
HBASE



Non-relational, scalable database 
built on HDFS



Based on Google’s BigTable



CRUD

■ Create

■ Read

■ Update

■ Delete

■ There is no query language, only CRUD API’s!



HBase architecture

Zookeeper
Zookeeper

HMaster

Zookeeper
HMaster

HMaster

HDFS

Region 

Server

Region 

Server

Region 

Server

Region 

Server
Auto-sharding!



HBase data model

■ Fast access to any given ROW

■ A ROW is referenced by a unique KEY

■ Each ROW has some small number of COLUMN FAMILIES

■ A COLUMN FAMILY may contain arbitrary COLUMNS

■ You can have a very large number of COLUMNS in a COLUMN FAMILY

■ Each CELL can have many VERSIONS with given timestamps

■ Sparse data is A-OK – missing columns in a row consume no storage.



Example: One row of a web table

com.cnn.www <html><head>

CNN…
<html><head>

CNN…
<html><head>

CNN…

“CNN” “CNN.com”

Key Contents: Anchor:cnnsi.com Anchor:my.look.ca

Contents column family Anchor column family



Some ways to access HBase

■ HBase shell

■ Java API

– Wrappers for Python, Scala, etc.

■ Spark, Hive, Pig

■ REST service

■ Thrift service

■ Avro service



LET’S PLAY WITH 
HBASE

Creating a HBase table with Python via REST



What are we doing?

■ Create a HBase table for movie ratings by user

■ Then show we can quickly query it for individual users

■ Good example of sparse data

UserID 1 5 5

Column family: rating

Rating:50 Rating:33 Rating:223



How are we doing it?

HBase

HDFS

REST service

Python client



Let’s do this



HBASE / PIG 
INTEGRATION

Populating HBase at scale



Integrating Pig with HBase

■ Must create HBase table ahead of time

■ Your relation must have a unique key as its first column, followed by 
subsequent columns as you want them saved in Hbase

■ USING clause allows you to STORE into an HBase table

■ Can work at scale – Hbase is transactional on rows



Let’s do this


