
SPARK STREAMING
Processing continuous streams of data in near-

real-time



Why Spark Streaming?

■ “Big data” never stops! 

■ Analyze data streams in real time, instead of in huge batch jobs daily

■ Analyzing streams of web log data to react to user behavior

■ Analyze streams of real-time sensor data for “Internet of Things” stuff



Spark Streaming: High Level

Data Streams

Receivers

RDD

RDD

RDD

Batches of data

For a given time increment

Transform & output to other systems



This work can be distributed

■ Processing of RDD’s can happen in parallel on different worker nodes



DStreams (Discretized Streams)

■ Generates the RDD’s for each time step, 
and can produce output at each time 
step.

■ Can be transformed and acted on in much 
the same way as RDD’s

■ Or you can access their underlying RDD’s 
if you need them.

Receivers

RDD

RDD

RDD

D
S
tre

a
m



Common stateless transformations 
on DStreams

■ Map

■ Flatmap

■ Fliter

■ reduceByKey



Stateful data

■ You can also maintain a long-lived state on a Dstream

■ For example – running totals, broken down by keys

■ Another example: aggregating session data in web activity



WINDOWING



Windowed Transformations

■ Allow you to compute results across a longer time period than your batch 
interval

■ Example: top-sellers from the past hour

– You might process data every one second (the batch interval)

– But maintain a window of one hour

■ The window “slides” as time goes on, to represent batches within the window 
interval



Batch interval vs. slide interval vs. 
window interval

■ The batch interval is how often data is captured into a Dstream

■ The slide interval is how often a windowed transformation is computed

■ The window interval is how far back in time the windowed transformation goes



Example

■ Each batch contains one second of data (the batch interval)

■ We set up a window interval of 3 seconds and a slide interval of 2 
seconds

Time

Batch Batch Batch Batch Batch Batch

Compute 

result

Compute 

result
Compute 

result



Windowed transformations: code

■ The batch interval is set up with your SparkContext:

ssc = StreamingContext(sc, 1)

■ You can use reduceByWindow() or reduceByKeyAndWindow() to aggregate data 
across a longer period of time!

hashtagCounts = hashtagKeyValues.reduceByKeyAndWindow(lambda x, y: x 
+ y, lambda x, y : x - y, 300, 1)



STRUCTURED 
STREAMING



What is structured streaming?

■ A new, higher-level API for streaming structured data

– Available in Spark 2.0 and 2.1 as an experimental release

– But it’s the future.

■ Uses DataSets

– Like a DataFrame, but with more explicit type information

– A DataFrame is really a DataSet[Row]



Imagine a DataFrame that never ends

■ New data just keeps getting appended to it

■ Your continuous application keeps querying updated data as it comes in



Advantages of Structured Streaming

■ Streaming code looks a lot like the equivalent non-streaming code

■ Structured data allows Spark to represent data more efficiently

■ SQL-style queries allow for query optimization opportunities – and even better 
performance.

■ Interoperability with other Spark components based on DataSets

– MLLib is also moving toward DataSets as its primary API.

■ DataSets in general is the direction Spark is moving



Once you have a SparkSession, you can 
stream data, query it, and write out the 
results.

val inputDF = spark.readStream.json("s3://logs")

inputDF.groupBy($"action", window($"time", "1 hour")).count()

.writeStream.format("jdbc").start("jdbc:mysql//...")

2 lines of code to stream in structured JSON log data,

count up “action” values for each hour, and write the 

results to a database.



LET’S PLAY



Spark Streaming with Flume

■ We’ll set up Flume to use a spooldir source as before

■ But use an Avro sink to connect it to our Spark Streaming job!

– Use a window to aggregate how often each unique URL appears from our 
access log.

■ Using Avro in this manner is a “push” mechanism to Spark Streaming

– You can also “pull” data by using a custom sink for Spark Streaming

Logs
Source 

(spooldir)

Channel 

(memory)

Sink 

(Avro)
Console

Flume

Spark 

Streaming


