SPARK STREAMING




Why Spark Streaming?

m “Big data” never stops!
m Analyze data streams in real time, instead of in huge batch jobs daily
m Analyzing streams of web log data to react to user behavior

m Analyze streams of real-time sensor data for “Internet of Things” stuff




Spark Streaming: High Level

! ! @ @ Data Streams

Batches of data
For a given time increment

! ! @ @ Transform & output to other systems




This work can be distributed

m Processing of RDD’s can happen in parallel on different worker nodes




DStreams (Discretized Streams)

m Generates the RDD’s for each time step,
and can produce output at each time

step.

m Can be transformed and acted on in much
the same way as RDD’s

m Or you can access their underlying RDD’s
if you need them.




Common stateless transformations
on DStreams

Map
Flatmap
Fliter

reduceByKey




Stateful data

m You can also maintain a long-lived state on a Dstream
m For example - running totals, broken down by keys

m Another example: aggregating session data in web activity




WINDOWING




Windowed Transformations

m Allow you to compute results across a longer time period than your batch
interval

m Example: top-sellers from the past hour
- You might process data every one second (the batch interval)
- But maintain a window of one hour

m The window “slides” as time goes on, to represent batches within the window
interval




Batch interval vs. slide interval vs.
window interval

m The batch interval is how often data is captured into a Dstream
m The slide interval is how often a windowed transformation is computed

m The window interval is how far back in time the windowed transformation goes




Example

m Each batch contains one second of data (the batch interval)

m We set up a window interval of 3 seconds and a slide interval of 2
seconds

Time >




Windowed transformations: code

m The batch interval is set up with your SparkContext:

ssc = StreamingContext(sc, 1)

m You can use reduceByWindow() or reduceByKeyAndWindow() to aggregate data
across a longer period of time!

hashtagCounts = hashtagKeyValues.reduceByKeyAndWindow(lambda x, y: x
+y, lambda x, y : x -y, 300, 1)




STRUCTURED
STREAMING




What is structured streaming?

m A new, higher-level API for streaming structured data
- Available in Spark 2.0 and 2.1 as an experimental release
- But it’s the future.

m Uses DataSets
- Like a DataFrame, but with more explicit type information
- A DataFrame is really a DataSet[Row]




Imagine a DataFrame that never ends

m New data just keeps getting appended to it

m Your continuous application keeps querying updated data as it comes in

Data stream Unbounded Table

new data in stream

new rows appended
to input table

Data stream as an unbounded Input Table




Advantages of Structured Streaming

m Streaming code looks a lot like the equivalent non-streaming code
m Structured data allows Spark to represent data more efficiently

m SQL-style queries allow for query optimization opportunities - and even better
performance.

m Interoperability with other Spark components based on DataSets
- MLLib is also moving toward DataSets as its primary API.

m DataSets in general is the direction Spark is moving



Once you have a SparkSession, you can
stream data, query it, and write out the
results.

2 lines of code to stream in structured JSON log data,
count up “action” values for each hour, and write the
results to a database.

val inputDF = spark.readStream.json("s3://logs")
inputDF.groupBy($"action”, window($"time", "1 hour")).count()
writeStream.format("jdbc").start("jdbc:mysql//...")




LET’S PLAY




Spark Streaming with Flume

m We’'ll set up Flume to use a spooldir source as before

m But use an Avro sink to connect it to our Spark Streaming job!

- Use a window to aggregate how often each unique URL appears from our
access log.

m Using Avro in this manner is a “push” mechanism to Spark Streaming
- You can also “pull” data by using a custom sink for Spark Streaming

Flume




