how to effectively set them. It’s a known fact that misconfiguration of a cluster is at the 
heart of an overwhelming majority of performance and other issues. 

While you can run a development or test cluster by setting a mere handful of config-
uration parameters and letting all other parameters take their default values, production 
clusters need more diligence as well as trial and error to figure out the optimal settings for 
these parameters. Therefore, learning how to effectively set the configuration parameters 
will significantly help you in managing, tuning and troubleshooting your cluster in a 
production setting.

Benchmarking a cluster performance helps you evaluate the performance of a new or 
existing cluster compared to that of other clusters or of the same cluster running with a 
different configuration or with different hardware specifications. This chapter discusses 
two commonly used benchmarking tools—TestDFSIO and TeraSort.
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Broadly speaking, you can group Hadoop performance-related issues into two main 
areas: the first is the way you configure memory, CPU and other resources in the cluster. 
The second group is application tuning, wherein you focus on how you can write code 
in a specific way or specify some configuration parameters to make jobs run faster. In 
this chapter, I discuss the optimization of MapReduce, Hive and Pig applications—
Chapter 19, “Configuring and Tuning Apache Spark on YARN,” is dedicated to a discus-
sion of Spark performance tuning and monitoring.

Both Pig and Hive use MapReduce underneath—therefore, when you’re seeking to 
enhance Pig and Hive performance, you must pay heed to all the standard MapReduce 
performance-related principles that are discussed in this chapter. In addition, both Pig and 
Hive have their own performance-related configuration parameters (these are completely 
apart from the Hadoop performance-related parameters), and you must also take advantage 
of those parameters to get the most of your Pig and Hive jobs. The sections “Optimizing 
Pig Jobs” and “Optimizing Hive Jobs” in this chapter outline the optimal performance 
settings for Pig and Hive.

Handling memory allocation is a critical part of a Hadoop administrator’s job. All YARN 
job tasks run in containers, which are logical entities that consist of a set amount of RAM 
and some processors (CPU). The number of containers your cluster can run determines 
its processing capacity. Hadoop provides several configuration parameters that enable you 
to set apart memory for YARN jobs at the aggregate level and also let you configure 
the size of the containers you want allocated to map and reduce jobs. The chapter shows 
you how to optimize memory allocation for your cluster.

How to Allocate YARN Memory and CPU
Allocating hard-to-get memory and CPU resources among competing users and appli-
cations is probably the single biggest performance-related task for an administrator. How 
you allocate RAM and CPU determines whether applications run fast and whether you 
are using all available memory optimally rather than wasting scarce resources.

Memory allocation is more configurable and has a bigger impact on jobs, so I spend 
quite a bit more time discussing it, compared to the allocation of CPUs. Once the servers 
are bought and paid for (or, contracted for, if you’re running operations in the cloud), 
there is little you can do to configure CPUs. When it comes to memory, however, you 
can configure various properties to make the most of the amount of memory you’ve got.

Allocating Memory 
In Chapter 3, “Creating and Configuring a Simple Hadoop Cluster,” I explained how 
to allocate memory to the map and reduce containers by setting appropriate parameters. 
Let’s expand on that topic a bit here, in light of the crucial role memory allocation plays 
in the performance of your cluster.

You configure all the YARN memory allocations in the yarn-site.xml file. Let’s 
say your cluster has 12 nodes, each with 48GB RAM and 12 disks. Each node has dual 
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6-core CPUs, making a total of 12 cores on each node. You don’t allocate YARN
memory with cluster-wide settings—you do so by configuring memory settings on each
node. In addition to supporting YARN jobs, don’t forget that the nodes must also run
the Linux (or other) operating system and probably some other non-Hadoop applica-
tions as well. Let’s assume that you allocate roughly 10 percent of the total memory
on each node to take care of these non-Hadoop uses. The rest of the memory on each
node is available for the use of Hadoop. From this memory, first you need to allocate
memory for the Hadoop daemons running on each of the nodes. You can now use the
remaining memory for allocating to YARN containers.

In YARN, the container is the fundamental unit of processing capacity. As you know 
by now, a container is a logical entity that contains specific amounts of memory and CPU. 
When you run an application in YARN, it allocates processing capacity to that appli-
cation by assigning a specific number of containers to it. For a MapReduce application, 
the total number of containers assigned is the sum of the mappers and the reducers required 
to complete the job (the number of mappers depends on the size of the dataset, and you 
need to specify the number of reducers).

The processing capacity of a Hadoop cluster is the sum of the processing capacities 
of all of its nodes. And the processing capacity of a node is the maximum number of 
containers that can be created in that node. The amount of memory you make available 
for processing YARN applications on each node sets the maximum limit on the memory 
available for YARN on each node. In our example, I assumed 10 percent memory allo-
cation for non-Hadoop use. How many containers Hadoop can create depends on how 
you size the containers. Note that the 10 percent I assumed is a very liberal estimate—a 
more conservative estimate would also take into account the memory requirements for 
services such as the Impala daemon, which may require as much as 16GB RAM, and 
the HBase Region Server process, which may need an additional 12-16GB RAM. So, 
everything depends on the type of services you are running on a certain node.

Once you determine the size of RAM you can allocate to YARN, you need to figure 
out the following:

 n Sizing the map and reduce containers
 n Sizing the ApplicationMaster 
 n Sizing the memory for the JVMs

The following sections explain how to allocate memory among all these entities. 
Hadoop memory allocation for MapReduce jobs is best understood by looking at the 
allocation as consisting of two different parts: configuring the memory available for 
YARN, and configuring the memory available for MapReduce (which runs on YARN 
and utilizes its memory to execute its map and reduce tasks). Let’s start with how you 
configure the YARN memory allocation.

Configuring YARN Memory 
Let’s say you have 64GB of RAM available on each node where you’re running YARN’s 
NodeManager service, allowing each of these nodes to run map and reduce jobs. 
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You’re supposed to leave around 10 percent of the total memory for the operating 
system’s use, so we need to allocate at least 6.4GB of RAM for the OS. Following this, 
let’s assign the round figure of 40GB out of the total RAM of 64GB to YARN. 

You must provide YARN this information by configuring the yarn.nodemanager
.resource.memory-mb parameter in the yarn-site.xml file on this node. The default 
value of this parameter is only 8GB, so if you don’t configure this parameter, regardless 
of how much memory you have available on a node, YARN can only use 8GB of it for 
itself ! In this case, I configure YARN to use 40GB of RAM as follows:

<property>
  <name>yarn.nodemanager.resource.memory-mb</value>
  <value>40960</value>
</property>

Note

The total memory available in a cluster for processing YARN jobs is the sum of the value of 
the yarn.nodemanager.resource.memory-mb parameter on all the nodes. It’s import-
ant to understand that the value you set for this parameter need not be the same 
on all the nodes. If you want to assign less memory on certain nodes, you can do so.

The yarn.nodemanager.resource.memory-mb parameter sets the amount of physical 
memory (in MB) that Hadoop can allocate for containers. After configuring the total 
amount of a node’s memory available for YARN processing with the yarn.nodemanager
.resource.memory-mb parameter, you must also tell YARN how to allocate this memory 
(in our case, 40GB) among the containers that you want YARN to run on a node. In 
general, it’s a good idea to run 1-2 containers per disk and per core. 

Since our nodes have 12 disks and 12 cores each, let’s allow for a maximum of 20 
containers per node. Since we’ve allocated a total of 40GB of RAM for YARN, you 
would need approximately 2GB as the minimum size of a container. I arrived at this 
number by dividing 40GB of RAM by the number of total containers I want to allocate 
per node, which is 20. The result is 40GB of RAM/20 containers = 2GB of RAM per 
container. You then need to configure this minimum size by setting the yarn.scheduler
.minimum-allocation-mb parameter in the yarn-site.xml file, as shown here:

<property>
  <name>yarn.scheduler.minimum-allocation-mb</value>
  <value>2048</value>
</property>

This configuration means that YARN can create a total of 20 containers by default 
on this node, since the minimum size of a container is configured as 2GB (2,048MB). 
There are no specific rules for sizing the minimum size of a container—as a rule of thumb, 
you can set the minimum container size at 1GB if your total memory on each node avail-
able for YARN is less than 24GB and to 2GB if it’s above 24GB. Again, this is just a 
rough way of figuring out the minimum size of a container. 

Once you set the minimum allocatable memory, YARN will allocate memory to con-
tainers in increments of the value you set for the yarn.scheduler.miminum.allocation-mb 
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parameter. YARN always allocates containers that are sized the same or larger than the 
configured value of the yarn.scheduler.minimum-allocation-mb parameter (that is, 
>=2GB of RAM).

As a counterpart to the minimum specification for a YARN container, there’s a 
parameter named yarn.scheduler.maximum-allocation-mb that enables you to con-
figure the maximum allowable memory for YARN, including other YARN services 
beyond the NodeManager. The value you set for the yarn.nodemanager.resource
.memory-mb parameter can’t exceed the value for the yarn.scheduler.maximum-
allocation-mb parameter.

Now that you’ve configured the maximum memory YARN can use on the node 
and also the minimum size of the containers, it’s time to configure memory allocation 
for MapReduce’s map and reduce tasks.

Note

Hortonworks provides a handy script named yarn-util.py to calculate YARN and MapReduce 
memory allocation settings based on the memory and CPU specifications of the nodes in your 
cluster. Please see https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.0/bk_
installing_manually_book/content/determine-hdp-memory-config.html for details.

Configuring MapReduce Memory
Assigning memory to the map and reduce tasks involves configuring three separate entities:

 n The physical memory allocation for both map and reduce tasks
 n The Java Virtual Memory ( JVM) heap size for the map and reduce tasks
 n The virtual memory allocation for each map/reduce task

The following sections explain how to configure these three memory components.

Allocating Memory for a Map and a Reduce Task
You must tell YARN the memory to request from the ResourceManager for each map 
and reduce task with the mapreduce.map.memory.mb and the mapreduce.reduce
.memory.mb parameters, as shown here:

<property>
  <name>mapreduce.map.memory.mb</value>
  <value>2048</value>
</property>

<property>
  <name>mapreduce.reduce.memory.mb</value>
  <value>4096</value>
</property>

Both these parameters are related to MapReduce processing, so you should set these 
parameters in the mapred-site.xml file. The default value for both parameters is the 
same—1GB. Since we’ve allocated 40GB of total RAM for YARN, the configuration 
shown here means that you could have anywhere between 20 map tasks (40/2) and 10 
reduce tasks (40/4) running at any given time on this node. Usually it’s a combination 
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somewhere within these maximum ranges. Note that there are certain MapReduce 
tasks that may not have any reduce tasks.

There’s no hard and fast rule as to the size of the containers for the map and reduce 
tasks, except that the size has to be at least equal to the minimum size of a YARN con-
tainer. Note how the size of both the map and reduce containers is the same, or higher 
than the YARN minimum container size configured in the previous section through 
the yarn.scheduler.minimum-allocation-mb parameter. In this example, the container 
for the map task is sized at 2GB, and the container for a reduce task is sized at 4GB. 
However, a map or reduce task can't really use all the memory you assign to the container 
for its processing, as the following section explains.

Configuring the JVM Heap Size
Hadoop performs each map or reduce task in a dedicated Java Virtual Machine ( JVM). 
The JVM uses a portion of the memory you allocate to a map or reduce task with the 
parameters mapreduce.map.memory.mb and mapreduce.reduce.memory.mb, respectively. 
However, the JVM can’t take all of the container’s memory, since there’s some overhead 
for non-JVM purposes, such as stack, PermGen and so on. So, you configure the JVM 
heap size for both a map and a reduce task with the following settings.

<property>
  <name>mapreduce.map.java.opts</value>
  <value>-Xmx1576m</value>
</property>

<property>
  <name>mapreduce.reduce.java.opts</value>
  <value>-Xmx3072m</value>
</property>

The two Java-related parameters shown here set the maximum Java heap size for each 
map/reduce task on this node. This is the same as the upper limit of the physical RAM 
that a map or reduce task can consume. If the Java heap size is set too low, it could lead 
to Java Out of Memory (OOM) errors. If you set it too high, you run the risk of wasting 
precious RAM and thus limiting the maximum number of tasks your cluster can support. 
Therefore, it’s important that you figure out the right size for these parameters with some 
initial trial and error in your cluster with actual workloads. It’s important to remember 
here that the default values for both these parameters is just 200MB (-Xmx200m), so you 
must in all likely likelihood bump this value up by a significant amount, depending on 
the size of the RAM you assign for the mapreduce.map.memory.mb and the mapreduce
.reduce.memory.mb configuration properties in the mapred-site.xml file.

To execute a map or reduce task, YARN runs a JVM within the container for the 
map or reduce task. You use the mapreduce.map.java.opts and the mapreduce.reduce
.java.opts parameters to pass options to the JVM. For example, the Xmx option sets the 
maximum heap size of the JVM.

To pass the memory allocation parameters as Hadoop job options, you can do the 
following:
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hadoop jar <jarName> <youClassName> -Dmapreduce.reduce.memory.mb=5120 –
Dmapreduce.reduce.java.opts=-Xmx4608m <otherArgs>

The configuration of the java.opts parameters for the map and reduce containers 
sets an upper limit for the physical memory (RAM) that a map and reduce task can actually 
use to process data. In the previous example, I used 1,576MB for the map task and 3,072MB 
for the reduce task, which is roughly 75 percent of the container size for the map and reduce 
tasks. There’s no hard and fast rule for sizing the JVM heap size—in general, an alloca-
tion of two-thirds or three-fourths of the container size for the JVM will do the trick.

Configuring the Virtual Memory for Map and Reduce Tasks
The Java heap size settings shown in the previous section configure the maximum size 
of the physical RAM that map and reduce tasks can use. You can also set the maximum 
virtual memory (physical memory + paged memory) that a map or a reduce task can use. 
The yarn.nodemanager.vmem-pmem-ratio parameter (in the yarn-site.xml file) lets you 
configure the ratio of the physical to virtual memory, as shown here:

<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>3.1</value>
</property>

The default value of the yarn.nodemanager.vmem-pmem-ratio is 2.1, meaning that 
both the map and reduce containers can be allocated virtual memory that’s up to 2.1 times 
the size of the physical memory you allocate for these two tasks. For example, since we 
set the value of the mapreduce.map.memory.mb parameter to 2048, the total virtual 
memory allowed for a map task will be 2.1x2,048=4,300MB. Similarly, the maximum 
virtual memory allowed for a reduce job will be 2.1 X 3,072=6,451MB.

If a map or reduce task exceeds its physical memory, the NodeManager will kill the 
task due to memory oversubscription, and you’ll see a message similar to the following n 
the log file:

Current usage: 2.1gb of 2.0gb physical memory used; 1.6gb of 3.15gb virtual memory 
used. Killing 
container.

The two YARN parameters yarn.nodemanager.pmem-check-enabled and yarn
.nodemanager.vmem-check-enabled determine whether physical memory and virtual 
memory limits are enforced for containers. By default, the value for both of these parame-
ters is true, meaning that both limits are enforced.

Configuring Memory for the ApplicationMaster and the NodeManager
Now that you know how to configure the container size for map and reduce tasks, there’s 
one more configuration item left—it’s the sizing of the ApplicationMaster container. It’s 
extremely important that you configure the ApplicationMaster memory carefully to suit 
your cluster’s processing requirements. 

Each application requires the spawning of a single ApplicationMaster container. 
Applications with smaller amounts of data can get by with sizing the ApplicationMaster 
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container at 1 or 2GB. For larger applications, it’s wise to configure this container with 
a larger size, as shown here:

<property>
  <name>yarn.app.mapreduce.am.resource.mb</value>
  <value>3072</value>
</property>

<property>
  <name>yarn.app.mapreduce.am.command-opts</value>
  <value>-Xmx2364m</value>
</property>

The first parameter, yarn.app.mapreduce.am.resource.mb, sets the size of the 
ApplicationMaster container—it’s the amount of memory the ApplicationMaster needs. 
The second parameter, yarn.app.mapreduce.am.command-opts, sets the size of the JVM 
that runs the ApplicationMaster code. The default size of the JVM is 1GB, so the parame-
ter’s default value appears as –Xmx1024m. If you want to enable verbose garbage collection 
(GC) logging to a file under the /tmp directory and set the maximum size of the Java 
heap to 1GB, here’s how you set this parameter:

-Xmx1024m-verbose:gc –Xloggc:/tmp@taskid@gc

In this example, @taskid is replaced by the current TaskID and the logging is done
to a file named for the task under the /tmp directory.

You can also optionally set the yarn.app.mapreduce.am.admin-command-opts
parameter to configure the Java opts for the MapReduce ApplicationMaster process for
administrative purposes, and the default value is 0, meaning that it isn’t set by default.

As with the map and reduce containers, you can also configure the number of virtual
CPU cores for the ApplicationMaster process. The parameter you need to set for this is
 yarn.app.mapreduce.am.resource.cpu-vcores, and its default value is 1.

Note

As with all Hadoop parameters, if you don’t explicitly include a parameter in the correspond-
ing site.xml file, the values from the default configuration file will apply (yarn-default.xml 
in this case).

A Summary of the Memory-Related Configuration Properties
So many memory-related parameters, so much to remember! I think it’s a good idea to 
capture all our memory related configuration parameters in one place, so you can refer 
to it during your cluster configuration exercises. Table 18.1 shows each of the configuration 
options that allow you to tweak Hadoop memory, the configuration file in which you 
set them, and the default values for each of the memory parameters.

Figure 18.1 shows the relationship between the total memory you allocate for all 
containers on a node through the yarn.nodemanager.resource.memory-mb parameter and 
how the map and reduce JVMs derive their memory from the map and reduce container’s 
memory. The difference between the map or reduce container memory size and the size 
of the map or reduce JVM is allocated to handling the container’s overhead.



ptg18444370

619How to Allocate YARN Memory and CPU

Suppose you set the value of the mapred.map.memory.mb parameter to 1024 (actually the 
default value). Let’s say you set the mapreduce.map.java.opts parameter to –Xmx800m. 
The NodeManager allocates a container sized 1,024MB to the map task and launches a 
JVM for the map task with the maximum heap size of 800MB. The difference between 
the container size of 1GB and the JVM size of 800MB, which is 224MB, is used for over-
head, for things such as native libraries, permanent generation space and so on.

Table 18.1 Hadoop Memory-Related Configuration Priorities

Configuration Option Default Value Configuration file

mapreduce.map.java.opts -Xmx768m mapred-site.xml

mapreduce.reduce.java.opts -Xmx768m mapred-site.xm

mapreduce.map.memory.mb 1024m mapred-site.xml

mapreduce.reduce.memory.mb 1024m mapred-site.xml

yarn.app.mapreduce.am.resource.mb 1536m mapred-site.xml

yarn.scheduler.minimum-allocation-mb 1024m yarn-site.xml

yarn.scheduler.maximum-allocation-mb 8192m yarn-site.xml

yarn.nodemanager.resource.memory-mb 8192m yarn-site.xml

Figure 18.1 Relationship between the map and reduce container 
memory and the map and reduce JVM memory
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You can monitor the actual memory usage of a map or reduce task during a job run 
with the MapReduce task counters explained in the section “Hadoop Counters” in this 
chapter. The following counters provide a snapshot of the memory usage that helps you 
understand memory utilization during the task execution:

 n PHY    SICAL_MEMORY_BYTES

 n VIRTUAL_MEMORY_BYTES

 n COMMITTED_HEAP_BYTES 

Once a MapReduce job completes executing, it’ll dump a bunch of job counters. 
You can view the counters on the screen or in the job’s log or view them in the Resource-
Manager web UI. The following memory-related counters show the physical and virtual 
memory allocation for the job:

Physical memory (bytes) snapshot=21850116096
Virtual memory (bytes) snapshot=40047247360
Total committed heap usage (bytes)=22630105088

When a YARN container grows beyond the heap size you’ve configured with the 
mapreduce.map.java.opts or the mapreduce.reduce.java.opts paraameter, the map 
or reduce task will fail with the following error message:

"Container [pid=12878, containerID=container_1840146564231_0002_01_001809]
 is running beyond physical memory limits. Current usage: 2.0 GB of 2.0 GB 
physical memory used; 3.1 GB of 12.5 GB virtual memory used. Killing 
container."

The way to fix this problem is by raising the heap size for the map or reduce container, 
depending on which one of them has failed. You find the right amount to increase by 
trial and error. Just remember that if you raise the heap size very high, of course it’ll help 
the task succeed but at great cost to you since you can now launch fewer map and reduce 
containers in your cluster. If you set the heap parameters at the cluster level, every change 
is magnified in terms of its impact, since all containers in all the nodes will use the same 
settings. Therefore, it pays to be quite conservative about bumping up the heap memory. 
Keep incrementing it by 10-20 percent each time until the task runs. You want to allocate 
enough memory for the task to run but nothing more.

Con  figuring the Number of CPU Cores
As with the memory configuration, you can configure the node-wide lim it for the allo-
cation of virtual cores. That setting is configured with the yarn.nodemanager.resource
.cpu-vcores parameter in the yarn-site.xml file. This parameter sets the maximum number 
of vcores that can be allocated to containers on a node. 

The default setting is eight virtual cores, and if your nodes have more cores, you need 
to bump the value of this parameter accordingly—otherwise, YARN will use only eight 
virtual cores at any time, regardless of how many CPU cores the node has! Once you 
configure the maximum vcores per node, you can configure the following two parameters, 
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which set the minimum and maximum allocation of virtual cores for each container 
request made to the ResourceManager:

 n yar n.scheduler.minimum-allocation-vcores

 n yarn.scheduler.maximum-allocation-vcores

The yarn.nodemanager.resource.cpu-vcores parameter configures the maximum 
virtual cores per node. In addition, you can also configure (or accept the default values) of 
the number of virtual cores to request for each map and reduce task. The following parame-
ters allow you to set the number of virtual cores allotted to each map and reduce task:

 n map reduce.map.cpu.vcores

 n mapreduce.reduce.cpu.vcores

The default value for both parameters is one.

Relationship between Memory and CPU Vcores
If you have plenty of free memory and thus have the ability to create many more containers, 
do remember that each of the containers needs a CPU to run. So, the cluster’s real ceiling 
for running containers may be limited to the sum of the CPUs on all the nodes. This is 
why it’s important to ensure that you not only acquire servers with plenty of RAM, but 
also enough CPUs to run the tasks.

You might also be wondering at this point what would happen if a user runs a job 
that requires thousands of map and reduce containers. That user may keep other jobs 
from running until the user finishes processing his or her job. Fortunately, that’s not the 
case in a real life cluster, where users routinely submit jobs requiring tens of thousands 
and even hundreds of thousands of containers when the cluster’s capacity is capped at only 
a thousand or so containers. 

Both of Hadoop’s schedulers, the Fair Scheduler and the Capacity Scheduler, ensure 
that multiple jobs can share the cluster and hence its containers simultaneously through 
a judicious allocation of available resources among competing applications. Refer to 
Chapter 13, “Resource Allocation in a Hadoop Cluster,” for the details of how each of 
the two available Hadoop resource schedulers achieves this goal.

Con          figuring Efficient Performance
You can improve performance through appropriate configuration of several Hadoop 
properties that pertain to various areas such as speculative execution. Let’s review the 
most important ways in which you can improve performance, from the cluster point of 
view.

Speculative Execution
It’s not uncommon to experience failing or slow hardware, software misconfiguration 
and random delays on specific nodes in a cluster that lead to a general slowdown in the 
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entire cluster, also called the stragglers problem. Hadoop attempts to take care of this 
problem with its speculative execution feature, which lets the same task be executed 
simultaneously on different nodes, by tagging the task that completes first as the successful 
task and killing the other task.

In general, since MapReduce task processing is designed to be idempotent, it’s safe 
to use speculative execution and by default speculative execution is enabled. However, 
in cases such as where a job calls on external resources, you may need to disable specu-
lative execution. You can enable/disable speculative execution independently for map 
and reduce processes with the following parameters:

 n mapreduce.map.speculative: The default value of this parameter is true, which 
means that Hadoop may execute multiple instances of some map tasks in parallel.

 n mapreduce.reduce.speculative: The default value of this parameter is true, which 
means that Hadoop may execute multiple instances of some reduce tasks in parallel.

So, speculative execution for both map and reduce tasks is enabled by default and you 
can disable it by setting the two parameters shown here to the value false.

The causes for slow execution on a task are hard to determine, since the tasks do com-
plete successfully after taking a long time to finish. Under speculative execution of tasks, 
Hadoop simply determines that a task is running much slower than what it expects and 
launches a copy of the same task as a backup. This happens in cases such as when one of 
the disks is performing poorly due to a faulty disk controller. The job has 50 reducers 
and 49 of them have completed fast, but the entire job waits on the last reducer, which is 
working with data stored on the slow disk. 

You can fine tune speculative execution by setting the maximum and minimum 
number of tasks that can be executed at any time. Here are the parameters that you can 
configure to fine tune speculative execution:

 n map reduce.job.speculative.speculative-cap-running-tasks: Sets the 
maximum percentage of running jobs that can be simultaneously executed at 
any given time. The default is 0.1.

 n mapreduce.job.speculative.speculative-cap-total-tasks: Limits the 
maximum percentage of all tasks that you can simultaneously execute at any 
time. The default is 0.01.

 n map reduce.job.speculative.minimum-allowed-tasks: Sets the minimum 
number of tasks that can be speculatively executed at any time. The default 
value is 10 (tasks).

 n mapreduce.job.speculative.slowtaskthreshold: Sets the number of standard 
deviations by which a task’s average progress rates must be below the average 
progress of all other running tasks for deeming the task as “too slow” and thus 
eligible for speculative execution.

Individual tasks run in isolation from each other and trust Hadoop to deliver the 
correct inputs. Therefore, the system can process the same input multiple times to take 



ptg18444370

623Configuring Efficient Performance

care of slow-running tasks. As the number of tasks in a job dwindles down, Hadoop 
schedules copies of the remaining map tasks across nodes that have plenty of processing 
capacity—this is the essence of speculative execution. When each task completes, it reports 
to the ResourceManager, and the copy of the task finishing first becomes the definitive 
copy for that task. Hadoop then instructs the ResourceManager to kill the other tasks 
and abandon their output. The reducers receive their input from the map process that 
completes successfully first.

Here’s a snippet from a task log when speculative execution is in force. Hadoop kills 
the job attempt attempt_1432039974837_0172_r_000002_1 because another job for the 
same task, attempt_1432039974837_0172_r_000002_0, succeeded first:

attempt_1432039974837_0172_r_000002_1   0.00  KILLED  NEW  N/A N/A
N/A N/A
0sec   Speculation: attempt_1432039974837_0172_r_000002_0 succeeded first!

Deprecated Configuration Parameters

As Hadoop goes through revisions, and with newer releases coming out regularly, many 
configuration properties are modified or dropped. It’s therefore a good idea both during 
the initial configuration of your cluster and later during performance tuning to keep the list 
of all deprecated configuration parameters in front of you as you ponder which parame-
ters to use or modify. You can review all the currently deprecated parameters by going 
to the following site in the Hadoop 2 documentation: 

http://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-
common/DeprecatedProperties.html

Sometimes you can get away with using a deprecated parameter in a new release, 
but it’s a good practice not to do so. After all, there are good reasons for putting a 
parameter in the deprecated parameter list! Often the deprecated properties have been 
replaced with new and improved parameters, or they just have become obsolete in a 
new release. Many parameters well known to Hadoop users such as mapred.reuse
.jvm.num.tasks and mapred.hosts.exclude are now in the list of deprecated 
parameters.

Configuring JVM Reuse
Each map and reduce task runs inside a single JVM. If you have a larger number of map/
reduce tasks running, the initialization of the JVMs for all those tasks could prove expensive 
to the cluster in terms of both the time it takes to initiate the JVMs and higher resource 
usage. Each MapReduce job is executed inside a separate JVM process, which is forked 
by the ResourceManager. Creating JVMs is expensive in terms of the overhead. By 
default, each task uses a dedicated JVM, and when the task completes, its JVM is killed 
by the ResourceManager. Thus, the number of JVMs spawned for a job is equal to the 
number of tasks. 

 You can tell Hadoop to reuse the JVMs by not killing them after a map or reduce 
task completes. Use the parameter mapreduce.job.jvm.numtasks to specify how many 

http://www.hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoopcommon/
DeprecatedProperties.html
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tasks can reuse the same JVM. You conf igure the parameter mapreduce.job.jvm
.numtasks in the mapred-site.xml file, as shown here:

<property>
  <name>mapreduce.job.jvm.numtasks</name>
  <value>2</value>
</property>

Initializing new JVMs is resource intensive, especially when you have a large number 
of tasks running in your cluster. You can optimize by reusing JVMs so they can run 
multiple tasks sequentially. 

The mapreduce.job.jvm.numtasks parameter applies to tasks in general, regardless 
of whether they’re map or reduce tasks. In this example, the value of the mapreduce
.job.jvm.numtasks parameter is 2, meaning that the JVM can run two tasks instead of 
the default single task. The default value for this parameter is 1, meaning a dedicated JVM 
is required for reach map/reduce task, and there’s no JVM reuse. Note that if you set 
the value to -1, the JVM can run an unlimited number of tasks. Obviously you don’t 
want to do this, since that means all tasks will run in the same JVM!

Hadoop runs the JVMs for all the map and reduce tasks in isolation. If your map or 
reduce method takes just a few seconds, spawning a fresh JVM for each map/reduce task 
is overkill, due to the long initialization process for the JVM to kick in.

JVM Reuse and HotSpot

Hotspot can find the sections of the code where it can convert the Java byte code into 
native machine code. Hotspot can do this if you can run your code on JVM for a long 
time. When you reuse JVMs, Hotspot builds the mission-critical sections into native 
machine code to improve its performance. Long-running tasks benefit from this 
optimization.

JVM reuse can lead to significant improvements in performance—try it out!

Reducing the I/O Load on the System
Operations performed in memory are many times faster than those performed on disk. 
During MR processing, intermediate data needs to be sorted. Ideally, sorting is done in 
the memory buffer for the map/reduce task, which is contained within its JVM heap, as 
configured in the parameters mapred.map.java.opts and mapred.reduce.java.opts. If 
the buffer size is too small, there’ll be intermediate spills to disk which will have to be read 
and merged later on. Here are the configuration parameters you can set to reduce, or even 
eliminate, the amount of spillage to disk, and thus reduce the I/O load in your cluster.

 n mapreduce.task.io.sort.mb: You can configure the total amount of buffer memory 
to use while sorting files (in MB), with this parameter. The default value is 100MB. 
Each merge stream is given 1MB by default, to minimize seeks. You can raise the 
default setting of 100MB to up to a quarter or half of the map/reduce Java heap size.
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 n mapreduce.task.io.sort.factor: This parameter determines how many streams to 
merge at the same time during the sorting of files by either a map or a reduce task. 
The default value is 10. Higher values mean Hadoop requires fewer passes to merge 
the map spills, which of course means lower disk I/O.

You may think that raising the value of the mapreduce.task.io.sort.factor parame-
ter will always be a good strategy since the more input files that are merged at once, the 
fewer will be the passes that are required to merge the map spills. However, the merged 
data is placed in the memory buffer that you configure with the mapreduce.task.io.
sort.mb parameter. If you keep increasing the sort factor, the size of the I/O chunk will 
keep getting smaller, meaning the cluster will perform more small I/O requests to read 
the data. This isn’t good for performance, so the general recommendation is to leave the 
sort factor at its default value of 10MB.

Tuning Map and Reduce Tasks—What the 
Administrator Can Do
Developers are in charge of coding applications, and I do have a list of things they can 
try to do to improve the performance of MapReduce jobs. However, administrators can 
also help in improving performance of these jobs by doing several things, as summarized 
in the following sections.

The performances of any Hadoop tasks, including MapReduce tasks, are impacted 
by various sources, such as

 n The storage, CPU, memory and network configuration and their status
 n The code of the map and reduce tasks
 n Settings of Hadoop’s performance-related configuration properties

Chapter 17, “Monitoring, Metrics and Hadoop Logging,” discusses monitoring and 
evaluating the resources available to Hadoop. In this chapter, we’ll discuss more 
eff icient coding strategies for map and reduce tasks, as well as configuring Hadoop’s 
performance-related properties.

Before we can actually get to the brass tacks of performance tuning of MapReduce 
processing, we need to understand how to measure Hadoop’s performance. Benchmarks, 
which we explain later in this chapter, are one way to figure out how efficiently the cluster 
is processing a set of test data that you generate. However, benchmarks are limited—
TeraSort, after all, benchmarks only sort performance. As we’ll discuss later, Hadoop’s 
job counters are a signif icant source of performance tuning and troubleshooting 
information. In our discussion of the tuning of map and reduce tasks, we’ll make liberal 
use of these job counters.

An easy way to get to all the Hadoop job counters is by using the ResourceManager 
Job UI. Click on Counters in the job’s main page to view the Hadoop job counters.

Both map and reduce tasks consist of clear steps or phases. In order to tune the map 
and reduce tasks, you need to understand how Hadoop steps through these phases. 
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In the following sections, you’ll learn how to tune map and reduce tasks separately, paying 
attention to the individual steps of both tasks.

Tuning the Map Tasks
There are several phases to a map task. In order to understand why a job is running slowly, 
you need to understand the phases of a map task execution. Here’s a summary of the 
successive phases of a map task.

1. The read phase: In this phase, the map task reads the input data, with the read
size being the same as the Hadoop block size you’ve configured, such as 256MB,
for example. For this phase, you need to look at the total duration of the read phase
and also how much data each map task reads.

2. The map phase: During this phase, Hadoop maps the data. In this phase, you
need to look at the total number of processed records and the average execution
time per record. Checking input record sizes across the map tasks will reveal the
presence of skewed data, which could delay the final job.

3. The spill phase: In this phase, Hadoop sorts the intermediate data and partitions
it for the various reduce tasks and writes the intermediate data to disk. You need
to look at the total time taken by the spill phase.

4. The merge phase: The different spill files are merged into a single spill file for each
reduce task. You need to review the time taken for the merge step.

Before we start discussing the key factors affecting map and reduce tasks, first let’s 
understand the importance of task locality.

Data Locality
Data locality is critical to a MapReduce job and its map/reduce tasks. In the listing of 
the job counters shown in the “Job Counters” section in this chapter, you can find key 
locality-related counters. For example, a MapReduce job may have a total of 64 map 
tasks and 8 reduce tasks. Here’s how the tasks break down in terms of their locality:

 n Launched map tasks: 64
 n Launched reduce tasks: 8
 n Rack-local map tasks: 10
 n Data-local map tasks: 54

Hadoop likes to assign tasks to the NodeManagers on nodes where the required input 
data is located. If the data needs to be transferred from other nodes to the computing 
node, Hadoop incurs an extra network cost to stream the data over. Ideally, all your 
jobs will be data-local map tasks, where the data is available right on the same node 
where the processing occurs. The next best thing of course is rack-local map tasks, 
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which get the data from other nodes in the same rack. Tasks that aren’t local to either 
the data or the rack involve the most cost in terms of network transfers of data.

Tuning map tasks means tuning the various phases of a map task, paying attention 
to the phases that are consuming a lot of time. You can tune some aspects of the map 
tasks by tuning various map-programming techniques. You can also tune the maps by 
tweaking the Hadoop map-related configuration parameters. We’ll discuss the program-
ming techniques later in this chapter. Let’s first look at what you, as an administrator, 
can manage to do to improve the performance of the map tasks.

Input and Output
Configuring appropriate input and output strategies goes a long way toward making 
jobs run faster. You can, for example, configure compression at multiple levels for a 
MapReduce job—during the input stage, the intermediate stages and, finally, in how 
the output is presented. Any steps you take to perform more efficient input and output 
will reduce both disk and network I/O and speed up jobs.

The Input Split Size
Input splits govern MapReduce data processing. The number of mapper tasks is based 
on how many input splits Hadoop calculates for a job. Each map task thus determined 
is assigned to a DataNode where the input split is stored. Hadoop (through the Resource-
Manager) does its best to process the input splits locally where possible.

The MapReduce counters reveal the average number of input bytes for a map task. 
You can also find the size of the HDFS input files by going to the HDFS DFS Home 
at this location: http://machinename:50070/dfshealth.jsp. Click Browse the File 
System to view the file sizes and their replication factor, as well as the HDFS block size 
of the files. If you’ve configured a block size of 512MB for HDFS, and the files are all 
sized 1MB, obviously you have input data made up of numerous small files. 

Hadoop is meant, basically, for batch processing vast amounts of data. Therefore, 
ideally, you should be running mostly large and medium MR jobs in your cluster, rather 
than a large number of tiny MR jobs. Instead of running thousands of small jobs, you 
should consolidate them into a few large jobs and process more data at a time, thus increas-
ing performance. A key goal here should be to designate each MR job to process at least 
several gigabytes of data.

As I explained in Chapter 10, “Data Protection, File Formats and Accessing HDFS,” 
Hadoop doesn’t work very well with very small files, as it leads to inefficiencies in pro-
cessing. You need a large number of processes to process the small files, which takes up a 
lot of resources, besides slowing down your job. Of course, small files also have a delete-
rious impact on the efficiency of the NameNode, as explained in Chapter 9. Again, you 
can use several strategies to fix the “small files problem”:

 n Consolidate several small files into a large file.
 n Use Hadoop archive (HAR) files.
 n Create container files with something like Avro, to serialize the input data.

http://machinename:50070/dfshealth.jsp
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If, on the other hand, the input bytes for each map task are much larger than the HDFS 
block size, it means that Hadoop is unable to split the input file. As you can recall from 
Chapter 10, compression codecs such as gzip aren’t splittable.

Output
Using compression for MapReduce output, as described in Chapter 5, “Running 
Applications in a Cluster—The MapReduce Framework (and Hive and Pig),” will enhance 
the write performance of HDFS. As Chapter 10 explains, choosing the proper file format 
is very important, especially for the output of the reduce tasks. Since zlib/gzip/lzo files can’t 
be split, MapReduce is forced to use a single map to process an entire file. File formats 
such as SequenceFiles are more efficient since they are compressible and splittable.

When dealing with large individual output files, it’s a good idea to use larger block 
sizes (dfs.block.size). The output goal should be to emit a few large files, with each 
file covering several HDFS blocks and compressed as well. Note that the number of 
output files is the same as the number of reduces.

Compression
Compressing intermediate map output (see Shuff le) improves performance by reducing 
network traffic between the map and reduce processes. A compression codec such as lzo 
provides decent compression ratios while consuming a low amount of CPU.

Compressing the final reduce output means applications can benefit. Both zlib and Gzip 
are good choices in most cases due to the high compression ratio they offer at a decent 
speed. Compressing your data leads to significant performance enhancements. Remember 
that MR jobs typically deal with data multiple times—they load data from external storage 
into memory and also write the results of reduce tasks to disk. Data is also sometimes 
copied over the network from remote nodes. Both disk I/O and network I/O are 
expensive operations, and compressing your data leads to significant improvements in 
performance, as explained in Chapter 10. You can set various configuration parameters 
such as mapred.compress.map.output (for configuring the map output) to efficiently 
process data.

Tuning the Map Phase
During the map phase, the map tasks write data to the local file system. The tasks gen-
erate intermediate data, which they first store inside a memory buffer before spilling it 
to disk. The following configuration parameters (to be set in the mapred-site.xml file) 
have a bearing on the spill size and how many times the map task may spill data to disk:

 n mapreduce.task.io.sort.mb: The amount of memory (in MB) to use (deter-
mines the size of the memory buffer) during the sorting of f iles. The default 
value is 100MB.

 n mapreduce.task.io.sort.factor: The number of merge threads to merge at 
once during file sorting. The default value is 10 streams.
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 n mapreduce.map.sort.spill.percent: The extent to which the buffer can fill before 
its contents are spilled to disk. The default threshold is 0.80.

The memory buffer for the intermediate data output is part of the map task’s memory 
allocation, set by the mapreduce.map.memory.mb parameter. As you will recall, the RAM 
you allocate for the map task contains both JVM and overhead, with the JVM’s size based 
on the value of the configuration parameter mapreduce.map.java.opts. The memory 
buffer is part of the map’s JVM heap space. 

Once the size of the contents inside the map’s memory buffer reach the threshold set 
by the mapreduce.map.sort.spill.percent parameter (default is 80 percent), the map 
task f lushes the buffer’s contents to the local disk system, a process also referred to as spilling.

Ideally, the map intermediate records should be spilt to disk just one time. If the spill 
is occurring more than once, it indicates inefficient processing, since reading from disk 
is much slower than reading from memory. You can check the number of spills by look-
ing at the following two counters under the MapReduce Framework counter group:

 n Spilled Records
 n Map Record Outputs

In one of our completed jobs in my cluster, both of these counters have the same 
value—65,526,585. This is good as it means the data was spilt only once to disk.

Note

If there are no reduce tasks in a job, the map tasks won’t have any output they need to 
spill to disk. In this case, the counters for all the map tasks will show a value of 0.

In another one of my jobs, the following is how the map output and spilled record 
counters stack up:

Spilled Records : 19988312
Map Record Outputs    :  9994156

I can confirm that there were multiple spills to disk during this task by reviewing 
the task’s logs, also viewable through the ResourceManager web UI (I tell you—this is 
your best friend for troubleshooting and tuning Hadoop jobs!):

2016-07-12:06:56,353 INFO [main] org.apache.hadoop.mapred.MapTask: Spilling map output
2016-07-12:06:56,353 INFO [main] org.apache.hadoop.mapred.MapTask: kvstart = 
95251456(381005824); kvend = 79076168(316304672); length = 16175289/33554432
2016-07-12:08:22,675 INFO [SpillThread] org.apache.hadoop.mapred.MapTask: 
Finished spill 1
2016-07-12:08:25,184 INFO [main] com.sabre.bigdata.ssi.mapper.CsvToAvroMapper: 
Closing mapper...
2016-07-12:08:25,191 INFO [main] org.apache.hadoop.mapred.MapTask: Starting flush 
of map output
2016-07-12:08:25,191 INFO [main] org.apache.hadoop.mapred.MapTask: Spilling map output
2016-07-12:08:25,191 INFO [main] org.apache.hadoop.mapred.MapTask: bufstart = 
225137891; bufend = 397124345; bufvoid = 536870912
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2016-07-12:08:25,191 INFO [main] org.apache.hadoop.mapred.MapTask: kvstart = 
56284468(225137872); kvend = 48657712(194630848); length = 7626757/33554432
2016-07-12:09:07,150 INFO [main] org.apache.hadoop.mapred.MapTask: 
Finished spill 2
...

The log file for the map task reveals that there were indeed two separate spills—this 
job is a good candidate for tweaking the size of the Hadoop sort-related parameters that 
I listed earlier in this section. Spilling to disk more than once is suboptimal, and you 
can avoid this in two different ways: You can raise the value of the mapreduce.map
.sort.spill.percent parameter if it’s too low (in my case it’s already high at 80 percent, 
so not much there) or you can bump up the value of the parameter mapreduce.task.io
.sort.mb. In this example, I can raise it to a value of 200MB or 400MB, to get rid of 
the extra disk spill. 

When you raise this parameter’s value, it’s a good idea to also raise the related parameter 
mapreduce.task.io.sort.factor. If you’re doubling the value of the mapreduce.task
.io.sort.mb parameter, also double the value of the mapreduce.task.io.sort.factor 
parameter. In general, try to keep the latter parameter’s value to about a tenth of the 
first parameter’s value, which is what it is when you use the default values for the two 
parameters.

Tuning the Reduce Tasks
As with the map tasks, reduce tasks involve multiple phases, with the length of each 
phase depending on the configuration settings as well as the amount of data the tasks 
need to process. Following are the three major phases of a reduce task.

 n The shuff le (and merge) phase: The shuff le process fetches the intermediate data 
generated by the map phase. You need to be concerned with the total time it takes 
to transfer intermediate data from the map tasks to the reduce tasks and also to 
merge and sort the data. 

 n The reduce phase: This is the phase that uses a custom reduce function that’s applied 
to the input key and its values. During this phase, each reduce task is assigned a part 
of the map task’s intermediate output data. The reduce task fetches from each map 
task the content of this part of the output. You need to measure the total time for 
the reduce phase to evaluate the efficacy of this phase.

 n The write phase: The final phase of a reduce task is writing the reduce output 
to HDFS.

In the ResourceManager web UI, drill down to the page that lists all the reduce 
tasks for a job, as shown in Figure 18.2. A reduce task has three components—shuff le, 
sort (merge) and the reduce function itself. 

For example, if you take the first reduce task, its elapsed time is shown as 5 minutes, 
36 seconds. (You can identify a reduce task by the “r” in a task’s name, which is task_
1448106546957_4596_r_000001 in this example. A map task will have a “m” inside its 
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name, as in task_1448106546957_4596_m_000001, for example.) In this case, here’s how 
the total elapsed time breaks down:

 n The Start Time for the task task_1448106546957_4596_r_000001 is 10.10.50.
 n The Shuffle Finish Time is 10.12.46. This means the shuffle took 1 minute, 56 seconds.
 n The Merge Finish Time is 10.12.59. This means that the merge (sort) part of the 

reduce task took 13 seconds.
 n The Finish Time for the task is 10.16.25. This means that the third and final part 

of the Reduce task (running the actual reduce function as well as writing the final 
reduce output to HDFS) consumed 3 minutes and 26 seconds.

As mentioned earlier, the total elapsed time for this map task is 5 minutes and 35 seconds 
(335 seconds), which is broken into:

 n Shuff le: 116 seconds
 n Merge: 13 seconds
 n Reduce: 206 seconds

Breaking down the reduce tasks in the manner shown here and being familiar with 
the benchmark numbers for the various states of the task helps you evaluate the perfor-
mance of a job’s tasks on any given day. If you know that the average shuff le and reduce 
phase usually take so many minutes or seconds to complete, you can see if the tasks are 
unusually slow during one of these phases.

Let’s see how to improve the reduce task performance by tuning how the task performs 
during its various phases.

Enhancing the Shuffle and Sort Performance
During the shuff le and sort phase, the map output data is merged into a single reduce 
input file and sorted by a key, and becomes the input for the reducer task. A good way 
to tune the shuff le and sort phase is to reduce the data on which the reduce tasks needs 
to perform a sort merge. Compressing data, using combiners, and filtering data also 
helps with this. 

Tuning the MapReduce Shuffle Process
You can tune the MapReduce shuff le process with the following configuration param-
eters in the mapred-site.xml file:

 n mapreduce.reduce.shuffle.merge.percent: The usage threshold at which an in-
memory merge will be initiated, expressed as a percentage of the total memory 
allocated to storing in-memory map outputs (as defined by the mapreduce.reduce
.shuffle.input.buffer.percent parameter). The default value is 0.66. When 
this threshold is reached, the available shuff le contents in memory are merged 
into a single file.
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 n mapreduce.reduce.shuffle.input.buffer.percent: The percentage of memory 
to be allocated from the reducer’s heap memory to storing intermediate outputs 
copied from multiple mappers during the shuff le. The default value is 0.70.

 n mapreduce.reduce.input.buffer.percent: The percentage of memory (relative 
to the maximum heap size) to retain map outputs during the reduce stage. When 
the shuff le is concluded, any remaining map outputs in memory must consume less 
than this threshold before the reduce task can begin. The default value is 0.0.

 n mapreduce.reduce.shuffle.memory.limit.percent: Maximum percentage of 
the in-memory limit (set by the mapreduce.reduce.shuffle.input.buffer.percent 
parameter) that a single shuff le (that is, the output copied from a single map task) 
can consume. The default value is 0.25. If the shuff le size is above this, it’ll be 
written to disk on the server where the reduce task runs.

 n mapreduce.map.sort.spill: Controls the spill process. Once this limit is reached 
in the buffer, its contents will be spilled to disk. The default value is 0.8.

Tuning the Sort
Ensure there’s sufficient memory for the sort buffer, so the map-side sorts are fast. You 
can see dramatic performance improvements by making sure most of the map output is 
stored in the map’s sort buffer. Remember that you must have sufficient heap memory 
in the map’s JVM for this. You must ensure that the JVM heap size is large enough to 
hold the map task’s input and output records in memory.

Enhancing the Performance of the Reduce Phase
The reduce phase involves a lot of data transfers between the map and reduce tasks and 
hence a high volume of network traffic. Hadoop offers several configuration properties to 
help tune the reduce process, as explained here:

 n mapreduce.reduce.shuffle.parallelcopies: Sets the number of parallel trans-
fers run by the reduce task during the copy (shuff le) phase. The default value is 5.

 n mapreduce.reduce.shuffle.input.buffer.percent: Sets the percentage of memory 
to be allocated from the maximum heap size to the storing of map outputs during 
the shuff le process. The default value is 0.70.

 n mapreduce.reduce.input.buffer.percent: Determines the percentage of memory 
(relative to the Java heap size) to use for retaining map outputs during the reduce 
process. Once the shuff le completes, any remaining map outputs in memory must 
consume memory under this threshold before the reduce process can begin. 

 n mapreduce.shuffle.transfer.buffer.size: Comes into play if you set the prop-
erty mapreduce.shuffle.transferTo.allowed to false. This property sets the 
size of the buffer used in the buffer copy code for the shuff le phase. The size of 
this buffer will determine the size of the I/O requests. The default value for this 
parameter is 131072.
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 n mapreduce.reduce.shuffle.memory.limit.percent: Sets the maximum 
percentage of the in-memory limit that a single shuff le can consume. Default 
value is 0.25.

 n mapreduce.reduce.shuffle.merge.percent: Sets the threshold for the initiation of 
an in-memory merge. The threshold is a percentage of the total memory allocated to 
the storing of in-memory map outputs by setting the mapreduce.reduce.shuffle
.input.buffer.percent parameter. The default value for this parameter is 0.66.

Configuring the Reducer Initialization Time
Often, there’s plenty of processing capacity in terms of the containers that YARN can 
launch, but the reducers don’t start until almost all the map jobs have completed. You 
can configure the reduce tasks to start once a certain percentage of map tasks have 
completed. The parameter mapred.reduce.limit.completed lets you configure how 
soon the reduce jobs can start. The parameter mapred.reduce.slowstart.completed 
can range from 0 to 1 and is specified as a percentage of completed map tasks.

The default value of the mapred.reduce.slowstart.completed parameter is 0.05 
(5 percent), meaning that when 5 percent of all map tasks in a job have completed, the 
reduce task can start. It might seem at first that a very low percentage (such as the default 
value of 0.05) is what you must use, since that means the reduce tasks can start early. 
However, there’s a catch! The reduce tasks will actually ramp up by getting ready for 
the copy and shuff le of the intermediate output—they actually won’t start. The 
reducers can start only after all mappers have completed, so this means that the reducers 
will be taking up all the containers and actually will be doing quite a bit of waiting 
before they can start.

By setting this property to a low value such as 0.1, for example, you make the reduce 
tasks start earlier. If you set a higher value than the default of 0.05, you can decrease 
the overlap between the mappers and reducers and let the reducers wait less time before 
they can start. If you set the value for this parameter very high—that is, close to 1—you’re 
going to make the reduce tasks wait for a majority of the map tasks to complete, 
meaning the job takes longer to complete. Ideally you should set this parameter higher 
than the default, but you can arrive at the optimal value only after some experimenta-
tion, as is true of many Hadoop configuration parameters, especially those related to 
performance.

You set the mapred.reduce.slowstart.completed parameter in the mapred-site.xml 
file, as shown here:

<property>
   <name>mapred.reduce.slowstart.completed.maps</name>
   <value>0.05</value>
</property>

The parameter shown here determines the number of map tasks that should be com-
plete before any reduce tasks are attempted. If the reduce tasks don’t wait long enough 
you run the risk of causing the “Too many fetch-failure” errors during task attempts.
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Optimizing Pig and Hive Jobs
Pig and Hive are popular processing tools, although newer tools such as Impala and Spark 
are gaining in prominence. Often developers are befuddled as to why their Pig or Hive 
job takes forever to finish, although they spent a lot of time and effort on configuring 
several well-known Hadoop performance-related configuration parameters, such as those 
relating to sorting, which you learned about earlier in this chapter. The reason for their 
befuddlement is that Pig and Hive have their own built in optimizations, and you need to 
learn how to take advantage of those optimizations to get the most out of these tools. In the 
following sections, I discuss:

 n Optimizing Hive jobs
 n Optimizing Pig jobs

Optimizing Hive Jobs
The following section discuss some strategies that enhance Hive query performance.

Use Partitioning and Bucketing
Always try to organize data into partitions so Hive can prune the data and get at the 
required information with far fewer seeks than when it has to read all the data in a table. 
Specifying the PARTITION_BY clause in a CREATE TABLE statement will partition the data.

Bucketing is another strategy that can help lower the number of processing steps and 
reduce the data used in join operations. You can bucket data by specifying the CLUSTERED BY 
clause when creating a table. Once you do this, each time you insert data in the bucketed 
table, you must set the bucketing f lag, as shown here:

SET hive.enforce.bucketing = true;

To further optimize some types of queries, you can specify bucket sampling by pro-
cessing only some of the data in a data set, especially when testing complex queries or 
during the data exploration phase. The TABLESAMPLE clause inside a SQL query will help 
you use the bucket-sampling feature.

Note

Hortonworks has made available a test bench for experimenting with Apache Hive at any 
data scale. Please see https://github.com/hortonworks/hive-testbench for 
details.

Use Parallel Execution
Often, complex Hive jobs that contain large numbers of map and reduce tasks are executed 
serially. You can have Hadoop run the tasks simultaneously to reduce the query execution 
time. Here’s the parameter you set to configure parallel execution for Hive jobs:

SET hive.exec.parallel=true;

https://github.com/hortonworks/hive-testbench
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Use the ORCFILE Format
Use the ORCFILE format for the Hive tables. The ORCFILE format is much faster due 
to its use of optimization techniques such as predicate push down and compression of 
data. The following example shows how to store a table in the ORCFILE format and 
use compressed storage with Snappy.

CREATE TABLE A_ORC (customerID int, name string, age int, address string) 
STORED AS ORC tblproperties ("orc.compress" = "SNAPPY");
INSERT INTO TABLE A_ORC SELECT * FROM A;
CREATE TABLE B_ORC (customerID int, role string, salary float, department string) 
STORED AS ORC tblproperties ("orc.compress" = "SNAPPY");
INSERT INTO TABLE B_ORC SELECT * FROM B;
SELECT A_ORC.customerID, A_ORC.name, A_ORC.age, A_ORC.address join B_ORC
.role, B_ORC.department, B_ORC.salary ON A_ORC.customerID=B_ORC.customerID;

Joins that involve multiple ORCFILE-based Hive tables are much faster than joins of 
tables that store data as text.

Choose Hive’s Cost-Based Optimization
Before executing a query, Hive optimizes the query’s logical and physical execution plans. 
Hive can consider multiple plans before choosing the “best” one among those plans for 
the execution. Each potential execution plan involves different join orders, different join 
types and, in essence, different ways of accessing the data you’re interested in. 

Hive can use cost-based optimization to select the query plan with the least cost 
(cost being evaluated in terms of resource usage). However, you must explicitly ask Hive 
to use cost-based optimization by setting the following parameters at the very beginning 
of your Hive queries:

set hive.cbo.enable=true;
set hive.compute.query.using.stats=true;
set hive.stats.fetch.column.stats=true;
set hive.stats.fetch.patition.stats=true;

Use the PARALLEL keyword when processing large data sets.

Use Hive’s Built-In Capabilities
Hive has several built-in features that help run queries much faster than when you use 
straight SQL. For example, the following query uses Hive’s OVER and RANK OLAP 
analytical functions to get the job done without the usual subquery and inner joins.

SELECT * FROM
SELECT *, RANK() over (partition by sessionID,
order by timestamp desc) as rank
FROM clicks) ranked_clicks
WHERE ranked_clicks.rank=1;

Use Vectorization
If your queries involve aggregations, scans, filters and joins, you can gain a significant 
performance benefit by performing the work in batches of rows (1,024 at a time), instead 
of working on one row at a time.
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You can enable vectorization by setting the following two parameters:

set hive.vectorized.execution.enabled = true;
set hive.vectorized.execution.reduce.enabled = true;

Optimizing Pig Jobs
Following are some strategies to make your Pig jobs run faster.

Use Pig Optimization Rules
Pig has numerous optimization rules that speed up queries. These optimization rules are 
turned off by default, so you must selectively enable the rules. I’ll list a few of them here, 
but you can check all the optimization rules by viewing Pig’s performance documentation 
at https://pig.apache.org/docs/r0.9.1/perf.html.

 n Project early and often
 n Filter early and often
 n Prefer DISTINCT over GROUP BY
 n Compress results of intermediate jobs

Set Parallelism 
You can use the SET default_parallel or the parallel option to hard code a set 
number of reducers for a Pig job. However, it’s better to specify the degree of parallelism 
by calculating it yourself. You can do this by first finding the number of mappers by 
using the split size of the input data, which should be a multiple of the default split size 
and usually in the 256-512MB range. Using our handy rule of thumb of a ratio of 5:1 
between mappers and reducers, you can then figure out the number of reducers. 

Let’s say your mappers use an input data split of 512MB. The reducers should then 
take about 2.5GB of data (512MB x 5), using our 5:1 ratio.

Another way to figure out if you need more or fewer reducers is to look at the comple-
tion time for reducers. If the reducers are finishing up in just a minute or so, you have 
too many reducers and you should reduce them—ideally reducers should take anywhere 
between 5 to 15 minutes on average.

If you aren’t using the SET default_parallel clause in the Pig script or the parallel 
keyword in the code, you can use two other Pig properties to configure the parallelism 
of the reduce tasks.

 n The reducers.bytes.per.reducer property, which determines the input size of 
the reducer, has a default value of 1GB, and you can raise it to 2GB.

 n The reducers.max property, which determines the maximum number of reducers, 
defaults to 999 reducers. You can set this property to a lower value to reduce the 
maximum number of reduce jobs for a Pig job. 

If you set both the properties listed here, the value that’s smaller takes precedence. 
For example, if the input size is 100GB, you can employ the following settings:

-Dpig.exec.reducers.bytes/per.reducer=${1024 * 1024 * 1024 *2} \
-Dpig.exec.reducers.max=50 \

https://pig.apache.org/docs/r0.9.1/perf.html
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Use Pig’s Specialized Joins
Pig offers several specialized joins. Use one of these when your data and the queries seem 
to meet the requirements.

 n Replicated joins: Use this when one or more relations in a join is small enough to 
fit into main memory. 

 n Skewed joins: These joins are helpful when the underlying data is skewed and 
you need to counteract the skew.

 n Merge joins: A merge join is the same as a sort-merge join. This type of join is 
helpful when both inputs in the join are already sorted on the join key, since the 
data avoids going through unnecessary sort and shuff le phases.

Benchmarking Your Cluster
As you’ve figured out by now, Hadoop has many dials and knobs that enable you to 
configure and fine tune its performance. In fact, you’re faced with a bewildering array 
of choices regarding the configuration parameter settings. One of the ways you can 
check potential configuration changes is by running benchmark tests for the cluster 
performance. Benchmark test results help you compare different settings and even the 
performance of different clusters.

When putting a new Hadoop cluster into the production mode or when upgrading 
a cluster, it is a good idea to stress test the cluster. Stress tests tell you if the cluster can 
deliver acceptable response times under heavy loads and also let you understand the 
scalability limits of your cluster. When stress testing web applications or databases, it’s 
normal to hit them with a heavy load to see how they fare. However, in the case of 
Hadoop, we’re more interested in benchmarking—measuring the performance of specific 
jobs such as querying, machine learning, indexing and so on.

Apache Hadoop comes with several useful benchmarking tools. By running these tools, 
you can check the performance of your cluster and be able to compare it with the per-
formance of other clusters. This section introduces you to the most useful benchmarking 
tools that are part of the Apache Hadoop distribution.

Hadoop’s built-in benchmarks are provided under two key directories: hadoop-
mapreduce-client-jobclient-*-tests.jar and hadoop-*examples*.jar. Both of these are 
located in your Hadoop installation directory.

In the following sections, we’ll review the most commonly used benchmarking tools:

 n TestDFSIO
 n TeraGen/TeraSort/TeraValidate

Using TestDFSIO for Testing I/O Performance
Often, you’d like to check how well the storage subsystem is performing. Other times, 
you may want to get to the root causes of performance issues. Hadoop’s TestDFSIO 
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benchmarking tool helps you perform read and write tests for HDFS data. As mentioned 
previously, when you are going to production with a new cluster or right after an upgrade 
to a new version of Hadoop, it’s a good idea to run a quick stress test to check out HDFS, 
and TestDFSIO is a great tool for that.

Note

There’s no mention of TestDFSIO in Hadoop’s documentation, so if you’re interested 
in more details check out its source code at: $HADOOP_HOME/src/test/org/apache/
hadoop/fs/TestDFSIO.java.

TestDFSIO relies on MapReduce jobs to benchmark HDFS and is an I/O bound test. 
In the following sections, we’ll run read and write tests of HDFS with TestDFSIO’s help.

A Write Test
Run a write test with TestDFSIO by specifying the –write option, as shown here:

$ hadoop jar /usr/lib/gphd/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-2.0.2-alpha-
gphd-2.0.1.0-tests.jar TestDFSIO –write nrFiles 20 –filesize 250GB

By default, TestDFSIO creates one map task for each file you specify. The nrFiles 
option specifies the number of files to generate within HDFS. This is the same as the 
number of map tasks that will be executed. Since the nrFiles attribute specifies 20 as its 
value, Hadoop creates, or writes, 20 files in HDFS, each sized 1GB. When you run this 
command, Hadoop writes the files to the /benchmarks/
TestDFSIO/io_data directory in HDFS. The filesize option generates a file for each 
map task with this size. Since our file size is specified as 250GB and the number of files 
(nrFiles) as 20, the example generates 5000GB of data in HDFS. 

The output you’re really after, the benchmark results, is written to a Linux directory, 
from where you run the benchmark, as well as to the screen. You can specify the filename 
with the –resFile parameter.

Note

You can view all the options available for the TestDFSIO command by executing the 
command with the –help option.

Here’s the output of a TestDFSIO write test on our cluster:

16/07/12 10:56:45 INFO fs.TestDFSIO: ----- TestDFSIO ----- : write
16/07/12 10:56:45 INFO fs.TestDFSIO: Date & time: Tue Jul 12 0:48:48 2016
16/07/12 10:56:45 INFO fs.TestDFSIO: Number of files: 64
16/07/12 10:56:45 INFO fs.TestDFSIO: Total MBytes processed: 1048576.0
16/07/12 10:56:45 INFO fs.TestDFSIO: Throughput mb/sec: 23.046824301966463
16/07/12 10:56:45 INFO fs.TestDFSIO: Average IO rate mb/sec: 23.143465042114258
16/07/12 10:56:45 INFO fs.TestDFSIO:  IO rate std deviation: 1.5490700854356283
16/07/12 10:56:45 INFO fs.TestDFSIO:     Test exec time sec: 796.676
16/07/12 10:56:45 INFO fs.TestDFSIO:
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A Read Test
You can use the output files generated by the write test you performed earlier as inputs 
for your read test. The following command runs the read test using the 20 input files 
generated by the write test.

$ hadoop jar /usr/lib/gphd/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-2.0.2-alpha-
gphd-2.0.1.0-tests.jar TestDFSIO
-read -nrFiles 20 -fileSize 250GB

And here’s the output of the TestDFSIO read test:

16/07/12 11:03:45 INFO fs.TestDFSIO: ----- TestDFSIO ----- : read
16/07/12 11:03:45 INFO fs.TestDFSIO: Date & time: Tue Jul 12 0:58:24 2016
16/07/12 11:03:45 INFO fs.TestDFSIO: Number of files: 64
16/07/12 11:03:45 INFO fs.TestDFSIO: Total MBytes processed: 1048576.0
16/07/12 11:03:45 INFO fs.TestDFSIO: Throughput mb/sec: 46.94650035960607
16/07/12 11:03:45 INFO fs.TestDFSIO: Average IO rate mb/sec: 47.33715057373047
16/07/12 11:03:45 INFO fs.TestDFSIO:  IO rate std deviation: 4.734873712739776
16/07/12 11:03:45 INFO fs.TestDFSIO:     Test exec time sec: 414.219
16/07/12 11:03:45 INFO fs.TestDFSIO:

You can remove all the test data generated by TestDFSIO by running the following 
command:

$ hadoop jar hadoop-mapreduce-client-jobclient-*-tests.jar TestDFSIO -clean

This command will delete the HDFS directory /benchmarks/TestDFSIO/io_data.

Interpreting the Results
One of the first things you want to look at is the throughput, both for the read and the 
write tests. The test execution time (last counter) shows the time it takes for the hadoop jar 
command to complete; the lower the value the better the test performance.

Using the output of the TestDFSIO command, you can calculate the throughput of 
storage using the following formula:

 Total read throughput and total write throughput = 
number of files * throughput (MB/sec)

Benchmarking with TeraSort
TeraSort is a popular benchmark for Hadoop workloads and is used as an industry-
standard tool to evaluate Hadoop performance. The tool basically sorts 1TB of data to 
benchmark performance. TeraSort uses HDFS and MapReduce to sort data. You can 
use TeraSort in various situations, such as when you’ve adjusted several performance-
related configuration parameters and you would like to compare the “before and after” 
performance.

You can create effective performance baselines by using the TeraSort benchmark-
ing suite. 
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The TeraSort Suite
TeraSort is actually a suite of utilities, consisting of TeraGen, TeraSort and TeraValidate. 
A TeraSort benchmark exercise requires you to perform the following steps.

1. Run the TeraGen utility to generate the input data. This will create an input file
that can be used by the TeraSort utility to perform the actual sort operation.

2. Run the TeraSort test on the input data. The job of this tool is to sort the input
file by using the Hadoop cluster and its HDFS and MapReduce components. The
goal is to stress cluster resources such as network bandwidth and I/O.

3. Run the TeraValidate utility. This utility checks the sorted data for accuracy.

Figure 18.3 shows the workf low involved in a TeraSort run.

Running TeraGen
Run TeraGen first because this tool generates the necessary data that you need for the 
TeraSort test run. Here’s an example showing how to run the TeraGen utility.

$ hadoop jar $HADOOP_PREFIX/hadoop-*examples*.jar teragen 10000000000 /user/data/
terasortinput

This command generates an input with 1TB of data in the /user/data/terasort-input 
directory.

Note that you specify the size of the input file in the number of 100-byte rows, and 
not bytes. Thus “10000000000” refers to the number of rows, each of which has a size 
of 10 bytes, thus generating an input of 1TB of data. You must ensure that the HDFS 
directory /user/data is empty before you run this command.

Figure 18.3 Workflow of a TeraSort benchmark run
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During the test, the TeraGen utility uses the configured block size for HDFS. 
However, you may experiment with different block sizes by adding the dfs.block-size 
parameter to the teragen command, as in fs.block-size=536870912 (512MB), for example.

Running TeraSort
TeraSort, as its name indicates, is the actual MapReduce sorting job that’s the heart of 
the TeraSort benchmark. There are two stages to the TeraSort test—a map stage and a 
reduce stage. The map stage is CPU bound and the reduce stage is I/O bound.

Here’s our TeraSort example:

$ hadoop jar $HADOOP-PREFIX/hadoop-*examples*.jar terasort /user/data/terasort-input 
/user/data/terasort-output

Note that you specify the output generated by the TeraGen utility as the input for the 
TeraSort command.

Running TeraValidate
The job of TeraValidate is to verify that the output data generated by the TeraSort utility 
is correct—that is, it’s sorted properly. If the data is correctly sorted, the TeraValidate 
run doesn’t generate any output. If it does detect issues with the sorted output, it outputs 
the keys that are out of order in the output file.

Here’s our example showing how to run the TeraValidate test using the output from 
the TeraSort command:

$ hadoop jar hadoop-*examples*.jar teravalidate /user/data/terasort-output 
/user/data/terasort-validate</pre>

How to Use the Benchmarks
The TeraSort job tells you how long it took to process the input data that you generated. 
You can get a performance baseline by initially running the TeraSort job with some-
thing close to the default Hadoop parameter settings. Following this, you must perform 
the TeraSort test iteratively, each time modifying a certain set of configuration parameters. 
For example, you can play with different values for key configuration properties such as 
the following:

 n Replication factor 
 n HDFS block size 
 n Memory settings for the map and reduce tasks (such as the mapreduce.map.memory.mb 

and mapreduce.map.java.opts parameters)

Using Intel’s HiBench Tool

Intel offers a tool named HiBench, which helps perform several benchmarks. HiBench 
is a collection of shell scripts that you can get from GitHub (https://github.com/
intel-hadoop/HiBench). The file hibench-config.sh contains several options that let 

https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
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you select the source and output files and so on. Once you select the configuration for 
the test, run this shell script first. Next, run the command bin/run-all.sh. The output is 
written to HDFS in the file hibench.report. Note that since HiBench was originally written 
for Hadoop 1.0, you’d need to make changes to the configuration before you run it in 
Hadoop 2.0 clusters.

HiBench is pretty comprehensive—besides TestDFSIO and TeraSort, it also lets you 
benchmark machine learning tasks such as the naïve Bayes classifier and k-means 
clustering, as well as benchmark tests for page rank and Nutch indexing jobs.

Using Hadoop’s Rumen and GridMix for Benchmarking
Hadoop offers GridMix, a benchmarking tool, to model the resource profiles of pro-
duction jobs using a mix of synthetic jobs. GridMix uses MapReduce job traces that 
profile a description of the job mix. The Rumen tool is used to build a job trace in JSON 
format, and GridMix uses this job trace to benchmark the cluster. Since Rumen is a 
prerequisite for running GridMix benchmarks, the following sections first explain how 
to use Rumen to analyze the job history and then show you how to benchmark your 
cluster with GridMix.

Using Rumen to Generate Job Traces
Data from MapReduce logs is critical to simulation and benchmarking. However, the 
data inside the logs needs to be parsed at times to provide specific inputs to simulators 
(such as GridMix, for example). Rumen is a built-in data extraction and analysis tool 
that can extract useful data by parsing MapReduce JobHistory logs and storing the data 
as a condensed digest. The resulting data after you run Rumen is “enhanced data,” 
since Rumen performs statistical analysis of its digest to estimate variables the original 
log files don’t have, such as the cumulative distribution functions for map/reduce run-
times, which is very useful in extrapolating the task runtime of incomplete jobs as well 
as synthetic tasks.

Rumen consists of two components, the trace builder and folder, as described here:

 n Trace builder: Converts the JobHistory log into the JSON format so it can be 
easily read.

 n Folder: Used for scaling the runtime of a trace. You can increase and decrease the 
trace run time by adding dummy jobs to the trace or dropping some jobs from the 
input trace.

The trace builder converts MapReduce JobHistory files into JSON objects and 
writes them to the trace file. Following is the general syntax of the TraceBuilder 
command:

java org.apache.hadoop.tools.rumen.TraceBuilder [options] <jobtrace-output> 
<topology-output> 
<inputs>



ptg18444370

644 Chapter 18 Tuning the Cluster Resources, Optimizing MapReduce Jobs and Benchmarking 

By default, trace builder reads only the files directly placed under the input folder to 
generate the trace. You can use the option –recursive to make trace builder recursively 
scan the input folder for all job history files.

Before you start running the Rumen commands (TraceBuilder and Folder), 
ascertain where the job history files are stored in your cluster by checking the value of 
the configuration parameter mapreduce.jobhistory.done-dir or mapreduce.jobhistory
.intermediate-done-dir in the mapred-site.xml file.

Since Rumen requires specific libraries to be present in the class path, it’s a good idea 
to execute the TraceBuilder command as shown here, by specifying the $HADOOP_HOME/
bin/hadoop jar command to run the command:

$HADOOP_HOME/bin/hadoop jar \
  $HADOOP_HOME/share/hadoop/tools/lib/hadoop-rumen-2.5.1.jar \
  org.apache.hadoop.tools.rumen.TraceBuilder \
  file:///tmp/job-trace.json \
  file:///tmp/job-topology.json \
  hdfs:///tmp/hadoop-yarn/staging/history/done_intermediate/testuser

This command does the following:

 n Analyzes the jobs in the HDFS directory /tmp/hadoop-yarn/staging/history/
done_intermediate/testuser 

 n Outputs the job trace on the file /tmp/job-trace.json
 n Captures the rack topology information in the Linux /tmp directory, in the file

 /tmp/job-topology.json

The folder utility, the other component of Rumen, performs folding, which is the 
fixing of the output duration of the trace and adjusting the job timelines to respect the 
final output duration. Here’s an example that shows how to run the Folder command.

java org.apache.hadoop.tools.rumen.Folder \
-output-duration 1h \
-input-cycle 20m \
file:///tmp/job-trace.json \
file:///tmp/job-trace-1hr.json

This command folds an input trace with 10 hours of runtime and produces an output 
trace with 1 hour of runtime.

Once you use Rumen to build the job trace in the JSON format for the jobs you want 
to benchmark, it’s time to get going with the GridMix tool, which helps you perform 
the benchmarks.

Using GridMix for Benchmarking
GridMix uses the job trace generated by Rumen to get the original job submission 
times, and it also retrieves the read and write counts (both byte and record counts) for all 
tasks in a job. Using the data it obtains from the job trace, GridMix creates a synthetic 
job that matches the byte/record pattern of the original job whose run was captured by 
the Rumen trace. 
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Tip

GridMix makes several simplifying assumptions, an important one being that it assumes 
that the records consumed or emitted from a task are evenly distributed, without the skew 
that’s generally observed in real life. Each map will generate an identical percentage of 
data as input to the reducers, which isn’t always true.

MapReduce tasks use various resources such as CPU, RAM and the JVM heap. 
GridMix captures the resource usage information stored in MapReduce task counters 
to emulate the actual resource usage during the simulated tasks that it runs. The goal is 
to create the identical load during the test that was experienced when the job originally 
ran in your cluster.

Once you have the trace file ready from Rumen, you can run GridMix to benchmark 
the cluster. Here’s an example that shows how to execute the gridmix command (as with 
Rumen, it’s a good idea to use the Hadoop jar command to run GridMix to make sure 
the necessary library JAR files are present in the class path.

HADOOP_CLASSPATH=$HADOOP_HOME/share/hadoop/tools/lib/hadoop-rumen-2.5.1.jar \
  $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-
gridmix-2.5.1.jar \

-libjars $HADOOP_HOME/share/hadoop/tools/lib/hadoop-rumen-2.5.1.jar \
[-generate <size>] [-users <users-list>] <iopath> <trace>

In this command, here’s what the various options mean:

 n generate: Generates the input data for the synthetic jobs. 
 n users: Points to the user list file (through the users-list attribute).
 n iopath: The working directory for GridMix—can be either the Linux file system 

or HDFS. Hadoop recommends that you use the same file system as that used by 
the original set of jobs.

 n trace: Specifies the path to the job trace that you generated with Rumen earlier.

There are numerous other configuration options you can specify, and the Hadoop 
GridMix documentation explains them.

An interesting thing about GridMix is that it’s highly configurable. Besides routine 
parameters such as gridmix.output.directory (specifies the directory for the GridMix 
benchmark output) and the maximum size of the input files (default is 100MB), there 
are several parameters that let you control various aspects of the jobs. Here’s a brief 
summary of some of the most useful of these parameters:

 n gridmix.job.type: Lets you specify the job type for the synthetic job run by 
GridMix. There are two possible values: LOADJOB and SLEEPJOB. The default value 
is LOADJOB, which emulates the workload in the Rumen trace. The value SLEEPJOB 
lets you specify synthetic jobs where the tasks simply sleep for a specific time, as 
observed in the job trace from Rumen.
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 n gridmix.job-submission.policy: You can control the rate of job submission 
with this parameter, using different algorithms. You can choose among the fol-
lowing types of job submission policies:

 n STRESS: This policy submits jobs to keep the cluster under a stable stress level 
of workload, preventing an overloading or an underloading situation. GridMix 
uses internal thresholds to determine whether the cluster is overloaded or 
underloaded.

 n REPLAY: This job policy submits the synthetic jobs exactly according to the time 
intervals in the job trace captured by Rumen.

 n SERIAL: This policy submits jobs in a serial fashion, by submitting a new job 
only after the currently running job completes.

 n gridmix.compression-emulation.enable: Enables compression emulation in 
the GridMix simulated jobs. The default value of this parameter is TRUE for jobs 
of the LOADJOB type. When compression emulation is turned on, GridMix generates 
compressible input data and uses a decompressor to read the data, provided the 
original job’s input files were compressed. Similarly, GridMix enables map output 
compression and job output compression for the simulated job, if the original job 
used compression for these entities (map output and job output).

Uberized Jobs

If a YARN job is very small, the ApplicationMaster for the job can execute the map and 
the reduce tasks for the job within a single JVM. The principle here is that for these tiny 
jobs the management overhead and the cost of distributed task allocation outweigh any 
potential benefits of executing the tasks in parallel. Hadoop can “uberize” a job if all 
the following conditions are satisfied:

 n There are less than 10 mappers (configurable with the mapreduce.job.ubertask
.maxmaps property).

 n There’s only a single reducer (configurable with the mapreduce.job.ubertask
.maxreduces property).

 n The total input size is less than 1 HDFS block (configurable with the mapreduce
.job.ubertask.maxbytes property).

By default Hadoop disables the capability of a job to run as an uber job by using the 
default value for the uberization parameter  mapreduce.job.ubertask.enable.

Here’s part of a job log showing how Hadoop chooses not to uberize a job:

org.apache.hadoop.mapreduce.v2.app.job.impl.JobImpl: Not uberizing job_ 
1438373860823_0024 because: not enabled; too many maps; too many reduces; 
too much input; too much RAM;
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Hadoop Counters
One of the most useful ways to examine job performance and try to isolate problems 
is to take advantage of Hadoop’s counters. Hadoop provides several built-in counters, 
and you can set up custom counters as well. In general, a counter helps you find out the 
number of times a particular event occurred during the execution of a job.

You can access the Hadoop counters for an application through the ResourceManager 
web UI, as explained in Chapter 17.

Counters help you verify the following types of things:

 n The correct number of mappers and reducers were launched and completed.
 n The correct number of input bytes were read, and the expected number of 

output bytes were written.
 n The correct number of records were read and written (to the local file system 

and to HDFS).
 n The CPU usage and memory consumption were appropriate for the job.

Hadoop’s built-in counters fall into several counter groups, of which the most important 
are the following:

 n File system counters
 n Job counters
 n MapReduce framework counters

In addition to these three counter groups, Hadoop also shows you counters from three 
other counter groups by default: shuff le error counters, file input format counters and 
file output format counters. 

Custom counters are those you configure for your application.
Figure 18.4 shows the Counters page for a completed MapReduce job (you can view 

counters for a failed job as well). Note that you can get the Hadoop counters not only 
at the aggregate job level, but also at the individual map or reduce task level—this helps 
greatly when trying to figure out why one of the map or reduce tasks is taking signifi-
cantly longer to complete compared to the rest of the tasks.

In the following sections, we’ll take a quick look at the key Hadoop counters you 
can use to understand job execution.
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Figure 18.4 The counters page for a job showing the various counter groups
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File System Counters
File system counters show valuable information regarding read and write operations in 
both the local file system and HDFS. Here are the key counters you should understand.

 n FILE_BYTES_READ: The total numbers of bytes read from the local file system by 
the map and reduce tasks.

 n FILE_BYTES_WRITTEN: Total number of bytes written to the local file system. These 
writes include the writes during the map phase when mapper tasks write inter-
mediate results to the local file system. Reducer tasks also write to the local file 
system during the shuff le phase when they spill intermediate results to the local file 
system during sorting.

 n HDFS_BYTES_READ: Total bytes read from HDFS.
 n HDFS_BYTES_WRITTEN: Total bytes written to HDFS.

Note that the total amount of bytes read and written will depend on the compres-
sion algorithms the application uses.

Here’s an example that shows the file system counters from a job:

File System Counters
FILE: Number of bytes read=8229940
FILE: Number of bytes written=16873548
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=548134850
HDFS: Number of bytes written=3294726
HDFS: Number of read operations=18
HDFS: Number of large read operations=0
HDFS: Number of write operations=2

Job Counters
Job counters are counters relating to the Hadoop jobs and don’t change while a job is 
running. Following are the key job counters.

 n DATA_LOCAL_MAPS: Number of map tasks executed on local data (HDFS). Ideally, 
all map tasks should execute on a local rack.

 n TOTAL_LAUNCHED_MAPS: Shows the number of map tasks launched for a job and 
includes failed tasks. This number is, in general, the same as the number of input 
splits for the job.

 n TOTAL_LAUNCHED_REDUCES: Shows the total number of reducer tasks launched 
for a job.

 n NUM_KILLED_MAPS: The number of killed map tasks.
 n NUM_KILLED_REDUCES: The number of killed reduce tasks.
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 n MILLIS_MAPS: Total time taken for running map tasks, including tasks that were 
started speculatively.

 n MILLIS_REDUCES: Total time taken for running reduce tasks, including tasks that 
were started speculatively.

Here’s’ the output from a job showing the job counters:

Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=1
Rack-local map tasks=1
Total time spent by all maps in occupied slots (ms)=0
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=186047
Total time spent by all reduce tasks (ms)=5628
Total vcore-seconds taken by all map tasks=186047
Total vcore-seconds taken by all reduce tasks=5628
Total megabyte-seconds taken by all map tasks=381024256
Total megabyte-seconds taken by all reduce tasks=11526144

MapReduce Framework Counters
Counters in the MapReduce framework group show aggregated information for all 
tasks in a job.

 n MAP_INPUT_RECORDS: Total number of input records read for the job during the 
map phase

 n MAP_OUTPUT_RECORDS: Total number of records written for the job during the 
map phase

 n CPU_MILLISECONDS: Total time spent by all tasks on CPU
 n GC_TIME_MILLIS: Total time spent during garbage collection of the JVMs
 n PHYSICAL_MEMORY_BYTES: Physical memory consumed by all tasks
 n REDUCE_SHUFFLE_BYTES: Total number of output bytes from map tasks copied 

to reducers during the shuff le phase
 n SPILLED_RECORDS: Total number of records spilled to disk for all the map and 

reduce tasks

Learning how to spot job performance inefficiencies through analyzing counters is 
important. For example, when the REDUCE_SHUFFLE_BYTES counter, which shows the 
total bytes in the intermediate results transferred from the mappers to the reducers, is 
very high, job performance slows down. The reason for this is that shuff le processes 
tend to be heavy network resource consumers. 

Values for job counters such as TOTAL_LAUNCHED_MAPS don’t change over the course 
of the job execution. However, the values for counters such as PHYSCIAL_MEMORY_BYTES 
do change over the course of the job and let you see how the memory usage varies over the 
course of the job execution or during a specific task attempt.
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Following is the output from a MapReduce job showing the MapReduce framework 
counters:

Map-Reduce Framework
Map input records=35558
Map output records=35558
Map output bytes=36910848
Map output materialized bytes=8234020
Input split bytes=1343
Combine input records=0
Combine output records=0
Reduce input groups=35328
Reduce shuffle bytes=8234020
Reduce input records=35558
Reduce output records=35328
Spilled Records=71116
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=2521
CPU time spent (ms)=233390
Physical memory (bytes) snapshot=3263873024
Virtual memory (bytes) snapshot=11202859008
Total committed heap usage (bytes)=3947888640

Custom Java Counters
Developers can define custom counters for both mappers and reducers, for counting 
various things such as the number of missing, malformed or bad records, for example, 
or the minimum and maximum values for specific entities. Custom counters are usually 
defined by a Java enum, or by an equivalent method using strings. The string interface 
lets you create counters dynamically, and enums are easier to configure and are good 
enough for most Hadoop jobs.

Note

It’s possible to retrieve job counter values using Java APIs, without using the web UI. You 
can do this while the job is still running, but it’s advisable to wait until the job completes, 
so your counters are accurate and stable.

Limiting the Number of Counters
Regardless of whether it’s a Hadoop built-in counter or a custom counter, each of the 
counters occupies space in the ResourceManager’s JVM. Also, the ResourceManager must 
keep track of every single counter for both the map and reduce tasks until the entire job 
completes, which adds to the processing overhead of the job. Therefore, you must be 
careful not to specify too many counters in a job. Typically, about 100-200 counters 
(including both built-in and custom) is all you’ll need. 

The configuration property mapreduce.job.counters.max in the mapreduce-site.xml 
file sets the limit on the number of user counters allowed per job. The default value for 
this parameter is 120. If you exceed this value, you’ll receive an error. 
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An application can define custom counters and update them in the map or reduce 
methods. The MapReduce framework aggregates these counters on a global basis. 
You can use custom counters to track a few key global entities. Custom counters 
aren’t designed for application developers to aggregate all the fine-grained application 
statistics!

Op timizing MapReduce
There are several well-known optimization techniques for making a MapReduce job 
run faster—compressing data is probably the best known of these. There are several 
other optimizations available to speed up MapReduce, and this section outlines the most 
important of these techniques.

Map-Only versus Map and Reduce Jobs
Usually a MapReduce job has both a map and a reduce phase. The map phase processes 
the input data in key/value format and produces key/value pairs as the output. The reduce 
phase accepts the map output for each key and iterates through each value for a key and 
produces zero or more key-value pairs. Sometimes you don’t need the reduce phase, 
as when you use a SELECT or WHERE clause in a SQL statement. In such cases you use a 
map-only job to process the input data. 

Map-only jobs don’t need to go through the expensive sort/shuff le phase, so they run 
very fast. By default, Hadoop always configures a single reducer for a MapReduce job 
even when the developer doesn’t specify a reducer class because he or she is running a 
map-only job. Hadoop will move the mapper output from the map nodes to the reducer 
node, incurring needless network overhead. Developers can make the map-only jobs run 
much faster by explicitly specifying the job.setNumReduceTasks(0) method as part of 
their map-only jobs.

MapReduce jobs that require aggregation such as SUM, MAX and GROUP BY clauses 
require both map and reduce phases. Developers can make the jobs more efficient by 
using the map phase to perform partial computations. This reduces the output that the 
mappers need to send to the reducers. If you don’t perform the partial computations 
during the map, the mappers need to send all of their data to the reducers and have them 
perform the computations, which is much more expensive. The reduce step in this case 
is used to perform the aggregations. 

The following sections show how developers can take advantage of several optimi-
zations that are part of the MapReduce API to enhance MapReduce job performance.

How Combiners Improve MapReduce Performance
A combiner is a MapReduce optimization that minimizes the number of key/value pairs 
that need to be sent from the mappers to the reducers. A combiner, in essence, performs 
some of the reduce task’s job using map operations, by processing the intermediate results 
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of the key/value pairs emitted by the mappers. The map phase performs partial aggrega-
tions and sends this data over to the reducers. 

Combiners provide the benefit of map-side aggregation—they cut down on the amount 
of data that’s shuff led from maps to the reduce tasks. Combiners make the shuff le process 
more efficient by reducing network traffic. However, you need to ensure that the com-
biner does actually provide enough aggregation to warrant its use, since combiners do 
involve extra serialization and deserialization of the map output records. If your applica-
tion doesn’t aggregate the map output by 20 or 30percent, it doesn’t really benefit from 
using a combiner.

You can use the MapReduce counters pertaining to the input and output records to 
check the efficiency of the combiner. 

This book isn’t about MapReduce programming, so we aren’t going to delve into the 
programming aspects of implementing combiners, except to say that in order to implement 
a combiner, the developer can simply use the existing reduce function as the combiner. The 
combine class implements the reducer interface, is called with multiple values of the map 
output and overrides the reduce () method with its code.

Tip

Custom combiners can reduce the I/O between mappers and reducers.

You can check the impact of the combiner by reviewing the counters named Combine 
Input Records and Combine Output Records in the MapReduce Framework group of 
counters. If a job isn’t using any combiners, both of these counters show a zero value. In 
this case, without the combiner class, the number of the reduce input records matches 
the map record records. So, I have the following counters with no combiners:

Combine Input records: 0
Combine output records: 0
Map output records: 27684496984
Reduce input records: 27684496984

 If the job does use combiners, you’ll see values for the combine-related counters, as 
shown here for one of our Hadoop jobs:

Combine Input records:     27684496984  (Map)
Combine output records:     6986214761 (Map)
Map output records: 27684496984
Reduce input records: 6986214761

In addition, when the combiner is in place, the reduce input records aren’t the same 
as the map output records, as they were in the case when we had no combiners. The 
number of reduce input records is way lower than the number of map output records! 
The reduce input records are just a quarter of the total map output records in our example. 
The use of the combiner has lowered the reduce input data to 6,986,214,761 from the 
original number of records, which was 27,684,496,984. A sharp reduction such as this 
in the number of the reducer input records enhances the reduce performance since you 
need to transfer a much smaller volume of data to the reduce function.
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Tip

A custom combiner is designed to reduce the I/O between the mappers and reducers. It 
does this by sending smaller outputs from the mapper nodes to the reducers. However, 
running the combiner isn’t free—there’s overhead involved in it. Sometimes, a combiner 
may actually slow the MapReduce job down due to its own overhead!

Using a Partitioner to Improve Performance
Reducers process the key/value pairs received by them from the mappers. While this 
data is sorted by the key, by default, those keys are randomly allocated to the reducers. 
Hadoop sends the same key to the same reducer, irrespective of which mapper emanates 
those keys. It’s much more efficient to customize the mapper process to determine which 
key goes to which reducer. Developers can do this by coding the partitioner class, which 
can specify which key is sent to which reducer.

If you’re testing the custom partitioner in a test cluster, make sure it’s not running in 
the local mode, where you can only use a single reducer, leading to the bypassing of the 
partitioner. A partitioner comes into play only when multiple reducers are in play, so test 
the job in a regular cluster or at least in a pseudo-distributed cluster.

Compressing Data During the MapReduce Process
You can lower MapReduce processing time as well as the I/O and network traffic sig-
nificantly by taking advantage of compression during all the phases of a MapReduce job. 
Chapter 10 explains Hadoop compression and how to enable and configure it, so I won’t 
go into the details here, except to mention that you can enable compression at the following 
phases of a MapReduce job:

 n Map input: During the map phase, you can compress the input data to the map 
tasks. Not only will the compressing of the input data save storage, it’ll also speed 
up the transfer of the input data. Use splittable algorithms such as bzip2 or a 
SequenceFile format with zlib compression.

 n Map output (shuff le and sort): During this phase, you can compress the intermedi-
ate (map) output. The shuff le is usually the most expensive processing step due to 
the large amounts of network traffic that it generates, and when dealing with large 
sets of intermediate data, it’s a good strategy to compress it. Compressing the map 
output files lowers the number of bytes that the reduce function needs to read. Use 
fast codecs such as Snappy or lzo (or lz4) to compress the intermediate map output. 
For example, while the lzo codec generates much larger compressed files than the 
gzip codec, it makes the map phase complete about four times faster on average, since 
it’s much faster in reading data off the disk. Speed (and not compressed file size) is 
the hallmark of this compression codec. After enabling the compression of the map 
output, change the value of the mapred.output.compression.type parameter to 
BLOCK, from its default value of RECORD, to increase the compression ratio.

 n Reduce: You can compress the final reduce output. 
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Note

Compressing the map outputs will reduce the network traffic between the map and 
reduce tasks.

   Minimizing the Output of the Mappers
Map processes “spill” their output to disk; thus, limiting the mapper output is crucial 
to performance, since it involves not only disk I/O, but network I/O and the use of 
memory. You can improve performance significantly by keeping mapper output as low 
as possible. You can reduce the mapper output through all the following strategies:

 n Configure compression for mapper output, as explained in Chapter 10. This is 
probably the easiest to configure and offers the biggest bang for the buck, so to speak.

 n Filter out records not on the reducer side, but on the mapper side.
 n Extend the BinaryComparable interface or use text for the key of the map output.
 n Use the least amount of data for creating the map output key and the map output value.

Balancing Work among the Reducers
It’s not uncommon to see a MapReduce job almost finish, except that one last reducer 
task is still running. This happens when there’s a data skew and one of the reducers is 
processing most of the mapper output (or at least, a much larger amount of output than 
the other mappers). Since the data is unevenly distributed among the reducers, the reducers 
with the most data will take the longest, thus delaying the job. 

Two common solutions to the data skew problem are the following:

 n If you can identify the keys that are causing the skew, the developers can create 
a preprocessing job using MultipleOutputs to separate the keys. A separate MR 
job is then used to process the separated keys that are slowing down the job.

 n The developers can implement a better hash function in the partitioner class.

Too Many Mappers or Reducers?
Applications that process large data sets with just one or a small number of reducers can 
improve performance by raising the number of reducers. Multiple reducers can process 
a large number of output records faster than a single reducer can. It’s definitely not 
good when you have the following:

 n A large number of maps that run for a very short time, such as 5 or 10 seconds each
 n Large data sets with small block sizes (HDFS) such as 64 or 128MB, leading to 

tens of thousands of mappers
 n Processing too many small files that are smaller than the HDFS block size, each 

mapper processing one of the small files
 n Straightforward aggregations without using the combiner
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Using too high a number of reducers isn’t smart either. If the job involves numerous 
reducers, each processing less than 1 or 2GB of data, it’s not running very efficiently.

Applications running with hundreds of thousands of maps need to evaluate and see 
if they can reduce the number of maps.

If an application uses tens or hundreds of counters for each map/reduce task, it’s 
going to overwhelm the ResourceManager with the higher memory usage it entails.

When Is It Too Many?
The number of mappers should generally have a 10:1 ratio to the number of reducers—
this is just a rule of thumb, nothing more than that. Using optimizations such as com-
biners helps keep the number of reducers much smaller in comparison with the number 
of mappers.

Here are some guidelines that help you determine whether you’re running way too 
many mappers or reducers.

 n If the number of reducers is the same or even more than the number of mappers, 
you most likely have too many reducers.

 n If most of the mappers and reducers are finishing in a few seconds, and the reducers 
are running faster than the mappers, you’re very likely running too many mappers.

 n If the number of part files in HDFS is greater than the number of reducers, there 
are too many reducers.

 n If several output part-* files in HDFS are empty after the job completes, you chose 
had too many reducers.

 n You may be running too many mappers if the number of mappers is equal to 
the number of input files, but the input files are sized smaller than the default 
Hadoop split size. 

Configuring the Number of Map/Reduce Tasks in a Job
You can let Hadoop determine the number of map/reduce tasks in a job, and you can 
also programmatically set them. The following configuration parameters let you limit 
the number of map and reduce tasks per a single MapReduce job:

 n mapreduce.job.maps: Sets the default number of map tasks per job. The default is 2.
 n mapreduce.job.reduces: Determines the default number of reduce tasks per job. 

This parameter is usually set to 99 percent of the cluster's reduce capacity, so the reduce 
tasks can still be executed in a single wave, even if a node fails. The default value is 1.

You can limit the number of map and reduce tasks in a job that can run simultaneously 
with the help of the following two parameters:

 n mapreduce.job.running.map.limit: Determines the maximum number of map 
tasks per job that can run simultaneously

 n mapreduce.job.running.reduce.limit: Determines the maximum number of 
reduce tasks per job that can run simultaneously
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The default value for both of these parameters is 0, which means there’s no limit on 
the number of map/reduce tasks from a job that can run simultaneously.

Note

MapReduce is designed to process large chunks of data. Since the MapReduce framework 
processes one HDFS file per map task by default, if you have a large number of input files, 
it’s more efficient to use special input formats such as MultiIFileInputFormat to 
process multiple files per each map task. Also, it’s a good idea to process larger chunks 
of data per map. A good strategy then would be to coalesce multiple small input files into 
fewer maps and use a larger HDFS block size for processing very large data sets, which 
helps process more input data per map.

Number of Maps
The number of maps depends on the total size of the input. If your input is 10TB and 
your block size is 256MB, the job is going to need about 41,000 maps. There’s a startup 
cost to every map—it takes some time to set up the map tasks, so ideally the maps should 
run for at least a couple of minutes to execute, for large jobs.

Running a large number of map tasks, each running for a brief time, isn’t an efficient 
processing method. If a job is taking more than 100,000 maps, regardless of the size of 
the input, take a close look at the input and your block size to see if you can reduce the 
number of tasks.

You must strive to size your map tasks such that all the map task outputs can be sorted 
in a single pass, by storing the outputs in the sort buffer.

Limiting the number of maps means the following:

 n Lower scheduling overhead.
 n More available containers for new tasks.
 n More efficient map-side sorting (in memory).
 n Fewer seeks required to shuff le the map output to the reducers (each map 

produces output for the reducers).
 n Larger shuff led segments, which means the overhead of connections is lower—

you need the connections to move the data across the network.
 n Reduced side merging of sorted map outputs is more eff icient since there are 

fewer merges required due to the lower number of sorted segments of the map 
outputs.

Note that too few map tasks isn’t great, either, since they affect your ability to recover 
from a failed map task, with a single failure of a large map slowing the application down.

Number of Reduces
The performance of the shuff le process determines the efficiency of the reduce tasks for 
the most part.
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You can’t have too many or too few reduces for the following reasons:

 n If you have too few reduces, the node on which the reduce tasks are running will 
be carrying a heavy load. Reducers processing a large set of data (such as 100GB, 
for example) aren’t advisable for this reason. Also, when each reducer is processing 
a huge chunk of data, any reducer failures have an adverse impact on your recovery 
from the failure.

 n Too many reducers aren’t good because it has an adverse impact on the shuff le 
process. It also ends up creating too many small files as the job’s final output. 
The NameNode has to track all these files, which affects its ability to efficiently 
service other applications that may need to use that data.

Ideally each of the reducers in a job should process around 1-2GB of data but not more 
than around 10GB of data in general.

Summary
Here’s what you learned in this chapter:

 n Allocating memory wisely to YARN jobs is a big part of optimizing the use of 
your cluster resources. If you allocate too much memory for your containers, you 
waste your cluster’s resources—in effect you shrink the capability of the cluster. 
Too little memory means tasks will run longer and even fail sometimes. Nowhere 
is it more important to learn and understand Hadoop’s configuration parameters 
than when configuring memory in your cluster.

 n You can use various strategies to optimize MapReduce jobs—some of these strate-
gies require the set up of cluster-wide configuration properties by the administrator, 
and others require changes on the development side, including the writing of more 
efficient code and use of advanced concepts such as combiners and partitioners.

 n You can take advantage of several optimization techniques for improving the per-
formance of Hive and Pig jobs.

 n It’s a good idea to perform benchmarking exercises at important times such as add-
ing more servers or changing important configuration parameters. Benchmarking 
also enables you to compare the performance of different clusters.

 n Understanding Hadoop’s built-in counters is beneficial in troubleshooting jobs 
and tuning the performance of jobs.
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Configuring and Tuning 
Apache Spark on YARN

This chapter covers the following:

 n Allocating resources for Apache Spark on YARN
 n Dynamic resource allocation
 n Storage formats and compressing data
 n Using the Spark UI to understand performance
 n Tuning garbage collection
 n Performance tuning of Spark Streaming applications

This chapter and the one that follows are all about how to make Spark applications 
run fast! As you have learned, you can run Spark in the standalone mode on Mesos or on 
YARN. Since this is a book on Hadoop administration, I show how to configure and tune 
Spark so it works well with Hadoop, especially YARN, Hadoop’s processing framework. 
Tuning Spark applications running on YARN involves focusing on two broad areas: 

 n Tuning the resource allocation in a YARN/Hadoop cluster for the Spark applications
 n Tuning the Spark applications to make sure they’re efficient

In this chapter, I discuss how to optimize resource allocation for Spark running in a 
YARN/Hadoop cluster. Following this, in Chapter 20, “Optimizing Spark Applications,” 
I explain how you can optimize Spark applications so you can get the best performance out 
of them. 

Configuring Resource Allocation for Spark on YARN
Processing capacity in the form of CPU cores and memory in the form of RAM are the 
two key system resources you allocate to Spark. You’ll learn how to allocate CPU and 
memory in the following sections.
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Allocating CPU
The key to Spark’s computations is the resilient distributed dataset (RDD), an abstraction 
that consists of multiple partitions. One Spark task will process a single RDD partition 
on a single CPU core.

The parallelism of a Spark job depends on the number of partitions in an RDD and 
the number of available CPU cores. By default, Spark uses just two cores with a single 
executor.

Allocating Memory
Spark utilizes memory for two purposes: executing jobs and storing data. Execution 
memory is what Spark uses for performing shuff les, joins, sorts and aggregations. Storage 
memory is for caching data and for propagating internal data within the cluster. A job 
can use all the available memory for storage when it isn’t using any execution memory. 
Execution can evict storage from memory, but only until the memory used by storage 
hits a threshold. Spark provides a subregion within its memory where cached blocks can 
live for long without being evicted for the use of execution. However, the converse isn’t 
true, since storage can never evict execution. 

Spark’s dynamic automatic memory allocation feature lets it automatically adjust the 
fraction of memory it needs to allocate for shuff le and caching.

The memory Spark can commandeer determines the maximum size of shuff le data 
structures it uses for grouping, joins and aggregations. Finally, Spark needs some memory for 
off-heap storage as well. Spark makes tradeoffs among the memory it needs to allocate 
for storing the RDDS, for running the shuff le processes and for the off-heap storage.

Jobs consist of tasks. Tasks execute the Spark code. The driver is the boss—it assigns 
tasks to the worker nodes. The worker processes run the executors, which can include 
multiple tasks. The driver program is responsible for running the application and man-
aging all necessary operations when the application performs an action.

How Resources are Allocated to Spark 
When you run Spark on YARN, Hadoop doesn’t see anything special, so to speak, 
about YARN—it’s just another application, just as MapReduce is an application that 
runs on YARN. This is wonderful, since all the things that you’ve learned about the 
YARN architecture, resource allocation and tuning remain fully valid when running 
Spark on YARN. 

As you learned earlier in this book, YARN relies on two key entities: the Resource-
Manager, which manages the resources available in a Hadoop cluster, and the Application-
Master, which is in charge of requesting resources from the ResourceManager and 
allocating them to the NodeManagers running on each of the nodes so the cluster can 
execute individual tasks. The ApplicationMaster is application specific—when discussing 
MapReduce execution earlier, I was referring to a MapReduce-framework-specific 
ApplicationMaster. When running Spark jobs, YARN uses the Spark-specific Application-
Master. 
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YARN allocates resources through the logical abstraction called containers, which 
refer to a set of resources such as memory and CPU. For example, a container may consist 
of 2 CPU cores and 4GB of RAM. When Spark’s ApplicationMaster requests resources 
from the ResourceManager, it does so by estimating the resource requirements of the job 
and requesting a specific number of containers to complete the job. Based on the avail-
ability of resources in the cluster, the ApplicationMaster will ask the NodeManagers on 
the worker nodes to each launch a specific number of containers.

When you run Spark on YARN, Spark sits right on top of the YARN architecture and 
uses the same procedures to request resources as all other frameworks and applications. 
Thus, YARN containers are the way YARN allocates resources to Spark jobs. Regardless 
of the fact that Spark uses entities such as a driver and executors for each job, when it comes 
to the actual allocation of resources, all Spark sees is a bunch of YARN resource containers. 
All the executors and the driver run inside these containers. The ApplicationMaster handles 
all the inter-container communications.

The ApplicationMaster itself will run in a single container. Executors, the workhorses 
of Spark, run inside a YARN container as well (1 executor per container). When I 
discussed MapReduce resource allocation in Chapter 18, “Tuning the Cluster Resources, 
Optimizing MapReduce Jobs and Benchmarking,” I referred to map and reduce containers. 
But that’s where we stopped, in the sense that each map or reduce task was assumed to be 
run inside its own container and that was that. When it comes to Spark executors, there’s a 
more fine-grained entity within the executor container—tasks. Each executor container 
will have a set of tasks that actually performs a chunk of the work. 

Spark uses two key resources managed by YARN: CPU and memory. While disk 
I/O and network performance have a bearing on application performance, YARN 
doesn’t really focus on those resources. 

Limits on the Resource Allocation to Spark Applications
In Chapter 3, “Creating and Configuring a Simple Hadoop 2 Cluster,” you learned 
how you can set YARN properties to control the maximum amounts of memory and 
virtual CPU cores that YARN can use. Spark’s resource usage (RAM and CPU) is 
limited by the same properties, so let me summarize them here for you:

Note

You can set the configuration properties in different ways. Take the property that sets the 
number of executor cores (discussed in the next section). You can set the spark.executor
.cores property inside the spark-defaults.conf file, or in a SparkConf object. Alter-
natively, you can specify the –executor-cores flag when you invoke spark-submit, 
spark-shell, or pyspark from the command line.

 n The yarn.nodemanager.resource.memory-mb parameter sets the ceiling on the 
memory that you can allocate to all containers running on a cluster node where 
the NodeManager runs. This memory can be used for Spark as well as for non-Spark 
applications (MapReduce and other programs).
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 n The yarn.nodemanager.resource.cpu-vcores property determines the maximum 
number of cores used by all the containers on a node.

As you can recall from my discussion of how YARN allocates memory (see Chapter 6, 
“Running Applications in a Cluster—The Spark Framework”), memory allocation is 
done in chunks, with the chunk size based on the value of the yarn.scheduler
.minimum-allocation-mb property—the minimum chunk of memory that YARN can 
assign for every container request.

How to Set the Spark Configuration Properties 
You set the Spark resource configuration in the spark-defaults.conf file, and the 
resource allocation parameters are named spark.xx.xx, as in spark.driver.cores. 

You can set the Spark properties in three ways:

 n Set them in the code via SparkConf (in a Cloudera setup it’s the /etc/spark/
conf/spark-defaults.conf file).

 n Set the switches in the spark-submit tool.
 n Store the configuration property values in the spark-defaults.conf file. 

A typical Spark defaults.conf file looks like the following:

executor.memory   8G
spark.driver.memory     16G
spark.driver.maxResultSize 8G
spark.akka.frameSize    512

The precedence order is in the same order as I’ve listed the alternatives, with the 
configuration properties you set in the code getting the highest precedence.

In Chapter 6, I explained how you can launch a Spark application in two different 
modes in YARN:

 n In the yarn-client mode, the Spark driver runs inside the client process. The 
YARN ApplicationMaster process requests resources from YARN on behalf of the 
application.

 n In the yarn-cluster mode, the Spark driver runs within the YARN-managed 
ApplicationMaster process—the client goes away after initiating the application. 
The cluster mode isn’t appropriate for using Spark in an interactive fashion. Spark 
applications that need user input need to use spark-shell or pyspark (client mode).

Spark resource allocation in a Hadoop/YARN cluster depends on Spark’s run mode, 
so let’s discuss the allocation in the client and the cluster mode separately.

Remember that everything you learned about configuring resource allocation for 
YARN (in Chapter 3, and in more detail in Chapter 18) remains very much valid when 
dealing with allocating resources for Spark. 
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YARN needs to allocate resources to the following key Spark entities: 

 n The Spark driver
 n The executors

Let’s start by looking at how you allocate resources to the Spark driver.

Allocating Resources to the Driver
Before I start discussing how you can allocate resources to the Spark driver, let me 
summarize the role played by the driver.

The Driver’s Duties
The driver process, as its name indicates, is the boss—it assigns tasks to the worker nodes. 
It also maintains the Spark context that stores all the application settings and helps track 
the resources available to the application. The Spark context also lets the driver perform 
other tasks besides handing tasks to the workers, such as storing the accumulator and 
broadcast variables. 

The application driver process does the following:

 n Breaks the application into jobs, stages and tasks by working with the Spark 
execution engine

 n Services the library dependencies to the executor process that performs tasks 
on behalf of the Spark application

 n Works with the YARN ResourceManager to get resources assigned on various 
nodes to perform the tasks that comprise the Spark application

Note

In the Spark runtime, the driver is in charge of

 n Defining and invoking actions on the RDDs

 n Tracking the RDD’s lineage

The workers (executors) do the following:

 n Store the RDD partitions

 n Perform the RDD transformations

Once the driver gets the resources it requests from YARN to execute a Spark appli-
cation, it creates an execution plan, which is a directed acyclic graph (DAG) of actions 
and transformations for the application code, and sends it to the worker nodes to which 
it assigns resources. 

Spark will then optimize the DAG, such as minimizing the shuff les, for example, and 
decomposing it into stages and finally individual tasks that actually execute the application’s 
code. Stages are sets of transformations that Spark performs on the RDDs. Figure 19.1 
shows the basic Spark workf low. The worker processes run the code as well as store the 
cached data.
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The driver process contains two components that handle the assignment of tasks:

 n The DAG scheduler process divides the DAG into tasks.
 n The task scheduler, which knows about the availability of resources, schedules 

the tasks on various nodes in the cluster. Once the task scheduler does its task 
assignment, the complete DAG is sent over to the worker nodes where executors 
carry out the DAG’s operations. If any tasks fail or are lagging behind, the task 
scheduler will restart the failed jobs or create additional tasks to pick up the load 
of the stragglers.

Since you can run YARN in both the client mode and the cluster mode, let’s learn 
how to allocate resources to the Spark driver in both of these modes in the following 
sections.

Resource Allocation for the Driver in the Client Mode
In the client mode, Spark resource allocation depends on the following two configura-
tion properties.

 n spark.yarn.am.memory: Use this property to assign the memory used by the YARN 
ApplicationMaster in the client mode. The default value is 512m. Here is an example:

spark.yarn.am.memory 777m

You can assign memory in kilobytes (k), megabytes (m), gigabytes (g), terabytes (t) 
and even petabytes (p) if you have it!

 n spark.yarn.am.cores: This property lets you specify the number of CPU cores 
the YARN ApplicationMaster can use in the client mode. Here is an example:

spark.yarn.am.cores 4

The default value for this parameter is 1.

Since YARN assigns all resources in the form of containers, what would be the size 
of the containers? The fact that I’ve set the memory allocation (through the spark
.yarn.am.memory parameter) at 777m doesn’t mean that YARN will assign containers 
sized 777MB. 

RDD

Node 1Stage 1

Stage 2

Stage 3

Task Task

Task

Task

Task Node 2

Node 3

Figure 19.1 The Spark workflow
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Spark allocates a certain amount of off-heap memory to the AM process in the client 
mode. The property spark.yarn.am.memoryOverhead determines the size of this off-
heap memory allocation. The default value is the following:

AM Memory*0.10, with a minimum of 384M.

In this case, I assigned 777MB for the AM, and 10 percent of that is 77.7MB, which 
is lower than the minimum of 384MB for overhead. The YARN container size for the 
AM will be 777MB + 384MB, which is 1,161MB. 

The default value of this property is 1,024MB, so to allocate 1,161MB in our case, 
YARN needs to round up things and allocate a container that’s 2,048MB (2GB) in 
size for the AM. So, our AM container will have 2GB RAM (with a Java heap size 
of –Xmx777M) and 4 CPU cores per our configuration.

Note

In Spark on YARN, executors run inside “containers.”

Resource Allocation for the Driver in the Cluster Mode
In the yarn-cluster mode of operation, the Spark driver runs inside the YARN 
ApplicationMaster process. So, the resources you allocate for the job’s ApplicationMaster 
are what determines the resources available to the driver. Following is how you con-
figure the driver-related resource configuration properties that control the resource 
allocation for the ApplicationMaster.

 n spark.driver.cores: This is how you specify the number of cores used by the 
driver in the YARN cluster mode. Since in the cluster mode the driver runs inside 
the same JVM as the YARN ApplicationMaster, this property controls the CPU 
cores allocated to the YARN ApplicationMaster process. For example:

spark.driver.cores 2 (default is 1)

In a production setting, raise the value of this parameter to something like 8 or 16.
 n spark.yarn.driver.memory: Specifies the amount of memory for the driver in 

the cluster mode. For example:

spark.yarn.driver.memory 1024m (default is 512m)

The default is only 0.5GB, and in a production setting, just as you do for the 
spark.driver.cores property, you must raise the value of this property to some-
thing like 8 or 16GB.

If you were to set these parameters at the command line when submitting your Spark 
application, you’d do it like so:

$ yarn-cluster /opt/test/spark/spark-1.3.1/bin/spark-submit 
--class org.apache.spark.examples.SparkPi  \
--driver-memory 1665m \
--driver-cores 2 \
/opt/test/spark/spark-1.3.1/lib/spark-examples*.jar 1000
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Note that, as with the client mode, there’s an analogous property named spark
.yarn.driver.memoryOverhead for specifying the off-heap memory in the cluster mode. 
This property is by default 10 percent of the memory you assign to the ApplicationMaster, 
with a minimum value of 384m.

As with the extra memory you allocate for the individual executors, the off-heap 
storage memory for the driver is a dynamic entity. Thus, although you assign 10 percent 
for the off-heap storage, the actual usage will be between 6-10 percent over the life of 
the application. 

Tip

In the yarn-cluster mode, when you configure the Spark driver resources, you are indi-
rectly configuring the YARN ApplicationMaster service since the driver runs inside the 
ApplicationMaster.

Now that you’ve learned how to configure resources for the Spark driver, it’s time to 
find out how to allocate resources for the executors.

Configuring Resources for the Executors
All Spark work is performed on the worker nodes—that is, all the tasks run on the worker 
nodes. You assign almost all of the resources for a Spark job to the executors, which run 
within JVMs. The only entity other than the executors for which you assign memory is 
the driver, and compared to the total amount of resources you allocate to the executors, the 
driver’s resources aren’t that high. Figure 19.2 shows the architectures of the executor 
and task.

There are two aspects to managing the executors:

 n Configuring the number of executors
 n Allocating resources (RAM, etc.) to the executors

SparkContext Cluster Manager

Driver Program

Worker Node

Executor Cache

TaskTask

Worker Node

Executor Cache

TaskTask

Figure 19.2 The architecture of the executors and workers running on a worker node
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Tip

The spark.executor.memory property is specific to the JVM. When using pySpark, make 
sure there’s enough memory left for running Python itself.

Configuring the Number of Executors
Regardless of the mode of operation (client or cluster), there’s only a single driver. However, 
you can control the number of executors with the spark.executor.instances property 
(or the --num-executors command-line f lag). 

The default value for the spark.executor.instances property is 2.
If you choose to configure dynamic allocation (spark.dynamicAllocation.enabled) 

and set the spark.executor.instances property, dynamic allocation is turned off. 
Spark uses the number of executors you specify instead. This means that the spark
.executor.instances property overrides the spark.dynamicAllocation property.

If you turn on dynamic allocation (explained in the following section), you must 
ensure that you don’t set the spark.executor.instances property, since Spark appli-
cations automatically increase or decrease their requests for executors based on the 
workload of pending tasks.

Tip

When dynamic allocation is turned on, you can override it by setting the –num-executors 
flag or the spark.executor.instances configuration property.

In Spark an executor is synonymous with a container so far as resource allocation is 
concerned—one executor, one container. Therefore, allocation of executors for Spark 
turns into the allocation of containers by YARN. When Spark calculates the number of 
executors it needs, it communicates with the ApplicationMaster, which in turn contacts 
the YARN ResourceManager to request the containers.

Allocating Resources for the Executors
Unlike in the case of the resource allocation for the driver process, when it comes to 
allocating resources for the executors, you do the same thing in both the client and the 
cluster modes. 

Use the following two parameters to set the memory and CPU allocations for the 
Spark executors that perform the grunt work for the Spark applications.

 n spark.executor.memory: Configures the Java heap memory for the executors. 
You can also configure this by setting the –executor-memory f lag. The spark
.executor.memory property configures the size of the Java heap for the executors. 
You inf luence the following two key areas of Spark execution by setting the 
executor memory: 

 n The amount of data Spark can cache
 n The maximum size of the shuff le used for aggregations, joins and grouping

 n spark.executor.cores: Sets the number of cores for an executor. You can also 
add the --executor-cores f lag to set this property.
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JVMs use some Java heap memory for things such as internal strings and direct byte 
buffers (this is also called off heap usage). Spark adds the value you set for the spark
.yarn.executor.memoryOverhead property to the executor memory when making its 
full memory request to YARN for allocating the executor memory. The default for this 
memory overhead is max (384MB, 0.10*spark.executor.memory) and is determined by 
the parameter spark.yarn.executor.memoryOverhead. This parameter thus determines 
the amount of off-heap memory to be allocated per executor. This memory is used by the 
executor for storing entities such as internal strings, other native overheads and so on. 
Note that this tends to grow with the size of the executor size and ranges between 6-10 
percent on average.

When YARN assigns the memory to the executors, some rounding up is involved. 
The YARN properties yarn.scheduler.minimum.allocation-mb and yarn.scheduler
.increment-allocation-mb determine the actual size of the minimum and incremental 
requests for RAM. 

The default value of 1GB is too low for many Spark applications. In a production set-
ting, you can raise the value to a much higher value such as 3, 8 or 16GB per executor.

When you configure multiple tasks per executor, the memory you assign for the 
executor (spark.yarn.executor.memory) is divided equally among the tasks.

Figure 19.3 shows where the Spark executor memory allocation sits relative to the total 
memory you allocate to YARN through the yarn.nodemanager.resource.memory-mb 
parameter.

Tip

The number of CPU cores you assign per executor determines the number of concurrent 
tasks per executor.

About 5-6 tasks per executor usually will achieve full write throughput. If you 
allocate more CPU cores than this, the HDFS client will find it hard to process all the 
concurrent threads. So, too many executor threads aren’t advisable. The executors you 

yarn.nodemanager.resource.memory-mb

Executor Container

spark.executor.memory
spark.yarn.
executor.

memoryOverhead
spark.shuffle.

memoryFraction
spark.storage.

memoryFraction

Figure 19.3 How the executor memory fits into the YARN memory 
and the components of an executor container
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assign for a job won’t be released until the job finishes, even though you may not be 
using them. Thus, keeping the number of executors low will keep you from wasting 
the cluster resources.

Tasks and Executors
By setting the number of cores an executor can run, you’re really configuring the number 
of concurrent tasks an executor can run. Each processing core runs a single process, in 
this case a task, at a time. So the number of tasks that can be run by an executor is hard 
limited by the number of processor cores you configure for that executor.

The amount of memory that’s available to any single Spark operation is limited to 
the memory you give to an executor divided by the number of tasks running inside that 
executor.

As with the driver memory allocation, there’s a way to specify off-heap memory for 
overhead. The spark.yarn.executor.memoryOverhead parameter helps set the overhead, 
and it works the same way as its counterparts for the driver memory allocation. That is, 
it is 10 percent of the value you set for the spark.executor.memory parameter:

spark.yarn.executor.memoryOverhead = executorMemory*0.10 (minimum of 384m)

The following example shows how to set all the properties I’ve discussed thus far 
when submitting your Spark application:

$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi \
    --master yarn \
    --deploy-mode cluster \
    --driver-memory 4g \
    --executor-memory 2g \
    --executor-cores 1 \
    --queue thequeue \
    lib/spark-examples*.jar \
    10

Table 19.1 summarizes the way you allocate containers for Spark executors.

Table 19.1 A Summary of the Resource Allocation for a Spark Executor

Configuration Description Default Value

spark.executor.instances 
(--num-executors)

Number of executors 2

spark.executor.cores 
(--executor-cores)

Number of CPU cores per 
executor 

1

spark.executor.memory
(--executor-memory)

Java heap size per executor 512MB

spark.yarn.executor.memory
(overhead minimum is 384MB)

off-heap memory executorMemory * 0.10



ptg18444370

670 Chapter 19 Configuring and Tuning Apache Spark on YARN

How Spark Uses its Memory
In the previous sections, I explained how you allocate memory to Spark by allocating 
memory to the driver and executors. How exactly does Spark use this memory you 
allocate to it? Spark uses the memory allocated to it for two purposes: executing code and 
storing data. Memory Spark uses for execution includes the memory required by oper-
ations such as shuff les, joins and sorts. Storage memory is what Spark uses for caching and 
moving internal data across the cluster.

Storage and computation use the same pool of memory—when no memory is being 
used for execution, storage can use all the available memory and, similarly, execution 
can use all the memory when no data is being cached in memory.

The need for more execution memory can lead to eviction of objects occupying 
memory, until memory used for storage falls under a threshold. The threshold means 
that applications that cache RDDs can in effect guarantee or reserve a minimum stor-
age space in which to store RDDs without the fear of those RDDs being evicted. 

Note 

The default values for spark.memory.fraction (0.75) and spark.memory.storageFraction  
(0.5) are true for Spark 1.6. For Spark 2.0, the values are 0.6, and 0.5, respectively.

Configuring Memory Usage
In order to understand how Spark assigns memory for execution and storage, I use the 
following symbols to represent various components of memory (see Figure 19.3 for a 
graphical representation of Spark memory allocation):

 n M: Represents the unified memory for storage and execution
 n R: Minimum storage space (the threshold) below which you can’t evict 

RDDs from storage

Use the following two configuration properties to adjust the memory available for 
storage and execution:

 n spark.memory.fraction: This fraction expresses M as a fraction of the JVM 
heap space. The default value is 0.75. What this means is that 25 percent of the 
memory you allocate to the executor is used for storing entities such as user data 
structures and internal Spark metadata. In reality, this fraction shows M as a fraction 
of the JVM. Apache Spark recommends that you leave this property at its default 
value.

 n spark.memory.storageFraction: This parameter helps configure the size of 
reserved memory (R) for storage as a fraction of total memory—that is, R as a 
fraction of M. The default is 0.5. Note that in Spark 2.0, the spark.memory.fraction 
property defaults to 0.6 and this property (spark.memory.storageFraction) has 
a default value of 0.5. This means that any RDDs cached by an application are 
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protected against eviction until they cross the threshold of 50 percent of the memory 
allocated for storage. Note that the higher you make this value, the less working 
memory there is for execution, and tasks may spill to disk more often. Apache Spark 
recommends that you leave this property at its default value.

The default value of 0.5 for this property means that Spark uses 50 percent of the 
executor’s memory to cache RDDs and the other 50 percent for storing regular 
objects during the execution of tasks. If you’re beset by excessive garbage collection, 
you may decide that you don’t need 50 percent for the RDDs and reduce it to say 
40 percent so 60 percent is available for object creation, thus lessening the need for 
garbage collection. Here is how to change the memory fraction going to RDD 
storage:

$ spark-shell --conf spark.storage.memoryFraction=0.4

If Spark is spending too much time performing garbage collection, you can reduce 
the fraction of memory devoted to RDD caching by lowering the value of the 
spark.memory.storageFraction property.

So, How Much Memory Can an Executor Really Use?
The memory you allocate to the executors is key to how a Spark application performs. 
Let’s say you set the value of the spark.executor.memory property at 4GB. How much 
of this do the tasks running inside an executor get to actually use for executing code? 
The following analysis shows how much memory the executor can actually use for 
executing code.

1. Before it does anything, Spark subtracts about 300MB as “reserved memory”
from the Java heap, which is 4GB in this example. So, you’re now left with
4,096 – 300 = 3,796MB in the Java heap.

2. The spark.memory.fraction parameter, whose default value is 0.75, will shrink
the available memory to 0.75 * 3,796MB = 2,847MB or 2.78GB.

3. The spark.memory.storageFraction property (default value 0.5) will ensure
that 50 percent of the memory left for the executor in step 2 is reserved for stor-
age where it can cache data. The storage fraction in our example then is
0.5 * 2,847MB = 1,423.5MB. This is the initial storage memory region size.

4. The executor can use the other 50 percent—that is, 1,423.5MB—for executing
the application code.

I’ve done this little exercise for a good reason. Take a good look at your application 
and figure out approximate ratios for storage and execution. Based on this, adjust the 
values of the spark.memory.fraction and the spark.memory.storageFraction properties. 
Spark recommends that you leave the default settings on since they apply to most use 
cases. However, each Spark application is different, so in some cases you may pay no heed 
to the recommendation and feel free to adjust the values of these two critical memory-
related parameters.
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Finding Current Memory Usage
If you want to figure out how much memory an RDD needs, the best thing to do is to 
go ahead and create the RDD and cache it. You can then review the Spark web UI’s 
Storage page statistics to figure out current memory usage by the RDD. 

You can use the SizeEstimator’s estimate method to estimate the memory used by 
a specific object. You can find details about the SizeEstimator here:

https://spark.apache.org/docs/1.4.0/api/java/org/apache/spark/util/SizeEstimator.html 

You can try out various storage/execution memory settings to optimize memory usage.

Things to Remember
Following are some of the important things you may want to think about when config-
uring resources for the Spark driver and the executors.

Use Trial and Error for Sizing the Executor Memory
If you run the executors with an excessive amount of memory, garbage collection (GC) 
could get lengthier and bite you. However, in many cases you need to set a higher memory 
allocation for the executors since the default is only 1,024MB. You can try different 
higher settings during your tuning exercises to find the appropriate number for a specific 
application. In most cases you don’t need to size the memory for an executor larger than 
6GB. Around 40GB seems to be a good size for high memory allocation to a single executor. 
Any higher, and garbage collection could end up adversely affecting application perfor-
mance, although this is mitigated if you’re using newer GC methods such as G1GC. 

Note

A task will process a single RDD partition on a single CPU core.

Limit the Number of Tasks per Executor
In general, a small number of large executors yields better results than having a large 
number of small executors, which requires moving data around through the network. 
You don’t gain much by increasing the number of cores per executor beyond 4 or 5. 
This number of cores means there will be 4 or 5 tasks running concurrently per executor, 
and together, they can get you a pretty high write throughput. 

If you have too many threads running at the same time, the HDFS client may have 
trouble keeping up. You’re likely to see HDFS I/O issues in this scenario.

Executors with just one task negate the benefits of running multiple tasks per container 
( JVM). You’ll learn in Chapter 20 that broadcast variables are replicated on each 
executor. If you have too many tiny executors (a single core and just enough memory to 
run one task), you’re holding too many copies of the same data. If you were to use larger 
executors you could reap the benefits of running multiple tasks within the same JVM—in 
this case, all the tasks inside an executor can use the same copy of the broadcast variable.

There’s also a tradeoff you need to consider between a large number of executors 
(num-executors) and large memory (executor-memory) for an executor. Larger amounts 

https://spark.apache.org/docs/1.4.0/api/java/org/apache/spark/util/SizeEstimator.html
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of memory for an executor does not always translate into better performance. Excessive 
memory for executors is not advisable since it may lead to too many garbage collection 
delays. Thus, it may be better to configure a larger number of smaller executors, rather 
than a few executors running with large JVMs.

Here’s a simple example (inf luenced by Sandy Ryza’s excellent article on tuning Spark 
jobs, available at http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-
spark-jobs-part-2/).

Let’s assume you have 6 nodes, each with 72GB of memory, and 16 processor cores. 
Leaving a good amount for general overhead, you can allocate 64GB of memory for YARN 
by setting the yarn.nodemanager.resource.memory-mb parameter to 64GB on each node.  

You can create a very small number of executors and assign each of them a large number 
of resources, as shown here:

--num-executors 6 (1 executor per node)
--executor-cores 15
--executor-memory 60 g (don't forget that you'll need to account for some memory 
for executor memory overhead as well)

Using 15 cores per executor is overkill and will lead to a poor HDFS I/O throughput. 
You can alternatively do the following, where you create a very large number of execu-
tors, each with the minimum amount of cores (1):

--num-executors 90 (15 executors per node)
--executor-cores 1
--executor-memory 4g

This isn’t great either, since you’re using too fine-grained a resource allocation, with 
numerous tiny executors running around. Running too many small executors means 
that you can’t benefit from running multiple tasks within a single JVM. When you want 
to use the broadest variables for optimal performance, for example, you’ll need to repli-
cate them on each executor. Too many executors mean that there’ll be a lot of copies of 
the data. A much better strategy would be to configure things in the following way:

--num-executors 17 (3 executors per node for 5 nodes and 2 executors for the  
sixth node)
--executor-cores 5
--executor-memory 19g

In this configuration, you’ll end up with three executors running on five of the six 
nodes, with the last node running just two executors, since it also runs the Application-
Master. The executor memory of 19GB per executor was arrived at by using the following 
simple set of computations: 

Total memory YARN can use on a server = 64g

Initial executor memory is calculated as 64/3 = approximately 21GB. You subtract 
0.07 of this to account for the executor memory overhead. The remaining amount of 
memory is what you can allocate to each of the executors, as shown here:

21*0.07 = 1.47
21 – 1.47 = 19

http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
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Type of Workloads and Resource Allocation
In practice, your resource allocation for the executors will depend on your workloads. 
Here are some guidelines:

 n In ETL jobs, you often have map-only jobs, or just a few reduces. Since ETL jobs 
don’t often cache their data, you don’t need to specify a storage fraction for these 
types of jobs. In other words, you can set the value of spark.memory.storageFraction 
to zero for these types of jobs. You can start out with executors sized at 2-4GB 
(--executor-memory 4g, for example) and two cores (--executor-cores 2).

 n Data analysis jobs benefit immensely from caching, since Spark often repeatedly 
queries the same datasets. How high the executor memory ought to be will depend 
on the size of the dataset.  If you assume it’s going to take around 2GB of memory per 
gigabyte of data, and your dataset is 40GB in size, executor memory will be 40GB 
(--executor-memory 40g). If you are working with a machine-learning job, where 
the application driver does heavy work during the building of the model, you can 
bump up the memory to the driver, say by specifying a value such as spark.driver
.memory=3g.

Probably the best way to figure out how to optimally allocate memory to your Spark 
jobs is to check the memory usage by jobs in the Spark UI.  Under the Executors tab, you 
need to focus on the following two columns to check memory usage:

 n The Storage Memory column shows the current storage memory allocation 
to the executors and the driver. This column shows both the amount of memory 
available and the memory that’s being actually used on each executor for caching 
data. If you notice that the executors are using all of the memory under Storage 
Memory, you may want to increase the size of the executor.

 n The Shuff le Write column ref lects the amount of data that was spilled to disk 
before performing a shuff le operation. If you see a large amount of shuff le writes, 
increase the memory for execution to reduce the intermediate disk writes because 
of the shuff le operations.

Cluster or Client Mode?
In the client deployment, your spark-submit script creates the driver in the same process 
as submit-script. You can easily track and debug the application since the output messages 
are printed right on the screen. If you issue the spark-submit command from your laptop 
and then shut down the laptop to go home or something, the job is going to die, whereas 
in the cluster mode it doesn’t matter—once you launch the job, it’ll continue to run on the 
cluster’s nodes. When you run in the cluster mode it is the ResourceManager that deter-
mines on which specific node the driver process will run—you can’t specify it. Therefore, 
it’s important that you set up all the dependent libraries, such as the JAR files and Python 
.py files, on all the nodes of your cluster.

While the client mode is mainly meant for REPL (read-evaluate-print-loop) based 
experimentation and development (you can get results immediately), and not considered 
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suitable for running long-lived Spark applications, there are some good reasons to use this 
mode in a production setting. I show a good example later in this section.

The spark.driver.maxResultSize configuration property determines the total size 
of all the partitions in each Spark action, such as collect(). The default value of this 
property is 1GB, and you may want to bump it up when dealing with large datasets since 
the job will be killed if the total size of the partitions is beyond the limit you set for this 
property. If you’re going to raise the value of this parameter, make sure you also bump 
up the value of the configuration property spark.driver.memory.

Tip

A value of 0 for the spark.driver.maxResultSize configuration property makes its 
value unlimited.

When dealing with a long-running Spark application, it’s useful to know that Spark 
stores all metadata, such as stages and tasks, that it has generated during the course of the 
application run. By default, Spark retains this information throughout the length of 
the application run. When you run Spark for days on end, such as in a Spark Streaming 
application, you can tell Spark to periodically get rid of metadata older than a threshold. 
You do this by setting the spark.cleaner.ttl parameter to a positive number (in seconds). 
The default value is infinite: and could prove to be a drain on the driver’s memory. 
Remember that when you do this, Spark will also remove all RDDs that have been in 
memory for longer than the duration you’ve set. 

It’s important to understand that the driver isn’t merely in charge of telling executors and 
tasks which operations to perform. Often it also centralizes data that its gets from all the 
executors running as part of a job. For example, the collect() method on an RDD will 
end with all executors sending their data to the driver. When an application is crunching 
through very large data files that are in the terabytes range, especially, the application may 
crash since the driver often doesn’t have the amount of memory to store these large data sets.

Tip

If your job aggregates large amounts of data (for example with a collect() action), 
allocate more memory to the driver. Otherwise, driver memory can be quite small.

Let’s say you want to join two 1TB data sets. Your Hadoop/YARN cluster nodes all 
have 256GB of RAM. The two files need to be joined in memory but none of the nodes 
in your cluster can handle it if you run the job in the yarn-cluster mode. A better strategy 
here would be to run the job from a client that you’ve built with a very large amount of 
RAM, such as 3TB, and run the job in the client mode. The driver will run from that 
special node, and Spark can now perform the join in its memory. You can launch all other 
Spark applications in the yarn-cluster mode.

Frequently, applications are submitted from a gateway machine that’s physically 
co-located with the worker nodes. Client mode works well in this case. If you’re going 
to submit applications from machines not co-located with the worker nodes (say from 
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your laptop), cluster mode will be better since it’ll minimize the network latency 
between the driver and the executors.

Configuring Spark-Related Network Parameters
Spark uses the Akka framework for its network communications. There are two import-
ant network configuration properties you may need to adjust in a production environment:

 n spark.akka.framesize: This property, whose default value is 128 (MB), sets the 
maximum message size for messages sent between the driver and the executors con-
cerning the map output size. You may want to change this if a job is running a very 
large number of map and reduce tasks and you notice references to the frame size.

 n spark.akka.threads: This property sets the number of akka actor threads to use 
for communication. If you’ve configured the driver with many CPU cores, you 
may need to raise this from its default value of 4.

Dynamic Resource Allocation when Running 
Spark on YARN
Under dynamic execution, a Spark job doesn’t reserve executors in advance. It simply 
acquires executors and relinquishes them as the jobs progress. When the first job finishes, 
Spark releases the executors that were assigned to this job back to the cluster, so other appli-
cations can use those resources. The Spark application will acquire a new set of executors 
only when a new jobs starts. As you can tell, this increases the rate of utilization of the cluster.

You can set the number of Spark executors with the spark.executor.instances 
property as explained in the following section.

However, Spark allows you to dynamically adjust the resources an application con-
sumes based on its workload. This means that the application won’t run with a fixed 
number of executor processes—the number of executors will go up and down based on 
the application’s workload.

Dynamic and Static Resource Allocation
In order to understand how dynamic resource allocation helps you, you need to delve 
deeper into how Spark handles the executors. Executors tend to be long running—
once a job finishes, the executors aren’t immediately killed with the job. Rather, they 
remain after the current job finishes and are reused by future jobs. This lets the future 
jobs access the intermediate data cached in memory.

Spark’s execution model is quite different from that of MapReduce and similar sys-
tems. Whereas MapReduce launches short-lived containers for each map and reduce task 
(containers are killed after the map or reduce task completes), Spark reuses long-running 
executors for speed. Long-lived executors mean that when you’re running jobs from 
spark-shell, the spark-shell may become idle, but it continues to hang on to the cluster 
resources for a long time, which means other applications can’t use those resources. This is a 
static resource model then and results in more resources being allocated than are used.
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Note

Dynamic allocation lets you take advantage of Spark’s speed due to its reuse of cluster 
resources, without getting hurt by Spark’s tendency to hold onto resources for a long time.

Dynamic allocation is intended to more efficiently utilize a cluster’s resources. It allows 
Spark applications to scale the executors up and down based on your workload. It removes 
executors if they’re idle (for N seconds) and if it needs more executors, it requests them. 
Additional executors are requested when there are pending tasks. The scaling up of exec-
utors is done in multiple rounds, with an exponential increase in the number of executors 
over time, as long as Spark sees that there are pending tasks. Spark uses the exponential 
growth strategy in case it needs many executors.

Long running ETL jobs, interactive applications using the Spark shell and any appli-
cations with large shuff les are all good use cases for dynamic allocation of resources.

How Spark Manages Dynamic Resource Allocation
Spark monitors the number of pending tasks periodically, to determine if it should increase 
or decrease the number of executors. If there is a large backlog of pending tasks, Spark 
applications will add executors in a progressively increasing fashion, by adding 1, 2, 4 and 
8 executors or more. 

You can configure dynamic resource allocation at a fine-grained level by using the 
following configuration properties:

 n spark.dynamicAllocation.schedulerbacklogTimeout: This is the duration 
(in seconds) for which there have been pending tasks waiting for resources.

 n spark.dynamicAllocation.sustainedSchedulerBacklogTimeout: This is 
the same as the previous parameter, but it is used for subsequent executor 
requests.

 n spark.dynamicAllocation.executorIdleTimeout: If the executors have been 
idle for the duration specified by this property (in seconds), Spark de-allocates 
the idle executors.

Enabling Dynamic Resource Allocation
By default, dynamic allocation is disabled. In order to set up your applications for dynamic 
resource allocation, make the following configuration changes:

1. Set the spark.dynamicAllocation.enabled property to true in Spark’s config-
uration file (spark.default.conf ) or in the application.

2. Set up an external shuff le service in the worker nodes. You do this by adding
the spark-<version>-yarn-shuff le.jar file to the class path of the NodeManagers
running on each of the nodes in the Hadoop cluster. The location of this JAR
file varies. If you build Spark yourself, it’ll be under $SPARK_HOME/network/
yarn/target/scala-<version>.
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3. On each of the cluster’s nodes, add spark-shuffle to the yarn.nodemanager
.aux-services property (yarn-site.xml file).
<property>
<name>yarn.nodemanager.aux-services</name>
<value>spark_shuffle</value>
</property>

4. Set the yarn.nodemanger.aux-services.spark-shuffle.class to org.apache
.spark.network.yarn.YarnShuffleService. (in the yarn-site.xml file).
<property>
<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
<value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property>

5. Set the spark.shuffle.service.enabled property to true.

6. Restart the NodeManagers on all nodes.

Enabling dynamic resource allocation obviates the need for specifying the number 
of executors each time you run a job with the –num-executors property. Spark and 
YARN together will take the responsibility of adjusting the number of executors based 
on the workload.

Dynamic resource allocation is a truly useful feature—long-running Spark jobs that 
are resource intensive won’t hog critical resources, instead releasing them back to YARN 
so it can use them for other jobs. 

Strategy—Use Higher-Level APIs

Using a higher-level rather than a lower-level API is in most cases a smart way to improve 
performance. This means that you use

 n DataFrame APIs for core processing instead of RDDs

 n Spark ML instead of Spark MLib for machine learning applications

 n Spark SQL for structured query processing

Storage Formats and Compressing Data
The way you store the input data for Spark processing is crucial to the performance of 
Spark applications. You consider the same variables when evaluating the appropriate 
file format for Spark processing as you do when dealing with MapReduce processing, 
as explained in Chapter 10, “Data Protection, File Formats and Accessing HDFS.” The 
key considerations for the file format then, are

 n Splittability of the file
 n Can the file splits be processed in parallel?
 n Size of the files
 n Compression possibilities and available compression codecs
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Storage Formats
You can store data in various storage formats. Spark can handle both structured and 
unstructured storage formats, such as text files, SequenceFiles and Hadoop file formats.
CSV files, JSON files and XML files are special, structured text files.

As I explained in Chapter 7, “Running Spark Applications,” you can use the textFile 
method to let Spark read a text file. Spark can also read a set of text files from a folder 
in a single move using the wholeTextFiles method.

Let’s see how to best handle the specialized text files when working with Spark.

CSV Files
In order to analyze data sorted in the CSV format, you need to create a DataFrame on 
top of it. While you can use the default textFile method and specify a schema yourself, 
there’s a better alternative. Use the Databrick’s spark-csv package to make things easier. 
Here’s an example showing how to use the spark-csv package:

val df = sql.Context.read
.format("com.databricks.spark.csv")
.option("header", "true"),
.option("inferSchema", "true").load("mydata.csv")

JSON Files
You can provide the schema programmatically or let Spark infer the schema from the data. 
There are two benefits to providing the data yourself:

 n It saves time since Spark doesn’t have to read the whole dataset to infer the 
schema.

 n You can make Spark ignore the fields you don’t need by specifying only the 
fields you want.

XML files do not work well as a file format because of their verbosity and their 
not having an XML object for each line. Due to these reasons, these files can’t be read 
in parallel. You can use the textFile method to read an XML file, but then you’ll 
be reading it line by line. Although it’s not great performance-wise, you can use the 
wholeTextfile method (explained in Chapter 7) to read files when the XML files are 
small enough to fit in memory. The key of the resulting pair RDD will have the file’s 
path, and the text file will be the value.

SequenceFiles
SequenceFiles are a popular Hadoop storage format, since you can efficiently process 
them compressed and uncompressed. The sync markers of SequenceFiles make it easy 
to identify record boundaries. You can parallelize any work you do with SequenceFiles.

Avro Files
Avro is a binary data format where the schema is stored together with the data, making 
it easy for any application to read the data.
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The Spark package spark-avro reads and writes Avro files and converts the same from 
Avro to the spark SQL schema. Here’s how to load an Avro file:

import com.databricks.spark.avro._
val avroDF = sqlContext.read.avro("pathToAvroFile")

Parquet Files
Parquet is recommended as a storage file format for Spark SQL. Parquet is a columnar 
file format, which means that you read only the required columns when performing 
aggregation queries. Parquet file format is efficient storagewise, and is also very efficient 
compressionwise.

Spark SQL lets you process Parquet files both while preserving the schema and when 
the schema evolves as when you add new columns to data over time. Schema evolution 
is a feature that can detect and merge the schema changes.

Here’s an example that shows how you read a Parquet file with schema merging in 
effect:

val parquetDF = sqlContext.read
.option("mergeSchema", "true")
.parquet("parquetFolder")

Parquet storage format is great when the source data is partitioned. Let’s say the data is 
partitioned into multiple files such as file1.parquet, file2.parquet and file3.parquet. When 
you issue a Spark SQL query, Spark will read only those file folders that are required by 
the WHERE clause of the query.

File Sizes
HDFS stores data in blocks, and each HDFS block is mapped to a single partition, which 
processes all the data in that partition. So, the number of tasks is proportional to the 
number of blocks and thus the size of your dataset.

HDFS uses a separate block for each file, regardless of the size of the file. So, if you 
have a large number of small files, you’ll be running too many tasks, stressing the driver 
for the application, which needs to track all these file paths. This results in memory 
pressure on the driver.

If you’re using large files and the files aren’t splittable, each of them has to be handled by 
a single task, which leads to very large partitions—which leads to inefficient data processing.

Compression
You use compression to reduce storage requirements. Here, the compression codec 
(defined and explained in Chapter 10) plays a key role in determining how efficiently 
your data is processed. Suppose you have a file that’s 10GB in size and your HDFS data 
block size is 256MB. You’ll thus need 40 blocks to store the data and, therefore, 40 tasks 
to process the data in that file. If this file were to be stored in the gzip format, however, 
Spark can’t run these 40 tasks in parallel to decompress the data, as the gzip format won’t 
allow the decompressing of a single block apart from the rest of the blocks. You end up 
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with just a single task having to process the entire large file, which makes for very slow 
processing, of course.

As I explained in Chapter 10, when working with compressed data you’re engaging 
in a tradeoff between the compression ratio and speed. Here’s a summary:

 n gzip offers a good compression ratio. This compression codec is not splittable.
 n bizp2 offers an even better compression ratio than gzip and is splittable.
 n lzo and lz4 don’t offer great compression ratios, but they are very fast. lzo is not 

splittable unless indexed.
 n Snappy is very fast and is splittable.

The Snappy compression codec deserves special mention since it’s blazingly fast and 
is splittable. Since it offers great decompression speeds, if you’re planning to read the same 
dataset often, Snappy makes for a good choice.

You must be careful in how you evaluate the splittability of a file. You need to con-
sider the file format as well here. Let’s say you compress a file in the text format with a 
non-splittable compression codec. When Spark compresses the file, it does so by com-
pressing the entire thing into a single block, using just a single task to do so. However, 
if you were to use a format such as SequenceFiles or optimized row columnar (ORC) 
files that support a block structure, Spark can compress the file in parallel using multiple 
tasks, since the compression can be applied to each block.

Unsplittable files should be small enough that they can be handled by a single Spark task.

Setting the Local Directories for Spark

The spark.local.dir property sets the directory you want to use as a scratch space 
for Spark—this will serve to store both the map output files and the RDDs that Spark 
stores on disk. 

Since I’m discussing Spark on YARN, in the cluster mode, the value you set for the 
yarn.nodemanager.local-dirs parameter (or the LOCAL_DIRS environment variable) 
for YARN will override the value you’ve set for the spark.local.dir property. That is, 
both the Spark executors and the Spark driver will use the local directories you’ve con-
figured for YARN with the yarn.nodemanager.local-dirs parameter. 

In the client mode, however, the Spark executor will use the local directories you con-
figured with the yarn.nodemanager.local-dirs parameter, but the Spark driver, 
since it doesn’t run on the YARN cluster in the client mode, uses the directories you 
specify with the spark.local.dir parameter.

Monitoring Spark Applications
The best way to monitor Spark applications and get detailed job statistics is to simply 
go to the Spark web UI. You can track Spark jobs just as you would a MapReduce job 
through the yarn command as well.
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Using the Spark Web UI to Understand Performance
The Spark UI is extremely useful in helping monitor running jobs as well as analyzing 
jobs that have competed execution.

Here’s the URL for accessing the Spark UI:

http://<driver_node-ip>:allocatedPort-default4040>

The default port is 4040, so when you launch a new application, the web UI is launched 
on port 4040. If multiple Spark drivers are running, Spark will go down the list of ports, like 
4041, 4042 and so on until it finds a free port to launch a web UI for the application.

The Spark UI has several useful tabs, as I explain in the following sections.

The Environment Tab
When you’re troubleshooting performance, it’s important to know the configuration in 
place when Spark ran a job. The Environment tab shows all the configuration parame-
ters when a job launched a Spark context, as well as all the JAR files used. Figure 19.4 
shows the Environment page in the web UI.

The Jobs Tab
The Jobs tab shows the currently executing jobs and compiled jobs. It shows the num-
ber of tasks and stages that were successful and the duration of the job itself. Figure 19.5 
shows the Jobs page in the Spark web UI.

The Stages Tab
The Stages tab shows all the stages both completed and running for all jobs. It also shows 
the amount of input processed as well as the amount of output created by the stages. The 

Figure 19.4 The Environment page showing the configuration parameters for a Spark job
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Figure 19.5 The Jobs page showing execution details of Spark jobs
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Stages tab is very useful in understanding how efficiently Spark is processing jobs, because 
this is where you can find out how much data is being handled by the shuff le process. 
Too much time performing shuff les usually means that you haven’t partitioned your data 
very well, that you aren’t using the right operations or a combination of the two.

The DAG Page
The DAG page shows how Spark schedules the stages in a Spark job. Understanding the 
DAG for key jobs is crucial, since it helps you identify the stage boundaries as well as 
the specific operations that are causing shuff les to occur and new stages to be created.

The Storage Tab
The Storage tab is useful when you want to find the status of the cache. It shows you 
the RDD storage level, the percentage of an RDD that’s cached, the size of the cache 
in memory, as well as the size of the cache on disk. If a Spark job doesn’t cache any RDDs, 
you won’t see a Storage page. 

Note 

Developers can also get the same information shown here by using the method 
SparkContext.getRDDStorageInfo().

The Task Metrics Tab
The Task Metrics page is where you find all the good stuff about memory usage and 
garbage collection. You can also find details about the duration of all the tasks in a job. If 
one task runs way longer than all the other tasks in a job, it’s an indication of data skew 
and hence an uneven load distribution among the tasks. Figure 19.6 shows the Task 
Metrics page.

Spark System and the Metrics REST API
Spark incudes a metrics system on each driver and executor that lets you get metrics 
sent by the master process, the worker processes, the driver and the executors. You can 
send the Spark metrics to various sinks. For example, you can use Spark’s Graphite Sink 
to send application metrics to the Graphite monitoring system. 

Spark comes with several REST APIs that let you get application metrics in a JSON 
format so you can build visualizations based on them. Here are the endpoints of the APIs:

http://server-url:18060/api/v1
http://<driver-node-ip>i<allocatedPort-default4040>/api/v1

The Spark History Server on YARN
The Spark job UI is useful to you only while a job is running. When a job completes, 
you won’t find any information in the job UI. Use the Spark history server for historical 
information about jobs that completed running. You can view details about older appli-
cations that were executed a while ago by going to http://<server-url> 18080.
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Figure 19.6 The Task Metrics page of the Spark web UI
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But first, you must start the history server as shown here:

$ ./sbin/start-history-server.sh

The address of the Spark History Server is provided to the YARN ResourceManager 
when the Spark application finishes. This creates a link between the ResourceManager 
UI and the Spark History Server UI. 

Tracking Jobs from the Command Line
In Chapter 17, “Monitoring, Metrics and Hadoop Logging,” I showed how to use Hadoop’s 
yarn commands to track jobs. You can use all those commands to track your Spark jobs 
as well, such as the following command that lists the running applications:

$ yarn application –list

Getting the Logs
Once you retrieve the application ID for a job, you can list the contents of all log files 
from all the containers that were created for an application like so:

$ yarn logs -applicationId <app_id>

And you can view aggregated logs for the job via the HDFS shell.

Debugging and Query Plans
You can get a description of an RDD and its lineage by using the toDebugString() method 
on the RDD. You can check the query plan through the DataFrame API by using 
DataFrame#explain().

Tuning Garbage Collection
Spark tends to store large chunks of data in memory; thus, Java memory management and 
how Java performs garbage collection (GC) of objects plays a big role in Spark perfor-
mance. Improving GC is critical to improving performance.

Ideally, a Spark application should be reusing the same RDDs for multiple operations. 
If an application uses a large number of RDDs, there’s going to be a higher amount of 
Java garbage collection. Since Java needs to make room for the new objects by removing 
older objects, finding the unused older objects takes effort. The more Java objects you 
have laying around, the larger the cost of garbage collection. Therefore, ideally, you 
should do the following:

 n Cache the objects in their serialized form—this ought to be your first strategy.
 n Use data structures with fewer objects, such as arrays of Ints rather than a 
LinkedList.
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The Mechanics of Garbage Collection 
In order to tune GC, one must understand the basics of how a JVM manages its memory. 
Here’s how the Java heap space is divided:

 n Old generation: Stores the objects with long lifetimes.
 n Young generation: Stores objects that are short-lived, such as temporary objects 

created during the execution of a task. The young generation has three regions: 
Eden, Survivor1 and Survivor2.

There are two types of garbage collections in a JVM:

 n Minor GC: Minor garbage collections are run on the Eden component of the 
young generation, when Eden gets full. Objects in Eden that are still in use are copied 
to Survivor2. If the objects are old or if Survivor2 is full, the objects are moved 
to the old generation.

 n Full GC: A full garbage collection is invoked when the old generation is full.

GC is often an issue since there’s an inherent conf lict (or tradeoff ) between the 
working memory that tasks need to perform their work and the need to cache RDDs.

Note

Each JVM (executor) must contain enough memory to support 2-3 tasks.

Your objective is to make sure that all the older (long-lived) objects are stored in the old 
generation and you have enough room in the young generation for storing new, temporary 
objects that have a short life. This will keep garbage collection activity to a minimum.

Note

The key to efficient management of the JVM memory is to keep full garbage collections to 
a minimum.

Full GCs adversely affect performance. So, if your GC status show that the old gen-
eration is near capacity, reduce the fraction of the memory devoted to caching RDDs 
(spark.memory.storageFraction). This will keep task execution from being slowed down. 
Any time you see multiple full GCs during a task execution, it’s a sign that the memory 
for execution has been under-configured—raise it.

If you notice too many minor GCs in the GC logs, raise the memory allocation for the 
Eden component of the young generation.

How to Collect GC Statistics
You can find out the frequency of garbage collection and the amount of time spent 
performing GC by specifying certain Java options at runtime, as shown here:

./bin/spark-submit --name "My app" --master local[4]
--conf "spark.executor.extraJavaOptions=

-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps" myApp.jar
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The two GC parameters shown here will write diagnostic information about garbage 
collection to stdout, so you can analyze GC behavior. Once you add these GC-related 
options, the worker logs will show the GC-related messages when a GC occurs.

You can analyze the heap dumps of running processes to check which structures are 
increasing the garbage collection. Often it’s code that creates objects for each row. This 
means the code needs to be modified.

Tuning Spark Streaming Applications
Our discussion of tuning the performance of applications using Spark Core applies to 
Spark Streaming applications as well. However, there are additional tuning parameters 
and configurations you can employ to improve streaming application performance.

The three main things so far as tuning Spark applications are concerned (other than 
the standard Spark tuning and configuration), are the following:

 n Reduce batch processing times
 n Set the right batch size so data processing keeps up with the rate of data ingestion
 n Tune memory usage and garbage collection (GC) overhead

Reducing Batch Processing Time
You can adopt various strategies to reduce the batch processing times, as summarized in 
the following sections.

Parallelize Data Ingestion
In order to keep data ingestion from being a bottleneck, you can parallelize the data you 
receive over the network from entities such as Kafka, Flume, and sockets. 

By default, each input DStream receives a single stream of data via the single receiver 
it creates. In order to parallelize the receiving of data, developers can create multiple input 
DStreams. Each input DStream will receive a different partition of the source data stream. 
For example, you could have two Kafka input DStreams, each receiving a different Kafka 
input stream. More receivers means a higher throughput. 

Instead of configuring multiple input streams and receivers to receive data, you can 
also repartition the input data streams with the following:

inputStream.repartition(<number of partitions>)

There are two parameters that determine the number of tasks per receiver for every 
batch—batch interval and block interval. The parameter spark.streaming.blockInterval 
lets you configure the block interval. Data that’s being ingested is consolidated into 
blocks of data before Spark can store it in memory. The number of tasks that are needed 
to process the received data is dependent on the number of blocks in each batch. You can 
increase the number of tasks to take advantage of available processing power by reduc-
ing the block interval. The recommended minimum value for this parameter is 50 ms.
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Parallelize the Data Processing
On the data-processing side, you should be always on the lookout to increase the degree 
of parallelism if you have sufficient processing power available. The Spark configura-
tion parameter spark.default.parallelism helps you set the default number of 
parallel tasks.

Setting the Right Batch Interval
In order to handle production data, your system should be able to keep up with the rate 
at which data is f lowing into the system. If the batch processing times are greater than 
the batch interval, you’ve got a problem, as you can’t sustain the data f lows.

The batch interval for a streaming application is quite critical. You can check the 
delay being experienced by a processing batch by looking for “Total delay” in the Spark 
driver Log4j logs. Experiment with various batch intervals, starting from a fairly high 
interval such as 5-10 seconds, and work your way down. Your goal should be to get to 
where the delay is steady and is comparable to the batch size.

Tuning Memory and Garbage Collection
All the memory tuning and configuration I’ve explained earlier in this chapter also 
applies to Spark Streaming. However, there are a few additional tuning parameters that 
apply to Spark Streaming applications.

Regarding memory, make sure you have allocated sufficient memory for streaming 
applications, as the data from receivers is stored with the storage level MEMORY_AND_
DISK_SER_2, which means data will be spilled to disk when it doesn’t fit in memory.

So far as GC goes, streaming applications demand low latency, and thus it’s imperative 
that you avoid major GC pauses. As explained in Chapter 20, using Kryo serialization 
instead of the default Java serialization reduces serialized sizes and memory require-
ments. The concurrent mark-and-sweep (CMS) GC is highly recommended to keep 
GC pauses low and keep batch processing times consistent. You must set the CMS GC 
on both the driver and the executor. On the driver you do it through the –driver-
java-options f lag and for the executors by configuring the property spark.executor
.extraJavaOptions.

Summary
Here’s what you learned in this chapter:

 n Choosing the number of executors, as well as the memory and CPU cores you 
allocate to executors, is critical to Spark job performance.

 n Dynamic resource allocation lets Spark automatically adjust the number of execu-
tors based on the workf low and thus uses resources effectively.
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 n The storage format of your input data and the compression strategy you adopt 
can make a considerable difference in the performance of Spark applications.

 n Make extensive use of the Spark web UI, not only to troubleshoot failed jobs, but 
also to understand the nature of a Spark application, such as the number of parti-
tions, the number of executions and the stages, as well as the amount of storage 
used and the locality of the processing. 
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This chapter covers the following:

 n Understanding the Spark execution model
 n Shuff le operations and how to minimize them
 n Selecting appropriate operators
 n Partitioning and parallelism
 n Understanding Spark’s query optimizer
 n Caching data

In the previous chapter, I focused on those aspects of Spark configuration that an admin-
istrator can control. I discussed how you allocate memory and CPU to a YARN-based 
Spark system. More specifically, I focused on how to allocate resources to the all-
important work horses of a Spark job—the executors—as well as how to choose an 
efficient file storage format. In this chapter, I review how one can tune Spark appli-
cations to improve performance. The focus here is more on how you can use Spark’s 
built-in features to write more effective application code.

There are two areas you need to focus on to optimize Spark applications. The first 
area focuses on writing optimal code and using appropriate operators to efficiently pro-
cess your data. Properly parallelizing your Spark jobs so you aren’t running too many 
or too few tasks is easier said than done, especially in the beginning, but it’s definitely 
something you should set your sights on doing, since it’s probably the single biggest 
determinant of performance for Spark applications. Also, you must learn the significance 
of shuff le operations and learn the best strategies to avoid or minimize data shuff ling, 
which could adversely affect performance. 

The second broad area that you need to learn about is how to use Spark’s built-in 
capabilities to your best advantage. This means using features such as partitioning and 
caching of data.
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To optimize Spark applications, it’s important that you get a good handle on how 
Spark executes an application. So I kick off this chapter with an overview of the Spark 
execution model.

Revisiting the Spark Execution Model 
Understanding the Spark execution model is the key to optimizing the performance of 
Spark applications, regardless of whether they’re run in a standalone Spark cluster or on 
YARN (or Mesos). Developers and administrators both will benefit from understanding 
the Spark execution model.

The Spark Execution Model 
Spark applications contain a single driver process and a bunch of executor processes 
running on various cluster nodes. The driver manages the workf low, and the execu-
tors perform the work through multiple tasks. In a YARN-managed Spark setup, the 
ResourceManager determines on which nodes the tasks can run.

Spark Applications
A Spark application consists of operations (transformations and actions) involving RDDs. 
RDDs are the heart of all Spark programming. A DataFrame is the core abstraction 
of the RDD and helps transform data into what appears to be a single object, masking 
the fact that it sits on top of data that’s potentially distributed across a large number of 
machines. 

When you launch a Spark application, a Spark job is created to perform the work. 
Spark first creates an execution plan based on the RDDs the action uses.

Jobs
An application gets its results by launching one or a set of jobs. A job involves the set of 
computations that Spark performs to return the results of actions on the RDDs back to 
the driver program that launches the application.

Note

A job is triggered by an action, such as count() or saveAsTextFile().

An application launches a job by calling an RDD’s action method. When the action 
method is invoked, the job starts. Depending on whether the RDD is cached, the action, 
and hence the job, starts by either retrieving the cached RDD data or reading the data 
from storage.

Spark will then apply the necessary transformations to create the RDD required by 
the action method. It also performs any computations that the action requires. Once all 
the transformations and computations are completed and the result is delivered to the driver 
program, the job completes.
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A Quick Summary of Spark Execution Terms

 n Task: A unit of execution that runs on a single node—there are one or more tasks 
per each executor.

 n Stage: A group of tasks, based on partitions of the input data, that perform the 
same computations on their chunk of the data in parallel.

 n Job: Same as an application. May have one or more stages.

 n Pipelining: The collapsing of RDDs into a single stage, when RDD transformations 
can be performed without moving data.

 n Directed acyclic graph (DAG): A logical graph of RDD operations.

 n Resilient distributed dataset (RDD): Parallel, read-only dataset (contains one or 
more partitions).

The Execution Plan
The execution plan starts with the RDDs that reference cached data or that aren’t 
dependent on other RDDs. The goal of the execution plan is to get to the final RDD 
that is required to get the action’s results.

Stages
The execution plan puts together the job’s transformations into different stages. Each 
stage of a job comprises a set of similarly coded tasks, with each task working on a 
subset of the data. The key here is that each stage’s transformations can be completed 
without shuff ling all of the data.

A shuff le is an expensive operation that redistributes data among the nodes of a cluster. 
Each chunk of data becomes a partition of an RDD. The distribution of data across the 
nodes isn’t random but based on specific criteria. 

A job consists of several stages, each of which consists of one or a set of tasks. A job 
is split into a DAG of stages. The way Spark groups tasks into stages is by using shuff le 
boundaries. A set of tasks that can be performed without having to perform a shuff le are 
put in the same stage. If a subsequent task requires the data to be shuff led, that marks the 
beginning of a different stage.

Tasks
Tasks are the entities that actually do the real work. Spark submits tasks to the executors. 
The scheduling of the tasks on a cluster’s nodes has a lot to do with data locality, which I 
explain in the section titled “The Importance of Data Locality” later in this chapter.

If there’s a node failure during task execution, Spark automatically resubmits the task 
to a different node.    

In order to understand how Spark decomposes a computation into tasks, let’s use the 
following example, which defines three RDDs—lines, lineLengths and totalLength.

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)
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Here’s what Spark does with our three RDDs:

 n lines: This is the base RDD, to be created from an external file. Right now it 
just points to the external file data.txt.

 n lineLengths: This RDD is also not computed right away due to Spark’s lazy 
execution model, because it’s an RDD defined as a result of a transformation 
(map) and not an action.

 n totalLength: This is the RDD that we’re really after, and the reduce action 
sets off the computations needed to create this RDD.

When Spark sees the reduce operation, which is an action on an RDD, it creates 
the tasks to be run on the cluster’s nodes to perform the computations, starting from 
the creation of the f irst RDD (lines) from the text f ile. Each node in the cluster runs 
a part of the map operation required to create the RDD lineLengths. The nodes also 
perform a local reduce before returning their portion of the answer (which is the RDD 
totalLength) to the driver program that launched the application and the tasks.

All Spark programs follow the same procedures as shown in our example in this 
section, namely:

1. Create an input RDD from external data.

2. Transform the base RDD with operations such as filter to define new, more
pertinent RDDs.

3. Persist any intermediate RDDs that the application may need to use later, using
the persist() or cache() methods.

4. Launch RDD actions such as count() or first() to start parallel computations
on the cluster’s nodes.

Note

Specifying the cache method  is equivalent to specifying the persist method  with the 
default storage level.

Shuffle Operations and How to Minimize Them
A shuff le is how Spark redistributes data so it’s grouped differently across all partitions. 
Let’s take the case of reduceByKey operation, which when called on a dataset of (K, V) 
pairs returns a dataset of (K, V) pairs where the values for each key are aggregated using 
the given reduce function func.

The reduceByKey operation generates a new RDD that contains all the values for 
a single key combined in a tuple. In order to compute this single key, all the values 
for the key must be located together on the same partition. So, in order to perform its 
reduceByKey reduce task, Spark performs what it calls an all-to-all operation—it reads 
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from all the partitions and retrieves all the values for all the keys and places them in a 
single partition so it can compute the result for each key—this is the shuff le operation. 

Both the reduceByKey and the groupByKey operations, as well as join operations such 
as cogroup and join, lead to a shuff le. In addition, the repartition operations repartition 
and coalesce also cause a shuff le.

A WordCount Example to Our Rescue Again
I’ll invoke that old standby, WordCount, to illustrate how shuff ling works. Let’s say you’re 
running the following simple WordCount program in Spark:

rdd = sc.textFile("input.txt")\
flatMap(lambda line: line.split())\
map(lambda word: (word, 1))\
reduceByKey(lambda x, y: x + y, 3)\
collect()

Spark compiles the necessary operations on the RDDs into a DAG. In a DAG, an RDD 
points to its lineage or the parent it is derived from or dependent on. Figure 20.1 shows 
how the different RDDs in our program point to their ancestors.

We know that a Spark job is always broken up into stages, each of which consists of 
tasks, with each task working on a different partition. Each of the stages is executed 
sequentially. How does Spark decide how to split the job into different stages? As long as 
the data in the RDDs is being transformed so that it’s grouped the same way as its parent, 
the data doesn’t need to be redistributed, and hence they remain in the same stage. In 
our example, f latmap and map don’t need to redistribute data, so they belong in the same 
stage—stage 1. Figure 20.2 shows how the job is broken up into stages.

The reduceByKey transformation requires redistributing data, so it marks a shuff le 
boundary, and the reduceByKey operation is performed in stage 2. The shuff le moves 
data across the cluster so it’s grouped differently across the partitions. Shuff le is inherently 
an expensive operation since it involves copying data across nodes. 
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Figure 20.1 How RDDs are derived from their parents
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Spark creates tasks to perform all the operations necessary to complete the jobs. 
Map tasks help organize the data, and reduce tasks aggregate the data. Within each 
stage, similar operations are “pipelined” into tasks and executed in parallel, as shown in 
Figure 20.2. Both reduceByKey and groupByKey are common examples of a distributed 
shuff le. While both of these functions will produce the correct answer, the reduceByKey 
operator works much better on large datasets. That’s because Spark knows it can com-
bine output with a common key on each partition before shuff ling the data.

Impact of a Shuffle Operation
Since a shuff le involves the copying of data across servers via the network and data 
serialization, it’s a costly operation in terms of both network and disk I/O. Shuff le is 
an expensive operation that involves sorting the data, repartitioning it and serializing/
deserializing when you send it over the network. It also involves the compression of data 
to reduce the disk I/O.

Increased Use of Memory
Spark uses map and reduce (not to be confused with the MapReduce map/reduce tasks) 
tasks to organize the shuff le data. It uses map tasks to organize the data and reduce 
tasks to aggregate the key to get the final result for each key.

Operations such as reduceByKey and aggregateByKey use high amounts of the Java 
heap memory to support the data structures they create in memory to organize (before 
the shuff le) and aggregate (after the shuff le) the shuff le data.

High Disk I/O
Since the operations such as reduceByKey spill their data structures to disk when they can’t 
be contained in memory, you incur the overhead of high disk I/O. 

P1

textFile

P2

P3

P4

P1

flatMap

P2

P3

P4

P1

map

P2

P3

P4

reduceByKey

Stage 1 Stage 2

P1

P2

P3

Figure 20.2 Shuffle boundaries and multiple stages
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Note

You specify the location of Spark’s temporary storage directory with the spark.local.dir 
configuration property (default value is /tmp) when you configure the Spark context.

Spark generates intermediate files on disk and retains them until the RDDs they refer-
ence go out of use and are garbage collected. This is so that Spark can use the intermediate 
files if it ever needs to recompute the lineage of the RDDs. So, a long-running Spark job 
may end up using a lot of disk space in the temporary storage directory.

More Garbage Collection
As mentioned in the previous section, a high amount of shuff ling could lead to higher 
amounts of garbage collection (GC) activity, with all the negative things associated with 
a high amount of GC.

Configuring the Shuffle Parameters
As with the rest of Spark’s configuration, you have a lot of knobs to play with when it 
comes to configuring shuff le behavior. The key shuff le-related configuration parame-
ters can be summarized as follows:

 n In order to limit the fixed memory overhead for fetching the map output simulta-
neously from each reduce task, set the spark.reducer.maxSizeInFlight property. 
The default is 48MB, and the recommendation here is to keep it small when your 
Spark memory is limited.

 n You can optimize the number of disk seeks and system calls during the creation of 
the intermediate shuff le files by setting the spark.shuffle.file.buffer property. 
The default value for this parameter is 32KB, and it represents the size of the 
in-memory buffer for a shuff le file output stream.

 n There are two compression-related properties in the context of shuff ling, both 
of which are set to true by default:

 n spark.shuffle.compress: Determines whether Spark should compress the 
map output files

 n spark.shuffle.spill.compress: Specifies whether to compress data that’s 
spilled during a shuff le

Compression and Shuffle Operations
Spark’s map jobs write their shuff le out to a shuff le file. The number of shuff le files is 
the same as the total number of mappers times the number of reducers. You can reduce 
the number of shuff le files by setting the spark.shuffle.compress property to true.

Once the map phase completes, Spark’s reduce phase begins, with the reducers pulling 
the shuff led data. You can configure the spark.reducer.maxSizeInFlight parameter 
to control the network buffer size for getting the map output to the reducers.

You can add an intermediate merge phase between the map and reduce phases 
to reduce both the output and the number of shuff le f iles. By setting the 
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spark.shuffleconsolidateFiles property to true, you can introduce shuff le file con-
solidation. Once you do this, the number of shuff le files will be fewer—since they will 
equal the number of reducers per core rather than the number of reducers per mapper. 

What Determines Whether There Is a Shuffle?
Earlier, I explained how the DAG scheduler creates an execution plan for each action that 
is triggered within a Spark application. The execution plan consists of various transfor-
mations with dependencies among them. The nature of the dependencies is quite crucial, 
and there are two basic types of dependencies among the RDDs:

 n A narrow dependency between RDDs exists when each partition from a parent 
RDD maps to a single partition in a child RDD. This means there’s a one-to-one 
relationship between a parent RDD partition and a child RDD partition.

 n A wide dependency between RDDs exists when a parent’s RDD is used by several 
child RDD partitions—that is, there’s a one-to-many mapping between the parent 
and child RDD partitions.

Spark assembles all transformations with narrow dependencies into a separate stage. 
When Spark encounters a wide dependency it creates a new stage.

Figure 20.3 illustrates narrow and wide RDD dependencies.
The key to understanding whether there’s going to be a shuff le is to learn the dif-

ference between narrow and wide transformations. An RDD contains a fixed set of 
partitions, with each partition containing records. In the case of narrow transformations, 

map, filter

Narrow Dependencies

union

Join with
inputs

co-partitioned.

groupByKey

       Wide (Shuffle) Dependencies

Join with inputs not
co-partitioned.

Figure 20.3 Narrow and wide RDD dependencies
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such as a map or a filter, the records needed to create a single partition are also in a single 
partition in the parent RDD. Here’s an example that shows a narrow RDD:

sc.textFile("someFile.txt").
  map(mapFunc).
  flatMap(flatMapFunc).
  filter(filterFunc).
  count()

There’s only one action in this case, and it depends on the transformations of the origi-
nal RDD that you created from a text file. This action will execute entirely in a single 
stage.

To illustrate the difference between narrow and wide dependencies, let’s take an example 
such as the following:

val numbers = sc.parallelize(nrCollection)
val multiplied - numbers.filter(_2% == 0).map(_ * 3).collect()

All the transformations in this code snippet are narrow, since none of them require 
the input partition data to be distributed in multiple output partitions. Hence, Spark can 
execute all the RDD transformations within the same stage. None of the outputs of the 
transformations in this case require data to come from partitions other than their inputs. 

Transformations such as groupByKey and reduceByKey involve wide dependencies. 
The data required to compute the records in a single partition often live in multiple 
partitions of the parent RDD. In order to get all tuples with identical keys into the 
same partition, Spark must execute a shuff le. A shuff le moves data across the Hadoop 
cluster, and this results in a new stage, with a new set of partitions.

Code such as the following involves multiple stages (three in this case), due to trans-
formations with multiple dependencies. 

val tokenized = sc.textFile(args(0)).flatMap(_.split(' '))
val wordCounts = tokenized.map((_, 1)).reduceByKey(_ + _)
val filtered = wordCounts.filter(_._2 >= 1000)
val charCounts = filtered.flatMap(_._1.toCharArray).map((_, 1)).
  reduceByKey(_ + _)
charCounts.collect()

This code counts the number of words and filters those words that occur more than 
1,000 times in the input text file and then counts the number of times a character appears 
within those words. The collect action sets off the job.

Since the reduceByKey operation (same as a transformation) requires repartitioning 
the data by keys, it’s a wide transformation and hence triggers a stage boundary. A stage 
boundary marks a point where the tasks in the parent stage(s) write data to disk, which is 
fetched by tasks in the child stage. Since they require heavy disk I/O and network I/O, 
stage boundaries are expensive, and you should try and avoid them. In this example, there 
are two transformations that are stage boundaries since they have wide dependencies. 
Due to these two reduceByKey operations, the code ends up being processed in three 
separate stages. Once the stages are delineated, Spark launches tasks to compute the par-
titions that will form the final RDD. Each stage will consist of a set of tasks that perform 
the identical transformation on a different chunk of the data. 
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Note

Tasks are assigned to executors based on the locality and the availability of resources. If 
the partition a task wants to perform exists already in memory on a node, the task execution 
will occur on that node since it’s faster than reading data from disk.

You can usually specify the numPartitions argument for a transformation that results 
in a stage boundary. This argument determines how many partitions Spark must split 
the data into during the child stage.

Selecting Appropriate Transformations (Operators)
Shuff les are expensive in terms of both disk and network I/O—no two ways about it. 
You should select an arrangement of operators that minimizes the number of shuff les 
and the amount of data that is moved around by any shuff les that you can’t avoid.

Often you can choose among multiple actions and transformations to get the results 
you’re looking for. Not all operators are equal, however, and the choice of the operators 
could have a significant bearing on performance.

Telling Spark to Clean Up After Itself

In a cluster where Spark runs for long periods of time, a huge amount of metadata 
is created over time. Spark needs to keep all this metadata, such as the stages and 
tasks it creates for various applications, somewhere. Therefore, this is overhead. You 
can specify that Spark periodically cleans its metadata, to reduce the overhead of 
managing the metadata. The configuration property spark.cleaner.tll determines 
how long (in seconds) Spark will retain its metadata. The default value is infinite, so 
Spark never cleans up its metadata on its own! Set this property to a reasonable interval 
so Spark periodically cleans up after itself.

A common mistake is to use some transformations to get the results you’re after but 
ignore the behind-the-scenes operations, often adversely affecting the performance 
of the applications. A good example is the choice between the two Spark operators 
reduceByKey and groupByKey, both of which let you apply functions on top of all the 
values of specific keys.

Let’s take a simple example that illustrates the difference between using the two 
common operations reduceByKey and groupByKey. Let’s say you are running a word 
count program and that it consists of an RDD with the list of words you are going to 
count. When you use the groupByKey operator, all values of a key must be processed by 
a single task. This requires Spark to shuff le the complete data set and send all the work 
pairs of a key to a single node for processing. Not only is the shuff le going to cost you 
in terms of all the usual resource usage, the job might even fail when one key has too 
many values and fails with an OOM error. Figure 20.4 shows the impact of performing 
the word count with the groupByKey operators.
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The reduceByKey operator does things much better. The function you pass to the 
reduceByKey operator is applied to all the values of a key locally and Spark just sends 
these intermediate results across the cluster. Figure 20.5 shows how the reduceByKey 
operation tackles the word count job.
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For associative and reductive operations such as the one in this example, it’s a good idea 
to stay away from the groupByKey operator. Using the reduceByKey operator results in a 
vastly smaller amount of data that needs to be compressed and shuff led across the cluster.

When aggregateByKey Is Better Than reduceByKey
Although the reduceByKey operator is better than groupByKey in most cases, when the 
input values are different in an operation, you must avoid this operator. Let’s say the input 
values are strings and the output values are sets. The map operation in this case results 
in too many temporary small objects in the process of creating a set of strings for each key. 
Use the aggregateByKey operator in these types of scenarios. 

When cogroup Is a Good Choice
If you are joining two datasets already grouped by key and retain the grouping, use a 
cogroup operator and not the usual flatMap-join-groupBy pattern to avoid the over-
head of unpacking and repacking the groups.

Avoiding a Shuffle with Broadcast Variables
When you’re joining two datasets, you can avoid a shuff le by using broadcast variables. 
In Spark, broadcasting values means that all the cluster nodes will have their own copy 
of that value. If you’re dealing with small lookup tables or maps required by each executor, 
broadcasting makes for efficient processing and is a good practice to follow.

A small lookup table can fit entirely in memory on an executor and Spark can load 
it into a hash table (on the driver) and broadcast it to all executors in the cluster. Trans-
formations being run on the executors can reference this hash table for their lookups—
you thus avoid the expensive shuff le operation.

Spark uses two types of shared variables: broadcast variables and accumulators. Each 
of them serves a different purpose. When an application consists of a large number of 
tasks that need to access the same variable(s), consider using broadcast variables.

Broadcast variables are what you use to distribute large amounts of data across your 
cluster so tasks can share those variables and avoid the overhead of copying the data. 
Broadcast variables are shared read-only values that Spark caches in memory on all nodes. 
Instead of copying these values within each task, Spark lets the tasks share the values that 
it stores only once on each node of the cluster. The number of copies doesn’t depend on 
the number of partitions—it depends on the number of nodes. Since the node count is 
usually way smaller than the partition count, Spark ends up copying items fewer times, 
improving its performance. Broadcast variables are read-only, so Spark doesn’t have to 
change the copies on all nodes when the value of that variable changes on a machine.

Tip

If a job’s tasks use large objects from the driver program, such as lookup tables that don’t 
change, turn it into a broadcast variable.

If local executors have a copy of the variable, the tasks read the data from there. 
Otherwise they need to get it from the driver. Spark has a couple of different ways it 
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can broadcast data. The HTTP broadcast uses an HTTP server on the driver’s machine 
to get the data from the driver. If the driver needs to send copies of a variable to all the 
cluster nodes, it might affect the network. The alternative broadcast implementation 
is the Torrent broadcast, which chunks the data into small blocks. Once an executor 
fetches a set of blocks, it acts as a seeder and sends those blocks over to the other exec-
utors. In order to set the block size under the Torrent broadcast implementation you 
need to set the spark.broadcast.blocksize property to the value you want. Here’s an 
example:

val configuration = new SparkConf()
configuration.set("spark.broadcast.factory",
"org.apache.spark.broadcast.TorrentBroadcastFactory")
configuration.set("spark.broadcast.blockSize", "3m")

Besides broadcast variables, Spark lets you use another type of shared variable named 
accumulators. Accumulators aggregate information from the executors on their way back 
to the driver. Accumulators let you safely update shared variables. The values are com-
puted within each task and added on the driver. Therefore, operations you apply on the 
accumulator variables must be associative.

Pa rtitioning and Parallelism (Number of Tasks) 
Parallelism is the heart of Spark’s execution model. The Spark driver executes parallel 
operations in a cluster. It is Spark’s RDDs, which are in essence distributed datasets, 
that make parallel processing possible. Data in an RDD is partitioned across a cluster’s 
nodes so it can be worked on in a parallel fashion. 

Parallelism is the number of tasks in a job. When the Spark DAG transforms a job into 
stages, each partition is going to be processed by a separate task. Therefore, the parallelism 
of a Spark application is directly related to the RDD’s partitions. Spark breaks up the 
dataset processing into stages, with multiple tasks in each stage. The number of tasks in 
a stage is equal to the number of partitions in the last data set in a stage. And, the num-
ber of partitions in any dataset is equal to the number of partitions in that dataset’s parent 
datasets. 

Since parallel processing is the key to crunching through large sets of data efficiently, 
the number of partitions is probably the most significant variable affecting the perfor-
mance of a Spark application.

When using HDFS for your storage, the number of partitions is the same as the num-
ber of InputSplits, which is usually the same as the number of HDFS blocks.

Spark never works on the entire data set as a whole when you offer the data to it in 
the form of an RDD. When Spark runs an application, it breaks the data (that is, the RDD) 
into partitions. It’s this partitioning strategy that lets Spark parallelize its work. Spark 
runs as a separate task for each partition of the cluster. All tasks within any given stage 
are identical—that is, each of them performs the same operation, but on a different 
chunk of data. After all tasks are completed, the results of all tasks are combined into 
a single RDD.
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How many partitions should Spark slice the distributed dataset into? Ideally you 
want to have 2-4 partitions per CPU in your cluster. Spark sets the number of partitions 
automatically based on the size of the input file. You can also set it yourself by passing the 
number of partitions as the second parameter to the parallelize method, as shown here:

sc.parallelize (mydata, 20)

This creates 20 partitions out of the RDD named mydata. 
You can also specify the number of partitions when loading data into an RDD from 

a file. Here’s an example that shows how to load an RDD with a custom number of 
partitions as the second parameter:

scala> sc.textFile("hdfs://localhost:9000/user/sam/words",10)

Level of Parallelism
To fully utilize your cluster resources, you must set the level of parallelism for an opera-
tion high enough. Spark automatically sets the level of parallelism (number of tasks) for 
operations such as a map transformation on an RDD based on the size of the input data. 
For operations such as the distributed reduce operations (groupByKey, reduceByKey), 
Spark determines the level of parallelism based on the number of partitions in the 
parent RDD. 

You can also specify the degree of parallelism as an argument or configure the spark
.default.parallelism property to change it from its default value. When you create 
an RDD by parallelizing a collection, the spark.default.parallelism property deter-
mines the default number of partitions.

In a YARN-based Spark case, the default number of partitions is the higher of two 
and the total number of cores on all executors. You can override the default number of 
partitions in both cases—when creating an RDD over a file and when you create an RDD 
by parallelizing a collection, as shown here:

sc.textFile(<inputPath>, <minPartitions>)
sc.parallelize(<sequence>, <numSlices>)

Note

Aim for running 2-3 tasks per CPU core on each node.

How Spark creates an RDD has a direct bearing on the number of partitions. When 
Spark creates an RDD over an HDFS file, the number of partitions will be equal to the 
number of blocks in that file. That is, there’ll be one partition per file. You can therefore 
control the number of partitions in this case by using a smaller or larger block size. You 
can also configure the InputFormat to specify the number of splits.

Most frequently Spark creates an RDD by applying transformations to existing RDDs. 
In many cases, the number of partitions in the RDD is the same as the number of partitions 
in the parent RDD. Transformations that involve wide dependencies will have a partition 
number that is based on the largest number of partitions from the dependent RDDs.
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Note

One of the most important determinants of performance is the degree of parallelism 
employed by a job.

A Spark job, as you’ve learned, consists of separate stages, with each stage decomposed 
into multiple tasks.

Since Spark groups RDDs into stages, the number of tasks in a stage is the same as 
the number of partitions in the last RDD of a stage. This is true in general, although 
there are exceptions in the case of the coalesce and union transformations, for example, 
where the transformation can create an RDD with fewer or more partitions than its 
parent RDD.

You can check the number of partitions in an RDD by calling rdd.partitions().size. 
You can also find the number of partitions by checking the Spark web UI. You’ll see 
the number of partitions in the Spark Stages page under the Completed Stages section 
of the Spark web UI. For example, the following example creates an RDD:

scala> val someRDD = sc.parallelize(1 to 100, 4)
someRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize 
at <console>:21

scala> someRDD.map(x => x).collect
16/07/19 13:46:10 INFO SparkContext: Starting job: collect at <console>:24

Spark creates a total of 4 partitions, just as I’ve asked it to:

16/07/19 13:46:15 INFO TaskSetManager: Starting task 0.0 in stage 0.0 
(TID 0, hadoop07.example.com, partition 0, PROCESS_LOCAL, 1973 bytes)
...
16/07/19 13:46:16 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3)
 in 25 ms on hadoop07.example.com (4/4)

You can see on the Spark Stages page of the Spark web UI, as shown in Figure 20.6, 
that the Tasks: Succeeded/Total column reveals that 4 out of 4 tasks were successfully 
completed. So, total tasks represent the total number of partitions for a Spark job.

Some RDDs have no parents, such as those you create with the help of the parallelize 
method. In this case, you can specify the degree of parallelism, or it defaults to the 
value of spark.default.parallelism.

Figure 20.6 The Spark Stages page in the Spark web UI, showing the 
number of partitions processed by a Spark job
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Problems with Too Few Tasks
Too few tasks per executor can mean trouble due to the demand for memory from 
aggregation operations such as a join operation. Large aggregation operations that require 
large shuff les have a detrimental effect on job performance. These operations have a large 
number of records that need to be held in memory, and too few tasks may lead to the 
following issues:

 n GC-induced pauses that result in slower execution times.
 n More disk I/O and sorting since Spark spills the records to disk when they all 

don’t fit in memory. Fewer partitions means data in some partitions may be too 
large to fit in memory and needs to be spilled to disk to keep from running into 
out-of-memory exceptions. 

Tasks should take a minimum of 100 ms to complete (the web UI for Spark shows 
these details). If they are not, there probably are too many tasks—you have a higher 
degree of parallelism than you need. If the tasks are taking much longer than 100 ms 
each to complete, you may want to gradually increase the degree of parallelism by a 
factor of the original number of tasks.

If the size of your working set is too high, say because one of the reduce tasks in a 
groupByKey operation is too large, the job performance may take a dive, owing to spills 
from memory to disk and increased overhead of garbage collection. Just go ahead and 
raise the degree of parallelism so the average input set shrinks to a manageable size.

Setting the Default Number of Partitions
You can set the default number of partitions in an RDD with the spark.default
.parallelism configuration property, as shown here:

$ spark-shell --conf spark.default.parallelism=10

You can check the default parallelism value like this:

scala> sc.defaultParallelism

The spark.default.parallelism property determines the default number of parti-
tions retuned by the following operations:

 n Transformations such as reduceByKey and join
 n Parallelize operations (when you don’t set the number of partitions)

There’s also a default value for the spark.default.parallelisms property, confusing 
as it sounds! This is how the default number of partitions is determined:

 n For operations such as join and reduceByKey that involve a distributed shuff le, 
the default is the largest number of partitions in a parent RDD.
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 n If an operation has no parent RDD (such as when you use the parallelize 
command) it depends on the cluster manager you’re using. In the case of YARN, 
it’s the larger of two, or the total number of cores on all the executor nodes in the 
cluster.

Ideally, the number of partitions should be set the same as the number of CPUs you 
assign to the application. Unless you have a really large data set, this will result in cor-
rectly dimensioned partitions.

While too few partitions limit the concurrency of Spark operations, too many parti-
tions can also be a problem since you may have to deal with excessive overhead caused 
by launching too many tasks. You’ll know you have too many partitions when you have 
tasks that finish right away (in a few seconds) or don’t perform any reads or writes. The 
degree of parallelism is probably too high in these cases. However, too many tasks, while 
they increase the overhead, are not as bad as too few tasks, which will take you into the 
dreaded area of spilling data to disk.

The ideal number of partitions depends on the size of the dataset, the amount of RAM 
you assign to each task and the type of partitioner you use for partitioning. A good rule 
of thumb is to set the number of partitions per RDD to the number of CPUs in the cluster 
multiplied by about 2-4.

How to Increase the Number of Partitions
O.K., now that we’ve established that a higher number of partitions is beneficial for
performance, how exactly do you go about raising the number of partitions? The strategy
will depend on where the stage is getting its data from.

If the stage is getting (reading) data from HDFS, here’s what you can do:

 n Use a smaller block size when writing the input data to HDFS. Since there’s usually 
a separate partition for each HDFS block read by the Spark job, you’ll naturally 
get more partitions this way.

 n Set the InputFormat parameter so more splits are created. RDDs that use the 
textFile format for example will have the number of partitions dependent on 
the MapReduce InputFormat.

 n Use the repartition transformation.

Alternatively, if a stage is receiving input from another stage, you can set the 
numPartitions argument for the transformation that triggers the stage boundary, 
as shown here:

val rdd2 = rdd1.reduceByKey(_ + _, numPartitions = X)

Setting the number of partitions is usually a trial-and-error based procedure and there 
are no hard and fast rules. You should aim at running sufficient tasks so the data for each 
task fits in the memory that task has.
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A big advantage of Spark over MapReduce is that for Spark there is minimal startup 
overhead for a task, unlike in the case of MapReduce. So, go for a large number of par-
titions and thus, a greater number of tasks where possible, for faster performance.

Using the Repartition and Coalesce Operators to Change the 
Number of Partitions in an RDD
You can change the number of partitions in an RDD with the help of two operators: 
repartition and coalesce. You need to understand when to use each of these operators. 

Note

If you see that you have thousands of mostly idle tasks, it’s a good idea to coalesce 
and reduce the number of partitions. On the other hand, if you aren’t really using all the 
available processing capacity in your cluster, it’s a good idea to increase the parallelism by 
repartitioning.

Repartition
The repartition operator reshuff les data and distributes it into a large or smaller number 
of partitions compared to an RDD’s current partition count. The repartition function, 
which shuff les data across the network to create a new set of partitions, enables you to 
change the partitioning of an RDD outside the context of operations such as grouping 
and aggregation. Just remember that repartitioning is usually a pretty expensive operation.

You must in general seek to minimize the number of shuff les that occur in your 
cluster. However, a shuff le that increases parallelism is actually quite a good thing at 
times. Let’s say your data is composed of large files that can’t be split. The InputFormat 
may create a few very large partitions. By repartitioning the data into a larger number 
of partitions, you allow later transformations of the RDDs to take advantage of your 
cluster’s full processing power. The repartitioning, of course, involves a shuff le, but 
it’s for a good cause this time around!

A second example where repartitioning and the consequent triggering of a shuff le may 
be good for you is when you aggregate data in the driver through a reduce or aggregate 
action. In this case, the single driver thread trying to merge all the data that has been 
aggregated over a large number of partitions can become a bottleneck. You can perform 
a shuff le transformation such as a reduceByKey or aggregateByKey first to consolidate 
the data into a few partitions. The values of each partition are merged together and sent 
to the driver for the final aggregation, thus lowering the stress on the driver.

Coalesce
The coalesce method is an optimized version of repartition. The coalesce method 
avoids the data movement inherent in repartitioning, but only if you’re decreasing the 
number of partitions in an RDD.

Use the coalesce method to pack the RDDs after operations such as a filter, where 
the data is smaller than before the action. 
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When you invoke the coalesce method, you can specify either the values 
shuffle=true or shuffle=false. Set shuffle=false if the number of partitions to be 
created is greater than the current number of partitions. Otherwise, set shuffle=true.

Here is an example that shows how the coalesce method can reduce the number of 
partitions.

> input = sc.textFile("s3n://mylog-files/2016/*.log.gz") # this will match a large
number of files
> input.getNumPartitions()
42148
> lines = input.filter(lambda line: line.startswith("2016-08-16 08:")) # selective
> lines.getNumPartitions()
42148
> lines = lines.coalesce(5) # Coalesce the lines RDD into 5 partitions
> lines.getNumPartitions()
5
>>> lines.count() # occurs on coalesced RDD

Note

The spark.default.parallelism property controls the default number of partitions for 
a new RDD, and it also determines the number of tasks to be used by operations such as 
groupByKey that require shuffling the data. 

In order to find out if you can safely call coalesce, you can use the functions 
rdd.partitions.size (Java and Scala) and rdd.getNumPartitions (Python) to get the 
current size and number of the RDD’s partitions. This helps you ensure that you are 
indeed going to coalesce the RDD into fewer partitions than its current number of 
partitions.

Two Types of Partitioners
Spark can use two types of partitioners when it needs to partition data—the HashPartitioner 
or the RangePartitioner (you can also write custom partitioners)—to determine how 
to distribute the data across the partitions inside an RDD. Here is how the two parti-
tioners distribute the values in an RDD across partitions:

 n The HashPartitioner uses the key code as the basis of the distribution of the values.
 n The RangePartitioner partitions data by range, with the ranges approximately 

equal in size.

For pair RDDs, the HashPartitioner is the default partitioner. If any of the input 
RDDs has a partitioner, the output RDD will use the same partitioner. 

Data Partitioning and How It Can Avoid a Shuffle
You can improve the performance of jobs that involve transformations that result in data 
shuff ling ( join, reduceByKey, groupByKey) by partitioning the RDDs ahead of time. If 
you partition the RDDs, you can completely bypass the shuff le process. 
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Anytime you can partition an RDD, the values for specific keys will be in the same 
partition and, therefore, can be locally processed without having to shuff le data across 
the network.

Shuff ling data across the network becomes even more of an issue when you join RDDs. 
However, when you join a partitioned RDD with an unpartitioned RDD, the parti-
tioned RDD will be processed locally. Only the unpartitioned RDD will need to be 
sorted and its data sent over the network to the necessary nodes. The final RDD you 
end up with will preserve the partitioner of the partitioned RDD. 

Even better is the case where both the RDDs in a join are partitioned with the same 
partitioner. This means that Spark won’t have to shuff le the data from either of the RDDs 
across the network. Some transformations, such as the join in the following example, don’t 
result in a shuff le at all. Spark skips a shuff le when a prior transformation partitions data 
according to the same partitioner. First, here’s our example:

rdd1 = myRdd.reduceByKey(...)
rdd2 = otherRdd.reduceByKey(...)
rdd3 = rdd1.join(rdd2)

In this case, the two reduceByKey transformations cause two shuff les of the data. 
However, to perform the final join operation, no shuff le is required if the datasets 
happen to have an identical number of partitions. This is so because both partitions 
use the default hash partitioning. Identical partitioning means that the set of keys for any 
single partition in rdd1 will occur in a single partition of rdd2. Since the contents of any 
one output partition of the child RDD (rdd3) depend on the contents of just a single 
partition in both the parent RDDs rdd1 and rdd2, there’s no need for a third shuff le 
for performing the join operation.

Optimizing Data Serialization and Compression
Two data-related concepts—data serialization and compression—play a crucial role in 
Spark application performance. Let’s learn the basic ideas pertaining to data serialization 
and data formats.

Data Serialization
Serialization is a critical area in optimizing Spark performance since Spark often transfers 
data across the cluster over the network, stores it in memory or spills it to disk. So the 
way Spark serializes the objects that represent the data is of great significance.

Spark uses deserialized Java object representation for records it keeps in its memory 
and a serialized binary representation for records it stores on disk or transfers via the 
network.

You can reduce the memory requirements for large objects by storing them in a seri-
alized form, using a serialized storage level such as MEMORY_ONLY_SER, which will make 
Spark store RDD partitions as a single large byte array. When reading the data, you pay 
the piper though, since Spark has to deserialize the objects.
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The following two persistence levels support the serialization of RDDs:

 n MEMORY_ONLY_SER: Serializes RDDs before storing them and creates a one-byte 
array for each partition

 n MEMORY_AND_DISK_SER: Same as the MEMORY_ONLY_SER storage level, but will 
store partitions that don’t fit in memory on disk.

Choosing the appropriate serializer can make a huge difference. An improper choice 
of the serializer means that serialization of objects takes longer or uses up a large number of 
bytes. Spark uses the spark.serializer property to determine the serializer that converts 
between the serialized and deserialized representations. The default Java serializer is slow, 
and the objects of most classes that are serialized are in large formats. The recommended 
serializer is the Kryo serializer (org.apache.sparkserializer.kryoserializer). In 
order to use Kryo serialization, start the Spark shell and set Kryo as the serializer:

$ spark-shell --conf spark.serializer=org.apache.spark.serializer.KryoSerializer

Note

The reason Spark uses the Java serializer by default is due to the overhead of registering 
the custom classes.

The choice between different serialization mechanisms is a choice among speed, space 
usage and support of Java objects. The default serializer is Java serialization. The Kryo 
serializer is much faster and its output a more compact binary representation of the objects. 
Kryo is strongly recommended by Apache Spark, as it uses only a small fraction of the 
memory used by the Java serializer. 

Configuring Compression
Spark can compress the following types of data:

 n RDD partitions
 n Broadcast variables
 n Shuff le output 

Apache Spark recommends that you compress broadcast variables before sending them 
across to all the nodes in the cluster. The default value for the spark.broadcast.compress 
parameter is true, so this is already configured for you. 

You can choose to configure the compression of serialized RDD partitions (say, when 
you specify the StorageLevel.MEMORY_ONLY_SER storage level). This strategy can dras-
tically reduce the storage space used by the RDD.

You can specify lzf compression to improve shuff le performance when dealing with 
large shuff les. You can specify the lzf codec as shown here:

conf.set("spark.io.compression.codec", "lzf") 
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Note

Spark uses the snappy compression codec by default, and you can also specify the 
lz4 and lzf codecs.

The way you store data on disk is determined by the data format you choose. Exten-
sible binary formats such as Avro, Parquet, Thrift and Protocol Buffers are ideal for Spark. 
Whatever you do, stay away from JSON files!

Understanding Spark’s SQL Query Optimizer
Spark SQL uses a cost-based query optimizer to select optimal access paths to data. 
Cost-based optimization is the generation of multiple alternative plans and then figur-
ing out the cost of the plans. The goal is to use the plan with the least cost in terms of 
computing resources. 

When you use a SQL statement against a DataFrame, Spark SQL executes a query plan 
that consists of the following:

 n The parsed logical plan
 n The analyzed logical plan
 n The optimized logical plan
 n The physical plan

The query plan uses Spark SQL’s catalyst optimizer, with the optimizer running 
through the plan parsing and optimization phases, followed by a physical plan evaluation 
and cost optimization–based optimal access-path selection.

Understanding the Optimizer Steps
In the following sections, I explain the basics of the Catalyst optimizer’s transformation 
framework which involves four key phases.

Note

Use the explain function on the Spark SQL query you’re interested in to see the full 
details of the steps followed by the Catalyst optimizer to assess and optimize the logical 
and physical plans to get the RDD result back.

Analyzing the Logical Plan
During the analysis of the logical execution plan, the optimizer reviews the SQL query 
and does the following:

 n Creates a logical plan that’s at first unresolved (the columns may not exist, for example)
 n Resolves the logical plan using the catalog object
 n Creates the logical plan
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Optimizing the Logical Plan
Optimizing the logical plan involves applying standard optimization techniques to the 
logical plan. For example, the predicate pushdown optimization pushes part of the query 
to where the data is located, thus filtering most of the data out. Obviously this cuts back 
on the network traffic in a cluster. Figure 20.7 shows how the optimizer arrives at the 
optimized logical query plan.

Physical Plan
During this phase, Spark generates multiple physical access plans from the logical plan 
and estimates the cost for each physical plan. It chooses the physical plan with the least 
cost for implementation.

Note

The Catalyst optimizer uses advanced programming language features such as Scala’s 
pattern matching and quasiquotes.

Figure 20.8 shows how the optimizer generates one or more physical plans and selects 
the “best” plan for implementation.

Code Generation
In the final phase of query optimization, the Catalyst optimizer uses Scala’s quasiquotes 
feature to compile parts of the query to Java byte code at runtime. 

Viewing Spark Properties

Often, when you are running a Spark application, you wonder which configuration prop-
erties the app is actually using. Well, you don’t need to wonder. Just go to the application 
web UI at http://<driver>:4040 and view the Spark properties in the Environment tab. 
If you’ve specified a configuration property in the spark-default.conf file, through spark-
conf or the command line, you’ll see it there. If you haven’t set a configuration property, 
Spark uses the default value for it.

Optimized Logical Plan

Analysis

Plan Optimization

DataFrame

Catalog

Unresolved Logical Plan

Logical Plan

SQL Query

Figure 20.7 The optimized logical plan
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Note

The Catalyst optimizer uses the operations that built the DataFrame into a physical plan 
for execution. Python users will notice that their performance will match that of the Scala 
users, since the optimizer generates JVM byte code for execution.

Spark’s Speculative Execution Feature
In Chapter 18, “Tuning the Cluster Resources, Optimizing MapReduce Jobs and 
Benchmarking,” you learned about how YARN uses speculative execution when running 
MapReduce jobs. Spark lets you configure speculative execution for its jobs as well. 
Speculative execution means that if one or more tasks in a stage are lagging behind the 
other tasks, Spark relaunches these tasks. 

By default, speculative execution is turned off, and you can turn it on by setting the 
spark.speculation configuration property to true. When you set this parameter to 
true, Spark will perform speculative execution of tasks. If one or more tasks are running 
slowly in a stage, Spark will relaunch those tasks. The spark.speculation.interval 
property determines how often Spark checks for tasks to speculate (default is 100 ms).

The reasons for stragglers depend on the workload. For example, in an in-memory 
workload, you’re likely to see more GC-related stragglers when compared with workloads 
that mostly use disk. Reading and writing massive amounts of data to disk often results 
in stragglers as well.

Spark uses the spark.speculation.multiplier property (default value is 1.5) to 
determine whether a task is deemed slow enough for speculative execution. The default 
value of 1.5 means that a task should be running 1.5 times slower than the median task 
duration for it to be considered a candidate for speculative execution. 

Spark waits until a percentage of tasks in a stage are completed before it enables specula-
tive execution for the tasks running in that stage. You can configure this percentage by set-
ting the spark.speculation.quantile configuration property, whose default value is 0.75.

Optimized Logical Plan

Selected Physical Plan

Cost Model

Physical Planning

Plan Optimization

Physical Plan

Logical Plan

Physical Plan Physical Plan

Figure 20.8 How the optimizer selects the best physical plan for implementation
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The Importance of Data Locality
Spark relies on the principle of data locality, which is a term that indicates how close 
the data you want to process is to the code that processes the data. It’s far more efficient 
to ship code around rather than moving data, since code is much smaller than data.

In our case, since I’m interested in running Spark and YARN together on a Hadoop 
cluster, Hadoop’s principles of rack-based data locality are very much in play here. Based 
on the data’s location, there are several levels of data locality in a Hadoop/YARN cluster:

 n PROCESS_LOCAL: This is the ideal data locality, as the data is co-located with the 
code inside the same JVM.

 n NODE_LOCAL: This is the second best locality, with data located on the same node 
where the processing occurs. 

 n NO_PREF: This is data that has no preference for locality and that can be accessed 
with the same speed from anywhere.

 n RACK_LOCAL: Data is on the same rack but on a different server. 
 n ANY: Data is located on other racks in the Hadoop cluster.

Figure 20.9 shows how to quickly find out if a job ran locally by inspecting a given 
stage in the Spark web UI. In the Stages tab, the “Locality Level” column shows the 
locality of the data the job used. In this example, all the data was collocated with the code 
(PROCESS_LOCAL).

Although Spark ideally likes to perform all its work on the most proximate (most local) 
locations, it’s not possible to do this all the time. In cases where Spark realizes that there’s 
no idle executor to process data locally (PROCESS_LOCAL or NODE_LOCAL), it has two options:

 n Wait until an executor frees up so it can start the task on locally available data on 
the same server

 n Start a new task immediately in a location that has idle executors but not data, 
and move data there for processing

Often Spark waits for a free executor until a timeout expires and then it starts moving 
data to nodes with free executors. If you’re seeing that Spark is choosing poor locations, 
you can configure the timeouts to move between the various locality levels. Following 
is a summary of the locality-related configuration parameters.

 n spark.locality.wait: This parameter specifies the duration of time for which 
Spark waits to launch a task in a more local location before it decides to launch 
it in a more remote node. The default is 3 seconds. As Spark searches for a more 
local locality (process_ local to node_local to rack_local), it waits for the same 
duration as specified by this parameter. 

 n spark.locality.wait.node: This parameter lets you customize the locality wait 
for node locality. You can skip node locality and go straight to rack locality by 
setting the value of this parameter to 0.
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Figure 20.9 How to check the data locality for a Spark job
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Caching D  ata
An RDD is created either by reading the data from a text file or a database or by trans-
forming another RDD. Under Spark’s lazy execution strategy, it creates an RDD only 
when an action method of the RDD is invoked, at which point it creates the RDD from 
its parents. Spark will perform all the necessary transformations all the way up the lineage 
tree of the RDD to get you the RDD required by the invoked action.

Caching is a big deal in Spark computations—once an RDD is cached, future actions 
that use the RDD can be many times (usually ten times or more) faster than creating 
the RDD from scratch. By saving intermediate results of computations or table data in 
memory, Spark can save time it would need to spend recomputing RDDs or loading data 
from disk.

When caching an RDD, Spark partitions are stored in memory or on disk on the 
node that computes the partitions. Subsequently, any actions that are performed on top 
of these partitions won’t need Spark to recompute the partitions. 

The lazy evaluation model of Spark means that when you use the same RDD the 
second (and third) time, Spark recomputes the RDD by default when you call an action 
on the RDD. Iterative algorithms often go over the same data multiple times, so this is 
an inefficient way to read the same data over and over.

By default, every time you run an action on a transformed RDD, it is recomputed. 
Persisting an RDD in memory through the cache or persist method lets Spark access 
the RDD way faster when it needs it again. Here’s a simple example that computes the 
RDD named result twice, first for the count action and next for the collect action:

val result = input.map(x => x*x)
println(result.count())
println(result.collect().mkString(","))

Here’s another example that helps understand the way Spark performs an action.

val logs = sc.textFile("path/to/log-files")
val errorLogs = logs filter { l => l.contains("ERROR")}
val warningLogs = logs filter { l => l.contains("WARN")}
val errorCount = errorLogs.count
val warningCount =  warningLogs.count

The count action is called twice, and each time it’s invoked, it reads the source 
text file from disk. Spark reads the data from text, both when errorLogs.count and 
when warningLogs.count are called.

Spark let  s applications cache RDDs in memory. When you choose to cache an RDD, 
Spark stores it in the executor’s memory and not in the driver’s memory. An RDD 
represents a distributed dataset and an executor performs computations on some of 
the partitions of an RDD. So, each executor will store the RDD partitions it’s work-
ing with.

When you cache an RDD, Spark doesn’t do anything right away to compute the RDD 
and store it in memory, since it follows a lazy execution model. But the very first time you 
call an action on a cached RDD, Spark saves the RDD in memory. Any following actions 
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in the application benefit from this caching, since they don’t need to recompute the RDD, 
say from reading data all over from the text file as in our example, or by generating the 
RDD from the RDDs parent RDDs. This means that applications that reuse the same 
data multiple times benefit from caching the RDDs.

Fault-Tolerance Due to Caching
While the main purpose behind caching is to speed up repeated computations that use 
the same RDDs, they also provide fault tolerance. Should any partition of an RDD be 
lost, Spark can automatically recompute it.

When a node with cached partitions of RDDs crashes, the Spark application continues 
to run without any problem. Once Spark recomputes the lost partition, it caches the 
recreated partition on a different node. How does Spark recreate the lost partitions(s)? 
Spark uses the RDD lineage information to recreate the lost partitions. It uses the same 
transformations that were used in creating it initially.

How to Specify Caching
An application can specify either the cache or the persist method to cache an RDD.

Specifying the cache Method
The cache method lets you cache the RDD in memory, as shown in the following 
example:

val logs = sc.textFile("path/to/log-files")
val errorsAndWarnings = logs filter { l => l.contains("ERROR") || 
l.contains("WARN")}
errorsAndWarnings.cache()
val errorLogs = errorsAndWarnings filter { l => l.contains("ERROR")}
val warningLogs = errorsAndWarnings filter { l => l.contains("WARN")}
val errorCount = errorLogs.count
val warningCount =  warningLogs.count

When exactly is an RDD cached? Let’s say I have the following:

testRdd.cache()
testRdd.count()
testRdd.collect()

Since an RDD is cached when you perform the first action and not before, just the 
collect action can use the cached values.

Tip

If your application isn’t going to read a dataset multiple times, caching is actually going 
to make the job slower. You do pay a price for caching. If the cost of the memory pressure 
due to caching is higher than the benefit of avoiding a recomputation of an RDD, caching is 
not good. If the dataset can be easily recomputed and the app isn’t going to access it too 
many times, recomputation may actually be faster.
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Specifying the persist Method
The second way to store an RDD in memory to benefit future computations is by 
invoking the persist method. You can look at persist as a more general way of caching 
RDDs, since it lets you specify storage formats other than memory for storing RDDs.

If you call the persist method without any parameters, it works the same as the cache 
method—it stores the RDD in memory. Here’s an example:

val lines = sc.textFile (/data/examples/data1.txt)
lines.persist()

Bothe cache and persist do the same thing for you—they store the RDD tempo-
rarily, and the default location for both methods is memory. The difference between 
the two methods is that the persist method lets you specify alternate storage levels for 
storing the data inside the RDDs.

If you are concerned about Spark’s memory usage and you think you’re using too much 
memory, there are alternatives beyond having to use just memory for storage. If you 
decide to store the RDDs and they don’t fit into the JVM memory, you can specify 
multiple storage-level options, such as the following:

 n MEMORY_ONLY: This is the default storage level and stores the RDD as a deserialized 
Java object. If there isn’t enough room in memory for the RDD, the partitions 
that can’t be cached will be recomputed when they’re needed. Here’s an example:
val lines = sc.textFile (/data/examples/data1.txt)
lines.persist (MEMORY_ONLY)

All of the following will use the MEMORY_ONLY storage level:
testRdd.cache()
testRdd.persist()
testRdd.persist(StorageLevel.MEMORY_ONLY_)

 n MEMORY_AND_DISK: Stores the RDDs in memory as deserialized Java objects, and if 
there isn’t enough room, will store the partitions on disk for future reads. Here’s an 
example:
testRdd.persist(StorageLevel.MEMORY_AND_DISK)

 n MEMORY_ONLY_SER: Stores the RDD in memory only as serialized Java objects (storing 
them in the deserialized form is the default), which are more space efficient. However, 
you expend greater amounts of CPU power to read the serialized data later on, as the 
serialized form requires more parsing. Here’s how you specify this storage level:
testRdd.persist(StorageLevel.MEMORY_ONLY_SER)

 n MEMORY_AND_DISK_SER: Similar to the MEMORY_ONLY_SER level but uses disk to 
store the partitions that don’t fit in memory. Here’s an example:
testRdd.persist(StorageLevel.MEMORY_AND_DISK_SER)

 n DISK_ONLY: Skips memory and stores all the partitions of the RDD on disk. Here’s 
an example:

testRdd.persist(StorageLevel.DISK_ONLY)
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 n MEMORY_ONLY_2, MEMORY_AND_DISK_2 and so on: These storage levels work the 
same as the corresponding storage levels described earlier, with the difference that 
each partition is stored on two nodes for resilience purposes. Here’s how you set 
this storage level:

testRdd.persist(StorageLevel.MEMORY_ONLY_2)
testRdd.persist(StorageLevel.MEMORY_ONLY_SER_2)
testRdd.persist(StorageLevel.MEMORY_AND_DISK_2)
testRdd.persist(StorageLevel.MEMORY_AND_DISK_SER_2
testRdd.persist(StorageLevel.DISK_ONLY_2)

Note 

Serialization saves on memory usage, but its counterpart, deserialization, increases CPU usage.

Here’s an example that shows how to set the storage level inside a Spark program. 
In this example, I specify the DISK_ONLY storage level to store all the partitions on disk, 
bypassing memory altogether.

import org.apache.spark.storage.StorageLevel
val result = input.map(x => x * x)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkString(",")) 

Tip

A collect() operation on an RDD results in the dataset being copied to the driver. If you’re 
collecting a large RDD and the driver’s memory allocation isn’t big enough to handle it, guess 
what happens? You’ll see the dreaded OOM exception. I suggested a strategy in Chapter 19, 
“Configuring and Tuning Apache Spark on YARN,” to get around it, which involves running such 
operations in the Client mode (and not in the cluster mode) and allocating plenty of memory 
to the driver to handle the huge dataset. If you can’t do this, the other strategy to keep your 
job from failing is to simply use take or takeSample to select a limited number of elements 
from the dataset.

Here’s how you set the storage level when running something from the Spark shell:

1. Start the Spark shell:

$ spark-shell

2. Import the StorageLevel you want to specify:

scala> import org.apache.spark.storage.StorageLevel._

3. Create your RDD:

scala> val words = sc.textFile("words")

4. Cache the new RDD:

scala> words.persist(MEMORY_ONLY_SER)
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Once the persist method is called on the RDD before the first action (count), the 
second action (collect) benefits from not having to recompute the RDD (result).

In both Scala and Java, the default persistence level will store the RDD data as 
unserialized objects. Python always stores objects as serialized data, so it stores the data 
in the Java heap as pickled objects. Python also stores the data it writes to disk in the 
serialized form.

Note

The choice of a storage level is irrelevant when using Python-based applications, since all 
stored objects are serialized with the Pickle library.

Checking the Cache 
When caching RDDs, often you want to know how many partitions Spark has stored. 
In the following simple example, I specify the cache procedure to make Spark cache 
the RDD before it processes it.

scala> val someRDD = sc.parallelize(1 to 100, 4)
someRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize 
at <console>:21

scala> someRDD.setName("toy").cache
res0: someRDD.type = toy ParallelCollectionRDD[0] at parallelize at <console>:21
scala> someRDD.map(x => x).collect

Once the job completes, I can use the Spark web UI’s Storage page, as shown in 
Figure 20.10, to understand what exactly Spark has stored from this operation.

Figure 20.10 shows how the Storage page reveals the various useful details about cach-
ing, such as the storage level, cached partitions, the fraction cached and, finally, the size 
of the cache in memory and on disk. 

Choosing among the Storage Levels
As you can tell, choice of a storage level implies choosing a specific tradeoff between 
speedy performance (in memory storage) and CPU usage. If the partitions fit all in 
memory, then the default storage level of MEMORY_ONLY (StorageLevel.MEMORY_ONLY—
store deserialized objects in memory) is the best strategy—this speeds up the RDD 
computations while using CPU in an efficient manner. 

Figure 20.10 Spark web UI’s Storage page showing the caching information
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If you’re going to perform frequent operations on an RDD, or you need to access 
an RDD quickly, MEMORY_ONLY is a good storage level to use. However, you do pay a 
price—you’re going to use a lot memory. Also, when caching a large number of small 
objects, the application is going to keep the garbage collector busy.

If you can’t fit the partitions entirely in memory, follow these Spark guidelines:

 n Avoid spilling to disk unless the application is filtering a huge amount of data, 
since recomputing the partitions is going to be slow, as compared to in-memory 
computations.

 n The next best strategy to using MEMORY_ONLY is to use MEMORY_ONLY_SER with a fast 
serialization library such as Kryo serialization, which I discussed earlier. MEMORY_
ONLY_SER helps cut down on garbage collection.

 n For faster fault recovery, choose the replicated storage levels (such as MEMORY_ONLY_2).

In a production setting, MEMORY_AND_DISK may be critical in helping you avoid data 
loss. Serializing the state to disk means that if an application fails, you’re ensuring that 
the state is captured and persisted on disk. This is especially critical for long-running 
applications. If there are unexpected spikes in the size of the data, a disk-backed RDD 
can handle it while memory-only RDDs will result in an out-of-memory exception. 
The MEMORY_AND_DISK storage level can help avoid expensive recomputations.

For Spark Streaming applications, as I explained in Chapter 19, it’s a good strategy 
to run with the MEMORY_ONLY_2 option to minimize the possibility of being unable to 
recover the state by storing everything in memory twice.

Note

Spark automatically removes older RDD partitions from cache using the well-known least-
recently-used algorithm. You can manually remove an RDD using the RDD.unpersist 
method. You need to be careful about not caching unnecessary data. If you try to cache too 
many RDDs relative to the memory you have, Spark evicts the older partitions. If the parti-
tions belong to memory-only storage levels, it has to recompute them when they are required 
the next time. If you’ve configured a memory and disk storage level upon evicting the 
partitions from memory, Spark writes them to disk (way slower than memory). So, regardless 
of the storage level, eviction of RDDs that may need to be read multiple times means more 
time to read (from disk), or recompute those partitions.

Using Tachyon
In addition to the storage levels I described, you can also choose to store an RDD in a 
serialized format in Tachyon, using the experimental OFF_HEAP storage level. There’s 
less garbage collection overhead with the OFF_HEAP storage level. If you have a bunch 
of Spark applications running, the OFF_HEAP storage level may help, as it lets executors 
share a memory pool. You also have the further advantage that if individual executors 
crash, you don’t lose any cached RDDs, since the RDDs don’t live in the executors—
they’re stored in Tachyon. Here’s how you set this storage level:

testRdd.persist(StorageLevel, OFF_HEAP)
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Finding the RDD Cache Information
You can view the RDD cache information in the Spark UI’s Storage page. This page 
shows the storage level, the number of partitions that are cached and the cached fraction 
and its size.

Caching Spark Tables
Up until now, I explained how you can cache RDDs in memory (and/or on disk). You 
can also cache tables that you plan on querying often. Spark SQL uses a special way to 
cache tables and I explain that in this section.

When the Spark SQL cache stores cached tables in memory, it does so in a columnar 
format. Since queries based on this columnar format will be using only the required 
columns, performance is going to be better. Spark SQL automatically chooses the appro-
priate or best compression codec for all the columns to minimize the memory usage and 
garbage collection.

Unlike in the case of the Spark RDD cache, when you cache a table, it doesn’t have 
to await an action so it can be cached. The table already exists, so when you say “Cache 
this table,” the table is immediately cached in the Spark SQL cache. You can however, 
change this behavior by making it a “lazy operation”:

sparkSqlContext.sql("cache lazy table myTableName")

You can use one of the following ways to remove a table from the Spark SQL:

dataFrame.unpersist()

sparkSqlContext.uncacheTable("myTableName")

sparksqlContext.sql("uncache table myTableName")

Summary
Here’s what you learned in this chapter:

 n To be able to tune the performance of Spark applications, you must get a good 
handle on the basic Spark execution model.

 n Minimizing expensive shuff le operations is at the heart of Spark performance 
tuning, and selecting appropriate aggregation operators is a key strategy in 
achieving this goal.

 n You can’t have too few or too many partitions. You need to know when to use the 
repartition and coalesce operations to change the number of partitions in an RDD.

 n Caching data is beneficial and knowing the storage levels you can specify for 
caching helps optimize caching strategies to suit the requirements of your 
applications.
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21
Troubleshooting 

Hadoop—A Sampler

This chapter covers

 n Troubleshooting space-related issues
 n Troubleshooting memory issues
 n Handling different types of failures
 n Troubleshooting Spark job execution

I’m going to keep this, the last chapter of the book, short and sweet. Troubleshooting 
is a vast area and I want to give you a f lavor of some of the more interesting issues you 
might run into in your Hadoop cluster. Hadoop has many configuration properties, 
and a mastery of those properties is essential to getting the most out of your investments 
in a Hadoop cluster. However, only some of the errors you run into every day can be 
fixed by reconfiguring Hadoop’s various components.

I don’t consider the performance analysis of poorly running Hive, Spark or other jobs 
running in a cluster as troubleshooting. The reasons for a “hanging” or long-running job 
may be due to poor code or improper choice of operators, inefficient join strategies, 
or a zillion other things. Similarly, I don’t attempt to discuss the reasons for a process 
(such as Hive or Hue) not starting up or crashing—these again are usually due to configu-
ration errors/changes on either the host server or in the component, and there could be 
numerous reasons for these type of failures—they all come under routine systems adminis-
tration of any type and aren’t really special to Hadoop administration.

   Space-Related Issues
Hadoop uses several types of storage. Besides HDFS itself, Hadoop stores logs in the host’s 
/var directory, as well as in the local directories. Space-related issues in any of these areas 
can cause job failures, so it’s a good idea to keep an eye on the local directories used by 
Hadoop.
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As you learned in Chapter 17, “Monitoring, Metrics and Hadoop Logging,” the 
NodeManager always stores the application log files in the local directories. This is true 
even when you enable log aggregation where Hadoop stores job logs in HDFS, since all 
logs are first stored on local storage. If the mount point on which the log directory is located 
fills up, the NodeManager won’t be able to write its log files on that node. The same is 
the case if the directories where the Hadoop daemons are logging are full.

 To avoid task and potential job failures, you must proactively check the available free 
space under these mount points and get rid of all unnecessary files. If you can’t remove 
enough space, you may want to expand the size of the mount point itself.

You can determine which files to remove from these directories by running commands 
such as the following on the nodes with a problem space situation:

# find ./ -size +100000 -type f -ls | sort -n  // lists files larger than 25MB
# du -a /var | sort -n -r | head -n 10  //lists the top 10 files in size, 
in a sorted order

If you set the location of the Hadoop daemon logs and application local directories 
used by the NodeManager to the /var directory, understand that this directory shares 
the root file system (the “/” partition) with other directories such as tmp. You are likely 
to use the /var directory for logging output from several Hadoop-related components, 
such as ZooKeeper, Hive and Hue, in addition to the Hadoop daemons and NodeManager 
application logs. So, it pays to work up a simple shell script that alerts you to a low space 
condition on this mount point.

If the NodeManager local directories specified by the yarn.nodemanager.local-dirs 
parameter fill up on a node, an application may fail because it tried to launch more than 
the configured number of task attempts on that node. You’ll receive an error similar to 
the following in the application’s log file:

Application application_1437683566204_0394 failed 2 times due to AM Container for
 appattempt_1437683566204_0394_000002 exited with exitCode: -1000 due to: 
No space available 
in any of the local directories.

.Failing this attempt.. Failing the application.

Dealing with a 100 Percent Full Linux File System 
Once in a while a file system might report that it is 100 percent full. If this happens to be 
a mount point such as the root file system, it spells immediate trouble, as that’s where most 
files store their Hadoop-related local logs (under /var/log). Obviously some user generated 
a large dump file, or a huge temporary file was stored in the directory that became full. Use 
the following procedures to free up space in the directory that’s fully used up.

Use the find command to determine the largest files under a mount point. Here’s 
one such command:

# du -a /var | sort -n -r | head -n 10

Once you identify the largest files, remove all the files that aren’t critical for the 
cluster operation.
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HDFS Space Issues
HDFS space issues could be of two types: The first is when you’re low on HDFS free 
space in your cluster. The second is when individual users bump up against the HDFS 
quotas you’ve allocated to them. These users could also be what you may call functional 
accounts, which are generic usernames under which you submit jobs, such as an HDFS 
user named produser, for example.

If HDFS free space is getting low in your cluster, there are two basic solutions for 
increasing the space: adding more nodes or adding more drives to the existing nodes. 

Another way you can increase the free HDFS space is by deleing data you no longer 
need, as well as by reducing the replication factor for historical data that isn’t deemed 
quite as important as newer data.

If jobs issued by users are failing due to their hitting their maximum configured HDFS 
space quota, you need to increase the space quotas for the users with the dfsadmin 
setSpaceQuota command, as explained in Chapter 9, “HDFS Commands, HDFS Permis-
sions and HDFS Storage.”

Once way to stay a step ahead of HDFS quota–related problems is by periodically 
running a command such as the following, which shows the current usage of HDFS 
space by all my users, as well as the extent of the HDFS space quota each user still has 
available:

$ hdfs dfs -count -q -h /user/*

none inf 30 G 20 G 1      
0 0 /user/alapati

none inf 30 G 5 G 2      
0 0 /user/analyst
...

This partial output from the hdfs dfs –count q –h command shows that the user 
alapati has used 10GB out of that user’s allocated space quota of 30GB. Thus the user 
has 20GB still left under that user’s space quota. If users are bumping up against their 
assigned space quotas, increase the space quotas with the dfsadmin –setSpaceQuota 
command.

Local and Log Directories Out of Free Space
Earlier in this chapter you learned that you can specify the local directories for the 
NodeManager with the yarn.nodemanager.local-dirs parameter and the log directories 
for the NodeManager with the yarn.nodemanager.log-dirs parameter. Hadoop per-
forms a disk health check at frequent intervals. If the free space falls below a threshold 
value, no new containers will be launched by the NodeManager on the node where it runs. 

Two key parameters—yarn.nodemanager.disk-health-checker.min-healthy-

disks and yarn.nodemanager.disk-health-checker.max-disk-utilization-per-
disk-percentage—play a critical role in how the NodeManager behaves in the face of 
a low space issue on either the local directories or the log directories. Here’s how the 
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two parameters determine the percentage of space Hadoop uses on each storage disk 
and how it considers a node to have a sufficient number of healthy storage drives:

 n yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk- 

percentage: Once a disk reaches a space-utilization threshold set by this parameter, 
it’s marked bad (or unhealthy). You can set a value between 0.0 and 100.0 for this 
parameter, and the default value is 90.0. Once a disk exceeds 90 percent usage, it 
can still be used, but it is marked bad or unhealthy internally. Remember that this 
applies to the directories you specify as values for both the yarn-nodemanager
.local-dirs and yarn.nodemanager.log-dirs parameters.

 n yarn.nodemanager.disk-health-checker.min-healthy-disks: This parameter 
determines the minimum fraction of the total disks on a node that must be healthy. 
If the number of healthy drives (local-dir or log-dir) on a node falls below this 
threshold, the NodeManager will not launch new containers on this node. In effect, 
this node gets taken out of the cluster so far as processing goes. The default value 
for this parameter is 0.25. If you have twelve disks on a node, this means that at 
least a quarter of them—that is, three drives—must be healthy in order for the 
NodeManager to start new containers on the node.

Let’s say you’re using the default values for both the yarn.nodemanager.disk-health-
checker.max-disk-utilization-per-disk-percentage and the yarn.nodemanager
.disk-health-checker.min-healthy-disks parameters. If you are tight on space and 
more than 10 drives on a 12-drive node reach the 90 percent threshold, the NodeManager 
will keep containers from being started on these nodes—meaning, the job’s new tasks 
on that node will fail and you’ll see an error such as the following:

Application Type:     MAPREDUCE
Application Tags:
State: FAILED
FinalStatus: FAILED
Started:       Sat Jul 16 04:01:10 -0500 2016
Elapsed:       13sec
Tracking URL:  History
Diagnostics:
Application application_1437683566204_0350 failed 2 times due to AM Container for 
appattempt_1437683566204_0350_000002 exited with exitCode: -1000 due to: No space 
available in any of the local directories.
.Failing this attempt.. Failing the application.

This error shows that the NodeManager refuses to start the task with ID 000002 
because more than the minimum number of disks are “unhealthy.” On a 3TB drive, 
90 percent used space means there’s still 300GB free—and most likely you can continue 
to use the drives. You can do one of two things (or both) under the circumstances:

 n Lower the threshold for marking a disk as bad by setting a lower value for the 
yarn.nodemanager.disk-health-checker.max-disk-utilization-per-disk-

percentage parameter.
 n Lower the minimum number of healthy drives by setting the yarn.nodemanager
.disk-health-checker.min-healthy-disks parameter.
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The best long term solution, obviously, is to acquire more nodes for the cluster.
The parameter yarn.nodemanager.disk-health-checker.min-free-space-

per-disk-mb determines how much free space there ought to be in the local-dirs and 
the log-dirs for the directories to be used by the NodeManager. The default is 0.

Disk Volume Failure Toleration
If a very small percentage of a cluster’s DataNodes are dead, no need to fret about it, 
trying to bring up those nodes—you have better and more critical things to attend to 
in a Hadoop cluster! However, do track the number of dead nodes and when the number 
reaches a significant amount, work on bringing the nodes back. Unlike traditional 
databases, where losing a disk could have a catastrophic impact, Hadoop will merrily 
chug along even when storage failures occur. Your cluster will operate the same, but 
with a smaller total storage capacity. Unlike in traditional RAID systems, you can fix 
the failed disks when it’s convenient to do so. You can configure how many disk failures 
a node can tolerate by setting the following parameter:

<property>
   <name>dfs.datanode.failed.volumes.tolerated</name>
   <value>4</value>
</property>

In this case, Hadoop will tolerate the failure of four disk volumes on a DataNode 
before it blacklists it. It’s important to understand that by default a DataNode will shut 
down following the failure of a single volume (disk drive). So, the default value for the 
dfs.datanode.failed.volumes.tolerated parameter is zero. Make sure you set it to a 
positive number such as 2, 3 or 4 to make sure that DataNodes don’t shut down following 
a single volume failure. Once the number of failures reaches the number you set, the 
DataNode will be marked a “dead node.” 

The easiest way to find out whether you have any failed volumes in your Hadoop 
cluster is by reviewing the NameNode UI’s Datanode Volume Failures page, as shown 
in Figure 21.1.

Hot Swapping a Disk Drive
You can add or replace a disk drive without bringing down the DataNode, since Hadoop 
supports hot swappable drives for DataNodes. You need to use the new command 
dfsadmin –reconfig datanode to perform the hot swap. Following is a high-level 
description of the procedures for a hot swap of disk drives.

1. Format and mount the new disk drive.

2. Update the dfs.datanode.data.dir config property in the hdfs-site.xml file.
Remove the failed data volumes you are replacing and add the new data volumes.

3. Execute the dfsadmin –reconfig datanode HOST:PORT start command to
start the reconfiguration.

4. Unmount the removed data volume directories and remove the disks from the
server once the reconfiguration task completes.
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Setting the dfs.datanode.du.reserved Parameter
In Chapter 3, “Creating and Configuring a Simple Hadoop 2 Cluster,” you learned how 
the dfs.datanode.du.reserved parameter in the hdfs-site.xml file lets you set the amount 
of the reserved space (in bytes per volume) for non-HDFS use. Although the directories 
on which you store HDFS files are mostly designed for HDFS usage, they aren’t entirely 
for HDFS usage. The directories also hold the temporary data for Hadoop jobs. Make sure 
to leave enough space free for holding the temporary data of the largest Hadoop jobs you 
expect to run.

Using Replication Well
Hadoop uses a default replication level of three as explained in Chapter 3 and repeated 
elsewhere. While a higher replication factor, of course, means higher usage of disk 
space, there are advantages to a higher level of replication. A high replication level has 
two clear benefits:

 n Faster performance, especially when dealing with “hot” data required by multiple 
applications.

 n Higher reliability—the higher the replication level, the more reliable the data is 
from a storage point of view.

Figure 21.1 The NameNode UI’s DataNode Volume Failures 
page, showing the number of failed volumes
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Handling YARN Jobs That Are Stuck
Once in a while you may run into a situation where Spark (or MapReduce) applications 
are initiated in YARN but never make it to the RUNNING state. The jobs just remain 
stuck in the ACCEPTED state. The same thing can happen when Oozie launches the job 
or you run it manually. The jobs remain stuck in the ACCEPTED state and don’t transition 
to the RUNNING state. If you check the ResourceManager web UI, you’ll see the job 
status as ACCEPTED as well. If you check the application log, you’ll see messages such as 
the following:

2016-09-01 00:48:14,121 INFO 
org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler: 
Added Application Attempt appattempt_1420073214126_0002_000001 to 
scheduler from user: admin
2015-09-01 00:48:14,121 INFO 
org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: 
appattempt_1420073214126_0002_000001 State change from 
SUBMITTED to SCHEDULED

You have no recourse but to kill these jobs (yarn application –kill <appid>) in 
most cases and run them anew, either manually or by letting the next scheduled Oozie 
job start a new job. Diagnosing and fixing the stalled job issue is often quite easy. I explain 
how to fix this in two common scenarios.

A major cause of jobs that are stuck and don’t start running (possibly forever), is lack 
of sufficient resources to launch the job. If a job makes a request for a high amount of 
RAM for a container such as, say, 64GB, but there’s no node in the cluster with 64GB 
free memory, YARN won’t start the job. There isn’t much you can do in this case but 
wait until sufficient memory is freed up over the course of time to enable the launching 
of the job. You’ll need to relaunch the job, as it won’t transition out of the ACCEPTED 
state on its own. In the long run, you may want to explore increasing the RAM for the 
cluster nodes.

The other reason why jobs may hang and languish in the ACCEPTED state forever is 
because you’ve limited the maximum number of jobs through the Fair Scheduler or 
the Capacity Scheduler. To ensure that you haven’t set the maximum simultaneously 
runnable jobs too low, if you’re using the Fair Scheduler to allocate resources in your 
cluster, check the value of the maxRunningApps queue element (this sets the limit on 
the number of apps from the queue to run at once) in the fair-scheduler.xml file. The 
maxRunningApps attribute sets the limit on the maximum number of applications 
that can be run by a user at any time. If you’re using the Capacity Scheduler, check the 
value of the following properties in the capacity-scheduler.xml file (the properties set 
the maximum number of applications that can be concurrently active in both running 
and pending states): 

yarn.scheduler.capacity.maximum-
applications / yarn.scheduler.capacity.<queue-
path>.maximum-applications
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If you’re using a tool such as Cloudera Manager, of course, you’ll need to make the 
changes through the tool. For example, if you’re using Cloudera Manager, you can do 
this by going to Clusters > Dynamic Resource pools > Configuration. At this point, 
you can click first on Default Settings and check the value of the Max Running Apps 
per Resource Pool attribute. Next, you need to edit the configuration of the specific 
resource pool from within which this application was launched and bump up the value 
of the Max Running Apps configuration property.

JVM Memory-Allocation and Garbage-Collection 
Strategies
Everything runs in a Java Virtual Machine ( JVM) in Hadoop. To troubleshoot well, 
you must understand how JVMs allocate memory and how they perform garbage 
collection, which is how a JVM reclaims older and unused memory so it can allocate 
it for other uses. Different garbage-collection strategies have a different impact on the 
performance of applications in your cluster. 

Chapter 17, “Monitoring, Metrics and Hadoop Logging,” showed how to monitor 
your cluster through Ganglia or by reviewing the various Hadoop logs. When every-
thing fails, it’s time to review a Java heap dump to get at the root cause of issues in the 
YARN containers! 

Understanding JVM Garbage Collection
A Java heap is where the objects of a Java program are stored. When you allocate 
memory to a map or reduce container’s JVM, as explained in Chapter 3 and Chapter 18 
“Tuning the Cluster Resources, Optimizing MapReduce Jobs and Benchmarking,” it is 
these parameters that determine the size of the Java heap for a YARN container. The 
heap can contain live objects, dead objects, and free unassigned memory. When no running 
program can reach a specific object in a heap, it’s considered “garbage” and the JVM 
gets ready to remove it from the heap. Garbage collection is how a JVM releases unused 
Java objects in the Java heap.

Each JVM’s heap comprises three separate parts, called generations. The three 
generations are named young (new generation), old and permanent. The JVM allocates 
initial size to both the young and old generations with the –Xms option, and the maximum 
size of the segment is set by the –Xmx option. You can also initialize the size of the young 
generation with the –XX:NewSize option and specify the size of the old generation with 
the –XX:Newratio option. If you set the –XX:NewRatio parameter to 3, it means that the 
old generation’s size is three times as large that of the new generation.

Figure 21.2 shows the generations in the Java heap.
The new generation consists of three segments—Eden, Survivor Space I and Survivor 

Space II. Objects are created in the Eden component first and traverse through the 
Survivor Space I segment before ending up in the Survivor Space II segment. Finally 
the objects are moved to the old generation component. In a minor garbage collection, 



ptg18444370

733JVM Memory-Allocation and Garbage-Collection Strategies

the JVM moves objects within the young generation. When the JVM can’t move any 
objects into the old generation space, it triggers a major garbage collection process, which 
isn’t good for any running applications such as your YARN applications.

The size of the Java heap plays a crucial role in how often and how much time the 
JVM spends collecting garbage. Time spent collecting garbage is waiting time, not 
processing time, so applications take longer to complete if the JVMs are spending an 
inordinate amount of time collecting garbage. By assigning a very high amount of memory 
to the JVM heap, you can of course reduce garbage collection and even eliminate it 
completely. However, that means your cluster can support fewer containers overall, as 
each container uses up a very large chunk of memory for its JVM memory. This means 
that the cluster can support fewer simultaneously running applications. The trick here 
is to minimize the time spent by the JVMs in garbage collection, while supporting as 
many containers (and thus, applications) overall as you can.

If your JVMs run out of heap space, you’ll see the following out of memory 
(OOM) errors:

java.lang.OutofMemoryError
Exception in thread "main"

Specifying the Java Heap Size Values
When you configure the size of a container, internally, YARN will start the Java process 
as follows:

java –XX:NewSize=128m  -XX:MaxNewSize=128m  -XX:SurviviorRatio=8  -Xms512m   -Xmx512m

The m in the parameter settings means megabytes. –Xms and –Xmx refer to the minimum 
and maximum sizes of the Java heap.

Regardless of what heap sizes you set for the child JVMs, you should ensure that you 
don’t end up swapping pages to disk because of too high an allocation for the JVMs for 
map and reduce tasks.

Optimizing Garbage Collection
You can choose a specific garbage collection schema or strategy to tune the JVM mem-
ory usage. You can optimize the garbage collection process by choosing the appropriate 
garbage-collection strategy for your applications. 

Figure 21.2 The structure of a JVM’s generations
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For applications with short and infrequent garbage-collection processes, a garbage- 
collection strategy isn’t critical. However, for those applications that deal with large amounts 
of data, it may be important to fine tune the garbage collection process by picking the 
appropriate collection strategy. In these applications, throughput suffers significantly due 
to high garbage collection times. 

If you add up the time lost for processing by garbage collecting hundreds and thou-
sands of objects it could be a significant chunk of the total processing time taken by an 
application.

 Analyzing Memory Usage
You can obtain so-called heap dumps from a YARN container to analyze how an 
application is using its memory. A common tool for obtaining heap dumps is the jmap 
tool, which requires the process ID to attach itself to the running Java process and dumps 
the heap contents to a file, as shown here:

 # jmap -dump:format=b,file=~/mr-container.hprof -F 2345
Attaching to process ID 12345, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 20.6-b01
Dumping heap to /opt/rm.hprof ...
Finding object size using Printezis bits and skipping over...
Finding object size using Printezis bits and skipping over...
Heap dump file created
#

You can read the heap dumps generated by the jmap utility with either the jhat utility 
or visually through the Eclipse Memory Analyzer. The Eclipse Memory Analyzer reveals 
the objects using the most heap space in the JVM process.

 Out of Memory Errors
Once in a while, you may encounter an OOM error when trying to list files in HDFS 
using hdfs dfs –ls on a directory:

java.lang.OutOfMemoryError: 
Java heap space 

Or you may see the following error:

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space 
at java.util.Arrays.copyOf(Arrays.java:2367) 
at 
java.lang.AbstractStringBuilder.expandCapacity(AbstractStringBuilder.java:130) 
at 
java.lang.AbstractStringBuilder.ensureCapacityInternal(AbstractStringBuilder.java:114)
at...

This happens because the HDFS client’s default heap size of 246MB is too low when 
you’re attempting to list a directory with a large number of objects. Increase the heap 
size of the Hadoop client by specifying a higher value for the heap size, as shown here:

$ HADOOP_HEAPSIZE=1024 hdfs dfs –ls /user/sam
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The Hadoop client will now have a greater Java heap size to perform the lookup of 
the HDFS directory contents.

Following is another example where a Spark job crashes with an OOM error:

ERROR Executor: Exception in task 25.0 in stage 16.0 (TID 999)
java.lang.OutOfMemoryError: GC overhead limit exceeded
    Resolution: 
spark.executor.memory : Amount of memory to use per executor process, in the same 
format as JVM memory strings.

In this case the problem and the solution are given to you! You need to increase the 
memory for the executor by bumping up the value of the spark.executor.memory 
configuration property, as I explained in Chapter 19, “Configuring and Tuning Apache 
Spark on YARN.”

Spark and JVM Garbage Collection
It’s not uncommon for Spark applications to use 100GB and even higher amounts of 
memory for the heap space. Garbage-collection-induced delays and crashes are a common 
concern in many Spark environments. 

The standard garbage-collection strategies used by Java applications are the Concurrent 
Mark Sweep (CMS) and the ParallelOld garbage-collection strategies. The first strategy 
aims at lower latency and the second, a higher throughput. Both strategies could prove to 
be performance bottlenecks—the CMS GC because it doesn’t do any compaction, and 
the ParallelOld GC, which performs only whole-heap compactions, because it can induce 
long pauses in application performance. If your application needs real-time response, in 
general, the CMS GC works best, and if your applications are mostly analytical in nature, 
you can use ParallelOld GC.

Since Spark has both streaming and batch-processing capabilities you might want to 
consider the newer Garbage-First GC (G1GC) introduced by the Hotspot JVM version 2.6. 
This collector is going to eventually replace CMS GC, and its goal is to simultaneously 
provide low latency and high throughput.

Whichever GC strategies you might pursue, the fact remains that the most critical 
tuning aspects are those that optimize the use of memory by reducing intermediate 
object creation or replication, storing long-lived objects off heap and limiting the creation 
of very large objects.

Out of the memory you allocated to an executor, Spark allots 75 percent to storage 
and execution. If you don’t need a lot of memory for storing RDDs, you can lower the 
memory fraction allocated to RDD caching by setting the spark.storage.memory-
Fraction property, as shown here:

$ spark-shell --conf spark.storage.memoryFraction=0.2

ApplicationMaster Memory Issues
When a client launches an application, a single ApplicationMaster (AM) container 
is launched first, with the ID 000001 for the container. For jobs that are crunching 
through large amounts of data, the AM container needs to be sized adequately. The 
default size of 1GB is usually enough, but it is not going to be so for every application. 
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When the ApplicationMaster reaches the limits of its memory, the application will 
fail, as shown here:

Application application_1424873694018_3023 failed 2 times due to AM Container for 
appattempt_1424873694018_3023_000002 exited with exitCode: 143 due to: Container 
[pid=25108,containerID=container_1424873694018_3023_02_000001] is running beyond 
physical memory limits. Current usage: 1.0 GB of 1 GB physical memory used; 1.5 GB 
of 2.1 GB virtual memory used. Killing container.

Container killed on request. Exit code is 143

Container exited with a non-zero exit code 143

.Failing this attempt.. Failing the application.

You need to raise the ApplicationMaster memory allocation to keep this error from 
recurring. 

Job and Task IDs

The ResourceManager creates an application ID for each new application that’s launched 
in the cluster. The format of the application ID is composed of the time when the 
ResourceManager started and an incrementing counter to uniquely identify the application, 
as shown here:

application_1410450250506_0003

In this case the ResourceManager started at the time specified by the timestamp 
1410450250506. This application naming format means that all applications started 
after the startup of the ResourceManager will have a common first part and are differen-
tiated by the incrementing counter at the end, such as _0003, _0004 and so on. 

The job ID corresponds to the application ID and is generated by replacing the application 
prefix with the job prefix, as shown here:

job_1410450250506_0003

Each job contains multiple mapper and reducer tasks. Each of those tasks gets its own ID, 
which follows the same pattern as the job ID, with task replacing job at the beginning 
and a unique number for the specified task at the end (m represents mappers and r rep-
resents reducer tasks). Here are two examples, one for a mapper task and the other 
for a reducer task.

task_1410450250506_0003_m_000003
task_1410450250506_0003_r_000001

Since a task may be executed more than once due to a task failure or because the 
task was preempted, each task attempt gets its own ID, as shown here:

attempt_1410450250506_0003_m_000003_0
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Handling Different Types of Failures
It’s not uncommon for various cluster services to fail on occasion. Following is a quick 
review of how Hadoop handles failures pertaining to various components in the 
Hadoop architecture.

                                                               Handling Daemon Failures
Key services such as the NameNode or the ResourceManager are liable to crash at times. 
Hadoop contains excellent failure-handling capabilities to deal with any type of failure 
in the system. The key thing to remember is that Hadoop is highly fault reliant—both 
YARN and HDFS will continue their processing unimpeded when one or more disks 
go bad, or even one or more servers go down. This is the beauty of the built-in data 
replication capability of Hadoop.

Starting Failures for Hadoop Daemons
Once in a while you may run into a problem where you are unable to start up a DataNode 
or the NameNode(s). You can check whether the DataNodes and the NameNodes are 
running with the Linux jps command, as shown here:

$ jps
10561 Jps
20605 NameNode
17176 DataNode
18521 ResourceManager
19625 NodeManager
18424 JobHistoryServer

 On confirming that the DataNode (or NameNode) isn’t running, check whether any 
other programs are using the ports that were assigned to the DataNodes or NameNodes.

sudo netstat -tulpn | grep :8040
sudo netstat -tulpn | grep :8042
sudo netstat -tulpn | grep :50070
sudo netstat -tulpn | grep :50075

If you notice any programs grabbing the ports that the DataNodes need, you must 
kill those processes. You can get the PID (process ID) with the first command shown 
here and kill it with the second command:

# sudo netstat -tulpn | grep :port
# sudo kill 12345

Note that an overwhelming majority of failed DataNodes are due to disk failure. 
Network issues account for most of the remaining failures.

NameNode Crashes
When the NameNode process crashes or the server hosting the NameNode process 
becomes unavailable, the cluster also becomes unavailable, unless you’ve configured 
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NameNode high availability. Otherwise, you must f ix the problem and restart the 
NameNode on the same server or move the NameNode service to a different node 
and start it from there.

ResourceManager Crashes
Running applications continue to run even in the absence of the ResourceManager 
daemon. You can’t, however, submit new jobs. Once you restart the ResourceManager, 
there’s no need to resubmit all your jobs. YARN provides built-in fault tolerance. 

Since you can’t run any applications in your cluster without the ResourceManager, 
you must configure high availability for it by running a pair of ResourceManagers per 
cluster, one in the active and the other in the standby mode.

ApplicationMaster Crashes
When the ApplicationMaster for an application crashes, the ResourceManager will start it 
from the point where it had stopped functioning. The ResourceManager will reattempt 
the application two times by default. You have the option of setting job recovery for the 
ApplicationMaster, whereby it only reruns the incomplete tasks after it restarts, following 
a failure. If job recovery is set to false, the ApplicationMaster reruns all tasks upon its restart.

NodeManager Failures
If the NodeManager fails, the ResourceManager removes it from the list of active 
NodeManagers. The ApplicationMaster will mark all jobs running on that node as failed 
tasks. The job itself isn’t considered a failure—tasks that are declared as failed on a specific 
node are scheduled to run on other nodes in the cluster.

Task and Job Failures
If a container running a map or reduce task fails, by default the ApplicationMaster will 
reattempt the task four times before marking the task as a failed task. 

Configuring the Number of Retries for Failed Map Tasks
Unlike a regular Java or SQL program, a failed map task doesn’t mean that the task 
remains in the failed state; Hadoop likes to retry a failed map task. Let’s say a map task 
fails due to a node exhausting all of its local directories. When the ResourceManager 
retries the job, more than likely, the task will be assigned to a different node, and it’s 
very likely to succeed.

You can configure the maximum number of times the ResourceManager should retry 
a failed map task by setting the mapred.map.max.attempts parameter, as shown here:

<property>
  <name>mapred.map.max.attempts</name>
  <value>4</value>
</property>

If the task fails even after four retries, the ResourceManager will finally declare the 
task as failed. In this case the value for the mapred.map.max.attempts parameter is set 
to 4, and its default value is 2.
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Retrying Jobs After a Failure
You can configure multiple attempts to run an application following a job failure. The 
parameter mapreduce.am.max-attempts lets you set the maximum number of applica-
tion settings. Note that this is an application-specific setting and thus must be set at the 
application level and not at the cluster level.

The default value for the mapreduce.am.max-attempts parameter is 2, meaning the 
ResourceManager will retry the start of the ApplicationMaster at least once for every 
application.

Configuring Work Preserving Recovery for YARN Components
When a ResourceManager or a NodeManager restarts, you could potentially lose 
in-f light work. To prevent this, you use the work preserving recovery feature for 
both the ResourceManager and the NodeManager. ResourceManager high availability 
is a prerequisite for enabling the work preserving recovery feature. 

In order to enable work preserving recovery, set the value of the yarn-resourcemanager
.work-preserving-recovery.enabled parameter and the yarn.nodemanager.recovery
.enabled parameter to true in the yarn-site.xml file.

<property>
   <name>yarn.resourcemanager.work-preserving-recovery.enabled</true>
    <value>true</value>
</property>

<property>
   <name>yarn.nodemanager.recovery.enabled</true>
    <value>true</value>
</property>

In addition, for the NodeManager recovery enablement, you must configure a direc-
tory on the local file system for storing the state information. You do this with the yarn.
nodemanager.recovery.dir parameter, whose default value is ${hadoop.tmp.dir}/
yarn-nm-recovery. Since you don’t want to store things on the /tmp directory, assign a 
different location for this directory. Finally, you must also set the yarn.nodemanager
.address parameter to an address with a specific port number, such as 0.0.0.0:12345 
instead of using an ephemeral port. By default, the NodeManager RPC server uses the 
ephemeral port 0, which means it can use a different port after a restart, thus keeping 
clients from connecting to it after a NodeManager restart.

Troubleshooting Spark Jobs
Spark has become the preeminent processing framework in the Hadoop environment. 
Therefore, it’s appropriate that I spend a bit of time going over some important Spark 
job troubleshooting issues. 

Spark can automatically handle failed tasks, and you can also kill Spark jobs. You can 
also specify the maximum number of attempts and the maximum number of failures 
for a job.
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Spark’s Fault Tolerance Mechanism
Spark automatically reexecutes failed tasks and even slow-running tasks. If one of the 
worker machines goes down while working on transforming an RDD, Spark will 
relaunch the task on a different server. The same goes when a task is taking way too 
long to complete. Spark also recomputes any partitions that were removed from the 
cache during memory pressure by relying on the RDD’s lineage.

Killing Spark Jobs
You can kill jobs from Spark’s web UI. The spark.ui.killEnabled property determines 
whether you can kill a job from the UI—the default is true.

If you’re running a job in the yarn-cluster mode, YARN restarts the driver after a 
failure without killing the executors. In the client mode, however, YARN will auto-
matically kill all the executors when the driver is killed.

Maximum Attempts for a Job
You can specify the maximum number of attempts that’ll be made to submit an appli-
cation through the spark.yarn.maxAppAttempts property. However, since you’re 
running Spark on YARN, make sure that the value for this property doesn’t exceed the 
maximum number of attempts in YARN, which is configured by the yarn.nodemanager 
.am.max-attempts property in the yarn-site.xml file.

You can configure the maximum number of executor failures before the Spark applica-
tion is failed for good by setting the spark.yarn.max.executor.failures property. The 
default value for this parameter is numExecutors *2, with a minimum of three failures.

Maximum Failures per Job
You can configure the number of individual task failures before Spark gives up on a job 
through the spark.taskmaxFailures configuration property. The default value for this 
parameter is 4.

Debugging Spark Applications
As with MapReduce jobs, how you access the Spark logs depends on whether you’ve 
configured log aggregation.

Viewing Logs with Log Aggregation
If you’ve enabled log aggregation (through the yarn.log-aggregation-enable), the logs 
generated by all the executor containers are copied to HDFS—they’re also deleted 
immediately from the local servers. There are several ways in which you can access Spark 
logs, as I explain here.
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You can view the job logs from the command line with the yarn command, which I 
explained in Chapter 17, as shown here:

yarn logs –applicationId <app_ID>

This command will print the contents of all the log files from all the containers for a 
Spark job.

Viewing the Logs from HDFS
Alternatively, you can view the container logs in HDFS, either through the HDFS 
shell or the API. You can find the directory where the logs are stored by checking the 
configuration settings for the following two parameters:

yarn.nodemanager.remote-app-log-dir
yarn.nodemanager.remote-app-log-dir-suffix

Viewing the Logs from the Spark Web UI
You can also view Spark job logs from the Executors tab in the Spark web UI. For this to 
work, you must run the Spark History Server and the MapReduce History Server. In addi-
tion, you must configure the yarn.log.server.url property in the yarn-site.xml file.

When you reach for the Spark job logs from the Spark web UI, the URL for the 
Spark History Server UI redirects you to the MapReduce History Server and shows 
the aggregated logs.

Viewing Logs When Log Aggregation Is Not Enabled
When you haven’t turned on log aggregation, YARN stores the Spark job logs locally 
in each machine. The exact location is specified by the yarn-app-logs-dir parameter 
in the yarn-site.xml file. 

In order to view the logs for an executor, you must go to the server that stores the 
container’s logs for that executor under the directory specified by the yarn-app-logs-dir 
parameter. As with MapReduce logs, the log files are organized into subdirectories 
named after the application ID and the container ID.

You can also view the unaggregated Spark logs on the Spark web UI (Executors tab), 
but you don’t need to run the MapReduce History Server in that case.

Reviewing the Launch Environment
When dealing with certain problems, such as the debugging of class path problems, you 
can access the application cache on the directories specified by the yarn.nodemanager
.local-dirs property on the nodes where the containers were launched. The applica-
tion cache includes the launch script, the JAR files and the environment variables used 
during the container launch.
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Summary
Here’s what you learned in this chapter:

 n Space-related problems could be alleviated by knowing how to configure key 
configuration parameters such as yarn.nodemanager.disk-health-checker
.min-healthy-disks and yarn.nodemanager.disk-health-checker.max-disk-
utilization-per-disk-percentage.

 n You can configure YARN’s work preserving recovery feature for both the 
ResourceManager and the NodeManager to save in-f light work following the 
restart of the ResourceManager or a NodeManager.

 n Understanding JVM garbage collection is critical to good application perfor-
mance. Consider using the newer garbage collection strategies such as G1GC.
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Linux and Cloning the 
Virtual Machines

You can install the test cluster discussed in Chapter 4, “Planning for and Creating a
Fully Distributed Cluster,” on a laptop, a desktop or a server. The steps are the same 
regardless of the machine you use. As I mentioned in Chapter 4, I used Oracle Enter-
prise Linux for running my three-node cluster. However, you can use Red Hat Linux, 
CentOS, Fedora, Ubuntu, or any other Linux distribution you wish. Everything works 
either exactly the same way or with very minor differences.

Please note that while the installation steps are for a specific version of Linux and 
VirtualBox, you don’t have to use the same release I show here. A more recent release 
should work pretty much the same way as shown here, as the procedures don’t change 
from release to release. You can search the Internet for full-blown examples of the 
installation of both VirtualBox and Linux, and there are several of those, with screen-
shots for every step.

You can break down the installation process into the following steps:

1. Install Oracle VirtualBox.

2. Install Oracle Enterprise Linux on a virtual server.

3. Install Hadoop 2.6.0 on the virtual server.

4. Configure Hadoop 2.6.0 on the virtual server.

5. Clone the initial virtual server to create the other two virtual servers.

I describe steps 1, 2 and 5 in this appendix. Steps 3 and 4 deal with the installation and 
configuration of Hadoop, which is covered in detail in Chapter 3, “Creating and 
Configuring a Simple Hadoop 2 Cluster,” and Chapter 4. (Chapter 3 shows the installation 
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and preliminary configuration, and Chapter 4 shows more configuration details. The 
following sections then, describe how to do the following:

 n Install Oracle VirtualBox
 n Install Oracle Enterprise Linux
 n Clone the Linux server (after finishing the installation and configuration 

of Hadoop on this server)

Installing Oracle VirtualBox
You can install VirtualBox by first downloading the software from https://
www.virtualbox.org/wiki/Downloads.

From the list of available VirtualBox binaries, select the latest version, which may 
or may not be the one I used in this case. Note that I’m setting up VirtualBox on a 
machine running Windows with 16GB of RAM.

1. Run the following command to install VirtualBox.

# rpm -Uvh VirtualBox-4.2-4.2.6_82870_fedora17-1.x86_64.rpm

2. Start VirtualBox and click New on the toolbar. Enter a name for your new VM,
and select Linux for Type and Oracle (64 bit) for Version. Click Next.

3. In the Memory Size page, select 4096 as the RAM size. Click Next.

4. In the Hard Drive page, choose the default action of Create a virtual hard drive
now, and click Create.

5. In the Hard Drive Type page, accept the default hard drive type (VDI), and
click Next.

6. In the Storage on Physical Hard Drive page, accept the Dynamically allocated
option for storage, and click Next.

7. In the File location and Size page, select the size of the hard drive. You can set
it at 20GB, but if you have tons of free space on your hard drive, set it at a much
higher value so you can play with huge datasets! Click Create.

8. Click the Network link in the new VM’s main page, which will appear at this
point. Click Next.

9. In the Network page, make sure Adapter 1 is enabled and is set to Bridged
Adapter. Click OK.

10. In the System page, move Hard Disk to the top of the boot order, and also
uncheck the Floppy option. Click OK.

At this point, your VM is ready and functional. Start up the VM, so you can install 
Linux on it.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
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Installing Oracle Enterprise Linux
In this example, I show how to download and install Oracle Enterprise Linux (OEL). 
OEL is essentially the same as Red Hat Enterprise Linux (RHEL) and is also similar to 
CentOS and Fedora. You can install any of these distributions by following the steps 
I show here.

1. Download Oracle Enterprise Linux from the following location and save the ISO
to a directory on the server where VirtualBox is running:

https://edelivery.oracle.com/

This URL will take you to the Oracle Software Delivery Cloud, where you can
download Oracle software products. Please note that you’ll need an user ID to log
in, and you can create an account at no cost.

2. In VirtualBox, make sure your new VM is highlighted, and click Start.

3. On the Select start-up disk page, select the Oracle Linux OS image that you’ve
downloaded. Click Start.

4. In the Welcome page, select Install or upgrade an existing system.

5. Use a guide from the internet such as the following to complete the installation
of Linux:

https://oracle-base.com/articles/linux/oracle-linux-6-installation

Cloning the Linux Server
Once you’ve created the first Linux server, you need to install and configure Hadoop as 
explained in Chapters 3 and 4. Once you are finished, clone the first VM to create the 
other two nodes, which will be part of your three-node Apache Hadoop cluster, similar 
to what I used in Chapter 4 and onwards in this book.

Follow these steps to clone the Linux server. You need to perform the steps twice to 
create the hadoop2 and hadoop3 servers.

1. In the VirtualBox Manager window, go to Machine > Clone to start the
cloning process.

2. In the Clone a Virtual Machine page, choose a name for the virtual machine
(hadoop2 first, and the next time, hadoop3). Click Next.

3. In the Clone Configuration page, select Full Clone, and click Clone.

4. Once the new server is cloned, start it up and log in as the root user. Edit the
/etc/sysconfig/network file and set the HOSTNAME to the following:

HOSTNAME=hadoop2.localdomain (for the second node)

HOSTNAME=hadoop3.localdomain (for the third node)

https://edelivery.oracle.com
https://oracle-base.com/articles/linux/oracle-linux-6-installation
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5. Start the Network Connections (from System Preferences), and edit the eth0
interfaces to set a new IP address for the cloned server.

6. Reboot the server.

7. Once the cloned server is up, change its MAC address so it's different from the
MAC address on the other nodes. Go to the Network Connections again, and
edit the MAC address after clicking the Wired tab. All you need to do is change
the MAC address of the first server just a little bit. For example, if the last two
characters are 00, change them to 01. Make sure you write down the MAC address
for this machine somewhere. Click Apply.

8. Shut down the cloned VM.

9. In the VirtualBox Manager, select the hadoop2 (and later, hadoop3) VM, and edit
the Network settings. Under Adapter 1, type in the MAC address that you used
in step 7.

10. Change the hostname by editing the /etc/hosts file and add the hostname you
specified earlier.

11. Start the cloned VM.

As I mentioned earlier, you need to clone the original hadoop1 VM twice to get 
your three-node Hadoop cluster. Once you finish the cloning, start up all three servers 
and run a ping test to make sure the three nodes can talk to each other.

At this point, you’re ready to perform the cluster configuration I’ve described in 
Chapter 4, starting with the section “How the Test Cluster Is Set Up.”   
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| (pipe symbol)
piping data into HDFS files, 360
reviewing files, 359

- (minus sign), in dfs subcommands, 245
* (asterisk), wildcard when copying multiple

files, 358
256-byte encryption, enabling/disabling, 490

A
Acceptance filters, 496
“Access denied for user root” message, 259
Accounting. See Auditing.
Accumulators, 702–703
acl_file parameter, 490
ACLs (access control lists). See also 

Authorization.
authorization, 507–509
blocking, 512
configuring service level authorization, 

510–511
permissions, 257, 507–509
specifying for UPNs, 490

Action nodes, Oozie workf lows
configuring, 449–454
description, 438, 448
fs actions, 454
for Hive jobs, 451–452
for MapReduce jobs, 450–451
for Pig, 452–453
Shell actions, 453
types of, 449–450.  See also specific types.

Actions. See also RDD (resilient distributed 
dataset), actions.

Sentry authorization, 513
Spark programming, 170

Active NameNode
checkpointing with a secondary 

NameNode, 328
HA (high availability), 335, 336–337, 

345–346
monitoring with ZKFC, 335

Active NameNode failover
fencing mechanism, 340–341
role of the JournalNodes, 336

AD (Active Directory)
integrating with Hadoop, 504–505
Kerberized clusters, setting up one-way 

trust, 503–504
addDirective attribute, 230
addPool attribute, 230
addprinc command, 492–493
admin command, 472
Administration, key areas of

allocating cluster resources, 28–29
authentication, 30
authorization, 30
Capacity Scheduler, 29
cronning jobs, 29–30, 474
default security, 30
DRF (Dominant Resource Fairness), 28–29
FairScheduler, 28–29
Kerberos, 30
Knox, 31
managing cluster capacity, 28–29
managing cluster storage, 28
Oozie workf lows, 29–30
Ranger, 31
scheduling jobs, 29–30
securing data, 30–31
Sentry, 30

Administrative protocols, 511
Administrators

skills required, 20–21
toolset, 21

Administrators, duties of
assisting developers, 19
backups, 20
disaster recovery, 20
installation and upgrades, 19
overview, 18–19
performance tuning and optimization, 20

Advanced execution engine, Spark, 150–151

Index
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Agent nodes, 389. See also Flume agents.
Agents. See Flume agents.
aggregateByKey operator, 702
Aggregating data. See Log aggregation.
Alerting and monitoring. See Monitoring.
Alerting tool, 582
Allocating YARN memory

configuring MapReduce memory, 615–617
configuring YARN memory, 613–615
overview, 612–613

Allocation files, Fair Scheduler, 428
allocations.xml file, configuring Fair 

Scheduler, 75
allowSnapshot command, 281
ALL_SSD, storage policies, 237
All-to-all operations, 695
Amazon Elastic MapReduce (EMR), 307
Amazon Simple Storage Service (S3), 165
Amazon Web Services, Hadoop distribution, 

60
Ambari, 570, 576
ANY, data locality level, 715
Apache products. See specific products.
application command, 531
Application logs

creating, 590–592
definition, 584
HDFS directories, 585
log aggregation, 585, 592
logging levels, 591–592
NodeManager local directories, 585
NodeManager log directories, 585–586
retention duration, setting, 592
storing, 585–586
storing in HDFS. See Log aggregation.
viewing, 584–585, 596–597

Application preemption, Fair Scheduler, 
431–432

applicationattempt command, 532
ApplicationMaster

allocating resources, 53–56
vs. ApplicationsManager, 51
configuring MapReduce memory, 617–618
crashes, troubleshooting, 738
in Hadoop clusters, 36
JobHistoryServer, 54

main functions, 52–53
memory issues, troubleshooting, 735–736
YARN, 52–56

Applications. See also Jobs.
in Hadoop clusters, coordinating execution 

of, 36. See also Hive; MapReduce 
framework; Pig.

limiting number of, 420–421
moving between queues, Fair Scheduler, 434
preempting, 421–422
Spark. See Spark applications.
status, checking, 532
YARN. See YARN commands for 

managing applications.
ApplicationsManager, 51
apt-get utility, 63
Architecture

fully distributed clusters, 93
fully distributed clusters, single rack to 

multiple racks, 95–96
Ganglia, 580
Hadoop clusters, 35
HDFS transparent encryption, 521
YARN, 49–50

Architecture, Hadoop 2
computation and storage, 34–35
redundancy of data, 34

Architecture, HDFS
DataNodes, 38–39
master nodes, 38–39
NameNodes, 38–39
worker nodes, 38–39

Archival disk-bound storage, 236
Archival storage

cold data, 232, 233–234
on DataNodes, 240–241
on each DataNode, 240–241
fallback storage media, 235
frozen data, 232, 233–234
heterogeneous HDFS storage, 233–234
hot data, 232, 233–234
implementing, 240–241
Mover tool, 240
moving data around, 239–240
storage architecture, 234–235
storage preferences for files, 235
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storage types, performance characteristics, 
233

warm data, 232, 233–234
Archival storage, setting up

ALL_SSD, storage policies, 237
archival disk-bound storage, 236
ARCHIVE storage type, 236
cold data, storage policies, 237
configuring multiple storage tiers, 235–236
DISK storage type, 236
f lash storage, storage policies, 237
hot data, storage policies, 237
in-memory storage, 237
Lazy_Persist, storage policies, 237
ONE_SSD, storage policies, 237
RAM_DISK storage type, 237
SSD storage type, 237
standard disk-based storage, 236
storage types, 236–239
temporary data, storage policies, 237
warm data, storage policies, 237

Archival storage, storage policies
architecture, 238
listing, 238
managing, 239
specifying, 239
summary of, 237

ARCHIVE storage type, 236
argument element, 453
AS (Authentication Service), Kerberos, 482–483
Assisting developers, administrator duties, 19
Asterisk (*), wildcard when copying multiple 

files, 358
Auditing

definition, 478
HDFS operations, 519
log files, 519–520
overview, 481, 518–519
YARN operations, 519

Authenticating
users, Kerberized clusters, 502
users and services, 501

Authentication. See also Kerberos; Sentry.
administration, 30
vs. authorization, 505
default mode, 257

definition, 480
overview, 480
user identity, 480

Authentication process, Kerberos, 480, 
483–484

Authentication server, Kerberos, 483
Authorization. See also ACLs (access control 

lists).
administration, 30
vs. authentication, 505
definition, 481
overview, 481
permissions, 507

Authorization, HDFS permissions
ACLs (access control lists), 507–509
changing file permissions, 507
checking permissions, 507
configuring, 506
configuring super users, 506
extended attributes, 509–510
overview, 505–506
raw namespace, 509–510
security namespace, 509–510
simple security mode, 505–506
system namespace, 509–510
user namespace, 509–510

Authorization, Sentry
actions, 513
configuring Hive, 516–517
configuring the server for Hive, 515–516
executing Hive queries, 517
groups, 513, 514
Hive authorization, 514–516
key concepts, 513
objects, 513
overview, 513
policies, 513, 517
policy administration examples, 517–518
policy engine, 513
policy providers, 513
privilege models, 514
privileges, 513, 514
roles, 514, 518–519
Sentry policy file, 514
Sentry service, 514
users, 513
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Authorization, service level authorization
ACLs, blocking, 512.  See also banned.users 

parameter.
administrative protocols, 511
client protocols, 511
configuring with ACLs, 510–511
controlling HDFS administrative access, 

511
enabling, 510
refreshing SLA configurations, 511
reporting task progress, 511
user whitelist, 511

Automated deployment tools, 63
Automatic failover, 347–348
Average DFS Used Percentage, 270–271
Avro description, 17
Avro files

benefits of, 301–302
description, 301–302, 679–680
loading data from relational databases to 

HDFS, 373
structured format, 290

Avro format, in HDFS, 42

B
Backup and recovery. See also Fault tolerance.

NameNode operations, safe mode, 
332–334

work preserving recovery, 739
Backup and recovery, backups. See also 

Snapshots; Trash directory.
administrator duties, 20
fetchimage command, 552–553
HDFS metadata, 552–553
metastore databases, 553

Backup and recovery, recovery. See also Fault 
tolerance.

block recovery, 226
close stage, 227
data streaming stage, 227
disaster recovery, 20.  See also Snapshots.
GS (Generation Stamp), 224
lease recovery, 224–225
pipeline recovery, 226–227
pipeline setup stage, 227
RUR (Replica Under Recovery) replica 

state, 216

UNDER_RECOVERY block state, 218–219
work preserving recovery, 739

Backup Node, checkpointing, 324–325
balancer command, 269
Balancer tool, 267, 268–271
Bandwidth, monitoring, 572
banned.users parameter, 498. See also ACLs 

(access control lists), blocking.
Batch intervals, 195, 689
Batch processing time, reducing, 688–689
Beeline, 192, 517
Beeswax, configuring, 560
Benchmarking clusters. See also Hadoop 

metrics.
Folder, 643–644
generating job traces, 643–644
with GridMix, 644–646
with HiBench, 642–643
overview, 638
read tests, 640
with Rumen, 643–644
scaling trace runtime, 643–644
TeraSort, 640–643
with TeraSort, 640–643
testing I/O performance, 638–640
tiny jobs, 646
Trace Builder, 643–644
uberized jobs, 646
write tests, 639

Benchmarks, TeraSort, 642
BI (business intelligence), 10, 191, 198
Bigtop, Hadoop distribution, 60
Binary formats

description, 298
in HDFS, 42
loading data from relational databases to 

HDFS, 373
Blade servers on fully distributed clusters, 

single rack to multiple racks, 97
Block access tokens, 501
Block locations, printing, 287
“Block MISSING” messages, 287–288
Block recovery, 226
Block replication, setting, 107–108
Block reports

generating, 287
NameNode operations, 322
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Block size
client HDFS, determining, 222
default, 213
setting, 107

Block states, data replication, 218–219
Block Storage Service, 350
blocks option, 287
Breaking up large workloads, cluster 

computing, 12
Broadcast variables, 672, 702–703
Brokers, Kafka, 400, 402
Bucketing Hive jobs, 635
Bundle jobs, Oozie workf lows, 439
Bundles, Oozie, 473
Business data, traditional database systems, 

7–8
Business intelligence (BI), 10, 191, 198
Bypassing the trash directory, 280
bzip2 format, 290, 291

C
Cache directives, 228, 230–231
cache() method, 718
Cache pools, 228, 230–231
Cache status, displaying, 684
cacheadmin command line interface, 229, 230
Caching RDD data

cache() method, 718
checking the cache, 721
DISK_ONLY storage level, 719
fault tolerance, 718
lineage information, 718
MEMORY_AND_DISK storage level, 719
MEMORY_AND_DISK_SER storage 

level, 719
MEMORY_ONLY storage level, 719
MEMORY_ONLY_SER storage level, 719
optimizing, 717–723
overview, 717–718
persist() method, 719–721
in serialized format, 722
setting storage levels, 720–721, 721–722

Caching Spark tables, 723
Call center data, definition, 6
Capacity and elasticity, tradeoffs, 419
Capacity guarantees, Capacity Scheduler, 

412, 414

Capacity Scheduler. See also Fair Scheduler; 
Oozie.

administration, 29
capacity guarantee, 412
configuring, 75
description, 409, 411–412
enabling, 422
vs. Fair Scheduler, 435–436
fair share preemption, 421–422
maximum capacity, 412
minimum share preemption, 421–422
preempting applications, 421–422

Capacity Scheduler, allocating resources
capacity and elasticity, tradeoffs, 419
number of applications, limiting, 420–421
overview, 418
user capabilities, limiting, 419–420

Capacity Scheduler, examples
administering queues, 424–425
code sample, 422–424
modifying queue configuration, 424
resource limits, setting, 423–424

Capacity Scheduler, queues
administering, 424–425
capacity guarantees, 414
configuring capacity, 417
creating, example, 413–414
diagram, 418
elasticity, 414
hierarchical, 414, 416
importance of, 409–410
leaf, 414
modifying configuration, 424
overview, 412
queue element, 415
resource limits, setting, 423–424
setting up, 415–416

Capacity Scheduler, subqueues. See also 
Hierarchical queues; Leaf queues.

configuring, 414
creating, 413–414
diagram, 418
setting up, 415–416

capacity-scheduler.xml file, configuring 
Capacity Scheduler, 75

capture-output element, 453
case statements, Oozie workf lows, 460
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Cassandra, 150, 152, 171, 200, 391, 400
cat command, 356–357
Catalog, description, 17
cd command, 245
Centralized cache management

cache directives, 228, 230–231
cache pools, 228, 230–231
configuring caching, 229
functional description, 229
Hadoop, and OS page caching, 228
key principles, 228
overview, 227–228
short-circuit local reads, 231–232

Channel selectors, 390
Channels, 389–390
check-column parameter, 378–379
checkHealth command, 349, 535
Checkpoint node, checkpointing, 324
Checkpointing

extra edit logs, 326
failure, consequences of, 326
metadata files, 36
overview, 323
performance, 327
with a Secondary NameNode, 328–329
with a Standby NameNode, 327–328

Checkpointing, configuring
backup node, 324–325
checkpoint node, 324
frequency, 325–327
“replaying edit logs” message, 326
Secondary NameNodes, 324
Standby NameNode, 325

Checkpoints, NameNode operations, 319
Chef, 569
chgrp command, 250–251
chmod command, 251
Chokepoints, preventing, 395
chown command, 250–251
Chukwa, 576
CLI (command line interface)

cacheadmin, 229, 230
fully distributed clusters, 104–105
managing HDFS. See dfsadmin utility.

Clickstream data, definition, 6
Client mode

vs. cluster mode, 674–676
Spark applications, 186–187, 189, 190

Client protocols, 511
Client server, Oozie architecture

description, 440
installing, 445–446

Clients
Hadoop, modifying ports in fully 

distributed clusters, 124–126
YARN, 49

Clients, HDFS
block size, determining, 222
client interactions, 206
default behavior, settings for, 191
reading HDFS data, 219–220
replication factor, determining, 222
write considerations, 223–224
writing HDFS data, 221–224

Cloning, Linux servers, 745–746
Close stage, 227
Cloudera, Hadoop distribution, 60
Cloudera Manager, 434
clrQuota command, 346
clrSpaceQuota command, 346
Cluster capacity, managing, 28–29
Cluster computing. See also Hadoop clusters.

breaking up large workloads, 12
data redundancy, 12–13
description, 12
DFS (distributed file system), 13
embarrassingly parallel algorithms, 12
hardware racks, 12
tasks, 13

Cluster managers, Spark applications, 180
Cluster mode

vs. client mode, 674–676
Spark, 158–159, 186–187, 189, 190–191

Clusters
administering with Hue. See Hue, 

administering a cluster.
rack information, finding, 210–211, 212
redundancy, rack awareness, 209–210
resources, allocating, 28–29
shutdown/startup scripts, 546
storage, managing, 28
usage, displaying, 530

coalesce operator, 708–709
Code generation, Spark SQL query 

optimizer, 713–714
Codecs, 293–294
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cogroup operator, 702
Cold data

archival storage, 232, 233–234
storage policies, 237

collect(0) operation, 720
Collecting data. See Flume; Log aggregation.
Collector nodes, 389
Combiners, optimizing MapReduce, 652–654
Command line interface (CLI)

cacheadmin, 229, 230
fully distributed clusters, 104–105
managing HDFS. See dfsadmin utility.

Commands. See also specific commands.
executing remotely, 63
Oozie, 471
YARN. See YARN commands.

Commands, help for
dfsadmin utility, 251–252
file commands, 260
hdfs dfs utility, 245–247
HDFS storage, 260
managing HDFS with hdfs dfs utility, 

245–247
spark-submit script, 187–188
Sqoop, 368
YARN commands, 530

Commit log abstraction, 399
COMMITTED block state, 218–219
Common, in the Hadoop ecosphere, 15
Compactness, Spark, 152
COMPLETE block state, 218–219
Completed jobs, monitoring with web UIs, 

604–606, 606–607
Compression. See Data compression.
Computation and storage, Hadoop 2 

architecture, 34–35
$CONDITIONS parameter, 376
Configuration files, precedence among, 76–78
Configuration parameters

monitoring, 682
variable expansion, 78–79

Configuring
authorization, 506
Beeswax, 560
caching, 229
capacity, queues, 417
control nodes, 456–460
decision control nodes, 459–460

desktop features, 559
end control nodes, 456
error nodes, 458–459
Fair Scheduler, 428–430
fork control nodes, 456–457
Hadoop, 557–560
Hadoop daemons, 79–81
Hadoop for Oozie, 444–446
Hadoop metrics, 75
Hadoop-specific environment, 80
HDFS storage directories, 262
HDFS transparent encryption, 522
Hive for Sentry, 516–517
Hue, 558–559
join control nodes, 456–457
KDC (Key Distribution Center), 489–490
Kerberos, 487–489
kill nodes, 458–459
KMS (Key Management Server), 522
log retention, 594–595
MapReduce. See Modifying fully 

distributed clusters, MapReduce 
configuration.

multiple archival storage tiers, 235–236
MySQL databases, 445, 548–549
ok control nodes, 458–459
Oozie, 560
Oozie action nodes, 449–454
Oozie workf low jobs, 460–461
permissions, 506
queues, Capacity Scheduler, 424
queues, Fair Scheduler, 429–430
rack awareness, 210
Sentry server for Hive, 515–516
shuff le parameters, 697
start control nodes, 456
subqueues, Capacity Scheduler, 414
super user permissions, 506
super users, 506
trash directory, 278–279
YARN, 559–560
YARN memory, 613–615
ZooKeeper, 560

Configuring clusters. See also Installing 
pseudo-distributed clusters; Modifying 
fully distributed clusters; Planning fully 
distributed clusters.

basic HDFS parameters, 81
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Configuring clusters (continued)
Capacity Scheduler, 75
configuration parameters, variable 

expansion, 78–79
core Hadoop properties, 81
data block replication factor, changing, 85
data storage, 73–74
DataNode storage location, specifying, 85
default user name, 81
environment configuration, 73–74
Fair Scheduler, 75
file system, base temporary directory, 81
Hadoop daemons environment, 79–81
Hadoop metrics, 75
Hadoop-related configuration, 74–76
Hadoop-specific environment, 80
HDFS, 85–86
HDFS, base temporary directory, 81
HDFS daemons, setting up, 73–74
heap size, adjusting for the simple cluster, 

80–81
including/excluding hosts, 75
initial Hadoop configuration, 71–72
job processing, 73–74
logging, 75
mapred environment, 80
MapReduce, 82–83
NameNode metadata file location, 

specifying, 85
NameNode service, file system, host, and 

port information, 81
NameNode URI, specifying, 85
precedence among configuration files, 

76–78
read-only default configuration, 74
single-node. See Configuring pseudo-

distributed Hadoop clusters.
site-specific configuration, 74
Standby NameNode metadata file location, 

specifying, 85
trash retention interval, setting, 81
YARN, configuring, 83–86
YARN daemons, setting up, 73–74
YARN environment, 80

Configuring MapReduce, mapreduce shuff le, 
83–84

Configuring MapReduce, memory
ApplicationMaster, 617–618
for containers, 614
JVM heap size, 616–617
for map and reduce tasks, 615–616
memory-related configuration properties, 

618–620
NodeManager, 617–618
ratio of physical memory to virtual, 617
virtual memory for map and reduce tasks, 

617
Configuring pseudo-distributed Hadoop 

clusters, 74
Configuring Spark applications

configuration properties, 192–193
local file storage, specifying, 193
memory allocation, specifying, 193
spark.executor.memory property, 193
sparklocal.dir property, 193
with spark-submit script, 193–194

Connectivity, checking, 68
Connectors, Sqoop, 367
Consumers, Kafka, 400, 403
Containers

configuring MapReduce memory, 614
YARN, 50

Context switches, monitoring, 571, 575
Control nodes

configuring, 456–460
Oozie workf lows, 446–447, 456–460

Coordinator jobs, Oozie workf lows, 438–439
Coordinator status, checking, 472
Coordinators. See Oozie.
copyFromLocal command, 358
Copying

data between hosts, 63
files from snapshots, 283
fsimage files, controlling transfer speed, 327

copyToLocal command, 359
core-site.xml file

core Hadoop properties, configuring, 81–82
default file system name, setting, 191
fs.defaultFS, 81
fs.trash.checkpoint.interval parameter, 

278–279
fs.trash.interval parameter, 278
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hadoop.security.authorization property, 510
trash feature, configuring, 278

core-site.xml file, configuration parameters, 
497–498

Counters. See Hadoop counters.
cp command, HDFS analog, 245
CPU

configuring virtual cores, 620–621
fully distributed clusters, single rack to 

multiple racks, 96–99
relationship between memory and virtual 

cores, 621
CPU usage

monitoring, 570–573
Spark on YARN, configuring resource 

allocation, 660
CPU_MILLISECONDS counter, 650
create command, 491
createSnapshot command, 281–282
Creating

application logs, 590–592
Capacity Scheduler queues, 413–414
Capacity Scheduler subqueues, 413–414
DataFrames, 198, 200–201
directories, 71, 249, 312
files, WebHDFS API, 312
fsimage files. See Checkpointing.
Hadoop clusters. See Installing Hadoop 

clusters.
Hadoop users, 70–71
HAR files, 305–306
Kerberos databases, 491
map/reduce containers, 590
queues, Capacity Scheduler, 413–414
snapshots, 281–282
SparkContext objects, 182
Sqoop jobs, 377
topics, Kafka clusters, 403
user accounts, 554–556

Creating fully distributed clusters. See also 
Modifying fully distributed clusters.

command line interface, 104–105
/etc/hosts file, editing, 105–106
overview, 102
passwordless SSH, configuring, 105
pdsh utility, installing, 102–106
setting up the test cluster, 102–106

Creating RDDs
from existing RDDs, 170
new, 178
subsets of other RDDs, 178
from text files, 175

cron scheduling. See also Time-based 
scheduling.

administration, 29–30
Oozie, 474

Crowbar, 63
CSV files, 679
curl tool, 63, 310–311
Custom Java counters, 651

D
Daemon failures, troubleshooting, 737
Daemon logs

definition, 584
deleting log files, 598
location for, specifying, 597–598
log level, setting, 598–599
rotating log files, 598

DAG (directed acyclic graph), Spark 
execution model, 693

DAG page, 684
Dashboard, Oozie, 555
Data access, with Spark, 164–166
Data at rest, encrypting, 520
Data block replication factor, changing, 85
Data blocks, data replication, 213
Data compression

codecs, 293–294
data serialization, 295
enabling, 293–294
file formats, 297
file sizes, 680
MapReduce, 133, 291–294
optimizing, 711–712
optimizing MapReduce, 654–655
optimizing shuff le operations, 697–698
overview, 289–290
SerDe module, 295
Spark, 295
stages of MapReduce, 292–293
table data, 373–374
tuning map tasks, 628
uses for, 681
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Data compression, common formats
Avro files, 679–680
bzip2, 290, 291
comparison of, 291
CSV files, 679
gzip, 290, 291
JSON files, 679
list of, 290
LZO, 290, 291
most common, 297
Parquet files, 680
SequenceFiles, 679
Snappy, 290, 291

Data consistency model, HDFS, 38
Data directories, specifying, 108
Data formats. See also File formats.

HDFS, 42
most common, 297

Data formats, compression
Avro files, 679–680
bzip2, 290, 291
CSV files, 679
gzip, 290, 291
JSON files, 679
LZO, 290, 291
Parquet files, 680
SequenceFiles, 679
Snappy, 290, 291

Data in transit, encrypting, 520, 523–524
Data ingestion. See also Flume; Kafka.

data science component, 11
parallelizing, 688

Data integration
Flume, 27
Kafka, 27
overview, 27–28

Data lakes, 9–11
Data locality

Spark SQL query optimizer, 715–716
tuning map tasks, 626–627

Data mining. See Data science.
Data modeling, data science component, 11
Data organization

data replication, 213
Hive, 142

Data processing
Hadoop ecosphere, 16
parallelizing, 689

Data redundancy. See Redundancy of data.
Data replicas, distributing, 211
Data replication

block states, 218–219
data blocks, 213
data organization, 213
default block size, 213
distributing data replicas, 211
fault tolerance, 43
finalizing an upgrade, 217
functional description, 213–214
HDFS data block storage in the Linux 

file system, 217
HDFS replication factor, 214–215
overview, 43
replica states, 216

Data replication factors
decreasing, 274–275
default value, 85
determining, 222
effects on space quotas, 265–266

Data science
components of, 11
definition, 11

Data serialization, 295, 710–711
Data storage. See also HDFS (Hadoop 

Distributed File system).
amount, single rack to multiple racks, 96
in a central location. See Data lakes.
configuring Hadoop clusters, 73–74
Hadoop ecosphere, 15

Data streaming stage, 227
Data transfer tools, 355–356
Data types, 6
Data wrangling, data science component, 11
Database systems, traditional, 7–9
Data-based Oozie coordinators, 467–469
DataFrames. See Spark SQL, DataFrames.
DATA_LOCAL _MAPS counter, 649
DataNode web interface, fully distributed 

clusters, 120–121
DataNodes

archival storage, 240–241.  See also Archival 
storage.

balancing. See Rebalancing HDFS data.
communication with NameNodes, 207–208
extending clusters, 101
function of, 40
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in Hadoop clusters, 36
HDFS, 38–39, 44
large cluster guidelines, 101–102
NameNode operations, 322–323
network traffic issues, 97–98
no longer alive, 207–208, 213–214
periodic heartbeats, 207–208, 213–214
planning for fully distributed clusters, 

100–101
relation to NameNodes, 44
securing, 500
starting, 87–88
storage location, specifying, 85
YARN, 49

Debugging Spark applications, from the 
command line, 686

Debugging Spark applications, viewing logs. 
See also Troubleshooting Spark jobs.

from HDFS, 741
with log aggregation, 740–741
reviewing the launch environment, 741
from the Spark web UI, 741
without log aggregation, 741

decision, configuring, 459–460
decision control nodes, Oozie workf lows, 

438, 446–447
Decommissioning nodes. See Nodes, 

decommissioning and recommissioning.
Default context metrics, 577
default rule, 430
Default user name, configuring Hadoop 

clusters, 81
defaultQueueSchedulingPolicy, 430–431
Delegation tokens, 501
DELETE operation, 308, 312–313
delete option, 286, 289
deleteSnapshot command, 282, 283
Deleting

daemon logs, 598
files, 278–279.  See also Trash directory.
log files, 598
snapshots, 281–282
SPNs (service principal names), 493

Dell Crowbar, 63
delprinc command, 493
Deploying

HA (high availability), 342–345
a high availability cluster, 544

Oozie workf low jobs, 463
Sqoop, 367

Deploying, Oozie
configuring Hadoop for Oozie, 

444–446
installing Oozie, 441–442
installing Oozie server, 442–444
MySQL database, configuring, 445
overview, 441–442
workf low jobs, 463

Desktop features, configuring, 559
df command, 260
DFS (distributed file system), 13
DFS metrics, 577
dfs -setRep option, 275
dfs utility

checking space quotas, 266
count q command, 266
createSnapshot command, 281–282
deleteSnapshot command, 282, 283
snapshots, creating/deleting, 282

dfsadmin commands, HA (high availability), 
346

dfsadmin utility
allowSnapshot command, 281
checking for free space, 260
clearing space quotas, 265, 267
clrQuota command, 346
clrSpaceQuota command, 265, 267, 346
disallowSnapshot command, 281
examining HDFS cluster status, 252–255
fetchimage command, 320
help command, 251–252
metasave command, 254
name quotas, specifying, 264
printTopology command, 211
rack awareness, 211–212
refreshNodes command, 254
setQuota command, 264, 346
setSpaceQuota command, 265, 346
setting space quotas, 265
snapshots, enabling/disabling, 281
updating NameNodes, 254

dfsadmin utility, report command
“Access denied...” message, 256–257
calculating threshold values, 271–272
overview, 252–254

dfs.block.size parameter, 107
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dfs.client.read.shortcircuit.streams.cache.
expiry.ms parameter, 564

dfs.client.read.shortcircuit.streams.cache.size 
parameter, 564

dfs.data.dir parameter, 262
dfs.datanode.available-space-volume-

choosing-policy.balanced-
spacepreference-fraction property, 548

dfs.datanode.available-space-volume-
choosing-policy.balanced-spacethreshold 
property, 548

dfs.datanode.data.dir parameter, 85, 108, 
235–236

dfs.datanode.du.reserved parameter, 107
dfs.datanode.du.reserved parameter, setting, 

730
dfs.datanode.fsdataset.volume.choosing.policy 

property, 548
dfs.datanode.kerberos.principal parameter, 499
dfs.datanode.keytab.file parameter, 500
dfs.datanode.reserved parameter, 262
dfs.ha.fencing.methods attribute, 340–341
dfs.image.transfer.bandwidthPerSec 

parameter, 327
dfs.image.transfer.timeout parameter, 327
dfs.journalnode.kerberos.keytab.file 

parameter, 499
dfs.namenode.checkpoint.dir parameter, 85
dfs.namenode.checkpoint.period parameter, 

325
dfs.namenode.checkpoint.txns parameter, 325
dfs.name.node.dir parameter, 108
dfs.namenode.http-bind-host parameter, 124, 

563
dfs.namenode.https-bind.host parameter, 124, 

563
dfs.namenode.kerberos.internal.spnego.

principal parameter, 499
dfs.namenode.kerberos.principal parameter, 

499
dfs.namenode.keytab.file, 499
dfs.namenode.max.extra.edits.segments.

retained parameter, 327
dfs.namenode.name.dir parameter, 85–87
dfs.namenode.num.extra.edits.retained 

parameter, 326
dfs.namenode.rpc,bind-host parameter, 563

dfs.namenode.rpc.bind-host parameter, 124
dfs.namenode.servicerpc-bind.host 

parameter, 124, 563
dfs.permissions.enabled parameter, 255, 506
dfs.permissions.supergroup parameter, 259
dfs.permissions.superusergroup parameter, 108
dfs.replication parameter, 107–108
dfs.secondary.namenode.kerberos.internal.

spnego.principal parameter, 499
dfs.secondary.namenode.kerberos.principal 

parameter, 499
dfs.secondary.namenode.keytab.file, 500
dfs.storage.policy.enabled parameter, 235
dfs.web.authentication.kerberos.keytab 

parameter, 499
dfs.web.authentication.kerberos.principal 

parameter, 499
dfw.replication parameter, 275
dict_file parameter, 490
direct parameter, 382
Directed acyclic graph (DAG), Spark 

execution model, 693
Directories. See also Files and directories.

creating in WebHDFS, 312
renaming, 283
snapshottable, removing, 283

Directory quotas, checking, 313
Directory specific space quotas, 264
disallowSnapshot command, 281
Disaster recovery, administrator duties, 20. 

See also Backup and recovery; Snapshots.
Discretized Stream (DStream), 196, 688
Disk configuration for fully distributed 

clusters, single rack to multiple racks, 
97–98

Disk failure risk, fully distributed clusters, 98
Disk I/O, optimizing shuff le operations, 

696–697
Disk sizing for fully distributed clusters, 

single rack to multiple racks, 97–98
Disk speed, testing, 65
Disk storage, monitoring, 571–572
DISK storage type, 236
Disk usage, checking, 260
Disk volume failure toleration, 

troubleshooting, 729–730
Disk-based archival storage, 236
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DISK_ONLY storage level, 719
DistCp

default behavior, 364
description, 356
moving data between clusters, 361–363
moving data within a cluster, 363
overwriting target files, 364–365
potential problem, 356
updating target files, 364–365

distcp command
example, 362–363
moving data between clusters, 361–363
moving data within a cluster, 361–363
options, 363–364.  See also specific options.
overwrite option, 364–365
syntax, 361
update option, 364–365

distinct transformation, 178
Distributed computing, fault tolerance 

requirements, 33
Distributed data processing

Hive, 26
HiveQL, 26
MapReduce, 24–25
Pig, 26
Spark, 25–26

Distributed file system (DFS), 13
Distributing data replicas, rack awareness, 211
DNS, checking, 65–66
Double RDDs, 179
Downloading, fsimage files, 320–321
DRF (Dominant Resource Fairness) 

scheduler, 28–29, 426. See also Fair 
Scheduler.

Drivers
Spark applications, 180
Sqoop, 367
standalone cluster manager, 159

Drivers, Spark on YARN
in client mode, 664–665
in cluster mode, 665–666
duties, 663–664

Dry runs, Oozie, 472
ds.replication parameter, 85
dstat command, 576
DStream (Discretized Stream), 196, 688
du command, 260–262

du -h command, 261
du -s command, 262
Dumping a file’s contents, 356–357
Duplicate RDDs, filtering out, 178
Dynamic resource allocation, 667, 676–678
Dynamic resource allocation, enabling, 

677–678
Dynamic workf lows, 463–464

E
Ease of use, Spark, 151–152
Edge servers, 13
Edit logs

definition, 318
extra, 326
overview, 320–321

Elasticity, queues, 414
Elasticsearch. See ELK (Elasticsearch/

Logstash/Kibana).
ELK (Elasticsearch/Logstash/Kibana), 27
Email data, definition, 6
Embarrassingly parallel algorithms, 12
Emptying the trash directory, 250
EMR (Amazon Elastic MapReduce), 307
Enabling, trash directory, 278
Encrypting, HDFS, 523
Encryption

256-byte encryption, enabling/disabling,
490

data at rest, 520
data in transit, 520, 523–524
HDFS data transfer protocol, 524

Encryption, HDFS transparent
architecture, 521
configuring encryption, 522
configuring KMS, 522
dedicated server, 521
encrypting HDFS, 523
encryption zones, 521
functional description, 521
KMS (Key Management Server), 521

Encryption zones, 521
end control nodes

configuring, 456
Oozie workf lows, 438, 446–447, 448, 456

Environment configuration, configuring 
Hadoop clusters, 73–74
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Environment tab, web UI, 682
Environment variables, setting, 87
env-var element, 453
error nodes, configuring, 458–459
/etc/hosts file, editing, 105–106
Events, 390
Exec, 394
exec element, 453
Execute (x) permission, 506
Executing, Spark applications, 187–189
Executing remote commands, 63
-executor-cores f lag, 661
Executors. See Spark executors.
export command, 382–383
Exporting data. See Sqoop, exporting data.
expunge command, 250, 279
Extended attributes, 509–510
Extending clusters, single rack to multiple

racks, 101
extJS, 440, 443
Extracting configuration files, 581

F
Failed jobs, monitoring with web UIs, 

601–602
“Failed to find any kerberos tgt” message, 502
Failover. See HA (high availability), failover.
failover command

manual failover, 348–349, 545–546
YARN, 535

Fair Scheduler. See also Capacity Scheduler; 
DRF (Dominant Resource Fairness) 
scheduler; Oozie.

allocation files, 428
application preemption, 431–432
vs. Capacity Scheduler, 435–436
configuring, 428–430
configuring Hadoop clusters, 75
description, 409
fair-scheduler.xml file, example, 432–434
monitoring, 434
overview, 426–427
preemption, 409
priorities, 409
queues, 409–410
security, 432

Fair Scheduler, queues
configuring, 429–430

leaf queues, 428
moving applications between, 434
overview, 427–428
rules for placing jobs into, 430–431
scheduling policy, configuring, 431
submitting jobs to, 434

Fair share preemption, Capacity Scheduler, 
421–422

FairScheduler, 28–29
fair-scheduler.xml file

configuring queues in the Fair Scheduler, 
429–430

example, 432–434
Fallback storage media, archival storage, 235
Fault tolerance. See also Rack awareness; 

Recovery process.
caching RDD data, 718
data replication, 43
HDFS, 37–38
Spark jobs, troubleshooting, 740

Federated NameNodes
architecture, small files problem, 304
description, 349–350

Federation. See Federated NameNodes.
Fedora Linux, package manager for, 63
Fencing, configuring, 340–341
fetchimage command, 320, 552–553
FIFO (first-in, first-out) scheduler, 409, 

410–411
File formats. See also Data formats.

changing, 302
compatibility with processing tools, 297
compression capability, 297
file size, 297
f lexibility, 296
overview, 295–296
performance, 297
selecting, 296–297
splittability, 297

File sizes
choosing a file format, 297
data compression, 680

File system checks. See also fsck command.
block locations, printing, 287
“block MISSING” messages, 287–288
block reports, generating, 287
detecting data corruption, 285–288
fully distributed clusters, 118
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removing corrupt files, 286
under-replicated files, 289
unrecoverable files, 288–289

File system counters, 649
File system organization, HDFS, 42
FILE_BYTES_READ counter, 649
FILE_BYTES_WRITTEN counter, 649
Filecrush project, 307
filecrusher utility, 306
Files

archival storage preferences for, 235
dumping contents of, 356–357
sending and getting, 63
small. See Small files.
testing for, 357

Files and directories. See also HDFS storage, 
files and directories; Linux file and 
directory commands.

change directory, 245
copying, 245
listing files, 244–245
moving, 245
permissions for. See HDFS permissions.
print working directory, 245
setting space quota limits on directories, 

264–266
File system in Userspace (FUSE), 564–566
filter() operation, 200
filter(function) transformation, 178
Filtering

DataFrame rows, 200
duplicate RDDs, 178
lists of applications, 531–532

FINALIZED replica state, 216
Finalizing a data replication upgrade, 217
Firewall, turning off, 67
First-in, first-out (FIFO) scheduler, 409, 

410–411
Flash storage, storage policies, 237
f latMap, transformation, 178
Flink, 25
Flume. See also Log aggregation.

architecture, 389–391
channel selectors, 390
channels, 389–390
collector nodes, 389
description, 17

events, 390
examples, 392–394, 395–398
intercepts, 390
key components, 389–390
memory channels, 392
moving data to HDFS, 394–395
overview, 388–389
preventing chokepoints, 395
sink processors, 390
sinks, 389–390, 395
sources, 389–390, 395

Flume agents
agent nodes, 389
configuring, 391–392, 396–398
definition, 389
description, 390–391

Folder utility, 643–644
Fork actions, Oozie workf lows, 448
fork control nodes

configuring, 456–457
Oozie workf lows, 438, 446–447, 448, 

456–457
Formats. See Data formats; File formats.
Fraud detection, advantages of Hadoop, 9
free command, 573
Free form import, 375–376
fromSnapshot parameter, 282–283
Frozen data, archival storage, 232, 233–234
fs actions, Oozie action nodes, 454
fs.block.size parameter, 275
fsck command. See also File system checks.

blocks option, 287
delete option, 286, 289
detecting data corruption, 285–288
FAILED error, 256
file system check, 118
file system check options, 288
vs. Linux fsck command, 284
list-corruptfileblocks option, 286
locations option, 287
move option, 288–289
options, summary of, 288.  See also specific 

options.
rack awareness, 211
removing corrupt files, 286

fs.defaultFs parameter, 81
fs.default.name parameter, 85
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fsimage files. See also Snapshots.
copying, controlling transfer speed, 327
definition, 318
downloading, 320–321
importance of updating, 323–324
location, specifying, 108
loss or corruption, 319
overview, 320–321
viewing contents of, 321

fs.trash.checkpoint.interval parameter, 278–279
fs.trash.interval parameter, 81, 278
FTP protocol, enabling, 63
Full garbage collection, 687
Fully distributed clusters, description, 61–62. 

See also Creating fully distributed clusters; 
Modifying fully distributed clusters; 
Planning fully distributed clusters.

FUSE (File system in Userspace), 564–566

G
Ganglia, installing, 580–581. See also 

Monitoring with Ganglia.
Garbage collection . See GC (garbage collection).
Gateway machines, fully distributed clusters, 

119
GC (garbage collection)

collecting statistics about, 687–688
Full GC, 687
for the JVM ( Java Virtual Machine). See 

JVM garbage collection.
mechanics of, 687
Minor GC, 687
monitoring with web UIs, 684, 685
Old Generation, 687
optimizing shuff le operations, 697
tuning, 686–689
Young Generation, 687

GC_TIME_MILLIS counter, 650
generate option, 645
Generation Stamp (GS), 224
Generations, JVM garbage collection, 

732–733
Geographic data, definition, 6
get command, 359–360
GET operation, 308
getconf command, 333–334
getMerge command, 360

getServiceState command, 349, 535, 545
Getting, files, 63
gmetad daemon, 580–581
gmond daemon, 580–581
Graphs, Spark, 155
GraphX, 155
GridMix, benchmarking clusters, 644–646
gridmix command, 645
gridmix.compression-emulation.enable 

parameter, 645
gridmix.job-submission.policy parameter, 645
gridmix.job.type parameter, 645
gridmix.output.directory parameter, 645
Group metrics, 577
groupBy operation, 200
groupByKey operator, 700–702
Grouping DataFrame data, 200
Groups, Sentry authorization, 513, 514
Growth patterns of fully distributed clusters, 

single rack to multiple racks, 96
GS (Generation Stamp), 224
gweb process, 580
gzip format, 290, 291

H
H option, 310
HA (high availability)

functional description, 336–337
Hadoop 2 vs. Hadoop 1, 22
MySQL databases, 549–551
Standby NameNode, 46–47

HA (high availability), configuring
JournalNodes, role of, 336
overview, 335
QJM (Quorum Journal Manager), 335
ZooKeeper as a coordinator, 335

HA (high availability), failover
attributes, configuring, 340–341
automatic, configuring, 347–348
manual, 348–349, 545–546
NameNode health, checking, 349
NameNode status, displaying, 349
ResourceManager, 543–544
transitioning node status, 349
ZKFC (ZKFailoverController), 347–348

HA (high availability), NameNode setup
deploying, 342–345
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dfsadmin commands, 346
managing, 345–346
Standby NameNode, query errors, 346
testing, 345

HA (high availability), ResourceManager
architecture, 541–542
commands, 545
current state, getting, 545
current state, transitioning, 545
deploying a high availability cluster, 544
failover, 543–544
failover command, 545
getServiceState command, 545
Restart feature, 543
setting up, 542–543
transitionToStandby command, 545

HA (high availability) quorum cluster
failover attributes, configuring, 340–341
fencing, configuring, 340–341
logical NameNode ID, 337
logical nameservice, 337
name and address, configuring, 338–340

haadmin commands, 348–349
Hadoop

block sizes, effects on space quotas, 
265–266

configuring, 557–560
daemons, configuring, 79–81
distributions, 60–61
integrating with Kafka, 404–406

Hadoop 2
architecture. See Architecture, Hadoop 2.
common uses for, 6
components of. See Hadoop ecosphere.
ease of adoption, 12
handling large datasets, 11
key success factors, 8–9
scale up architecture vs. scale out, 8
unique features, 5
user identities, determining, 258–259

Hadoop 2 vs. Hadoop 1
applications supported, 23
architectural differences, 22
high availability features. See HA (high 

availability).
multiple processing engines, 23
resource allocation, 24

separation of processing and scheduling, 23
YARN, 21–22

Hadoop Archives (HAR)
caveats, 306
file types, 305
.har file extension, 305
HAR files, creating, 305–306
HAR files, reading, 306
managing small f iles, 304–306
overview, 304–306

Hadoop clusters. See also Cluster computing.
allocating resources, 36
ApplicationMaster, 36
architecture, 13–14, 35
checkpointing the metadata file, 36
components of, 13
configuring. See Configuring clusters.
coordinating application execution, 36
creating. See Installing Hadoop clusters.
DataNodes service, 36
definition, 13
edge servers, 13
Hadoop services, 36
HDFS services, 36
HDFS storage metadata, 36
master nodes, 36
NameNode service, 36
NodeManager, 37
operating. See Operating Hadoop clusters.
ResourceManager, 36
Secondary NameNode service, 36
Standby NameNode service, 36
worker nodes, 36
YARN (Yet Another Resource 

Negotiator) services, 36–37
Hadoop counters. See also Benchmarking 

clusters; Hadoop metrics.
custom Java counters, 651
file system counters, 649
job counters, 649–650
limiting the number of, 651–652
MapReduce framework counters, 650–651
overview, 647–648

Hadoop counters, key counters
CPU_MILLISECONDS, 650
DATA_LOCAL _MAPS, 649
FILE_BYTES_READ, 649
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Hadoop counters, key counters (continued)
FILE_BYTES_WRITTEN, 649
GC_TIME_MILLIS, 650
HDFS_BYTES_READ, 649
HDFS_BYTES_WRITTEN, 649
MAP_INPUT_RECORDS, 650
MAP_OUTPUT_RECORDS, 650
MILLIS_MAPS, 650
MILLIS_REDUCES, 650
NUM_KILLED_MAPS, 649
NUM_KILLED_REDUCES, 649
PHYSICAL_MEMORY_BYTES, 650
REDUCE_SHUFFLE_BYTES, 650
SPILLED_RECORDS, 650
TOTAL_LAUNCHED_MAPS, 649
TOTAL_LAUNCHED_REDUCES, 649

Hadoop daemon starting failures, 
troubleshooting, 737–738

Hadoop Distributed File system (HDFS). See 
HDFS (Hadoop Distributed File system).

Hadoop ecosphere
Avro, 17
base utilities, 15
Catalog, 17
Common, 15
coordinating distributed applications. See 

ZooKeeper.
data processing, 16
data storage, 15
diagram of, 16
Flume, 17
HBase, 17
HDFS (Hadoop Distributed File system), 15
Hive, 17
Hue, 17
Kafka, 17
Mahout, 17
management tools, 16.  See also Ambari.
managing resources, 15
MapReduce, 15
monitoring tools, 16
Oozie, 17
operating system, 15
Pig, 17
scheduling jobs, 15
Sqoop, 17
Storm, 17

summary of components, 17
Tez, 17
YARN, 15
ZooKeeper, 17

Hadoop metrics. See also Benchmarking 
clusters; Hadoop counters; Monitoring.

capturing to a file system, 578–579
configuring, 75
default context, 577
DFS, 577
group, 577
JVM, 577
overview, 576
RPC, 577
sinks, 578–579
sources, 578–579
types of, 577
user, 577
uses for, 578
YARN, 577

Hadoop Process Definition Language 
(hPDL), 447

Hadoop services, in Hadoop clusters, 36
Hadoop Streaming

definition, 139–140
functional description, 140
Java classes, 140

Hadoop web interfaces, fully distributed 
clusters, 120

HADOOP_CLASSPATH environment 
variable, 73

HADOOP_CONF_DIR environment 
variable, 163

hadoop.encryption.key.provider.path 
parameter, 522

hadoop.encryption.key.provider.url 
parameter, 522

hadoop-env.sh file, 79
HADOOP_HEAPSIZE environment 

variable, 73
hadoop.http.staticuser, setting default user 

name, 81
HADOOP_LOG_DIR environment 

variable, 73
HADOOP_LOG_DIR parameter, 597
hadoop-metrics.properties file, configuring 

Hadoop metrics, 75
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HADOOP_PID_DIR environment variable, 
73

Hadoop-related configuration, 74–76
hadoop.rpc.protection parameter, 497–498
hadoop.security.authentication parameter, 

497–498
hadoop.security.authentication property, 

258–259
hadoop.security.authorization parameter, 

497–498
hadoop.security.auth_to_local parameter, 

495–498
hadoop.security.group.mapping parameter, 496
Hadoop-specific environment, configuring, 80
hadoop.tmp.dir, 81
HAR (Hadoop Archive)

caveats, 306
file types, 305
.har file extension, 305
HAR files, creating, 305–306
HAR files, reading, 306
managing small f iles, 304–306
overview, 304–306

.har file extension, 305
HAR file system, 244
HAR files, 305–306
hard limit settings, 67–68
Hardware racks, 12. See also Planning fully 

distributed clusters, single rack to 
multiple racks.

HashPartitioner partitions, 709
HBase, 17
HCatalog, 558
HDFS (Hadoop Distributed File system)

accessing from behind a firewall. See 
HttpFS gateway.

administrative access, service level 
authorization, 511

alternate file systems, 244
architecture. See Architecture, HDFS.
Avro format, 42
base temporary directory, configuring, 81
binary formats, 42
cache management. See Centralized cache 

management.
client interactions. See Clients, HDFS.
cluster status, examining, 252–255

configuring for fully distributed clusters, 
HDFS configuration, modifying fully 
distributed clusters

configuring Hadoop clusters, 85–86
daemons, configuring in Hadoop clusters, 

73–74
data block storage in the Linux file system, 

217
data consistency model, 38
data formats, 42
data replication. See Data replication.
data transfer protocol, 524
DataNode services, starting, 87–88
DataNodes, 44
distributed synchronization and group 

services. See ZooKeeper.
fault tolerance, 37–38.  See also Recovery 

process.
federation. See Federated NameNodes.
file system organization, 42
formatting, 86–87
in Hadoop clusters, 36
Hadoop ecosphere, 15
handling large datasets, 37
high availability. See HA (high 

availability).
loading data into. See Loading data.
managing. See Managing HDFS.
metadata, 319–321.  See also NameNodes.
metadata, backing up, 552–553
mountable file systems, 564–566
in a multihomed network, 124, 562–563
NameNode operations, 43–48
NameNodes, communication with 

DataNodes, 207–208
NameNodes, starting, 87–88
NFSv3 gateway, configuring, 566–567
operations, auditing, 519
parameters, configuring Hadoop clusters, 81
permissions. See Authorization, HDFS 

permissions.
ports, modifying in fully distributed 

clusters, 123–124
reading, 219–220
remote communication. See HttpFS 

gateway; WebHDFS.
replication factor, 214–215
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HDFS (continued)
Secondary NameNodes, 46–47, 87–88
SequenceFile format, 42
services, starting, 87–88
short-circuit local reads, 563–564
space issues, troubleshooting, 727
special features, 562–567
storage metadata in Hadoop clusters, 36
storage usage, monitoring with web UIs, 

608–609
storing data, 40–42
streaming access to data, 38
transparent encryption. See Encryption, 

HDFS transparent.
unbalanced data. See Rebalancing HDFS 

data.
unique features, 37–38
write considerations, 223–224
writing data, 221–224
writing to an HDFS file, 42–43

hdfs dfs utility. See Managing HDFS with 
hdfs dfs utility.

hdfs dfsadmin command, 118
HDFS files

concatenating, 360
description, 206
listing, 247, 248
piping data into, 360
viewing first and last portions of, 360

HDFS permissions
ACLs (access control lists), 256
checking, 255
default authentication mode, 257
enabling new users, 257–258
Kerberized systems, 257
overview, 255
Permission denied errors, 256
r (read), 255–256
super users, designating, 259
user identities, 258–259
w (write), 255–256
x (execute), 256

HDFS storage
additional space, checking for, 262
checking disk usage, 260
decreasing the replication factor, 274–275

df command, 260
dfs -setRep option, 275
dfsadmin command, 260
dfw.replication parameter, 275
displaying storage statistics, 263
du command, 260–262
du -h command, 261
du -s command, 262
free space, checking, 260
fs.block.size parameter, 275
help for file commands, 260
reclaiming used space, 274–276
report command, 263
reserving space for non-HDFS data use, 262
test command, 263
used space, checking, 260–262

HDFS storage, files and directories
checking the existence of files, 263
distinguishing directories from files, 263
removing, 274

HDFS storage, space quotas
checking, 266–267
Hadoop block sizes, effects of, 265–266
managing, 265
name quotas, setting, 264
vs. name quotas, 263
quota violation state, 266
removing, 265
replication factors, effects of, 265–266
setting limits on directories, 264–266
user specific vs. directory specific, 264

hdfs user, setting up, 70–71
HDFS_BYTES_READ counter, 649
HDFS_BYTES_WRITTEN counter, 649
hdfs-site.xml file

configuring archival storage tiers, 235–236
configuring HDFS storage directories, 262
configuring pseudo-distributed Hadoop 

clusters, 74
decommissioning a DataNode service, 536
default behavior for HDFS client, 191
dfs.data.dir parameter, 262
dfs.datanode.reserved parameter, 262
dfs.hosts.exclude parameter, 536
dfs.namenode.http-bind-host parameter, 

124, 563
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dfs.namenode.https-bind.host parameter, 
124, 563

dfs.namenode.rpc.bind-host parameter, 
124, 563

dfs.namenode.servicerpc-bind.host 
parameter, 124, 563

dfs.permissions.enabled parameter, 255
dfs.permissions.supergroup parameter, 259
hadoop.security.authentication property, 

258–259
HDFS in a multihomed network, 124
modifying HDFS configuration, 106–109
permission checking, enabling/disabling, 

255
super users, designating, 259
user identities, determining, 258–259
YARN in a multihomed network, 124

hdfs-site.xml file, configuration parameters, 
499–500

hds-audit.log file, 519
head command, 360
Heap dumps, 734
Heap size, adjusting for the simple cluster, 

80–81
Heartbeats

DataNodes, 207–208, 213–214
frequency, configuring, 321
overview, 322
piggybacking, 322
stopped, 322

help command
dfsadmin utility, 251–252
hdfs dfs utility, 245–247

Help feature, Sqoop, 368
Help for commands

dfsadmin utility, 251–252
file commands, 260
hdfs dfs utility, 245–247
HDFS storage, 260
managing HDFS with hdfs dfs utility, 

245–247
spark-submit script, 187–188
Sqoop, 368
YARN commands, 530

Heterogeneous HDFS storage, archival 
storage, 233–234

HiBench, benchmarking clusters, 642–643
Hierarchical queues, 414, 416. See also Leaf 

queues.
High availability (dfsadmin commands, HA), 

346
High availability (HA). See HA (high 

availability).
History file directory, specifying, 114
History files, managing, 114
Hive

alternative to MapReduce, 25
authorization, 514–516
connecting to Spark SQL, 199
data organization, 142
definition, 141
description, 9, 17
executing under Sentry, 517
loading data into, 142–143
monitoring, 609–610
overview, 141–142
partitioned Hive tables, 381
querying data, 143
SQL features. See HiveQL.

Hive jobs
Oozie action nodes, 451–452
optimizing. See Optimizing Hive jobs.

Hive Query Language (HQL), 164, 452
Hive tables, 142
HiveContext, 198–199
hive-partition-key parameter, 381
hive-partition-value parameter, 381
HiveQL, 26
hive.sentry.provider property, 515
HiveServer2, 514–517
Hortonworks, 60
Hosts, including/excluding, 75
Hot data

archival storage, 232, 233–234
storage policies, 237

Hot swapping a disk drive, 729
HotSpot, 624
hPDL (Hadoop Process Definition 

Language), 447
HQL (Hive Query Language), 164, 452
HSQLDB, 372
HTTP protocol, enabling, 63
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HttpFS gateway
accessing HDFS, 314–315
configuring, 313–314
overview, 313
vs. WebHDFS, 315

Hue
configuring, 558–559
in the Hadoop ecosphere, 17

Hue, administering a cluster
administrative tasks, 561–562
Beeswax, configuring, 560
configuring Hue, 558–559
creating user accounts, 554–556
desktop features, configuring, 559
Hadoop, configuring, 557–560
installing, 556–557
managing Hue, 561
managing workf lows, 561–562
Oozie, configuring, 560
overview, 553–554
starting the Hue server, 561
user impersonation, 558
YARN, configuring, 559–560
ZooKeeper, configuring, 560

I
IBM, Hadoop distribution, 60
if-then-else actions. See decision control nodes.
Impala, alternative to MapReduce, 25
import command, 368–370
Import process

incremental imports, 378–379
input parsing options, 373
overview, 368–371
selective import, 374–376
into SequenceFiles, 373

import-all-tables command, 376
Importing data. See Loading data.
incremental parameter, 378–379
Ingesting data. See Loading data.
Initializing, Spark SQL, 199
In-memory archival storage, 237
In-memory computation, Spark, 151
Input split size, tuning map tasks, 627–628
InputFormat, 164
Input/output

delimiters, 372–373

directories, MapReduce, 137
MapReduce, 132
tuning map tasks, 627–630

Installation and upgrades, administrator 
duties, 19

Installing
client server, Oozie architecture, 445–446
Ganglia, 580–581
Hue, 556–557
Kafka, 401
Kerberos, 486–487
OEL (Oracle Enterprise Linux), 745
Oozie, 441–442
Oozie server, 442–444
server, Oozie architecture, 442–444

Installing fully distributed clusters, 61–62. 
See also Modifying fully distributed 
clusters; Planning fully distributed 
clusters.

checking the new file system, 118
overview, 61–62
starting up and shutting down the cluster, 

114–117
Installing Hadoop clusters. See also 

Configuring clusters.
Hadoop distributions, 60–61
installation types, 61–62
multinode clusters. See Fully distributed 

clusters.
single-node installation. See Installing 

pseudo-distributed clusters.
standalone installation, 61–62

Installing Java, 69–70
Installing pseudo-distributed clusters. See also 

Configuring pseudo-distributed Hadoop 
clusters.

description, 61–62
Hadoop users, creating, 70–71
HDFS management, setting up, 70–71
hdfs user, setting up, 70–71
installing Hadoop software, 70
Java requirements, 69–70
mapred user, setting up, 70–71
MapReduce services, setting up, 70–71
overview, 62–63
passwordless connection, 68–69
required directories, creating, 71
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setting up SSH, 68–69
starting up and shutting down the cluster, 

114–117
utilities, 63
YARN services, setting up, 70–71
yarn user, setting up, 70–71

Installing pseudo-distributed clusters, 
modifying the Linux kernel

connectivity, checking, 68
DNS, checking, 65–66
increasing file limits, 64
IP tables, disabling, 67
IPv6, disabling, 67
modified parameters, summary of, 64
NIC bonding, 65
noatime for disk mounts, setting, 65
nodiratime for directory mounts, setting, 

65
NTP, enabling, 65
SELinux, disabling, 66
server BIOS settings, checking, 65
shell limits, setting, 67–68
swap, disabling, 66
testing disk speed, 65
THP compaction, turning off, 68
turning off the network firewall, 67
Ulimits, setting, 67–68

Installing Spark
compiling binaries, 157
examples, 157
key files and directories, 157
overview, 155–156
reducing verbosity, 158

Instant messaging data, definition, 6
Integrity checks. See File system checks; fsck 

command.
Interactive Spark applications. See Spark 

applications, interactive.
Intercepts, 390
Interrupts, monitoring, 575
I/O load, reducing, 624–625
I/O processes, MapReduce, 132–133
I/O statistics, monitoring, 573–574
iopath option, 645
iostat utility, 573–574
IP tables, disabling, 67
IPv6, disabling, 67

J
jar command, 645
JAR files, displaying, 682
Java, installing, 69–70
Java classes, and Hadoop Streaming, 140
Java Database Connectivity ( JDBC) server, 

Spark applications, 191–192
Java heap, JVM garbage collection. See 

also Troubleshooting JVM garbage 
collection.

generations, 732–733
old generations, 732–733
overview, 732–733
permanent generations, 732–733
sizing, 733
young generations, 732–733

Java requirements for installing pseudo-
distributed clusters, 69–70

Java Virtual Machine ( JVM)
configuring reuse, 623–624
heap size, configuring, 616–617
and HotSpot, 624
metrics, 577
off heap usage, 668

JAVA_HOME environment variable, 73
JBOD disks, single rack to multiple racks, 

98
JDBC ( Java Database Connectivity) server, 

Spark applications, 191–192
JN ( JournalNode) daemons

configuring HA (high availability), 336
large cluster guidelines, 101

Job counters, 649–650
Job history metadata, YARN, 54
job -info command, 471
job -kill command, 471
Job launchers, Oozie workf lows, 449
Job logs, reviewing, 602–604
Job processing

configuring Hadoop clusters, 73–74
MapReduce, 133–135

Job queue status, checking, 533
Job queues. See Capacity Scheduler, queues; 

Fair Scheduler, queues.
Job stages, displaying, 682, 684
Job tokens, 501
Job types, Oozie workf lows, 439
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JobHistoryServer
description, 54
large cluster guidelines, 101
as monitoring tool, 606–607
port, specifying, 113
starting, 88–89

job.properties file, 462
Jobs. See also Applications.

completed, monitoring, 684, 686
details, displaying with MapReduce, 

137–139
IDs, troubleshooting, 736
information, viewing, 531
parallelism, 377–378
scheduling. See Capacity Scheduler; Fair 

Scheduler; Oozie.
Spark applications, definition, 180–181
Spark execution model, 692, 693
status, checking, 471
tracking from the command line, 686
YARN, 49

Jobs, failures
Oozie, 473
troubleshooting, 738–739

Jobs tab, 682, 683
job.xml file, 589
join control nodes, configuring, 456–457
Joining two databases, optimizing shuff le 

operations, 702
Joins, Pig jobs, 638
JournalNode ( JN) daemons

configuring HA (high availability), 336
large cluster guidelines, 101

JSON files, 679
Jsvc libraries, 500
JVM ( Java Virtual Machine)

configuring reuse, 623–624
heap size, configuring, 616–617
and HotSpot, 624
metrics, 577
off heap usage, 668

JVM garbage collection, Java heap. See 
also Troubleshooting JVM garbage 
collection.

generations, 732–733
old generations, 732–733
overview, 732–733

permanent generations, 732–733
sizing, 733
young generations, 732–733

K
kadm5.acl file, 487
kadmin utility, 494, 502
kadmin.local utility, 502
Kafka

benefits of, 398–399
brokers, 400, 402
commit log abstraction, 399
consumers, 400, 403
description, 17, 398
functional description, 399–400
handling large volumes of data, 400
installing, 401
integrating with Hadoop and Storm, 

404–406
key components, 400
as messaging solution, 400
producers, 400, 403–404
topics, 400, 403

Kafka clusters
brokers, starting the, 402
creating topics, 403
producers, starting, 403–404
setting up, 401–404
ZooKeeper services, setting up, 402

kdadmind daemon, 502
kdb5_util utility, 502
KDC (Key Distribution Center)

authentication, 480
encryption types supported, specifying, 489
Kerberos security, 482–483
TCP ports, specifying, 489
UDC ports, specifying, 489

kdc.conf file, 487, 489–490
kdc_ports parameter, 489
kdc_tcp_ports parameter, 489
kdestroy command, 503
Kerberized clusters, definition, 482
Kerberized clusters, managing

accessing the Kerberos database, 502
AD, integrating with Hadoop, 504–505
AD, setting up one-way trust, 503–504
adding principals, 502
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administration commands, 502–503.  See 
also specific commands.

authenticating users, 502
changing passwords, 502
defining SPNs, 503–504
granting tickets, 502
listing a user’s ticket cache, 503
performing HDFS operations, 502
provisioning UPNs, 503–504
remote administration, 502
retrieving TGTs, 502
setting up one-way trust, 503–505
utilities and daemons, 502
viewing tickets, 502

Kerberized systems, 257
Kerberos. See also Authorization.

AS (Authentication Service), 482–483
256-byte encryption, enabling/disabling,

490
ACLs, specifying for UPNs, 490
administrative domain. See Kerberos, 

realms.
authenticating users and services, 501
authentication process, 480, 483–484
authentication server, 483
block access tokens, 501
central server. See KDC (Key Distribution 

Center).
delegation tokens, 501
description, 30, 480
determining user identities, 258–259
example, 490
job tokens, 501
KDC (Key Distribution Center), 480, 

482–483
keytab file, 480
name origin, 482
overview, 482
TGTs (Ticket Granting Tickets), 480, 483
tickets, 483
tokens, 501

Kerberos, authorization
configuring Kerberos, 487–489
configuring the KDC, 489–490
installing Kerberos, 486–487
kadm5.acl file, 487
kdc.conf file, 487, 489–490

krb5.conf file, 487–489
overview, 486

Kerberos, passwords
changing, 502, 503
storage location, 483, 493–495.  See also 

Keytab file.
weak, dictionary of, 490

Kerberos, realms
definition, 483
one-way trust, 485–486, 503–505
service principal, 483
special principal, 485
SPNs (service principal names), 483
trusted relationships, 484–485
two-way trust, 485–486
UPNs (user principal names), 483, 490
user principal, 483

Kerberos, securing a cluster
acceptance filters, 496
core-site.xml file, configuration 

parameters, 497–498
Hadoop configuration files, 497–500
HDFS-related configuration, 499–500
hdfs-site.xml file, configuration 

parameters, 499–500
LinuxContainerExecutor, configuring, 498
mapping SPNs, 495–497
overview, 495
securing DataNodes, 500
starting the cluster in secure mode, 

500–501
translating SPNs to operating system 

names, 495–496
YARN-related configuration, 498
yarn-site.xml file, configuration 

parameters, 498
Kerberos, setting up

creating a database, 491
deleting SPNs, 493
keytab file, 493
overview, 490–491
SPNs, 492–493
starting servers, 492
UPNs, 491

Kerberos databases
accessing, 502
creating, 491
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Kerberos trusts, 484–485
Key Distribution Center (KDC). See KDC 

(Key Distribution Center).
Keytab files, 480, 493
KickStart, 63
kill command, 472, 532–533
kill control nodes, Oozie workf lows, 438
kill nodes, configuring, 458–459
Killed jobs, monitoring with web UIs, 

601–602
Killing a job, 471, 472
Killing running applications, 532–533
Killing Spark jobs, 740
kinit command, 502–503
kinit utility, 502
klist command, 494, 503
klist utility, 502
KMS (Key Management Server), 521, 522
Knox, description, 31
kpasswd command, 503
kpasswd utility, 502
krb5.conf file, 487–489
krb5kdc command, 492
krb5kdc daemon, 502

L
L option, 310, 312
Large datasets, handling, 37
last-value parameter, 378–379
launch_container.sh script, 589
Lazy_Persist, storage policies, 237
LDAP directories

as Kerberos database, 491
one-way trusts, 503
permission checks, 507

LDAP Synchronization Connector (LSC), 505
Leaf queues

Capacity Scheduler, 414
Fair Scheduler, 428

Lease recovery, 224–225
limits.conf file, setting shell limits, 67–68
Lineage information, 718
Linux file and directory commands

cd, 245
change directory, 245
copying files and directories, 245
cp, HDFS analog, 245

HDFS command analogs, 245
head, HDFS analog, 360
listing files, 244–245
ls, HDFS analog, 245
ls, listing HDFS files, 247, 248
moving files and directories, 245
mv, HDFS analog, 245
print working directory, 245
pwd, 245
sudo, 259
use administrative privileges, 259

Linux file limits, increasing, 64
Linux file system 1 full, troubleshooting, 

726
Linux kernel, modifying. See Installing 

pseudo-distributed clusters, modifying 
the Linux kernel.

Linux servers
cloning, 745–746
monitoring. See Monitoring Linux servers.

LinuxContainerExecutor, configuring, 498
list command, 531–532
list-corruptfileblocks option, 286
list-databases command, 368
Listing

archival storage policies, 238
relational databases, 368
snapshots, 282
tables in a database, 368

list-tables command, 368
Loading data

bulk data. See DistCp.
copying between clusters. See DistCp.
Hadoop data transfer tools, 355–356.  See 

also specific tools.
from HDFS, with Spark, 164–165
into Hive, 142–143
messaging systems. See Kafka.
from relational databases. See Spark; Sqoop.
Spark SQL, 199–200
streaming data. See Flume; Kafka; Storm.
vast amounts of. See DistCp.

Loading data from the command line
cat command, 356–357
copy and moving files to and from HDFS, 

358–360
copyFromLocal command, 358
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copyToLocal command, 359
dumping a file’s contents, 356–357
get command, 359–360
getMerge command, 360
head command, 360
mv command, 360
put command, 358
specifying files as URIs, 357
tail command, 360
test command, 357
testing for files, 357
viewing first and last portions of an HDFS 

file, 360
Local directories

out of free space, troubleshooting, 727–729
Spark on YARN, setting, 681

Local mode
Pig, 144
Spark, 158

LOCAL_DIRS environment variable, 681
locations option, 287
Log aggregation. See also Flume.

accessing log files, 595–597
configuring log retention, 594–595
default retention period, 592
error message, 534
HDFS storage location, 593–594
overview, 592–593
viewing application logs, 596–597, 740–741

Log directories out of free space, 
troubleshooting, 727–729

Log files. See also specific log files.
accessing, 595–597
auditing, 519–520
deleting, 598
Hadoop audits, 519–520
Oozie, 473
rotating, 598

Log ingesting tool. See Flume.
Log level, setting, 598–599
Log retention

configuring, 594–595
default retention period, 592

Log4j log file, 519
log4j.properties file, configuring logging, 75, 

584

log_aggregation.retain.seconds parameter, 112
Logging

configuring, 584
configuring Hadoop clusters, 75
HDFS staging directories, 587–588
Log4j log file, 519, 584
“replaying edit logs” message, 326
types of logs, 583–584

Logging, NodeManager
launching, 590
local directories, 588–592
map/reduce containers, creating, 590

Logging levels, 591–592
Logging-related parameters, configuring, 

111–113
Logical NameNode ID, 337
Logical nameservice, 337
Logs

accessing, 583, 584
analysis scenario, 7
monitoring with web UIs, 686
reviewing, 533–534
reviewing with ResourceManager, 

602–604
stderr, 583–584
stdout, 583–584
syslog, 583–584
types of, 583–584.  See also Application 

logs; Daemon logs.
logs command, 533–534
lost+found directory, 288–289. See also Trash 

directory.
ls command

HDFS analog, 245
listing HDFS files, 247, 248
listing snapshots, 282, 283

LSC (LDAP Synchronization Connector), 
505

lsSnapshottbleDir command, 282
LZO format, 290, 291

M
m parameter, 382
Machine learning algorithms, Spark, 155
Mahout, description, 17
Managing, archival storage policies, 239
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Managing HDFS
from the command line. See dfsadmin utility.
setting up HDFS in pseudo-distributed 

Hadoop clusters, 70–71
Managing HDFS with hdfs dfs utility

 (minus sign), in dfs subcommands, 245
accessing the HDFS shell, 245
chgrp command, 250–251
chmod command, 251
chown command, 250–251
displaying all commands, 245
emptying the trash directory, 250
expunge command, 250
help command, 245–247
Linux file and directory command analogs, 

245
mkdir command, 249
overview, 245
R operation, 251
recursive changes, 251
rm command, 249–250
shell commands, types of, 245
skipTrash option, 250
stat command, 248–249
stat command vs. ls command, 248–249

Managing HDFS with hdfs dfs utility, files 
and directories

confirming existence of, 248
contents, displaying, 245, 247
creating directories, 249
displaying information about, 247, 248
groups, changing, 250–251
listing, 245, 247–248
ownership, changing, 250–251
permissions, changing, 251
removing, 249–250

Manual failover, 348–349, 545–546
Map and reduce tasks, configuring 

MapReduce memory, 615–616
Map phase, tuning map tasks, 626, 628–630
Map step, MapReduce, 130
MapFiles, small f iles problem, 300
map(function) transformation, 178
MAP_INPUT_RECORDS counter, 650
Map-only jobs, 652
MAP_OUTPUT_RECORDS counter, 650
Mapper tasks, YARN, 49

Mappers
limiting, 656–658
minimizing output, 655
too many, 655–656

Mapping, SPNs (service principal names), 
495–497

MapR, Hadoop distribution, 60
MapReduce environment, configuring 

Hadoop clusters, 80
mapred user, setting up in pseudo-distributed 

Hadoop clusters, 70–71
mapred-env.sh file, 79
mapred.reduce.slowstart.completed 

parameter, 634
mapred-site.xml file

configuring MapReduce, 82–83
configuring pseudo-distributed Hadoop 

clusters, 74
configuring the reducer initialization time, 

634
enabling compression, 293–294
mapred.reduce.slowstart.completed 

parameter, 634
mapreduce.map.memory.mb, 615–616
mapreduce.map.output.compress 

parameter, 293–294
mapreduce.map.output.compress.codec 

parameter, 293–294
mapreduce.map.sort.spill parameter, 633
mapreduce.map.sort.spill.percent 

parameter, 629–630
mapreduce.output.fileoutputformat.

compress parameter, 293–294
mapreduce.output.fileoutputformat.

compress.codec parameter, 294
mapreduce.reduce.input.buffer.percent 

parameter, 633
mapreduce.reducer.memory.mb parameter, 

615–616
mapreduce.reduce.shuff le.input.buffer.

percent parameter, 633
mapreduce.reduce.shuff le.memory.limit.

percent parameter, 633–634
mapreduce.reduce.shuff le.merge.percent 

parameter, 632, 634
mapreduce.reduce.shuff le.parallelcopies 

parameter, 633
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mapreduce.shuff le.transfer.buffer.size 
parameter, 633–634

mapreduce.task.io.sort.factor parameter, 
628–630

mapreduce.task.io.sort.mb parameter, 
628–630

tuning MapReduce shuff le process, 632–634
MapReduce

alternatives to, 25
configuring Hadoop clusters, 82–83
data compression, 133, 291–294
displaying job details, 137–139
distributed data processing, 24–25
drawbacks, 149
Hadoop ecosphere, 15
input/output directories, 137
inputs and outputs, 132
I/O processes, 132–133
job processing, 133–135
key concepts, 131–133
map phase, 7
map step, 130
performance tuning. See Optimizing 

MapReduce; Tuning map tasks; 
Tuning reduce tasks.

programming model, 130
reduce phase, 7
reduce step, 130
sample program, 135–136
tasks, reducing. See Tuning map tasks.
typical scenario for, 7
in a YARN-based cluster, 54–56

MapReduce, Hadoop Streaming
definition, 139–140
functional description, 140
Java classes, 140

MapReduce, WordCount program
description, 130
running, 136–137
sample program, 135–136

Map/reduce containers, creating, 590
MapReduce framework counters, 650–651
MapReduce jobs, Oozie action nodes, 

450–451
MapReduce mode, Pig, 144
MapReduce services, setting up in pseudo-

distributed Hadoop clusters, 70–71

mapreduce.jobhistory.address parameter, 113
mapreduce.jobhistory.done-dir parameter, 114
mapreduce.jobhistory.intermediate-done-dir 

parameter, 114
mapreduce.jobhistory.webapp.address 

parameter, 114
mapreduce.job.jvm.numtasks parameter, 624
mapreduce.job.maps parameter, 656
mapreduce.job.reduces parameter, 656
mapreduce.job.running.map.limit parameter, 

656
mapreduce.job.running.reduce.limit 

parameter, 656
mapreduce.job.speculative.minimum-

allowed-tasks parameter, 622
mapreduce.job.speculative.slowtaskthreshold 

parameter, 622
mapreduce.job.speculative.speculative-cap-

running-tasks parameter, 622
mapreduce.job.speculative.speculative-cap-

total-tasks parameter, 622
mapreduce.job.tags property, 598
mapreduce.map.cpu.vcores, 621
mapreduce.map.java.opts parameter, 110–111
mapreduce.map.log.level property, 591
mapreduce.map.memory.mb, 615–616
mapreduce.map.memory.mb parameter, 110
mapreduce.map.output.compress parameter, 

293–294
mapreduce.map.output.compress.codec 

parameter, 293–294
mapreduce.map.sort.spill parameter, 633
mapreduce.map.sort.spill.percent parameter, 

629–630
mapreduce.map.speculative parameter, 622
mapreduce.output.fileoutputformat.compress 

parameter, 293–294
mapreduce.output.fileoutputformat.compress.

codec parameter, 294
mapreduce.reduce.cpu.vcores, 621
mapreduce.reduce.input.buffer.percent 

parameter, 633
mapreduce.reduce.java.opts parameter, 

110–111
mapreduce.reduce.log.level property, 592
mapreduce.reduce.memory.mb parameter, 

110
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mapreduce.reducer.memory.mb parameter, 
615–616

mapreduce.reduce.shuff le.input.buffer.
percent parameter, 633

mapreduce.reduce.shuff le.memory.limit.
percent parameter, 633–634

mapreduce.reduce.shuff le.merge.percent 
parameter, 632, 634

mapreduce.reduce.shuff le.parallelcopies 
parameter, 633

mapreduce.reduce.speculative parameter, 622
mapreduce.shuff le.transfer.buffer.size 

parameter, 633–634
mapreduce-site.xml file, 113–114
mapreduce.task.io.sort.factor parameter, 625, 

628–630
mapreduce.task.io.sort.mb parameter, 628–630
Master nodes

fully distributed clusters, 99–100
in Hadoop clusters, 36
HDFS, architecture, 38–39
planning for fully distributed clusters, 

100–101
Master nodes, configuring, 161
Master processes, starting/stopping, 161
master_key-type parameter, 490
Master-master replication, setting up, 

550–551
Maximum capacity, Capacity Scheduler, 412
max_life parameter, 490
max_renewable_life parameter, 490
Measuring performance. See Benchmarking 

clusters; Hadoop metrics.
memChannel, 392
meminfo command, 573
Memory

choosing, 96–99
configuring, for MapReduce. See 

Configuring MapReduce, memory.
ratio of physical to virtual, 617
tuning, 689
virtual memory for map and reduce tasks, 

617
Memory, sizing

fully distributed clusters, single rack to 
multiple racks, 98

Spark executors, 672

Memory channels, 392
Memory related parameters, 109–111
Memory usage

monitoring, 571, 572–573
optimizing shuff le operations, 696
page ins/outs, 571
Spark applications, monitoring, 684, 685
Spark executors, configuring, 671–672
Spark on YARN, configuring resource 

allocation, 660, 670–672
thrashing, 571
troubleshooting, 734

Memory usage, Spark executors
allocating, 660
configuring, 671–672
finding current, 672

MEMORY_AND_DISK storage level, 719
MEMORY_AND_DISK_SER storage level, 

711, 719
MEMORY_ONLY storage level, 719
MEMORY_ONLY_SER storage level, 711, 

719
merge command, 379
Merge joins, 638
Merge phase

tuning map tasks, 626
tuning reduce tasks, 630–632

Merging files, small files problem, 303–304
Mesos

running Spark applications, 189
Mesos, Spark applications, 189
Mesos clusters, running Spark, 155, 158, 

161–162
Message system. See Kafka.
Metadata files, checkpointing, 36
Metadata retention, specifying, 700
metasave command, dfsadmin utility, 254
Metastore, sharing, 372
Metastore databases, backing up, 553
Metrics for Hadoop. See Hadoop metrics.
Metrics REST API, 684
Microsoft SQL Server, 367
MILLIS_MAPS counter, 650
MILLIS_REDUCES counter, 650
Minimum share preemption, Capacity 

Scheduler, 421–422
Minor GC (garbage collection), 687
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Minus sign (-), in dfs subcommands, 245
min.user.id parameter, 498
Mkdir command, 249
MLlib, 155
Modeling. See Data modeling.
Modifying fully distributed clusters

DataNode web interface, 120–121
gateway machines, 119
Hadoop web interfaces, 120
web interfaces, 119–121
YARN web interface, 121

Modifying fully distributed clusters, HDFS 
configuration. See also Creating fully 
distributed clusters; Installing pseudo-
distributed clusters, modifying the 
Linux kernel; Planning fully distributed 
clusters.

block replication, setting, 107–108
block size, setting, 107
data directories, specifying, 108
dfs.block.size parameter, 107
dfs.datanode.data.dir parameter, 108
dfs.datanode.du.reserved parameter, 107
dfs.name.node.dir parameter, 108
dfs.permissions.superusergroup parameter, 

108
dfs.replication parameter, 107–108
fsimage file location, specifying, 108
hdfs-site.xml file, 106–109
in a multihomed network, 124
non-HDFS storage size, setting, 107
super user group, specifying, 108

Modifying fully distributed clusters, 
MapReduce configuration

history file directory, specifying, 114
history files, managing, 114
JobHistoryServer port, specifying, 113
mapreduce.jobhistory.address parameter, 

113
mapreduce.jobhistory.done-dir parameter, 114
mapreduce.jobhistory.intermediate-done-

dir parameter, 114
mapreduce.jobhistory.webapp.address 

parameter, 114
mapreduce-site.xml file, 113–114
staging directory, specifying, 113
Web UI, setting, 114

yarn.app.mapreduce.am.staging_dir 
parameter, 113–114

Modifying fully distributed clusters, ports
Hadoop clients, 124–126
for HDFS, 123–124
port numbers for Hadoop services, setting, 

122–123
Modifying fully distributed clusters, YARN 

configuration
log_aggregation.retain.seconds parameter, 

112
logging related parameters, 111–113
mapreduce.map.java.opts parameter, 

110–111
mapreduce.map.memory.mb parameter, 110
mapreduce.reduce.java.opts parameter, 

110–111
mapreduce.reduce.memory.mb parameter, 

110
memory related parameters, 109–111
in a multihomed network, 124
yarn.application.classpath parameter, 113
yarn.log.aggregation-enable parameter, 

111–112
yarn.nodemanager.aux-services parameter, 

109
yarn.nodemanager.aux-services.

mapreduce_shuff le-class parameter, 
109

yarn.nodemanager.local-dirs parameter, 112
yarn.nodemanager.log-dirs parameter, 112
yarn.nodemanager.resource.cpu-vcores 

parameter, 110
yarn.nodemanager.resource.memory-mb 

parameter, 109–110
yarn-site.xml file, 109
yarn.xml file, 109

Modifying the Linux kernel. See Installing 
pseudo-distributed clusters, modifying 
the Linux kernel.

Monitoring. See also Hadoop metrics.
aggregating metrics. See Monitoring with 

Ganglia.
collecting metrics. See Monitoring with 

Ganglia.
decommissioning and recommissioning 

nodes, 539
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Monitoring (continued)
Fair Scheduler, 434
Hive, 609–610
Spark, 610
Spark applications, 193–194
tools for, 16
tracking metrics. See Monitoring with 

Ganglia.
Monitoring Linux servers

alerting tool, 582
bandwidth, 572
context switches, 571, 575
CPU usage, 570–573
disk storage, 571–572
interrupts, 575
I/O statistics, 573–574
memory usage, 571, 572–573
network utilization, 575–576
page faults, 572–573
processes, 572–573
read/write operations, 574–576
resource usage, 574–575
runnable processes, 571
running processes, 572

Monitoring Linux servers, tools for
dstat command, 576
free command, 573
iostat utility, 573–574
meminfo command, 573
Nagios, 582
ps command, 572
sar utility, 574–576
top command, 574–575
vmstat utility, 572–573

Monitoring with Ganglia
architecture, 580
gmetad daemon, 580
gmond daemon, 580
gweb process, 580
overview, 579
RRDtool, 580

Monitoring with Ganglia, setup
alerting and monitoring, 582
extracting configuration files, 581
gmetad daemon, configuring, 581
gmond daemon, configuring, 581
Hadoop metrics, 582

installing Ganglia, 580–581
Nagios, 582

Monitoring with web UIs
completed jobs, 604–606, 606–607
failed and killed jobs, 601–602
GC (garbage collection), 684, 685
HDFS storage usage, 608–609
JobHistoryServer, 606–607
as monitoring tool, 599–606
NameNode, 608–609
overview, 599
ResourceManager, 599–606
reviewing job logs, 602–604
running jobs, 604–606

Mountable file systems, 564–566
move option, 288–289
Mover tool, 240
moveToTrash() method, 278
Moving data

within a cluster, 361–363
between clusters, 361–363
into an HDFS. See Loading data.
out of an HDFS. See Sqoop, exporting data.

Moving data around, archival storage, 
239–240

Moving files to and from HDFS, 358–360
Multihomed network, HDFS in, 562–563
mv command, 360
mv command, HDFS analog, 245
MySQL databases

configuring, 445, 548–549
HA (high availability), 549–551
large cluster guidelines, 102
master-master replication, setting up, 

550–551
switching active/passive roles, 551

N
Nagios, 582
Name quotas

vs. space quotas, 263
specifying, dfsadmin utility, 264

NameNode operations
block reports, 322
checkpoints, 319
DataNode interactions, 322–323
HDFS metadata, 319–321
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overview, 318
startup process, 321

NameNode operations, edit logs
definition, 318
merging with fsimage files. See 

Checkpointing.
overview, 320–321

NameNode operations, fsimage files
copying, controlling transfer speed, 327
creating. See Checkpointing.
definition, 318
downloading, 320–321
importance of updating, 323–324
loss or corruption, 319
merging with edit logs. See Checkpointing.
overview, 320–321
viewing contents of, 321

NameNode operations, heartbeats
definition, 322
frequency, configuring, 321
overview, 322
piggybacking, 322
stopped, 322

NameNode operations, safe mode
automatic operations, 328–329
backup and recovery, 332–334
configuration information, getting, 333–334
enabling, 330–331
transitioning to open mode, 331–332

NameNodes
backing up HDFS metadata, 552
Block Storage Service, 350
communication with DataNodes, 207–208
configuring file system, host, and port 

information, 81
crashes, troubleshooting, 737–738
data stored in, 43–44
description, 36, 43
federated, 349–350
forcing a manual failover, 546
function of, 39–40
HA (high availability), 546
in Hadoop clusters, 36
in HDFS architecture, 38–39
HDFS operations, 43–45.  See also 

Secondary NameNodes.
health, checking, 349

large cluster guidelines, 101
metadata file location, specifying, 85
as monitoring tools, 608–609
moving to a different host, 545
namespace volumes, 350
outages. See HA (high availability).
relation to DataNodes, 44
restarting, 46
starting, 87–88
status, displaying, 349
transitioning from Standby to active, 546
updating, 254
URI, specifying, 85
in very large clusters. See Federated 

NameNodes.
NameNodes, edit logs

extra, configuring, 326–327
“replaying edit logs” message, 326

Namespace volumes, 350
Narrow dependencies, 698–700
Narrow transformations, 698
nestedUserQueue rule, 430
Netezza, 367
Network considerations, single rack to 

multiple racks, 99
Network firewall, turning off, 67
Network parameters, Spark-related, 676
Network utilization, monitoring, 575–576
NFSv3 gateway, configuring, 566–567
NIC bonding, 65
“No credentials cache found” message, 

494–495
noatime for disk mounts, setting, 65
node command, 533
Node status, checking, 533
NODE_LOCAL, data locality level, 715
NodeManager

configuring MapReduce memory, 617–618
in Hadoop clusters, 37
mapreduce shuff le, implementing, 83–84
YARN, 49, 52

NodeManager, logging
application logs, 585–586
launching, 590
local directories, 588–592
map/reduce containers, creating, 590

NodeManager, starting, 88–89



ptg18444370

780 Index

NodeManager failures, troubleshooting, 738
NodeManager log file, 519–520
NodeManager services, large cluster 

guidelines, 101–102
Nodes

listing, 533
for planning fully distributed clusters, 

choosing, 94
removing from a cluster. See Nodes, 

decommissioning and recommissioning.
Nodes, decommissioning and 

recommissioning
adding DataNodes, 540–541
adding NodeManagers, 540–541
decommissioning a NodeManager, 538–539
decommissioning DataNodes, 537–538
including and excluding hosts, 536
monitoring, 539
overview, 535
recommissioning nodes, 538–539
run time, 539
tuning the HDFS, 539–540

Node’s used DFS percentage, 270–271
nodiratime for directory mounts, setting, 65
nofile attribute, 67–68
Non-HDFS storage size, setting, 107
NO_PREF, data locality level, 715
nproc attribute, 67–68
NTP, enabling, 65
--num-executors command-line f lag, 667
NUM_KILLED_MAPS counter, 649
NUM_KILLED_REDUCES counter, 649
num-mappers parameter, 382

O
Objects, Sentry authorization, 513
ODBC server, Spark applications, 191–192
OEL (Oracle Enterprise Linux), installing, 745
OIV (Off line Image Viewer), 321
ok control nodes, configuring, 458–459
Old Generation garbage collection, 687
Old generations, JVM garbage collection, 

732–733
ONE_SSD, storage policies, 237
One-way trust

on Kerberized clusters, 503–505
Kerberos realms, 485–486, 503–505

Oozie. See also Capacity Scheduler; Fair 
Scheduler.

bundles, 473
configuration files, 473
configuring, 560
cron scheduling, 474
Dashboard, 555
description, 17
job failures, 473
log files, 473
SLAs (service level agreements), 474–475
troubleshooting, 473–474

Oozie, deploying
configuring Hadoop for Oozie, 444–446
installing Oozie, 441–442
installing Oozie server, 442–444
MySQL database, configuring, 445
overview, 441–442
workf low jobs, 463

Oozie, managing and administering
checking coordinator status, 472
checking job status, 471
checking Oozie status, 472
common commands, 471
dry runs, 472
killing a job, 471, 472
overview, 470–471
resuming a suspended job, 472
running Pig jobs through HTTP, 472
SLA event records, getting, 472
suspending running jobs, 472–473
validating a workf low.xml file, 472
validating XML schemas, 472

Oozie architecture, client
description, 440
installing, 445–446

Oozie architecture, database, 440–441
Oozie architecture, server

description, 439–440
installing, 442–444
starting/stopping, 444–445

Oozie coordinators
data based, 467–469
overview, 464–465
submitting from the command line, 469–470
time based, 465–467, 469.  See also cron 

scheduling.
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Oozie status, checking, 472
oozie utility, 438
Oozie workf low jobs

configuring, 460–461
deploying, 463
dynamic workf lows, 463–464
job.properties file, 462
properties, specifying, 461–463
running, 461–464

Oozie workf lows
bundle jobs, 439
case statements, 460
control nodes, 446–447
control nodes, configuring, 456–460
coordinator jobs, 438–439
decision control nodes, 438, 446–447
defining, 447–449
description, 437–439, 446
end control nodes, 438, 446–447, 448, 456
example, 448
fork actions, 448
fork control nodes, 438, 446–447, 448, 

456–457
if-then-else actions. See decision control 

nodes.
job launchers, 449
job types, 439
join control nodes, 438, 446–447, 448, 

456–457
kill control nodes, 438
ok control nodes, configuring, 458–459
start control nodes, 438, 446–447, 448, 456
workf low jobs, 439
workf low.xml file, 447–449

Oozie workf lows, action nodes
configuring, 449–454
description, 438, 448
fs actions, 454
for Hive jobs, 451–452
for MapReduce jobs, 450–451
for Pig, 452–453
Shell actions, 453
types of, 449–450.  See also specific types.

Oozie workf lows, creating
control nodes, configuring, 456–460
decision, configuring, 459–460
end control nodes, configuring, 456

error nodes, configuring, 458–459
fork control nodes, configuring, 456–457
join control nodes, configuring, 456–457
kill nodes, configuring, 458–459
ok control nodes, configuring, 458–459
overview, 454–455
start control nodes, configuring, 456

Operating Hadoop clusters
DataNode services, starting, 87–88
formatting the HDFS, 86–87
HDFS services, starting, 87–88
JobHistoryServer, starting, 88–89
NameNode services, starting, 87–88
NodeManager, starting, 88–89
ResourceManager, starting, 88–89
Secondary NameNode services, starting, 

87–88
services, shutting down, 90
services, starting, 87–89
setting environment variables, 87
YARN services, starting, 88–89

Operating system. See YARN (Yet Another 
Resource Negotiator).

Optimization, administrator duties, 20. See 
also Performance; Tuning.

Optimized row columnar (ORC) files, 297, 
300–301, 303, 681

Optimizing
JVM garbage collection, 733–734
Spark execution model, 692–694

Optimizing Hive jobs
bucketing, 635
built-in capabilities, 636
cost-based optimization, 636
ORCFILE format for Hive tables, 636
overview, 635
parallel execution, 635
partitioning, 635
vectorization, 636–637

Optimizing MapReduce. See also Tuning 
map tasks; Tuning reduce tasks.

balancing work among reducers, 655
combiners, 652–654
data compression, 654–655
limiting mappers or reducers, 656–658
map-only jobs, 652
minimizing mapper output, 655
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Optimizing MapReduce (continued)
Partitioners, 654
reduce phase, 633–634
reducer initialization time, 634
shuff le process, 632–634
sort, 633
spill process, 633
too many mappers or reducers, 655–656

Optimizing Pig jobs
merge joins, 638
replicated joins, 638
rules for, 637
setting parallelism, 637
skewed joins, 638
specialized joins, 638

Optimizing shuff le operations. See also 
Optimizing Spark applications.

accumulators, 702–703
aggregateByKey operator, 702
all-to-all operations, 695
avoiding a shuff le, 702–703, 709–710
broadcast variables, 702–703
cogroup operator, 702
compression operations, 697–698
configuring shuff le parameters, 697
disk I/O, 696–697
example, 695–696
GC (garbage collection), 697
groupByKey operator, 700–702
joining two databases, 702
memory usage, 696
metadata retention, specifying, 700
minimizing shuff le operations, 699
narrow transformations, 698
reduceByKey operator, 694–695, 700–702
stage boundaries, 699
triggering a shuff le, 698–700
wide transformations, 698

Optimizing Spark applications. See also 
Optimizing shuff le operations; Tuning 
Spark streaming applications.

caching data, 717–723
compression, 711–712
data serialization, 710–711
number of tasks, 703–710
parallelism, 703–710

partitioning, 703–710
Spark execution model, 692–694
SQL query optimizer, 712–716

Options file, Sqoop, 371
Oracle Enterprise Linux (OEL), installing, 745
Oracle products. See specific products.
ORC (optimized row columnar) files, 297, 

300–301, 303, 681
ORCFILE format for Hive tables, 636
OS page caching, 228
Out of memory errors, troubleshooting, 

734–735
OutputFormat, 164
overwrite option, 364–365

P
Package manager for Red Hat, SUSE and 

Fedora Linux, 63
Page faults, monitoring, 572–573
Page ins/outs, monitoring, 571
Pair RDDs, 179
Parallel execution, Hive jobs, 635
parallel option, 637
Parallelism

optimizing, 703–710
in Pig jobs, 637
in Spark applications, 703–705

Parallelizing
data ingestion, 688
data processing, 689

Parquet files, 290, 680
Partitioners, 654
Partitioning

Hive jobs, 635
optimizing, 703–710

Partitioning in Spark applications
avoiding a shuff le, 709–710
coalesce operator, 708–709
HashPartitioner partitions, 709
by key code, 709
overview, 703–704
by range, 709
RangePartitioner partitions, 709
repartition operator, 708
repartitioning, 708
types of partitions, 709
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Partitioning in Spark applications, number of 
partitions

increasing, 707–708
in an RDD, changing, 708–709
setting default for, 706–707

Partitions, 708–709
Passwordless connection, pseudo-distributed 

Hadoop clusters, 68–69
Passwords, Kerberos

changing, 502, 503
storage location, 483, 493–495
weak, dictionary of, 490

Passwords, Sqoop, 372
pdsh utility, 63, 102–106
Performance. See also Optimization; Tuning.

administrator duties, 20
checkpointing, 327
choosing a file format, 297
measuring. See Benchmarking clusters; 

Hadoop metrics.
troubleshooting, 682–684

Performance, improving
configuring JVM reuse, 623–624
deprecated parameters, 623
reducing I/O load, 624–625
speculative execution, 621–624

Permanent generations, JVM garbage 
collection, 732–733

Permission checking, enabling/disabling, 255
“Permission denied” errors, 256
Permissions

ACLs (access control lists), 507–509
authorization, 507
changing, 507
changing file permissions, 507
checking, 507
checking permissions, 507
configuring, 506
configuring super users, 506
extended attributes, 509–510
Hive, 514–515
overview, 505–506
raw namespace, 509–510
security namespace, 509–510
simple security mode, 505–506
system namespace, 509–510
user namespace, 509–510

Permissions for files and directories. See 
HDFS permissions.

persist() method, 719–721
Persistence, RDD, 179
PHYSICAL_MEMORY_BYTES counter, 

650
Pig

description, 17, 26
example, 145
execution modes, 144
local mode, 144
MapReduce mode, 144
Oozie action nodes, 452–453
overview, 144

Pig jobs
optimizing. See Optimizing Pig jobs.
running through HTTP, 472

Pig Latin, 144
Piggybacking heartbeats, 322
Pipe symbol (|)

piping data into HDFS files, 360
reviewing files, 359

Pipeline recovery, 226–227
Pipeline setup stage, 227
Pipelining, 693
Pivotal HD, Hadoop distribution, 60
Planning fully distributed clusters

choosing nodes, 94
form factors, 94
general considerations, 92–94
master nodes, 99–100
overview, 92
typical architecture, 93

Planning fully distributed clusters, servers
blade servers, 94, 97
commodity servers, 94
custom designed rack servers, 97–98
DataNodes, 100–101
Master Nodes, 100–101
rack servers, 94
sizing, 100–101

Planning fully distributed clusters, single rack 
to multiple racks

amount of data storage, 96
architecture, 95–96
blade servers, 97
CPU, choosing, 96–99
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Planning fully distributed clusters, single rack 
to multiple racks (continued)

custom designed rack servers, 97–98
disk configuration, 97–98
disk failure, risk of, 98
disk sizing, 97–98
extending clusters, 101
growth patterns, 96
JBOD disks, 98
key principles, 96–99
large cluster guidelines, 101–102
memory, choosing, 96–99
memory, sizing, 98
network considerations, 99
RAID disks, 98
sizing the cluster, 96
storage, choosing, 96–99
type of workload, 96
virtualization, 97

Policies, Sentry authorization, 513, 517
Policy administration examples, 517–518
Policy engine, Sentry, 513
Policy providers, Sentry, 513
Port numbers for Hadoop services, setting, 

122–123
Ports, modifying in fully distributed clusters

Hadoop clients, 124–126
for HDFS, 123–124
port numbers for Hadoop services, setting, 

122–123
POST operation, 308
PostgreSQL, 445
Precedence among configuration files, 76–78
Preempting applications, Capacity Scheduler, 

421–422
Preemption, Fair Scheduler, 409
primaryGroup rule, 430
Principals, adding to Kerberized clusters, 502
printTopology command, 211
Priorities, Fair Scheduler, 409
Privilege models, Sentry authorization, 514
Privileges, Sentry authorization, 513, 514
Processes, monitoring, 572–573
Processing engines, Hadoop 2 vs. Hadoop 1, 23
Processing layer. See YARN (Yet Another 

Resource Negotiator).
PROCESS_LOCAL, data locality level, 715

Producers, Kafka, 400, 403–404
Programming model, MapReduce, 130
Properties

core Hadoop properties, 81
Oozie workf low jobs, 461–463
precedence, 662
Spark, viewing, 713–714

Protocol Buffers, 200, 712
ps command, 572
Pseudo-distributed systems, 19
ptopax option, 283
Puppet, 569
put command, 358
PUT operation, 308, 312
pwd command, 245
pyspark command, 661
Python

memory resources, 667
in the Oozie shell, 453
sample programs, 157
vs. Scala, 170–171, 713
vs. Spark, 170–171
storage levels, 721

Python objects in an RDD, 157
Python program, submitting, 187

Q
QJM (Quorum Journal Manager), 335
quasiquotes, 713
Query plans, 686
Querying data

with Hive, 143
Spark SQL, 200

queue command, 533
queue element, 415
Queues. See Capacity Scheduler, queues; 

Capacity Scheduler, subqueues; Fair 
Scheduler, queues.

Quota violation state, 266

R
R operation, 251
r (read) permission, 255–256, 506
Rack awareness

cluster redundancy, 209–210
configuring, 210
dfsadmin utility, 211–212
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distributing data replicas, 211
finding cluster rack information, 210–211, 

212
fsck command, 211
overview, 209–210
printTopology command, 211
report command, 212
ResourceManager, 209
topology.py script, 210

Rack servers, custom designed, 97–98
RACK_LOCAL, data locality level, 715
Racks. See Hardware racks.
RAID disks, 98
RAM_DISK storage type, 237
RangePartitioner partitions, 709
Ranger, description, 31
Raw namespace, 509–510
RBW (Replica Being Written) replica state, 

216
RCFile format, 290, 300–310
RDBMS (relational database management 

system)
listing, 368
loading unto HDFS. See Spark; Sqoop.
moving data to and from. See Sqoop.
querying. See Hive.

RDD (resilient distributed dataset). See also 
Spark applications.

caching. See Caching RDD data.
collect(0) operation, 720
contents of, 174
creating DataFrames, 200–201
Double RDDs, 179
narrow dependencies, 698–700
number of partitions, changing, 708–709
operations, 176–178
overview, 173
Pair RDDs, 179
persistence, 179
Spark execution model, 693
wide dependencies, 698–700

RDD (resilient distributed dataset), actions
count() operation, 177
counting number of elements, 177
definition, 170
first operation, 177
returning arrays of elements, 177

returning largest element, 177
saveAsTextFile() operation, 177
saving as a text file, 177
take(n), 177
top() operation, 177

RDD (resilient distributed dataset), creating
from existing RDDs, 170
with parallelization, 174
subsets of RDDs, 178
from a text file, 175
with transformations, 178

RDD (resilient distributed dataset), 
transformations

creating new RDDs, 178
creating subsets of RDDs, 178
definition, 170
distinct, 178
filter(function), 178
filtering out duplicates, 178
f latMap, 178
map(function), 178
sample, 178
sortBy, 178
sorting, 178

rdd.getNumPartitions() function, 709
rdd.partitions.size() function, 709
Read (r) permission, 255–256, 506
Read phase, tuning map tasks, 626
Read tests, benchmarking clusters, 640
Reading HDFS data, 219–220
Read-only default configuration, Hadoop 

clusters, 74
Read/write operations, monitoring, 574–576
Realms. See Kerberos, realms.
Rebalancing HDFS data

adjusting balancer bandwidth, 273–274
amount of data moved, 270
average DFS used percentage, 270–271
balancer command, 269
balancer tool, 267, 268–271, 547
balancing storage on DataNodes, 547–548
current balance, checking, 547
dfsadmin command, 271–272
iterative movement of blocks, 272
making the balancer run faster, 273–274
node’s used DFS percentage, 270–271
overview, 267–268
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Rebalancing HDFS data (continued)
run time, 270
setBalancerBandwidth option, 273–274
start-balancer.sh command, 268–271
threshold, setting, 269–270
tools for, 267, 271–272
unbalanced data, description, 48
unbalanced data, reasons for, 268
when to run the balancer, 272

Recommissioning nodes. See Nodes, 
decommissioning and recommissioning.

Recoverability, distributed computing 
requirements, 33

Recovering deleted files, from snapshots, 
283–284

Recovery process. See also Backup and 
recovery; Fault tolerance.

block recovery, 226
close stage, 227
data streaming stage, 227
disaster recovery, 20.  See also Backup and 

recovery; Snapshots.
GS (Generation Stamp), 224
lease recovery, 224–225
pipeline recovery, 226–227
pipeline setup stage, 227
RUR (Replica Under Recovery) replica 

state, 216
UNDER_RECOVERY block state, 218–219
work preserving recovery, 739

Recursive changes, 251
Red Hat, package manager for, 63
Red Hat Enterprise Linux RPM software 

packages, 63
Red Hat products. See specific products.
Reduce phase

optimizing MapReduce, 633–634
tuning reduce tasks, 630–632

Reduce step, MapReduce, 130
Reduce tasks, YARN, 49
reduceByKey operator, 694–695, 700–702
Reducer initialization time, optimizing 

MapReduce, 634
Reducers

balancing work among, 655
limiting, 656–658
too many, 655–656

reducers.bytes.per.reducer property, 637
reducers.max property, 637
REDUCE_SHUFFLE_BYTES counter, 

650
Redundancy of data

cluster computing, 12–13
Hadoop architecture, 34

refreshNodes command, 254, 535
refreshQueues command, 424
reject rule, 430
Relational databases. See RDBMS (relational 

database management system).
Remote administration, Kerberized clusters, 

502
Removing, space quotas, 265
Renaming directories, 283
repartition operator, 708
Repartitioning, 708
“Replaying edit logs” message, 326
Replica Being Written (RBW) replica state, 

216
Replica states, 216
Replica Under Recovery (RUR) replica 

state, 216
Replicas Waiting to be Recovered (RWR) 

replica state, 216
Replicated joins, 638
Replication, troubleshooting, 730
report command

“Access denied...” error, 256–257
description, 252
displaying HDFS storage, 263
displaying rack information, 212
examining HDFS cluster status, 252–254
sample output, 253–254

Reporting, data science component, 11
Representational State Transfer (REST) API. 

See WebHDFS.
Resilient distributed dataset (RDD). See 

RDD (resilient distributed dataset).
Resource allocation

ApplicationMaster, 53–56
Hadoop 2, 407–410.  See also Resource 

schedulers.
Hadoop 2 vs. Hadoop 1, 24
Hadoop clusters, 36
limits, 661–663
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managing cluster workloads, 408
overview, 660–661
YARN memory. See Allocating YARN 

memory.
Resource management

Hadoop ecosphere, 15
YARN, 50–56

Resource schedulers
default, 408
list of, 409.  See also specific schedulers.

Resource usage, monitoring, 574–575
ResourceManager

in Hadoop clusters, 36
high availability. See HA (high 

availability), ResourceManager.
large cluster guidelines, 101
rack awareness, 209
Restart feature, 543
YARN, 49

ResourceManager, starting, 88–89
ResourceManager crashes, troubleshooting, 

738
ResourceManager log file, 519–520
REST (Representational State Transfer) API. 

See WebHDFS.
Restart feature, 543
Restoring deleted files, from the trash 

directory, 278
resume command, 472
Resuming a suspended job, 472
Retention duration for application logs, 

setting, 592
Retrying jobs after a failure, 738–739
rm command, 249–250
Role-based authorization. See Authorization, 

Sentry.
Roles, Sentry authorization, 514, 518–519
Rotating log files, 598
RPC metrics, 577
rpm, 63
RRDtool, 580
Rumen, benchmarking clusters, 643–644
Runnable processes, monitoring, 571
Running

Oozie workf low jobs, 461–464
Pig jobs through HTTP, 472
processes, monitoring, 572

Running jobs
displaying, 682
monitoring, 604–606

RUR (Replica Under Recovery) replica 
state, 216

RWR (Replicas Waiting to be Recovered) 
replica state, 216

S
S3 (Amazon Simple Storage Service), 165
S3 (s3a) file system, 244
S3DistCp, 307
Safe mode. See NameNode operations, safe 

mode.
Safeguarding data. See Snapshots; Trash 

directory.
safemode wait command, 330–331
Sample transformation, 178
sar utility, 574–576
SASL (Simple Authentication and Security 

Layer), 477, 501
Scala language

benefits of, 21, 170–171
building Spark applications, 186
default persistence level, 721
examples, 157
running Spark applications on Mesos, 189
in the Spark shell, 182–183

Scala objects, in RDD files, 170
Scalability

distributed computing requirements, 33
issues with traditional database systems, 9

Scale up architecture vs. scale out, 8
Scaling trace runtime, benchmarking clusters, 

643–644
Scheduler, YARN, 51
Schedulers. See Resource schedulers.
Scheduling jobs

administration, 29–30
Hadoop ecosphere, 15

Scheduling policies, configuring, 431
scp, 63
Scripting, in Pig Latin. See Pig.
Scripts, for starting and stopping a cluster, 

116–117
Secondary NameNodes

checkpointing, 324, 328–329
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Secondary NameNodes (continued)
HA (high availability), 46–47
in Hadoop clusters, 36, 88
in HDFS, 46–47
restarting NameNodes, 46
starting, 87–88

secondaryGroupExistingQueue rule, 430
Securing data, administration, 30–31
Security

default, 30
determining access to cluster data. See 

Authorization.
Fair Scheduler, 432
Knox, 524–525
overview, 478–480
Ranger, 525
roles in a cluster, 479–480
tracking cluster activity. See Auditing.
verifying user identities. See Authentication.

Security namespace, 509–510
SecurityAuth-hdfs.audit log file, 519
security.job.client.protocol.acl property, 511
security.job.task.protocol.acl property, 511
select() operation, 200
SELinux, disabling, 66
Sending, files, 63
Sensor data, definition, 6
Sentiment data, definition, 6
Sentry policy file, 514
Sentry service. See also Authentication.

description, 30, 514
role-based authorization. See 

Authorization, Sentry.
sentry.metastore.service.users property, 516
SequenceFiles, 679

description, 299–300
HDFS, 42
small files problem, 299–300
structured format, 290

SerDe (serialization deserialization), 295
Server, Oozie architecture

description, 439–440
installing, 442–444
starting/stopping, 444–445

Server BIOS settings, checking, 65
Server log data, 6. See also Logs.

Service level agreements (SLAs)
event records, getting, 472
Oozie, 474–475

Service level authorization. See 
Authorization, service level.

Service principal, Kerberos realms, 483
Service principal names (SPNs). See SPNs 

(service principal names).
Service tickets, 483. See also TGTs 

(Ticket Granting Tickets).
Services, starting/shutting down, 87–90
set default_parallel option, 637
setBalancerBandwidth option, 273–274
setQuota command, 264, 346
setSpaceQuota command, 265, 346
setStoragePolicy command, 239
Shell actions, Oozie action nodes, 453
Shell commands, types of, 245
Shell limits, setting, 67–68
shell method, 340–341
Short-circuit local reads, 231–232, 563–564
show() operation, 200
Shuff le boundaries, 693
Shuff le phase, tuning reduce tasks, 630–632
Shuff le process, optimizing MapReduce, 

632–634
Shuff ling data, 693
Shutting down. See Starting up and shutting 

down.
Simple Authentication and Security Layer 

(SASL), 477, 501
Simple security mode, 505–506
Simplicity, Spark, 152
Sink processors, 390
Sinks, 389–390, 395, 578–579
Site-specific configuration, configuring 

Hadoop clusters, 74
Skewed joins, 638
skipTrash option, 250, 280
sla command, 472
SLAs (service level agreements)

event records, getting, 472
Oozie, 474–475

Small files
consolidating batch files, 307
managing, 304–306
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performance impact, 307
SequenceFile key/pairs, 307

Small files problem
federated NameNode architecture, 304
MapFiles, 300.  See also SequenceFiles.
merging files, 303–304, 306–307
overcoming, 303–304
overview, 303–304
SequenceFiles, 299–300.  See also MapFiles.

Snappy format, 290, 291
snapshotDiff command, 282–283
Snapshots. See also fsimage file.

as backups, 284
copying files from, 283
creating/deleting, 281–282
enabling/disabling, 281
listing, 282
overview, 280–281
recovering deleted files, 283–284
renaming directories, 283
snapshottable directories, removing, 283
viewing differences between, 282–283

soft limit settings, 67–68
Solr, alternative to MapReduce, 25
Sort performance, tuning reduce tasks, 632
Sort process, optimizing MapReduce, 633
sortBy transformation, 178
Sorting, RDDs, 178
Sources, 389–390, 395, 578–579
Space, storage. See HDFS storage.
Space quotas. See HDFS storage, space quotas.
Spark

accessing text files, 164–165
alternative to MapReduce, 25
cluster mode, 158–159
clusters for, 158–159.  See also specific clusters.
data access, 164–166
data compression, 295
general framework, 152
graphs, 155
and Hadoop, 153
installing. See Installing Spark.
loading data from a relational database, 166
loading data from HDFS, 164–165
local mode, 158
machine learning algorithms, 155
MapReduce drawbacks, 149

on Mesos clusters, 155, 158, 161–162
overview, 147–149
run modes, 158–159
standalone clusters, 158
streaming data, 155
uses for, 152

Spark API, entry point to, 183
Spark applications. See also RDD (resilient 

distributed dataset).
architecture, 179–181
building, 186
client mode, 189, 190
cluster managers, 180
cluster mode, 189, 190–191
components of, 180–181
configuration properties, 192–193
definition, 180
driver program, 180
executing, 187–189
executors, 181
JDBC server, 191–192
job, definition, 180
jobs, description, 181
local file storage, specifying, 193
memory allocation, specifying, 193
on Mesos, 189
ODBC server, 191–192
running on Mesos, 189
running with spark-submit script, 193–194
shared variables, 173
Spark Shell, 181–185
spark.executor.memory property, 193
sparklocal.dir property, 193
spark-submit script, 187–189
stage, definition, 180
stages, description, 181
streaming, tuning. See Tuning Spark 

streaming applications.
task, definition, 180
tasks, description, 181
worker processes, 180
on YARN, 189

Spark applications, configuring
configuration properties, 192–193
local file storage, specifying, 193
memory allocation, specifying, 193
spark.executor.memory property, 193
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Spark applications, configuring (continued)
sparklocal.dir property, 193
with spark-submit script, 193–194

Spark applications, interactive
execution, overview, 185
overview, 181
Spark Shell, 181–185

Spark applications, monitoring with web UIs
cache status, displaying, 684
completed jobs, displaying, 684, 686
configuration parameters, displaying, 682
DAG page, 684
debugging, 686
default port, 682
Environment tab, 682
garbage collection, 684, 685
getting logs, 686
JAR files used, displaying, 682
job stages, displaying, 682, 684
Jobs tab, 682, 683
memory usage, 684, 685
Metrics REST API, 684
query plans, 686
running jobs, displaying, 682
Spark history server, 684, 686
Stages tab, 682, 684
Storage tab, 684
task durations, 684, 685
Task Metrics tab, 684, 685
tracking jobs from the command line, 686
troubleshooting performance, 682–684
viewing status of, 194

Spark applications, running
client mode, 186–187
cluster mode, 186–187
in the standalone Spark cluster, 186–187

Spark benefits
accessibility, 151–152
advanced execution engine, 150–151
compactness, 152
ease of use, 151–152
in-memory computation, 151
simplicity, 152
speed, 149–151

Spark cluster managers
Mesos, 161–162
standalone cluster, 159–161

Spark Core, 154

Spark execution model
DAG (directed acyclic graph), 693
execution plan, 693
jobs, 692, 693
optimizing, 692–694
pipelining, 693
RDD (resilient distributed dataset), 693
shuff le boundaries, 693
shuff ling data, 693
Spark applications, 692
stages, 693
tasks, 693–694

Spark executors, configuring resource 
allocation

broadcast variables, 672
dynamic allocation, 667
memory usage, 671–672
number of executors, 667
overview, 666–667
resources for the executors, 667–669
summary of, 669
tasks and executors, 669, 672–673
for workload types, 674

Spark history server, 684, 686
Spark jobs, killing, 740
Spark jobs, troubleshooting

fault tolerance, 740
killing Spark jobs, 740
maximum attempts, specifying, 740
maximum failures per job, specifying, 740
maximum launch attempts, specifying, 740
task failures, 739

Spark JVM garbage collection, 
troubleshooting, 734

Spark micro-batching, 196
Spark on YARN, cluster managers

compatibility, 158
overview, 162–163
setting up Spark, 163
Spark/YARN interaction, 163
standalone scheduler, 155
YARN vs. standalone cluster manager, 163

Spark on YARN, configuring resource 
allocation

cluster mode vs. client mode, 674–676
CPU, 660
for drivers, duties, 663–664
for drivers, in client mode, 664–665
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for drivers, in cluster mode, 665–666
dynamic allocation, enabling, 677–678
dynamic allocation vs. static, 676–678
for executors. See Spark executors, 

configuring resource allocation.
memory usage, 660, 670–672
property precedence, 662
resource allocation limits, 661–663
resource allocation overview, 660–661
setting configuration properties, 662–663
setting local directories, 681
Spark-related network parameters, 676
yarn-client mode, 662
yarn-cluster mode, 662

Spark programming
accumulators, 172
anonymous functions, 171
broadcast variables, 172
chaining transformations, 172
Java language, 170
languages, 170–171. See also specific 

languages.
lazy execution model, 172
passing functions as parameters, 171
Python language, 170
restricted shared variables, 172
Scala language, 170
shared variables, 172

Spark programming, RDDs
actions, 170
creating from existing RDDs, 170
definition, 170
lineage, 173

Spark Shell
overview, 182–183
running programs locally, 183–184
running spark-shell on a cluster, 184–185
vs. Spark applications, 181–182

Spark SQL
connecting to Hive, 199
HiveContext, 198–199
initializing, 199
loading data, 199–200
overview, 198–199
querying data, 200
in the Spark stack, 154
SQLContext, 198–199

Spark SQL, DataFrames
creating, 198, 200–201
creating with RDDs, 200–201
description, 198
displaying contents, 200
filter() operation, 200
filtering rows, 200
groupBy operation, 200
grouping data, 200
operations on, 200
select() operation, 200
selecting fields or functions, 200
show() operation, 200

Spark SQL query optimizer
code generation, 713–714
data locality, 715–716
logical plan, 712–713
optimizer steps, 712–714
overview, 712
physical plan, 713
speculative execution, 714
viewing Spark properties, 713–714

Spark Stack
components, 154–155
GraphX, 155
MLib, 155
overview, 153–154
Spark Core, 154
Spark SQL, 154
Spark Streaming, 155
Standalone Scheduler, 155

Spark standalone cluster manager, 163
Spark streaming, 195–197

description, 155
example, 197–198
functional description, 195–196
micro-batching, 196
overview, 194–195
streaming sources, 196
windowed computations, 196

spark.akka.framesize property, 676
spark.akka.threads property, 676
spark.cleaner.tll property, 700
SparkConf, 193, 661–662
SparkContext

entry point to the Spark API, 183
naming conventions, 186
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SparkContext (continued)
running Spark applications, 185–186
in Spark standalone clusters, 159

SparkContext objects
creating, 182
in Spark cluster execution, 185

SparkContext.newAPIHadoopFile method, 165
SparkContext.wholeTextFiles format, 165
spark.default.parallelism configuration 

property, 706
spark.default.parallelism property, 709
spark-defaults.conf file, 661
spark.driver.cores property, 665
spark.driver.maxResultSize property, 675
spark.driver.memory property, 665
spark.dynamicAllocation.enabled property, 

667, 677
spark.dynamicAllocation.

executorIdleTimeout property, 677
spark.dynamicAllocation.

schedulerbacklogTimeout property, 677
spark.dynamicAllocation.

sustainedSchedulerBacklogTimeout 
property, 677

spark.executor.cores parameter, 667
spark.executor.cores property, 661
spark.executor.instances property, 667
spark.executor.memory parameter, 667
spark.locality.wait property, 715
spark.locality.wait.node property, 715
spark.memory.fraction property, 670
spark.memory.storageFraction property, 670
spark.reducer.maxSizeInFlight property, 697
Spark-related network parameters, 676
spark-shell command, 661
spark.shuff le.compress property, 697
spark.shuff le.file.buffer property, 697
spark.shuff le.spill.compress property, 697
spark.speculation.multiplier property, 714
spark-submit command, 661
spark-submit script

cluster URL, specifying, 188
description, 187
example, 187
help command, 187–188
master f lag, 188
running Spark applications in local mode, 188

spark.yarn.am.cores property, 664
spark.yarn.am.memory property, 664
Special principal, Kerberos realms, 485
specified rule, 430
Speculative execution, 621–624, 714
Speed, Spark, 149–151
Spill phase, tuning map tasks, 626, 628–630
Spill process, optimizing MapReduce, 633
SPILLED_RECORDS counter, 650
split-by id parameter, 376
Splittability, file formats, 297
Splitting data along column lines, 376
Splitting queries into chunks, 376
SPNs (service principal names)

defining, 503–504
deleting, 493
Kerberos realms, 483
mapping, 495–497
setting up, 492–493
translating to operating system names, 

495–496
SQL query optimizer

optimizing, 712–716
Spark. See Spark SQL query optimizer.

SQLContext, Spark SQL, 198–199
Sqoop. See also Sqoop 2.

architecture, 366–367
connectors, 367
deploying, 367
description, 17, 356
drivers, 367
help feature, 368

Sqoop, exporting data
functional description, 383–385
from Hive to a database, 386
number of mappers, specifying, 382, 383
overview, 382–383
simultaneous update or insertion, 385–386
stored procedures, 386

Sqoop, loading data from relational databases 
to HDFS

into Avro files, 373
in binary format, 373
combining new datasets with old, 379
compressing table data, 373–374
creating Sqoop jobs, 377
free form import, 375–376
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getting data from all tables, 376–377
import process, overview, 368–371
incremental imports, 378–379
input parsing options, 373
input/output delimiters, 372–373
job parallelism, 377–378
listing relational databases, 368
listing tables in a database, 368
metastore, sharing, 372
options file, 371
passwords, specifying, 372
selecting a target directory, 374, 376
selective import, 374–376
into SequenceFiles, 373
specifying an access mode, 374
splitting data along column lines, 376
splitting queries into chunks, 376

Sqoop, loading data from relational databases 
to Hive

overview, 379–381
partitioned Hive tables, 381

Sqoop 2, 387–388. See also Sqoop.
Sqoop jobs, creating, 377
SSD storage type, 237
SSH

passwordless SSH, configuring, 105
setting up on pseudo-distributed Hadoop 

clusters, 68–69
sshfence method, 340–341
Stage boundaries, 699
Stages

definition, 180
description, 181
Spark execution model, 693

Stages tab, 682, 684
Staging directory, specifying, 113
staging-table parameter, 382
Standalone cluster manager

architecture, 159–160
driver program, 159
executor, 159
master nodes, configuring, 161
master processes, starting/stopping, 161
setting up, 159
tasks, 159
worker nodes, configuring, 161
worker processes, starting/stopping, 161
vs. YARN, 163

Standalone clusters, Spark, 158
Standalone installation, 61–62
Standalone Scheduler

Spark cluster manager, 155
Spark Stack, 155

Standalone Spark cluster, running Spark 
applications, 186–187

Standby NameNode
checkpointing, 325, 327–328
metadata file location, specifying, 85
query errors, 346

Standby NameNode service, in Hadoop 
clusters, 36, 88

start control nodes
configuring, 456
Oozie workf lows, 438, 446–447, 448, 456

start-balancer.sh command, 268–271
Starting up and shutting down

fully distributed clusters, 114–117
Hadoop services, 90
shutdown/startup scripts, 546

Statistical analysis. See Data science.
status option, 532
stderr logs, 583–584
stdout logs, 583–584
Storage

architecture, archival storage, 234–235
fully distributed clusters, single rack to 

multiple racks, 96–99
Storage levels

DISK_ONLY, 719
MEMORY_AND_DISK, 719
MEMORY_AND_DISK_SER, 719
MEMORY_ONLY, 719
MEMORY_ONLY_SER, 719
setting, 720–721, 721–722

Storage policies, cold data, 237
Storage preferences for files, archival storage, 

235
Storage tab, 684
Storage types, archival storage, 236–239
Storing data. See HDFS storage.
Storm

alternative to MapReduce, 25
description, 17
integrating with Kafka, 404–406

Streaming access to data, HDFS, 38
Streaming data. See Spark streaming.



ptg18444370

794 Index

StreamingContext, 195–197
Structured data

handling. See Spark SQL.
traditional database systems, 8

Subqueues, Capacity Scheduler
configuring, 414
creating, 413–414
diagram, 418
setting up, 415–416

sudo command, 259
Super user group, specifying, 108
Super users, designating, 259
supported_enctypes parameter, 489
SUSE, package manager for, 63
suspend command, 472
Suspending running jobs, 472–473
Swap, disabling, 66
syslog logs, 583–584
System namespace, 509–510

T
T option, 310
Table data, compressing, 373–374
Tables in a database, listing, 368
Tachyon, 722
tail command, 360
target-dir parameter, 376
Task durations, monitoring, 684, 685
Task failures, troubleshooting, 738–739
Task IDs, troubleshooting, 736
Task Metrics tab, 684, 685
Task progress, reporting, 511
Tasks

cluster computing, 13
definition, 180
description, 181
standalone cluster manager, 159
YARN, 49

Tasks, in Spark applications
optimizing, 703–710
overview, 703–704
Spark execution model, 693–694
too few, 706

Temporary data, storage policies, 237
TEMPORARY replica state, 216
TeraGen, 641–642
TeraSort

benchmarking clusters, 640–643

generating test data, 641–642
overview, 640–641
sorting test data, 642
TeraGen, 641–642
TeraSort, 642
TeraValidate, 642
using benchmarks, 642
utility suite, 641
validating test output, 642

TeraValidate, 642
test command, 263, 357
TestDFSIO, testing I/O performance, 

638–640
Testing. See also Benchmarking clusters.

disk speed, 65
for files, 357
HA (high availability), NameNode setup, 345
I/O performance, benchmarking clusters, 

638–640
Text file type, 290
Text files

accessing with Spark, 164–165
creating RDD files from, 175
description, 298

Tez, description, 17
TGS (Ticket Granting Service)

definition, 480
maximum life, specifying, 490
maximum renewal time, 490

TGTs (Ticket Granting Tickets)
clearing a ticket cache, 503
description, 480
“failed to find any kerberos tgt” message, 

502
listing a user’s ticket cache, 503
retrieving, 502
service tickets, 483

THP compaction, turning off, 68
Thrashing, monitoring, 571
Thrift protocol, 192
Thrift Server, 192
Ticket cache

clearing a, 503
listing, 503

Ticket Granting Service (TGS). See TGS 
(Ticket Granting Service).

Ticket Granting Tickets (TGTs). See TGTs 
(Ticket Granting Tickets).
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Tickets
definition, 483
granting tickets, 502
viewing, 502

Time-based scheduling, 465–467, 469
Tokens, 501
top command, 530, 574–575
Topics, Kafka, 400, 403
topology.py script, 210
toSnapshot parameter, 282–283
TOTAL_LAUNCHED_MAPS counter, 649
TOTAL_LAUNCHED_REDUCES 

counter, 649
Trace Builder, benchmarking clusters, 643–644
trace option, 645
Transformations. See RDD (resilient 

distributed dataset), transformations.
transitionToActive command, 349, 535
transitionToStandby command, 349, 535, 545
Trash directory. See also lost+found 

directory.
bypassing, 280
checkpointing interval, setting, 278–279
configuring, 278–279
data retention interval, setting, 278–279
description, 250, 278
emptying, 250, 279
enabling, 278
moveToTrash() method, 278
permanently deleting files, 250, 278–279
preventing accidental data deletion, 

278–280
restoring deleted files, 278
selectively deleting files, 279
viewing contents of, 250

Trash retention interval, setting, 81
Troubleshooting

Oozie, 473–474
performance, 682–684
YARN jobs that are stuck, 731–732

Troubleshooting, failure types
ApplicationMaster crashes, 738
daemon failures, 737
job failures, 738–739
NameNode crashes, 737–738
NodeManager failures, 738
ResourceManager crashes, 738
retrying jobs after a failure, 738–739

starting failures for Hadoop daemons, 
737–738

task failures, 738–739
work preserving recovery, 739

Troubleshooting JVM garbage collection
optimizing, 733–734
overview, 732–733
Spark JVM garbage collection, 734

Troubleshooting JVM memory allocation
analyzing memory usage, 734
ApplicationMaster memory issues, 735–736
heap dumps, 734
job IDs, 736
out of memory errors, 734–735
task IDs, 736

Troubleshooting space issues
disk volume failure toleration, 729–730
HDFS issues, 727
hot swapping a disk drive, 729
Linux file system 1 full, 726
local directories out of free space, 727–729
log directories out of free space, 727–729
overview, 725–726
replication, 730
setting dfs.datanode.du.reserved parameter, 

730
Troubleshooting Spark jobs. See also 

Debugging Spark applications.
fault tolerance, 740
killing Spark jobs, 740
maximum attempts, specifying, 740
maximum failures per job, specifying, 740
task failures, 739

Trusted relationships, Kerberos realms, 484–485
Tuning. See also Optimization; Performance.

administrator duties, 20
GC (garbage collection), 686–688

Tuning map tasks. See also Optimizing 
MapReduce.

compression, 628
data locality, 626–627
input split size, 627–628
input/output, 627–630
map phase, 626, 628–630
merge phase, 626
overview, 625–626
read phase, 626
spill phase, 626, 628–630
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Tuning reduce tasks. See also Optimizing 
MapReduce.

merge phase, 630–632
reduce phase, 630–632
shuff le phase, 630–632
sort performance, 632
write phase, 630–632

Tuning Spark streaming applications. See also 
Optimizing Spark applications.

garbage collection, 689
memory, 689
overview, 688
parallelizing data ingestion, 688
parallelizing data processing, 689
reducing batch processing time, 688–689
setting the batch interval, 689

twittersource, 394
256-byte encryption, enabling/disabling, 490
Two-way trust, Kerberos realms, 485–486

U
Uberized jobs, 646
Ubuntu Linux, 63, 743
Ulimits, setting, 67–68
UNDER_CONSTRUCTION block state, 

218–219
UNDER_RECOVERY block state, 218–219
Under-replicated files, 289
Unrecoverable files, 288–289
Unstructured data, definition, 6
update option, 364–365
update-key parameter, 382, 385–386
update-mode parameter, 382, 386
Upgrades. See Installation and upgrades.
UPNs (user principal names)

Kerberos realms, 483, 490
provisioning on Kerberized clusters, 

503–504
setting up, 491

User accounts
creating, 554–556
functional, 727

User capabilities, limiting, 419–420
User identity, verifying. See Authentication.
User impersonation, 558
User metrics, 577
User namespace, 509–510

User principal, Kerberos realms, 483
user rule, 430
User specific space quotas, 264
User whitelist, 511
Users

enabling new users, 257–258
Sentry authorization, 513
super users, designating, 259
user identities, 258–259
using administrative privileges, 259

users option, 645
Utilities

automated deployment tools, 63
copying data between hosts, 63
Crowbar, 63
curl, 63
executing remote commands, 63
FTP protocol, 63
HTTP protocol, 63
installing pseudo-distributed Hadoop 

clusters, 63
KickStart, 63
package manager for Red Hat, SUSE and 

Fedora Linux, 63
pdsh, 63
Red Hat Enterprise Linux RPM software 

packages, 63
rpm, 63
scp, 63
sending and getting files, 63
wget, 63
yum, 63

V
validate command, 472
Validating

benchmark test output, 642
a workf low.xml file, 472
XML schemas, 472

Vectorization, Hive jobs, 636–637
View (viewfs) file system, 244
Viewing, application logs, 584–585, 596–597
VirtualBox, installing, 744
Virtualization, fully distributed clusters, 97
Visualization, data science component, 11
vmstat utility, 572–573
VMware, Hadoop distribution, 60
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W
w (write) permission, 255–256, 506
WANdisco, Hadoop distribution, 60
Warm data

archival storage, 232, 233–234
storage policies, 237

Web interfaces, fully distributed clusters, 
119–121

Web UIs
as monitoring tools. See Monitoring with 

web UIs.
setting, 114

WebHCat Server, 479–480
WebHDFS, 244
WebHDFS API

adding headers, 310–311
checking directory quotas, 313
creating directories, 312
creating files, 312
DELETE operation, 308, 312–313
following redirects, 310–311
GET operation, 308
vs. HttpFS gateway, 315
indicating the HTTP method, 310–311
overview, 308
point to an uploaded file, 310–311
POST operation, 308
PUT operation, 308, 312
reading files, 312
removing directories, 312–313
setting up, 309
using, 308–309

WebHDFS API, HDFS commands
curl tool, 310–311
H option, 310
L option, 310, 312
overview, 309–310
T option, 310
X option, 310

wget, 63
Whitelists, 511
Wide dependencies, 698–700
Wide transformations, 698
WordCount program

description, 130
running, 136–137
sample program, 135–136

Work preserving recovery, 739
Worker nodes

in Hadoop clusters, 36
HDFS, architecture, 38–39

Worker nodes, configuring, 161
Worker processes, 161, 180
Workf lows, managing, 561–562
workf low.xml file, validating a, 472
Wrangling data. See Data wrangling.
Write (w) permission, 255–256, 506
Write phase, tuning reduce tasks, 630–632
Write tests, benchmarking clusters, 639
Writing, to an HDFS file, 42–43

X
X option, 310
x (execute) permission, 506

Y
YARN (Yet Another Resource Negotiator)

ApplicationMaster, 52–56
ApplicationsManager, 51
architecture, 49–50
clients, 49
component interactions, 54–56
configuring, 559–560
configuring in pseudo-distributed clusters, 

80, 83–86.  See also Modifying 
fully distributed clusters, YARN 
configuration.

containers, 50
daemons, setting up, 73–74
DataNodes, 49
Hadoop 2 vs. Hadoop 1, 21–22
Hadoop ecosphere, 15
job history metadata, 54
JobHistoryServer, starting, 88–89
jobs, 49
mapper tasks, 49
metrics, 577
in a multihomed network, 124, 562–563
NodeManager, 49, 52
NodeManager, starting, 88–89
operations, auditing, 519
overview, 48
reduce tasks, 49
resource management, 50–56



ptg18444370

798 Index

YARN (continued)
ResourceManager, 49
ResourceManager, starting, 88–89
Scheduler, 51
services, starting, 88–89
setting up on pseudo-distributed Hadoop 

clusters, 70–71
Spark applications, 189
vs. standalone cluster manager, 163
tasks, 49
web interface, fully distributed clusters, 121

YARN commands for managing applications
administrative commands, 534–535
application command, 531
applicationattempt command, 532
checkHealth command, 535
displaying cluster usage, 530
failover command, 535
filtering lists of applications, 531–532
getServiceState command, 535
help for, 530
job queue status, checking, 533
kill command, 532–533
killing, 532–533
list command, 531–532
logs, reviewing, 533–534
logs command, 533–534
node command, 533
node status, checking, 533
nodes, listing, 533
overview, 530–531
queue command, 533
refreshNodes command, 535
status, checking, 532
status option, 532
top, 530
transitionToActive command, 535
transitionToStandby command, 535
viewing job information, 531

yarn user, setting up, 70–71
yarn.application.classpath parameter, 113
yarn.app.mapreduce.am.command-opts 

parameter, 618
yarn.app.mapreduce.am.resource.mb 

parameter, 618
yarn.app.mapreduce.am.staging_dir 

parameter, 113–114

yarn-client mode, 662
yarn-cluster mode, 662
YARN_CONF_DIR environment variable, 

163
yarn-env.sh file, 79
yarn.exclude file, 536
yarn.include file, 536
yarn.log.aggregation-enable parameter, 

111–112
yarn.log-aggregation.retain-seconds 

parameter, 595
YARN_LOG_DIR parameter, 597
yarn.log.server.url parameter, 595
yarn.nodemanager.aux-services parameter, 109
yarn.nodemanager.aux-services property, 83
yarn.nodemanager.aux-services.mapreduce_

shuff le-class parameter, 109
yarn.nodemanager.aux-services.mapreduce.

shuff le.class property, 84
yarn.nodemanager.container parameter, 498
yarn.nodemanager.disk-health-checker.

max-disk-utilization-perdisk-percentage 
parameter, 727–729

yarn.nodemanager.disk-health-checker.min-
healthydisks parameter, 727–729

yarn.nodemanager.keytab parameter, 498
yarn.nodemanager.linux-container-executor.

group parameter, 498
yarn.nodemanager.local-dirs parameter, 112, 

498, 681
yarn.nodemanager.local-dirs property, 588
yarn.nodemanager.log.deletion-threads-count 

parameter, 594
yarn.nodemanager.log-dirs parameter, 112, 498
yarn.nodemanager.log.retain-seconds 

parameter, 594
yarn.nodemanager.principal parameter, 498
yarn.nodemanager.remote-app-log-dir 

parameter, 593
yarn.nodemanager.resource.cpu-vcores 

parameter, 110, 620–621
yarn.nodemanager.resource.cpu-vcores 

property, 662
yarn.nodemanager.resource.memory-mb 

parameter, 109–110, 614, 661
yarn.nodemanager.vmem-pmem-ratio 

parameter, 617
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yarn.resourcemanager.keytab parameter, 498
yarn.resourcemanager.nodes.exclude-path 

parameter, 536
yarn.resourcemanager.nodes.include-path 

parameter, 536
yarn.resourcemanager.principal parameter, 

498
yarn.scheduler.maximum-allocation-vcores 

parameter, 621 
yarn.scheduler.minimum-allocation-mb 

property, 662
yarn.scheduler.minimum-allocation-vcores 

parameter, 621 
yarn-site.xml file

allocating memory for containers, 614
configuring pseudo-distributed Hadoop 

clusters, 74
configuring ratio of physical memory to 

virtual, 617
configuring the Fair Scheduler, 428–430
configuring virtual cores, 620–621
configuring YARN, 83–86
decommissioning a NodeManager service, 

536
mapreduce.jobhistory.bind-host parameter, 

124
mapreduce.map.cpu.vcores, 621
mapreduce.reduce.cpu.vcores, 621
memory related parameters, 109
YARN in a multihomed network, 124

yarn .scheduler.maximum-allocation-
vcores parameter, 621

yarn .scheduler.minimum-allocation-
vcores parameter, 621

yarn.nodemanager.resource.cpu-vcores 
parameter, 620–621

yarn.nodemanager.resource.memory-mb 
parameter, 614

yarn.nodemanager.vmem-pmem-ratio 
parameter, 617

yarn-site.xml file, configuration parameters, 
498

yarn.xml file, 109
Yet Another Resource Negotiator (YARN). 

See YARN (Yet Another Resource 
Negotiator).

Young Generation garbage collection, 687
Young generations, JVM garbage collection, 

732–733
yum, 63

Z
ZKFC (ZooKeeper Failover controller), 

347–348
ZooKeeper

configuring, 560
description, 17, 47
as a high availability coordinator, 335
large cluster guidelines, 102
setting up for Kafka, 402
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