


Non-relational, scalable database
built on HDFS




Based on Google’s BigTable

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{ Fay jeft sanjay. wilsonh kerr,m3b, tushar. fikes. gruber } @ google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable. both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable. which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable

1 Introduction

Over the last two and a half years we have designed.
implemented. and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and th ds of hines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of

and store up to several hundred terabytes of data.
-« Dimtnhla hlac o datah,

SErve:
T

I—

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model tead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.

Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client APL Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an nminternreted arrav of hvies



CRUD

m Create

m Read

m Update
m Delete

m There is no query language, only CRUD API’s!




HBase architecture

Auto-sharding!




HBase data model

m Fast access to any given ROW

m AROW is referenced by a unique KEY

m Each ROW has some small number of COLUMN FAMILIES

m A COLUMN FAMILY may contain arbitrary COLUMNS

m You can have a very large number of COLUMNS in a COLUMN FAMILY
m Each CELL can have many VERSIONS with given timestamps

m Sparse data is A-OK - missing columns in a row consume no storage.



Example: One row of a web table

Key

Contents column family
Contents:

L -

Anchor column family

Anchor:cnnsi.com Anchor:my.look.ca




Some ways to access HBase

m HBase shell

m Java API
- Wrappers for Python, Scala, etc.

m Spark, Hive, Pig
m REST service
m [hrift service

m Avro service




LET’S PLAY WITH
HBASE




What are we doing?

m Create a HBase table for movie ratings by user
m Then show we can quickly query it for individual users
m Good example of sparse data

Column family: rating

Rating:50 Rating:33 Rating:223




How are we doing it?




1S

Let’s do th



HBASE / PIG
INTEGRATION




Integrating Pig with HBase

m Must create HBase table ahead of time

m Your relation must have a unique key as its first column, followed by
subsequent columns as you want them saved in Hbase

m USING clause allows you to STORE into an HBase table

m Can work at scale - Hbase is transactional on rows




Let’s do this




