Machine Learning

It is now time to begin with the Machine Learning Sections of the course!

This introduction section will discuss a general introduction to machine learning and how Spark's MLlib library works for Machine Learning.

Most Machine Learning Sections have:

- O Suggested Reading Assignment
- O Basic Theory Lecture
- O Documentation Walkthrough
- O More realistic custom code example
- O Consulting Project
- O Consulting Project Solutions

Because our different particiapnts have different backgrounds in math, we will keep the mathematics behind the machine learning algorithms light.

- If you are interested in reading more about the math behind the algorithms we discuss, we will be using Introduction to Statistical Learning by Gareth James as a companion book.
- It's freely available online.
- I've also include that book as extra resources.

Companion Book

- Students who want the mathematical theory should do the suggested reading assignment that will appear for each machine learning section.
- Otherwise, feel free to watch the Intro Theory Lectures for the fundamentals.

Companion Book

First Suggested Reading Assignment:

Read Chapters 1 & 2 to gain a background understanding before continuing to the Machine Learning Lectures.

What is Data Science?

Apply Scientific Methods to extract Knowledge from Data.

Data

Scientific Methods

Statistics

Designed for inference about the relationships between variables

Designed to make the most accurate predictions possible

Designed to mimic human behavior using ML and Deep Learning

What is Machine Learning

Machine (computer) tries to find the pattern (self-learn) from the data without being explicitly programmed.

When we need to apply Machine Learning

Analysis 🚊 Analytics

When we need to apply Machine Learning

When we need to apply Machine Learning

What is it used for?

- Fraud detection.
- Web search results.
- Real-time ads on web pages
- Credit scoring and next-best offers.
- Prediction of equipment failures.
- New pricing models.
- Network intrusion detection.

- Recommendation Engines
- Customer Segmentation
- Text Sentiment Analysis
- Predicting Customer Churn
- Pattern and image recognition.
- Email spam filtering.
- Financial Modeling

- Spark's MLlib is mainly designed for Supervised and Unsupervised Learning tasks, with most of its algorithms falling under those two categories.
- Let's discuss them in more detail and describe how they are different!

- Supervised learning algorithms are trained using labeled examples, such as an input where the desired output is known.
- For example, a piece of equipment could have data points labeled either "F" (failed) or "R" (runs).

Supervised learning, algorithms are trained using marked data, where the input and the output are known.

	Class	Mit	NormNucl	BlandChrom	BareNuc	SingEpiSize	MargAdh	UnifShape	UnifSize	Clump	ID
	benign	1	1	3	1	2	1	1	1	5	1000025
	benign	1	2	3	10	7	5	4	4	5	1002945
	malignant	1	1	3	2	2	1	1	1	3	1015425
1.121	benign	1	7	3	4	3	1	8	8	6	1016277
label	benign	1	1	3	1	2	3	1	1	4	1017023
	malignant	1	7		10	7	8	10	10	8	1017122
	benign	1	1	3	10	2	1	1	1	1	1018099
	benign	1	1	3	1	2	н	2	1	2	1018561
	benign	5	1	1	1	2	1	1	1	2	1033078
	benign	1	1	2	1	2	1	1	2	4	1033078

Set of inputs ~ [Features] / [Independent Variables] / [X]

Outputs ~ [Labels] / [Dependent Variables] / [Y]

- The learning algorithm receives a set of inputs along with the corresponding correct outputs, and the algorithm learns by comparing its actual output with correct outputs to find errors which widely known as Model Evalution.
- It then modifies the model accordingly.

- Through methods like classification, regression, prediction and gradient boosting, supervised learning uses patterns to predict the values of the label on additional unlabeled data.
- Supervised learning is commonly used in applications where historical data predicts likely future events.

User ID	Gender	Age	Salary	Purchased	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
15624510	Male	19	19000	0	10.69261758	986.882019	54.19337313	195.7150879	3.278597116
15810944	Male	35	20000	1	13.59184184	987.8729248	48.0648859	189.2951202	2.909167767
15668575	Female	26	43000	0	17.70494885	988.1119385	39.11965597	192.9273834	2.973036289
15603246	Female	27	57000	0	20.95430404	987.8500366	30.66273218	202.0752869	2.965289593
15804002	Male	19	76000	1	22.9278274	987.2833862	26.06723423	210.6589203	2.798230886
15728773	Male	27	58000	1	24.04233986	986.2907104	23.46918024	221.1188507	2.627005816
15598044	Female	27	84000	0	24.41475295	985.2338867	22.25082295	233.7911987	2.448749781
15694829	Female	32	150000	1	23.93361956	984.8914795			
15600575	Male	25	33000	1	22.68800023	984.8461304			
15727311	Female	35	65000	0	20.56425726	984.8380737	27.07867944		
15570769	Female	26	80000	1	17.76400389	985.4262085	33.54900114		
15606274	Female	26	52000	0					
15746139	Male	20	86000	1	11.25680746	988.9386597	53.74139903		
15704987	Male	32	18000	0	14.37810685	989.6819458	40.70884681	72.62069702	1.553469896
15628972	Male	18	82000	0	18.45114201	990.2960205	30.85038484	71.70604706	1.005017161
15697686	Male	29	80000	0	22.54895853	989.9562988	22.81738811	44.66042709	0.264133632
15733883		47	25000		24.23155922	988.796875	19.74790765	318.3214111	0.329656571

Figure A: CLASSIFICATION

Figure B: REGRESSION

Unsupervised Learning

- Unsupervised learning is used against data that has no historical labels.
- The system is not told the "right answer." The algorithm must figure out what is being shown.
- The goal is to explore the data and find some structure within.

Types of Machine Learning

	DebtIncomeRatio	Address	Other Debt	Card Debt	Income	Years Employed	Edu	Age	Customer Id
	6.3	NBA001	1.073	0.124	19	6	2	41	1
	12.8	NBA021	8.218	4.582	100	26	1	47	2
	20.9	NBA013	5.802	6.111	57	10	2	33	3
	6.3	NBA009	0.516	0.681	19	4	2	29	4
	7.2	NBA008	8.908	9.308	253	31	1	47	5
unlabeled	10.9	NBA016	7.831	0.998	81	23	1	40	6
	1.6	NBA013	0.454	0.442	56	4	2	38	7
	6.6	NBA009	3.945	0.279	64	0	3	42	8
	15.5	NBA006	2.215	0.575	18	5	1	26	9
~	4	NBA011	3.947	0.653	115	23	3	47	10
	6.1	NBA010	5.083	0.285	88	8	3	44	11
	1.6	NBA003	0.266	0.374	40	9	2	34	12

Unsupervised Learning

- For example, it can find the main attributes that separate customer segments from each other.
- Popular techniques include self-organizing maps, nearest-neighbor mapping, k-means clustering and singular value decomposition.
- One issue is that it can be difficult to evaluate results of an unsupervised model!

Machine Learning Process

Machine Learning with Spark

- Spark has its own MLlib for Machine Learning.
- The future of MLIib utilizes the Spark 2.0 DataFrame syntax.

- One of the main "quirks" of using MLlib is that you need to format your data so that eventually it just has one or two columns:
 - O Features, Labels (Supervised)
 - O Features (Unsupervised)
- This requires a little more data processing work than some other machine learning libraries, but the big upside is that this exact same syntax works with distributed data, which is no small feat for what is going on "under the hood"!

- When working with Python and Spark with MLlib, the documentation examples are always with nicely formatted data.
- However, we'll have our own custom examples that have messier, more realistic data!

- A huge part of learning MLlib is getting comfortable with the documentation!
- Being able to master the skill of finding information (not memorization) is the key to becoming a great Spark and Python developer!

Let's jump to it now!