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What is Azure Machine Learning?

1/22/2020 « 6 minutes to read « Edit Online

In this article, you learn about Azure Machine Learning, a cloud-based environment you can use to train, deploy,
automate, manage, and track ML models.

Azure Machine Learning can be used for any kind of machine learning, from classical ml to deep learning,
supervised, and unsupervised learning. Whether you prefer to write Python or R code or zero-code/low-code
options such as the designer, you can build, train, and track highly accurate machine learning and deep-learning
models in an Azure Machine Learning Workspace.

Start training on your local machine and then scale out to the cloud.

The service also interoperates with popular open-source tools, such as PyTorch, TensorFlow, and scikit-learn.

TIP

Free trial! If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today. You get credits to spend on Azure services. After they're used up, you can keep the account
and use free Azure services. Your credit card is never charged unless you explicitly change your settings and ask to be
charged.

What is machine learning?

Machine learning is a data science technique that allows computers to use existing data to forecast future
behaviors, outcomes, and trends. By using machine learning, computers learn without being explicitly
programmed.

Forecasts or predictions from machine learning can make apps and devices smarter. For example, when you shop
online, machine learning helps recommend other products you might want based on what you've bought. Or
when your credit card is swiped, machine learning compares the transaction to a database of transactions and
helps detect fraud. And when your robot vacuum cleaner vacuums a room, machine learning helps it decide
whether the job is done.

Machine learning tools to fit each task

Azure Machine Learning provides all the tools developers and data scientists need for their machine learning
workflows, including:

e The Azure Machine Learning designer (preview): drag-n-drop modules to build your experiments and then
deploy pipelines.

e Jupyter notebooks: use our example notebooks or create your own notebooks to leverage our SDK for
Python samples for your machine learning.

e R scripts or notebooks in which you use the SDK for R to write your own code, or use the R modules in the
designer.

e Visual Studio Code extension

® Machine learning CLI
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e Open-source frameworks such as PyTorch, TensorFlow, and scikit-learn and many more

You can even use MLflow to track metrics and deploy models or Kubeflow to build end-to-end workflow pipelines.

Build ML models in Python or R

Start training on your local machine using the Azure Machine Learning Python SDK or R SDK. Then, you can scale
out to the cloud.

With many available compute targets, like Azure Machine Learning Compute and Azure Databricks, and with
advanced hyperparameter tuning services, you can build better models faster by using the power of the cloud.

You can also automate model training and tuning using the SDK.

Build ML models with no-code tools

For code-free or low-code training and deployment, try:
e Azure Machine Learning designer (preview)

Use the designer to prep data, train, test, deploy, manage, and track machine learning models without
writing any code. There is no programming required, you visually connect datasets and modules to
construct your model. Try out the designer tutorial.

Learn more in the Azure Machine Learning designer overview article.
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Learn how to create automated ML experiments in the easy-to-use interface.
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MLOps: Deploy & lifecycle management

When you have the right model, you can easily use it in a web service, on an loT device, or from Power BI. For
more information, see the article on how to deploy and where.

Then you can manage your deployed models by using the Azure Machine Learning SDK for Python, Azure
Machine Learning studio, or the machine learning CLI.

These models can be consumed and return predictions in real time or asynchronously on large quantities of data.

And with advanced machine learning pipelines, you can collaborate on each step from data preparation, model
training and evaluation, through deployment. Pipelines allow you to:

e Automate the end-to-end machine learning process in the cloud
® Reuse components and only rerun steps when needed
e Use different compute resources in each step

® Run batch scoring tasks

If you want to use scripts to automate your machine learning workflow, the machine learning CLI provides

command-line tools that perform common tasks, such as submitting a training run or deploying a model.

To get started using Azure Machine Learning, see Next steps.

Integration with other services

Azure Machine Learning works with other services on the Azure platform, and also integrates with open source
tools such as Git and MLFlow.

e Compute targets such as Azure Kubernetes Service, Azure Container Instances, Azure Databricks,
Azure Data Lake Analytics, and Azure HDInsight. For more information on compute targets, see What are
compute targets?.

e Azure Event Grid. For more information, see Consume Azure Machine Learning events.
e Azure Monitor. For more information, see Monitoring Azure Machine Learning.

e Data stores such as Azure Storage accounts, Azure Data Lake Storage, Azure SQL Database, Azure
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Database for PostgreSQL, and Azure Open Datasets. For more information, see Access data in Azure
storage services and Create datasets with Azure Open Datasets.

e Azure Virtual Networks. For more information, see Secure experimentation and inference in a virtual
network.

e Azure Pipelines. For more information, see Train and deploy machine learning models.

e Git repository logs. For more information, see Git integration.

e MLFlow. For more information, see MLflow to track metrics and deploy models

e Kubeflow. For more information, see build end-to-end workflow pipelines.

Secure communications

Your Azure Storage account, compute targets, and other resources can be used securely inside a virtual network to
train models and perform inference. For more information, see Secure experimentation and inference in a virtual

network.

Basic & Enterprise editions

Azure Machine Learning offers two editions tailored for your machine learning needs:

e Basic (generally available)

e Enterprise (preview)

These editions determine which machine learning tools are available to developers and data scientists from their

workspace.

Basic workspaces allow you to continue using Azure Machine Learning and pay for only the Azure resources
consumed during the machine learning process. Enterprise edition workspaces will be charged only for their Azure
consumption while the edition is in preview. Learn more about what's available in the Azure Machine Learning

edition overview & pricing page.

You assign the edition whenever you create a workspace. And, pre-existing workspaces have been converted to the
Basic edition for you. Basic edition includes all features that were already generally available as of October 2019.

Any experiments in those workspaces that were built using Enterprise edition features will continue to be available
to you in read-only until you upgrade to Enterprise. Learn how to upgrade a Basic workspace to Enterprise edition.

Customers are responsible for costs incurred on compute and other Azure resources during this time.

Next steps

e Create your first experiment with your preferred method:

o Use Python notebooks to train & deploy ML models

o Use R Markdown to train & deploy ML models

o Use automated machine learning to train & deploy ML models
o Use the designer's drag & drop capabilities to train & deploy
o Use the machine learning CLI to train and deploy a model

e Learn about machine learning pipelines to build, optimize, and manage your machine learning scenarios.

e Read the in-depth Azure Machine Learning architecture and concepts article.
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Azure Machine Learning vs Machine Learning Studio

(classic)

3/27/2020 « 2 minutes to read  Edit Online

In this article, you learn the difference between Azure Machine Learning and Machine Learning Studio (classic).

Azure Machine Learning provides Python and R SDKs and the "drag-and-drop" designer to build and deploy
machine learning models. Studio (classic) only offers a standalone drag-and-drop experience.

We recommend that new users choose Azure Machine Learning for the widest range of cutting-edge machine
learning tools.

Quick comparison
The following table summarizes some of the key differences between Azure Machine Learning and Studio (classic):
MACHINE LEARNING STUDIO (CLASSIC) ~ AZURE MACHINE LEARNING

Drag and drop interface Supported Supported - Azure Machine Learning
designer (preview)

Experiment Scalable (10-GB training data limit) Scale with compute target
Training compute targets Proprietary compute target, CPU Wide range of customizable training
support only compute targets. Includes GPU and

CPU support

Deployment compute targets Proprietary web service format, not Wide range of customizable deployment
customizable compute targets. Includes GPU and
CPU support

ML Pipeline Not supported Build flexible, modular pipelines to
automate workflows

MLOps Basic model management and Entity versioning (model, data,
deployment workflows), workflow automation,
integration with CICD tooling, and more

Model format Proprietary format, Studio (classic) only Multiple supported formats depending
on training job type

Automated model training and Not supported Supported in the SDK and visual
hyperparameter tuning workspace
Data drift detection Not supported Supported in SDK and visual workspace

Migrate from Machine Learning Studio (classic)

Currently, there's no way to migrate Studio (classic) assets to Azure Machine Learning designer (preview). Current
Studio (classic) users can continue to use their machine learning assets. However, we encourage all users to
considering using the designer, which provides a familiar drag-and-drop experience with improved workflow plus
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scalability, version control, and enterprise security.

Get started with Azure Machine Learning

The following resources can help you get started with Azure Machine Learning.
e Read the Azure Machine Learning overview.
e Create your first experiment with the Python SDK.

e Create your first designer pipeline to predict auto prices.
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Next steps

In addition to the drag-and-drop capabilities in the designer, Azure Machine Learning has other tools available:

Use Python notebooks to train & deploy ML models

Use R Markdown to train & deploy ML models

e Use automated machine learning to train & deploy ML models

Use the machine learning CLI to train and deploy a model



How Azure Machine Learning works: Architecture

and concepts

4/10/2020 « 11 minutes to read » Edit Online

Learn about the architecture, concepts, and workflow for Azure Machine Learning. The major components of the
service and the general workflow for using the service are shown in the following diagram:

z. Azure Machine Learning Model Workflow
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The machine learning model workflow generally follows this sequence:
1. Train

e Develop machine learning training scripts in Python, R, or with the visual designer.
e Create and configure a compute target.

e Submit the scripts to a configured compute target to run in that environment. During training, the
scripts can read from or write to datastores. The logs and output produced during training are saved as
runs in the workspace and grouped under experiments.

2. Package - After a satisfactory run is found, register the persisted model in the model registry.

3. Validate - Query the experiment for logged metrics from the current and past runs. If the metrics don't
indicate a desired outcome, loop back to step 1 and iterate on your scripts.

4. Deploy - Develop a scoring script that uses the model and Deploy the model as aweb service in Azure,
or to an loT Edge device.

5. Monitor - Monitor for data drift between the training dataset and inference data of a deployed model.
When necessary, loop back to step 1 to retrain the model with new training data.

Tools for Azure Machine Learning

Use these tools for Azure Machine Learning:

e |Interact with the service in any Python environment with the Azure Machine Learning SDK for Python.
e |nteract with the service in any R environment with the Azure Machine Learning SDK for R.
e Automate your machine learning activities with the Azure Machine Learning CLI.

e Use Azure Machine Learning designer (preview) to perform the workflow steps without writing code.

NOTE

Although this article defines terms and concepts used by Azure Machine Learning, it does not define terms and concepts for
the Azure platform. For more information about Azure platform terminology, see the Microsoft Azure glossary.
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Glossary

e Activity
e Workspace
o Experiments
o Run
o Run configuration
o Snapshot
o Gittracking
o Logging
o ML pipelines
o Models
o Environments
o Training script
o Estimators
o Endpoints
o Web service
o loT modules
o Dataset & datastores

o Compute targets

Activities

An activity represents a long running operation. The following operations are examples of activities:

e C(Creating or deleting a compute target

e Running a script on a compute target

Activities can provide notifications through the SDK or the web Ul so that you can easily monitor the progress of
these operations.

Workspaces

The workspace is the top-level resource for Azure Machine Learning. It provides a centralized place to work with
all the artifacts you create when you use Azure Machine Learning. You can share a workspace with others. For a
detailed description of workspaces, see What is an Azure Machine Learning workspace?.

Experiments

An experiment is a grouping of many runs from a specified script. It always belongs to a workspace. When you
submit a run, you provide an experiment name. Information for the run is stored under that experiment. If you
submit a run and specify an experiment name that doesn't exist, a new experiment with that newly specified name
is automatically created.

For an example of using an experiment, see Tutorial: Train your first model.

Runs

Arun is a single execution of a training script. An experiment will typically contain multiple runs.

Azure Machine Learning records all runs and stores the following information in the experiment:

Metadata about the run (timestamp, duration, and so on)

Metrics that are logged by your script

Output files that are autocollected by the experiment or explicitly uploaded by you

A snapshot of the directory that contains your scripts, prior to the run



You produce a run when you submit a script to train a model. A run can have zero or more child runs. For example,
the top-level run might have two child runs, each of which might have its own child run.

Run configurations

A run configuration is a set of instructions that defines how a script should be run in a specified compute target.
The configuration includes a wide set of behavior definitions, such as whether to use an existing Python

environment or to use a Conda environment that's built from a specification.

A run configuration can be persisted into a file inside the directory that contains your training script, or it can be

constructed as an in-memory object and used to submit a run.
For example run configurations, see Select and use a compute target to train your model.

Snapshots

When you submit a run, Azure Machine Learning compresses the directory that contains the script as a zip file and
sends it to the compute target. The zip file is then extracted, and the script is run there. Azure Machine Learning
also stores the zip file as a snapshot as part of the run record. Anyone with access to the workspace can browse a
run record and download the snapshot.

NOTE

To prevent unnecessary files from being included in the snapshot, make an ignore file (.gitignore or .amlignore). Place this file
in the Snapshot directory and add the filenames to ignore in it. The .amlignore file uses the same syntax and patterns as the
.gitignore file. If both files exist, the .amlignore file takes precedence.

GitHub tracking and integration
When you start a training run where the source directory is a local Git repository, information about the

repository is stored in the run history. This works with runs submitted using an estimator, ML pipeline, or script
run. It also works for runs submitted from the SDK or Machine Learning CLI.

For more information, see Git integration for Azure Machine Learning.

Logging

When you develop your solution, use the Azure Machine Learning Python SDK in your Python script to log
arbitrary metrics. After the run, query the metrics to determine whether the run has produced the model you want
to deploy.

ML Pipelines

You use machine learning pipelines to create and manage workflows that stitch together machine learning phases.
For example, a pipeline might include data preparation, model training, model deployment, and inference/scoring

phases. Each phase can encompass multiple steps, each of which can run unattended in various compute targets.

Pipeline steps are reusable, and can be run without rerunning the previous steps if the output of those steps hasn't
changed. For example, you can retrain a model without rerunning costly data preparation steps if the data hasn't
changed. Pipelines also allow data scientists to collaborate while working on separate areas of a machine learning
workflow.

For more information about machine learning pipelines with this service, see Pipelines and Azure Machine
Learning.
Models

At its simplest, a model is a piece of code that takes an input and produces output. Creating a machine learning
model involves selecting an algorithm, providing it with data, and tuning hyperparameters. Training is an iterative
process that produces a trained model, which encapsulates what the model learned during the training process.

A model is produced by a run in Azure Machine Learning. You can also use a model that's trained outside of Azure
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Machine Learning. You can register a model in an Azure Machine Learning workspace.

Azure Machine Learning is framework agnostic. When you create a model, you can use any popular machine

learning framework, such as Scikit-learn, XGBoost, PyTorch, TensorFlow, and Chainer.

For an example of training a model using Scikit-learn and an estimator, see Tutorial: Train an image classification

model with Azure Machine Learning.
The model registry keeps track of all the models in your Azure Machine Learning workspace.

Models are identified by name and version. Each time you register a model with the same name as an existing
one, the registry assumes that it's a new version. The version is incremented, and the new model is registered
under the same name.

When you register the model, you can provide additional metadata tags and then use the tags when you search
for models.

TIP
A registered model is a logical container for one or more files that make up your model. For example, if you have a model
that is stored in multiple files, you can register them as a single model in your Azure Machine Learning workspace. After

registration, you can then download or deploy the registered model and receive all the files that were registered.

You can't delete a registered model that is being used by an active deployment.
For an example of registering a model, see Train an image classification model with Azure Machine Learning.

Environments

Azure ML Environments are used to specify the configuration (Docker / Python / Spark / etc.) used to create a
reproducible environment for data preparation, model training and model serving. They are managed and
versioned entities within your Azure Machine Learning workspace that enable reproducible, auditable, and

portable machine learning workflows across different compute targets.

You can use an environment object on your local compute to develop your training script, reuse that same
environment on Azure Machine Learning Compute for model training at scale, and even deploy your model with
that same environment.

Learn how to create and manage a reusable ML environment for training and inference.

Training scripts

To train a model, you specify the directory that contains the training script and associated files. You also specify an
experiment name, which is used to store information that's gathered during training. During training, the entire
directory is copied to the training environment (compute target), and the script that's specified by the run

configuration is started. A snapshot of the directory is also stored under the experiment in the workspace.
For an example, see Tutorial: Train an image classification model with Azure Machine Learning.

Estimators

To facilitate model training with popular frameworks, the estimator class allows you to easily construct run
configurations. You can create and use a generic Estimator to submit training scripts that use any learning
framework you choose (such as scikit-learn).

For PyTorch, TensorFlow, and Chainer tasks, Azure Machine Learning also provides respective PyTorch, TensorFlow,
and Chainer estimators to simplify using these frameworks.

For more information, see the following articles:

o Train ML models with estimators.
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e Train Pytorch deep learning models at scale with Azure Machine Learning.
e Train and register TensorFlow models at scale with Azure Machine Learning.

e Train and register Chainer models at scale with Azure Machine Learning.

Endpoints

An endpoint is an instantiation of your model into either a web service that can be hosted in the cloud or an loT

module for integrated device deployments.

Web service endpoint

When deploying a model as a web service the endpoint can be deployed on Azure Container Instances, Azure
Kubernetes Service, or FPGAs. You create the service from your model, script, and associated files. These are
placed into a base container image which contains the execution environment for the model. The image has a
load-balanced, HTTP endpoint that receives scoring requests that are sent to the web service.

Azure helps you monitor your web service by collecting Application Insights telemetry or model telemetry, if
you've chosen to enable this feature. The telemetry data is accessible only to you, and it's stored in your
Application Insights and storage account instances.

If you've enabled automatic scaling, Azure automatically scales your deployment.

For an example of deploying a model as a web service, see Deploy an image classification model in Azure

Container Instances.

loT module endpoints
A deployed loT module endpoint is a Docker container that includes your model and associated script or
application and any additional dependencies. You deploy these modules by using Azure loT Edge on edge devices.

If you've enabled monitoring, Azure collects telemetry data from the model inside the Azure loT Edge module. The
telemetry data is accessible only to you, and it's stored in your storage account instance.

Azure loT Edge ensures that your module is running, and it monitors the device that's hosting it.

Compute instance (preview)

An Azure Machine Learning compute instance (formerly Notebook VM) is a fully managed cloud-based
workstation that includes multiple tools and environments installed for machine learning. Compute instances can
be used as a compute target for training and inferencing jobs. For large tasks, Azure Machine Learning compute

clusters with multi-node scaling capabilities is a better compute target choice.
Learn more about compute instances.

Datasets and datastores

Azure Machine Learning Datasets (preview) make it easier to access and work with your data. Datasets
manage data in various scenarios such as model training and pipeline creation. Using the Azure Machine Learning
SDK, you can access underlying storage, explore data, and manage the life cycle of different Dataset definitions.

Datasets provide methods for working with data in popular formats, such as using from_delimited_files() or

to_pandas_dataframe() .

For more information, see Create and register Azure Machine Learning Datasets. For more examples using

Datasets, see the sample notebooks.

A datastore is a storage abstraction over an Azure storage account. The datastore can use either an Azure blob
container or an Azure file share as the back-end storage. Each workspace has a default datastore, and you can
register additional datastores. Use the Python SDK API or the Azure Machine Learning CLI to store and retrieve
files from the datastore.

Compute targets

A compute target lets you specify the compute resource where you run your training script or host your service


https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/work-with-data/datasets

deployment. This location may be your local machine or a cloud-based compute resource.

Learn more about the available compute targets for training and deployment.

Next steps
To get started with Azure Machine Learning, see:
e What is Azure Machine Learning?

e Create an Azure Machine Learning workspace

e Tutorial (part 1): Train a model
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APPLIES TO: '* Basic edition & Enterprise edition (Upgrade to Enterprise)

In this two-part tutorial, you learn how to use the Azure Machine Learning designer to train and deploy a
machine learning model that predicts the price of any car. The designer is a drag-and-drop tool that lets you
create machine learning models without a single line of code.

In part one of the tutorial, you'll learn how to:

e (Create a new pipeline.

e Import data.

e Prepare data.

e Train a machine learning model.

e Evaluate a machine learning model.

In part two of the tutorial, you'll deploy your model as a real-time inferencing endpoint to predict the price of
any car based on technical specifications you send it.

NOTE

A completed version of this tutorial is available as a sample pipeline.

To find it, go to the designer in your workspace. In the New pipeline section, select Sample 1 - Regression:
Automobile Price Prediction(Basic).

Create a new pipeline

Azure Machine Learning pipelines organize multiple machine learning and data processing steps into a single
resource. Pipelines let you organize, manage, and reuse complex machine learning workflows across projects
and users.

To create an Azure Machine Learning pipeline, you need an Azure Machine Learning workspace. In this section,
you learn how to create both these resources.

Create a new workspace

In order to use the designer, you first need an Azure Machine Learning workspace. The workspace is the top-
level resource for Azure Machine Learning, it provides a centralized place to work with all the artifacts you
create in Azure Machine Learning.

If you have an Azure Machine Learning workspace with an Enterprise edition, skip to the next section.
1. Sign in to the Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of the Azure portal, select + Create a resource.
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4. Select Machine Learning.

FIELD

Workspace name

Subscription

Resource group

Location

Workspace edition

. Use the search bar to find Machine Learning.

. Inthe Machine Learning pane, select Create to begin.

. Provide the following information to configure your new workspace:

DESCRIPTION

Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Select the Azure subscription that you want to use.

Use an existing resource group in your subscription, or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Select the location closest to your users and the data
resources to create your workspace.

Select Enterprise. This tutorial requires the use of the
Enterprise edition. The Enterprise edition is in preview
and doesn't currently add any extra costs.

7. After you're finished configuring the workspace, select Create.

WARNING

It can take several minutes to create your workspace in the cloud.




When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

Create

the pipeline

1. Sign in to ml.azure.com, and select the workspace you want to work with.

2. Select Designer.
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3. Select Easy-to-use prebuilt modules.
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Sample 1: Regression -
Automobile Price Prediction... &

Pipeline type

Training

4. Atthe top of the canvas, select the default pipeline name Pipeline-Created-on. Rename it to

Automobile price prediction. The name doesn't need to be unique.

Set the default compute target

A pipeline runs on a compute target, which is a compute resource that's attached to your workspace. After you

create a compute target, you can reuse it for future runs.

You can set a Default compute target for the entire pipeline, which will tell every module to use the same

compute target by default. However, you can specify compute targets on a per-module basis.

1. Next to the pipeline name, select the Gear icon

=]

at the top of the canvas to open the Settings pane.

2. In the Settings pane to the right of the canvas, select Select compute target.

If you already have an available compute target, you can select it to run this pipeline.

N

OTE

won't be shown.

The designer can run experiments only on Azure Machine Learning Compute targets. Other compute targets

3. Enter a name for the compute resource.



https://ml.azure.com?tabs=jre

4. Select Save.

NOTE
It takes approximately five minutes to create a compute resource. After the resource is created, you can reuse it

and skip this wait time for future runs.

The compute resource autoscales to zero nodes when it's idle to save cost. When you use it again after a delay,

you might experience approximately five minutes of wait time while it scales back up.

Import data

There are several sample datasets included in the designer for you to experiment with. For this tutorial, use
Automobile price data (Raw).

1. To the left of the pipeline canvas is a palette of datasets and modules. Select Datasets, and then view the
Samples section to view the available sample datasets.

2. Select the dataset Automobile price data (Raw), and drag it onto the canvas.

O . . .
/- Search Automobile price prediction

B Datasets
D Autosave on 2 C hhmm
% Data Transformation
|_ Maodel Scoring 8. Evaluation
121 Machine Learning Algerithms
E;J Python Language
?1 Data Input and Qutput
Recommendation
@ R Language
% Text Analytics
Visualize the data
You can visualize the data to understand the dataset that you'll use.
1. Select the Automobile price data (Raw) module.
2. In the module details pane to the right of the canvas, select Outputs + log.

3. Select the graph icon to visualize the data.
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4. Select the different columns in the data window to view information about each one.

Each row represents an automobile, and the variables associated with each automobile appear as
columns. There are 205 rows and 26 columns in this dataset.

Prepare data

Datasets typically require some preprocessing before analysis. You might have noticed some missing values
when you inspected the dataset. These missing values must be cleaned so that the model can analyze the data

correctly.

Remove a column

When you train a model, you have to do something about the data that's missing. In this dataset, the
normalized-losses column is missing many values, so you will exclude that column from the model altogether.

1. In the module palette to the left of the canvas, expand the Data Transformation section and find the

Select Columns in Dataset module.

2. Dragthe Select Columns in Dataset module onto the canvas. Drop the module below the dataset

module.

3. Connect the Automobile price data (Raw) dataset to the Select Columns in Dataset module. Drag
from the dataset's output port, which is the small circle at the bottom of the dataset on the canvas, to the
input port of Select Columns in Dataset, which is the small circle at the top of the module.

TIP

You create a flow of data through your pipeline when you connect the output port of one module to an input

port of another.

3 Automobile price data (Raw)

Ly

4 Select Columns in Dataset

4. Select the Select Columns in Dataset module.



5. In the module details pane to the right of the canvas, select Edit column.

6. Expand the Column names drop down next to Include, and select All columns.
7. Select the + to add a new rule.

8. From the drop-down menus, select Exclude and Column names.

9. Enter normalized-losses in the text box.

10. In the lower right, select Save to close the column selector.

Select columns X

Select columns @ With rules O By name

Allow duplicates and preserve column order in selection @

Include All columns \. +

Exclude - Column names x normalized-losses 9p =

11. Select the Select Columns in Dataset module.

12. In the module details pane to the right of the canvas, select the Comment text box and enter Exclude
normalized losses.

Comments will appear on the graph to help you organize your pipeline.

Clean missing data

Your dataset still has missing values after you remove the normalized-losses column. You can remove the
remaining missing data by using the Clean Missing Data module.

TIP

Cleaning the missing values from input data is a prerequisite for using most of the modules in the designer.

1. In the module palette to the left of the canvas, expand the section Data Transformation, and find the
Clean Missing Data module.

2. Dragthe Clean Missing Data module to the pipeline canvas. Connect it to the Select Columns in
Dataset module.

3. Select the Clean Missing Data module.
4. In the module details pane to the right of the canvas, select Edit Column.

5. Inthe Columns to be cleaned window that appears, expand the drop-down menu next to Include.
Select, All columns



6. SelectSave
7. In the module details pane to the right of the canvas, select Remove entire row under Cleaning mode.

8. In the module details pane to the right of the canvas, select the Comment box, and enter Remove
missing value rows.

Your pipeline should now look something like this:

3 Automobile price data (Raw)

:L Select Columns in Dataset

& Clean Missing Data

Train @ machine learning model

Now that you have the modules in place to process the data, you can set up the training modules.

Because you want to predict price, which is a number, you can use a regression algorithm. For this example, you
use a linear regression model.

Split the data

Splitting data is a common task in machine learning. You will split your data into two separate datasets. One
dataset will train the model and the other will test how well the model performed.

1. In the module palette, expand the section Data Transformation and find the Split Data module.
2. Drag the Split Data module to the pipeline canvas.

3. Connect the left port of the Clean Missing Data module to the Split Data module.

IMPORTANT

Be sure that the left output ports of Clean Missing Data connects to Split Data. The left port contains the the
cleaned data. The right port contains the discarted data.

4. Select the Split Data module.

5. In the module details pane to the right of the canvas, set the Fraction of rows in the first output
dataset to 0.7.

This option splits 70 percent of the data to train the model and 30 percent for testing it. The 70 percent
dataset will be accessible through the left output port. The remaining data will be available through the
right output port.

6. In the module details pane to the right of the canvas, select the Comment box, and enter Split the dataset



into training set (0.7) and test set (0.3).

Train the model

Train the model by giving it a dataset that includes the price. The algorithm constructs a model that explains the

relationship between the features and the price as presented by the training data.

1.

10.

In the module palette, expand Machine Learning Algorithms.

This option displays several categories of modules that you can use to initialize learning algorithms.

. Select Regression > Linear Regression, and drag it to the pipeline canvas.
. Connect the output of the Linear Regression module to the left input of the Train Model module.

. Inthe module palette, expand the section Module training, and drag the Train Model module to the

canvas.

. Select the Train Model module, and drag it to the pipeline canvas.

. Connect the training data output (left port) of the Split Data module to the right input of the Train

Model module.

IMPORTANT

Be sure that the left output ports of Split Data connects to Train Model. The left port contains the the training
set. The right port contains the test set.

i
& Linear Regression & Split Data

Train Model

. Select the Train Model module.
. Inthe module details pane to the right of the canvas, select Edit column selector.

. In the Label column dialog box, expand the drop-down menu and select Column names.

In the text box, enter priceto specify the value that your model is going to predict.

IMPORTANT

Make sure you enter the column name exactly. Do not capitalize price.

Your pipeline should look like this:
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& Linear Regression

rfﬂ- Train Model

Add the Score Model module

After you train your model by using 70 percent of the data, you can use it to score the other 30 percent to see

how well your model functions.

1. Enter score modelin the search box to find the Score Model module. Drag the module to the pipeline

canvas.

2. Connect the output of the Train Model module to the left input port of Score Model. Connect the test

Automaobile price data (Raw)

Select Columns in Dataset

Clean Missing Data

Split Data

data output (right port) of the Split Data module to the right input port of Score Model.

Add the Evaluate Model module

Use the Evaluate Model module to evaluate how well your model scored the test dataset.

1. Enter evaluatein the search box to find the Evaluate Model module. Drag the module to the pipeline

canvas.

2. Connect the output of the Score Model module to the left input of Evaluate Model.

The final pipeline should look something like this:
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Submit the pipeline

Now that your pipeline is all setup, you can submit a pipeline run to train your machine learning model. You can
submit a valid pipeline run at any point, which can be used to review changes to your pipeline during

development.
1. At the top of the canvas, select Submit.

2. Inthe Set up pipeline run dialog box, select Create new.

NOTE

Experiments group similar pipeline runs together. If you run a pipeline multiple times, you can select the same

experiment for successive runs.

a. Enter a descriptive name for New experiment Name.
b. Select Submit.
You can view run status and details at the top right of the canvas.

If is the first run, it may take up to 20 minutes for your pipeline to finish running. The default compute
settings have a minimum node size of 0, which means that the designer must allocate resources after



being idle. Repeated pipeline runs will take less time since the compute resources are already allocated.
Additionally, the designer uses cached results for each module to further improve efficiency.

View scored labels

After the run completes, you can view the results of the pipeline run. First, look at the predictions generated by
the regression model.

1. Select the Score Model module to view its output.
2. In the module details pane to the right of the canvas, select Outputs + logs > graph icon to view
results.

Here you can see the predicted prices and the actual prices from the testing data.
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Evaluate models

Use the Evaluate Model to see how well the trained model performed on the test dataset.

1. Select the Evaluate Model module to view its output.

. . . lia] .
2. In the module details pane to the right of the canvas, select Outputs + logs > graph icon - to view
results.

The following statistics are shown for your model:

e Mean Absolute Error (MAE): The average of absolute errors. An error is the difference between the
predicted value and the actual value.

e Root Mean Squared Error (RMSE): The square root of the average of squared errors of predictions made
on the test dataset.

e Relative Absolute Error: The average of absolute errors relative to the absolute difference between actual
values and the average of all actual values.

e Relative Squared Error: The average of squared errors relative to the squared difference between the
actual values and the average of all actual values.

e Coefficient of Determination: Also known as the R squared value, this statistical metric indicates how well
a model fits the data.

For each of the error statistics, smaller is better. A smaller value indicates that the predictions are closer to the
actual values. For the coefficient of determination, the closer its value is to one (1.0), the better the predictions.



Clean up resources

Skip this section if you want to continue on with part 2 of the tutorial, deploying models.

IMPORTANT

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to
articles.

Delete everything

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any
charges.

1. In the Azure portal, select Resource groups on the left side of the window.
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2. In the list, select the resource group that you created.

3. Select Delete resource group.

Deleting the resource group also deletes all resources that you created in the designer.

Delete individual assets
In the designer where you created your experiment, delete individual assets by selecting them and then

selecting the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This
action is taken to minimize charges. If you want to delete the compute target, take these steps:
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You can unregister datasets from your workspace by selecting each dataset and selecting Unregister.

T New TD-Sample_1:_Regression_-_Automobile_Price_Prediction_(Basic)-Clean_Missing_Data-Cleaning_transformation-fédcOeb1 Version 1 (latest)
@ Home
Author Details  Explore  Models  Datasheet
[l Notebooks
) Refresh B> Generate profile [ New version
%% Automated ML
&% Designer Attributes Tags
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Properties CreatedByAMLStudio
L Experiments Description
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& Pipelines Sample usage [}
Models Datastore
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# azureml-core of version 1.0.72 or higher is required
from azureml.core import Workspace, Dataset

subscription_id = ‘ee85ed72-2b26-48f6-a0e8-cb5bcfosfbdo’
resource_group = 'test-like’
workspace_name = 'like_test’

workspace = Workspace(subscription_id, resource_group, workspace_name)

dataset = Dataset.get_by_name(workspace, name='TD-Sample_1: Regression_-_Aui
dataset.download(target_path=".", overwrite=False)

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually

delete those assets.

Next steps

In part two, you'll learn how to deploy your model as a real-time endpoint.

Continue to deploying models
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You can deploy the predictive model developed in part one of the tutorial to give others a chance to use it. In part
one, you trained your model. Now, it's time to generate new predictions based on user input. In this part of the
tutorial, you will:

e Create a real-time inference pipeline.

e C(Create an inferencing cluster.

Deploy the real-time endpoint.

Test the real-time endpoint.

Prerequisites

Complete part one of the tutorial to learn how to train and score a machine learning model in the designer.

Create a real-time inference pipeline

To deploy your pipeline, you must first convert the training pipeline into a real-time inference pipeline. This
process removes training modules and adds web service inputs and outputs to handle requests.

Create a real-time inference pipeline

1. Above the pipeline canvas, select Create inference pipeline > Real-time inference pipeline.

‘ P search ‘ Automobile Price Prediction ¢33 | I Create inference pipeline }/ ‘ [ Publish ‘
o]
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Your pipeline should now look like this:
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When you select Create inference pipeline, several things happen:

e The trained model is stored as a Dataset module in the module palette. You can find it under My
Datasets.

e Training modules like Train Model and Split Data are removed.
e The saved trained model is added back into the pipeline.

e Web Service Input and Web Service Output modules are added. These modules show where user
data enters the pipeline and where data is returned.

NOTE

By default, the Web Service Input will expect the same data schema as the training data used to create the
predictive pipeline. In this scenario, price is included in the schema. However, price isn't used as a factor during
prediction.

2. Select Submit, and use the same compute target and experiment that you used in part one.

If is the first run, it may take up to 20 minutes for your pipeline to finish running. The default compute
settings have a minimum node size of 0, which means that the designer must allocate resources after being
idle. Repeated pipeline runs will take less time since the compute resources are already allocated.
Additionally, the designer uses cached results for each module to further improve efficiency.

3. Select Deploy.

Create an inferencing cluster

In the dialog box that appears, you can select from any existing Azure Kubernetes Service (AKS) clusters to deploy
your model to. If you don't have an AKS cluster, use the following steps to create one.

1. Select Compute in the dialog box that appears to go to the Compute page.

2. On the navigation ribbon, select Inference Clusters > + New.



Deploy the real-time endpoint
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. In the inference cluster pane, configure a new Kubernetes Service.

. Enter aks-compute for the Compute name.

. Select a nearby region that's available for the Region.

. SelectCreate.

Attached Compute

Provisioning State
Succeeded
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NOTE

Inference Clusters page.

It takes approximately 15 minutes to create a new AKS service. You can check the provisioning state on the

After your AKS service has finished provisioning, return to the real-time inferencing pipeline to complete

d
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eployment.

. Select Deploy above the canvas.

. Select Deploy new real-time endpoint.
. Select the AKS cluster you created.

. Select Deploy.
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A success notification above the canvas appears after deployment finishes. It might take a few minutes.

Test the real-time endpoint

After deployment finishes, you can test your real-time endpoint by going to the Endpoints page.

1. On the Endpoints page, select the endpoint you deployed.
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2. Select Test.
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3. You can manually input testing data or use the autofilled sample data, and select Test.

The portal submits a test request to the endpoint and shows the results. Although a price value is generated

for the input data, it isn't used to generate the prediction value.
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Clean up resources

IMPORTANT

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to articles.

Delete everything

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any charges.

1. In the Azure portal, select Resource groups on the left side of the window.
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2. In the list, select the resource group that you created.

3. Select Delete resource group.
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Deleting the resource group also deletes all resources that you created in the designer.

Delete individual assets

In the designer where you created your experiment, delete individual assets by selecting them and then selecting

the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This

action is taken to minimize charges. If you want to delete the compute target, take these steps:
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@ Home
Author
E] Notebooks
4% Automated ML
& Designer
Assets
A Experiments
2 Pipelines
Models

&> Endpoints
Manage

& Compute

B Environments

& Datastores

@ Data labeling

TD-Sample_1:_Regression_-_Automobile_Price_Prediction_(Basic)-Clean_Missing_Data-Cleaning_transformation-fédcOeb1

Details  Explore  Models  Datasheet

() Refresh P> Generate profile [> New version ~

Attributes

Properties
File

Description

This is a dataset promoted by inference graph generation automatically on 11/12/..

Datastore
workspaceblobstore

Relative path
azurem|/4393076b-19ff-4e41-81d9-a1146d905696/Cleaning_transformation
Profile

No profile generated

Files in dataset
4

Current version
1

Latest version
1

Version 1 (latest)

Tags

CreatedByAMLStudio
true

Sample usage [

# azureml-core of version 1.0.72 or higher is required
from azureml.core import Workspace, Dataset

subscription_id = 'ee85ed72-2b26-48f6-a0e8-cbsbcf9sfbda”
resource_group = 'test-like'
workspace_name = 'like_test’

workspace = Workspace(subscription_id, resource_group, workspace_name)

dataset = Dataset.get by _name(workspace, name='TD-Sample_1: Regression_-_Aui
dataset.download(target_path=".", overurite=False)

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually
delete those assets.

Next steps

In this tutorial, you learned the key steps in how to create, deploy, and consume a machine learning model in the

designer. To learn more about how you can use the designer to solve other types of problems, see our other
sample pipelines.

Designer samples



Tutorial: Create a classification model with

automated ML in Azure Machine Learning

3/27/2020 « 10 minutes to read « Edit Online

APPLIES TO: '* Basic edition & Enterprise edition (Upgrade to Enterprise)

In this tutorial, you learn how to create a basic classification model without writing a single line of code using
Azure Machine Learning's automated machine learning interface. This classification model predicts if a client will
subscribe to a fixed term deposit with a financial institution.

With automated machine learning, you can automate away time intensive tasks. Automated machine learning
rapidly iterates over many combinations of algorithms and hyperparameters to help you find the best model
based on a success metric of your choosing.

In this tutorial, you learn how to do the following tasks:

e C(Create an Azure Machine Learning workspace.
e Run an automated machine learning experiment.
e View experiment details.

e Deploy the model.

Prerequisites

e An Azure subscription. If you don't have an Azure subscription, create a free account.

e Download the bankmarketing_train.csv data file. The y column indicates if a customer subscribed to a
fixed term deposit, which is later identified as the target column for predictions in this tutorial.

Create a workspace

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,
and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed
object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.
1. Sign in to the Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of the Azure portal, select + Create a resource.
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3. Use the search bar to find Machine Learning.

N

. Select Machine Learning.

5. Inthe Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

FIELD

Workspace name

Subscription

Resource group

Location

Workspace edition

DESCRIPTION

Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Select the Azure subscription that you want to use.

Use an existing resource group in your subscription, or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Select the location closest to your users and the data
resources to create your workspace.

Select Enterprise. This tutorial requires the use of the
Enterprise edition. The Enterprise edition is in preview and
doesn't currently add any extra costs.

7. After you're finished configuring the workspace, select Create.



WARNING

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

IMPORTANT

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right place.

Create and run the experiment

You complete the following experiment set-up and run steps via Azure Machine learning at https://ml.azure.com, a
consolidated web interface that includes machine learning tools to perform data science scenarios for data
science practitioners of all skill levels. This interface is not supported on Internet Explorer browsers.

1. Sign in to Azure Machine Learning.

2. Select your subscription and the workspace you created.

3. Select Get started.

4. In the left pane, select Automated ML under the Author section.

Since this is your first automated ML experiment, you'll see an empty list and links to documentation.

Microsoft Azure Machine Learning @3 E‘., ? @
= automl-test-ws > Welcome

F New Automated machine learning

{nr Home
Let automated machine learning train and find the best model based on your data without writing a single line of code. Learn more(2

Author
+ New automated ML run

[ﬁ Notebooks

4% Automated ML

&2 Designer No recent automated ML runs to display.
Assets Click "New automated ML run” to create your first run
@ Learn more

ES Datasets

L Experiments

E—? Pipelines
Documentation View all documentation

[ Models

Concept: What is automated machine learning?
%> Endpoints 4

Mznsge

Tuterial: Create your first classification model with automated machine learning
E Compute 4
E. Environments

i Blog: Build more accurate forecasts with new capabilities in automated machine learning

B Datastores
[Z Data labeling

5. Select New automated ML run.
6. Create a new dataset by selecting From local files from the +Create dataset drop-down.

a. Onthe Basic info form, give your dataset a name and provide an optional description. The
automated ML interface currently only supports TabularDatasets, so the dataset type should default


https://ml.azure.com
https://ml.azure.com

to Tabular.
b. Select Next on the bottom left

c. On the Datastore and file selection form, select the default datastore that was automatically set
up during your workspace creation, workspaceblobstore (Azure Blob Storage). This is where
you'll upload your data file to make it available to your workspace.

d. Select Browse.

e. Choose the bankmarketing_train.csv file on your local computer. This is the file you downloaded

as a prerequisite.
f. Give your dataset a unique name and provide an optional description.

g. Select Next on the bottom left, to upload it to the default container that was automatically set up

during your workspace creation.
When the upload is complete, the Settings and preview form is pre-populated based on the file type.

h. Verify that the Settings and preview form is populated as follows and select Next.

FIELD DESCRIPTION VALUE FOR TUTORIAL

File format Defines the layout and type of Delimited
data stored in a file.

Delimiter One or more characters for Comma
specifying the boundary between
separate, independent regions in
plain text or other data streams.

Encoding Identifies what bit to character UTF-8
schema table to use to read your
dataset.
Column headers Indicates how the headers of the All files have same headers

dataset, if any, will be treated.

Skip rows Indicates how many, if any, rows None
are skipped in the dataset.

i. The Schema form allows for further configuration of your data for this experiment. For this
example, select the toggle switch for the day_of_week feature, so as to not include it for this

experiment. Select Next.


https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv
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j. On the Confirm details form, verify the information matches what was previously populated on
the Basic info and Settings and preview forms.

k. Select Create to complete the creation of your dataset.
I. Select your dataset once it appears in the list.
m. Review the Data preview to ensure you didn't include day_of_week then, select OK.
n. Select Next.
7. Populate the Configure Run form as follows:
a. Enter this experiment name: my-1st-automl-experiment

b. Selecty as the target column, what you want to predict. This column indicates whether the client

subscribed to a term deposit or not.

c. Select Create a new compute and configure your compute target. A compute target is a local or
cloud-based resource environment used to run your training script or host your service
deployment. For this experiment, we use a cloud-based compute.

FIELD DESCRIPTION VALUE FOR TUTORIAL

Compute name A unique name that identifies automl-compute
your compute context.

Virtual machine size Select the virtual machine size for Standard_DS12_V2
your compute.

Min / Max nodes (in Advanced To profile data, you must specify 1 Min nodes: 1
Settings) or more nodes. Max nodes: 6

a. Select Create to get the compute target.
This takes a couple minutes to complete.

b. After creation, select your new compute target from the drop-down list.



d. Select Next.
8. On the Task type and settings form, select Classification as the machine learning task type.

a. SelectView additional configuration settings and populate the fields as follows. These settings
are to better control the training job. Otherwise, defaults are applied based on experiment selection
and data.

NOTE

In this tutorial, you won't set a metric score or max cores per iterations threshold. Nor will you block

algorithms from being tested.

ADDITIONAL CONFIGURATIONS DESCRIPTION VALUE FOR TUTORIAL

Primary metric Evaluation metric that the AUC_weighted
machine learning algorithm will be
measured by.

Automatic featurization Enables preprocessing. This Enable
includes automatic data cleansing,
preparing, and transformation to
generate synthetic features.

Blocked algorithms Algorithms you want to exclude None
from the training job

Exit criterion If a criteria is met, the training job Training job time (hours): 1

is stopped. Metric score threshold: None
Validation Choose a cross-validation type Validation type:

and number of tests. k-fold cross-validation

Number of validations: 2

Concurrency The maximum number of parallel Max concurrent iterations: 5
iterations executed per iteration

Select Save.

9. Select Finish to run the experiment. The Run Detail screen opens with the Run status at the top as the
experiment preparation begins.

IMPORTANT

Preparation takes 10-15 minutes to prepare the experiment run. Once running, it takes 2-3 minutes more for each
iteration.
Select Refresh periodically to see the status of the run as the experiment progresses.

In production, you'd likely walk away for a bit. But for this tutorial, we suggest you start exploring the tested algorithms on
the Models tab as they complete while the others are still running.

Explore models

Navigate to the Models tab to see the algorithms (models) tested. By default, the models are ordered by metric
score as they complete. For this tutorial, the model that scores the highest based on the chosen AUC_weighted



metric is at the top of the list.

While you wait for all of the experiment models to finish, select the Algorithm name of a completed model to

explore its performance details.

The following navigates through the Model details and the Visualizations tabs to view the selected model's
properties, metrics, and performance charts.

aml-workspace > Automated ML > Run Detail
Run1 & completed Switch to old experience (3

O Refresh Cancel

Details Models Data guardrails Properties Logs Outputs

Recommended model Run summary

Model name Task type

VotingEnsemble classification

Metric value Primary metric

0.9415539718083186 AUC_weighted

Created on Run status

Tue Oct 22 2019 08:23:15 GMT-0700 (Pacific Daylight Completed

Time) Run ID

Duration AutoML_3ccad490a-267e-41d3-96b1-2f51766d8bd7
00:02:40

Deploy status
No deployment yet

Deploy best View model L row
L Download best

model

Deploy the best model

The automated machine learning interface allows you to deploy the best model as a web service in a few steps.
Deployment is the integration of the model so it can predict on new data and identify potential areas of

opportunity.

For this experiment, deployment to a web service means that the financial institution now has an iterative and

scalable web solution for identifying potential fixed term deposit customers.
Once the run is complete, navigate back to the Run Detail page and select the Models tab.

In this experiment context, VotingEnsemble is considered the best model, based on the AUC_weighted metric.
We deploy this model, but be advised, deployment takes about 20 minutes to complete. The deployment process
entails several steps including registering the model, generating resources, and configuring them for the web

service.
1. Select the Deploy best model button in the bottom-left corner.

2. Populate the Deploy a model pane as follows:

FIELD VALUE

Deployment name my-automl-deploy



FIELD VALUE

Deployment description My first automated machine learning experiment
deployment

Compute type Select Azure Compute Instance (ACI)

Enable authentication Disable.

Use custom deployments Disable. Allows for the default driver file (scoring script)

and environment file to be autogenerated.

For this example, we use the defaults provided in the Advanced menu.
3. Select Deploy.

A green success message appears at the top of the Run screen, and in the Recommended model pane, a
status message appears under Deploy status. Select Refresh periodically to check the deployment status.

Now you have an operational web service to generate predictions.

Proceed to the Next Steps to learn more about how to consume your new web service, and test your predictions
using Power BlI's built in Azure Machine Learning support.

Clean up resources

Deployment files are larger than data and experiment files, so they cost more to store. Delete only the
deployment files to minimize costs to your account, or if you want to keep your workspace and experiment files.
Otherwise, delete the entire resource group, if you don't plan to use any of the files.

Delete the deployment instance

Delete just the deployment instance from Azure Machine Learning at https://ml.azure.com/, if you want to keep
the resource group and workspace for other tutorials and exploration.

1. Go to Azure Machine Learning. Navigate to your workspace and on the left under the Assets pane, select
Endpoints.

2. Select the deployment you want to delete and select Delete.
3. Select Proceed.

Delete the resource group

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.
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2. From the list, select the resource group you created.
3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

Next steps

In this automated machine learning tutorial, you used Azure Machine Learning's automated ML interface to create
and deploy a classification model. See these articles for more information and next steps:

Consume a web service

e Learn more about automated machine learning.

e For more information on classification metrics and charts, see the Understand automated machine learning

results article.+ Learn more about featurization.

e Learn more about data profiling.

NOTE

This Bank Marketing dataset is made available under the Creative Commons (CCO: Public Domain) License. Any rights in
individual contents of the database are licensed under the Database Contents License and available on Kaggle. This dataset

was originally available within the UCI Machine Learning Database.

[Moro et al,, 2014] S. Moro, P Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing.
Decision Support Systems, Elsevier, 62:22-31, June 2014.



file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.kaggle.com/janiobachmann/bank-marketing-dataset
https://archive.ics.uci.edu/ml/datasets/bank+marketing

Tutorial: Forecast bike sharing demand with

automated machine learning

2/7/2020 « 8 minutes to read « Edit Online

APPLIES TO: '* Basic edition & Enterprise edition (Upgrade to Enterprise)

In this tutorial, you use automated machine learning, or automated ML, in the Azure Machine Learning studio to
create a time series forecasting model to predict rental demand for a bike sharing service.

In this tutorial, you learn how to do the following tasks:

e Create and load a dataset.
e Configure and run an automated ML experiment.
e Explore the experiment results.

e Deploy the best model.

Prerequisites

e An Enterprise edition Azure Machine Learning workspace. If you don't have a workspace, create an Enterprise
edition workspace.

o Automated machine learning in the Azure Machine Learning studio is only available for Enterprise edition
workspaces.

e Download the bike-no.csv data file

Get started in Azure Machine Learning studio

For this tutorial, you create your automated ML experiment run in Azure Machine Learning studio, a consolidated
interface that includes machine learning tools to perform data science scenarios for data science practitioners of all
skill levels. The studio is not supported on Internet Explorer browsers.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

3. Select Get started.

4. In the left pane, select Automated ML under the Author section.

5. Select + New automated ML run.

Create and load dataset

Before you configure your experiment, upload your data file to your workspace in the form of an Azure Machine
Learning dataset. Doing so, allows you to ensure that your data is formatted appropriately for your experiment.

1. On the Select dataset form, select From local files from the +Create dataset drop-down.

a. On the Basic info form, give your dataset a name and provide an optional description. The dataset
type should default to Tabular, since automated ML in Azure Machine Learning studio currently only
supports tabular datasets.

b. Select Next on the bottom left


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-automated-ml-forecast.md
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/bike-no.csv
https://ml.azure.com

c. On the Datastore and file selection form, select the default datastore that was automatically set up
during your workspace creation, workspaceblobstore (Azure Blob Storage). This is the storage
location where you'll upload your data file.

d. Select Browse.
e. Choose the bike-no.csv file on your local computer. This is the file you downloaded as a prerequisite.
f. Select Next

When the upload is complete, the Settings and preview form is pre-populated based on the file type.

g. Verify that the Settings and preview form is populated as follows and select Next.

FIELD DESCRIPTION VALUE FOR TUTORIAL

File format Defines the layout and type of Delimited
data stored in a file.

Delimiter One or more characters for Comma
specifying the boundary between
separate, independent regions in
plain text or other data streams.

Encoding Identifies what bit to character UTF-8
schema table to use to read your
dataset.
Column headers Indicates how the headers of the Use headers from the first file

dataset, if any, will be treated.

Skip rows Indicates how many, if any, rows None
are skipped in the dataset.

h. The Schema form allows for further configuration of your data for this experiment.

a. For this example, choose to ignore the casual and registered columns. These columns are a

breakdown of the cnt column so, therefore we don't include them.
b. Also for this example, leave the defaults for the Properties and Type.
c. Select Next.

i. On the Confirm details form, verify the information matches what was previously populated on the

Basic info and Settings and preview forms.
j. Select Create to complete the creation of your dataset.
k. Select your dataset once it appears in the list.

|. Select Next.

Configure experiment run

After you load and configure your data, set up your remote compute target and select which column in your data
you want to predict.

1. Populate the Configure run form as follows:

a. Enter an experiment name: automl-bikeshare


https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/bike-no.csv

b. Select cnt as the target column, what you want to predict. This column indicates the number of total
bike share rentals.

c. SelectCreate a new compute and configure your compute target. Automated ML only supports
Azure Machine Learning compute.

FIELD DESCRIPTION VALUE FOR TUTORIAL

Compute name A unique name that identifies your bike-compute
compute context.

Virtual machine size Select the virtual machine size for Standard_DS12_V?2
your compute.

Min / Max nodes (in Advanced To profile data, you must specify 1 Min nodes: 1
Settings) or more nodes. Max nodes: 6

a. Select Create to get the compute target.
This takes a couple minutes to complete.
b. After creation, select your new compute target from the drop-down list.

d. Select Next.

Select task type and settings

Complete the setup for your automated ML experiment by specifying the machine learning task type and
configuration settings.

1. On the Task type and settings form, select Time series forecasting as the machine learning task type.
2. Select date as your Time column and leave Group by column(s) blank.

a. SelectView additional configuration settings and populate the fields as follows. These settings
are to better control the training job. Otherwise, defaults are applied based on experiment selection

and data.
ADDITIONAL CONFIGURATIONS DESCRIPTION VALUE FOR TUTORIAL
Primary metric Evaluation metric that the machine Normalized root mean squared
learning algorithm will be error
measured by.
Automatic featurization Enables preprocessing. This Enable
includes automatic data cleansing,
preparing, and transformation to
generate synthetic features.
Explain best model (preview) Automatically shows explainability Enable
on the best model created by
automated ML.
Blocked algorithms Algorithms you want to exclude Extreme Random Trees

from the training job



ADDITIONAL CONFIGURATIONS DESCRIPTION VALUE FOR TUTORIAL

Additional forecasting settings These settings help improve the Forecast horizon: 14
accuracy of your model Forecast target lags: None
Target rolling window size: None
Forecast horizon: length of time
into the future you want to predict
Forecast target lags: how far
back you want to construct the
lags of a the target variable
Target rolling window: specifies
the size of the rolling window over
which features, such as the max,
min and sum, will be generated.

Exit criterion If a criteria is met, the training job Training job time (hours): 3

is stopped. Metric score threshold: None
Validation Choose a cross-validation type and Validation type:

number of tests. k-fold cross-validation

Number of validations: 5

Concurrency The maximum number of parallel Max concurrent iterations: 6
iterations executed per iteration

Select Save.

Run experiment

To run your experiment, select Finish. The Run details screen opens with the Run status at the top next to the
run number. This status updates as the experiment progresses.

IMPORTANT

Preparation takes 10-15 minutes to prepare the experiment run. Once running, it takes 2-3 minutes more for each

iteration.

In production, you'd likely walk away for a bit as this process takes time. While you wait, we suggest you start exploring the

tested algorithms on the Models tab as they complete.

Explore models

Navigate to the Models tab to see the algorithms (models) tested. By default, the models are ordered by metric
score as they complete. For this tutorial, the model that scores the highest based on the chosen Normalized root
mean squared error metric is at the top of the list.

While you wait for all of the experiment models to finish, select the Algorithm name of a completed model to
explore its performance details.

The following example navigates through the Model details and the Visualizations tabs to view the selected
model's properties, metrics and performance charts.



dataset-test > Experiments > automl-bikeshareforecast-test > Run1

Run1 @ completed Switch to old experience (3

() Refresh Cancel

Details  Models Data guardrails Properties Logs  Qutputs

Recommended model Run summary

Model name Task type

VotingEnsemble Forecasting

Metric value Primary metric
6.581350974214846e-08 Normalized root mean squared error
Started on Run status

Jan 23, 2020 5:23 PM Completed

Duration Experiment name

00:02:11 automl-bikeshareforecast-test

Sdk version Run ID

1.0.83 AutoML_c4e151ee-Oabb-4d0a-b646-8d88c7e96aal

Deploy status
No deployment yet

Deploy best model ‘ View model details ‘ ‘ Download best model

Deploy the model

Automated machine learning in Azure Machine Learning studio allows you to deploy the best model as a web
service in a few steps. Deployment is the integration of the model so it can predict on new data and identify
potential areas of opportunity.

For this experiment, deployment to a web service means that the bike share company now has an iterative and
scalable web solution for forecasting bike share rental demand.

Once the run is complete, navigate back to the Run detail page and select the Models tab.

In this experiment context, StackEnsemble is considered the best model, based on the Normalized root mean
squared error metric. We deploy this model, but be advised, deployment takes about 20 minutes to complete. The
deployment process entails several steps including registering the model, generating resources, and configuring
them for the web service.

1. Select the Deploy best model button in the bottom-left corner.

2. Populate the Deploy a model pane as follows:

FIELD VALUE

Deployment name bikeshare-deploy

Deployment description bike share demand deployment

Compute type Select Azure Compute Instance (ACI)

Enable authentication Disable.

Use custom deployment assets Disable. Disabling allows for the default driver file (scoring

script) and environment file to be autogenerated.



For this example, we use the defaults provided in the Advanced menu.
3. Select Deploy.

A green success message appears at the top of the Run screen stated that the deployment was started
successfully. The progress of the deployment can be found
in the Recommended model pane under Deploy status.

Once deployment succeeds, you have an operational web service to generate predictions.

Proceed to the Next steps to learn more about how to consume your new web service, and test your predictions
using Power Bl's built in Azure Machine Learning support.

Clean up resources

Deployment files are larger than data and experiment files, so they cost more to store. Delete only the deployment
files to minimize costs to your account, or if you want to keep your workspace and experiment files. Otherwise,
delete the entire resource group, if you don't plan to use any of the files.

Delete the deployment instance

Delete just the deployment instance from the Azure Machine Learning studio, if you want to keep the resource
group and workspace for other tutorials and exploration.

1. Go to the Azure Machine Learning studio. Navigate to your workspace and on the left under the Assets
pane, select Endpoints.

2. Select the deployment you want to delete and select Delete.
3. Select Proceed.

Delete the resource group

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.
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2. From the list, select the resource group you created.
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3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

Next steps
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In this tutorial, you used automated ML in the Azure Machine Learning studio to create and deploy a time series

forecasting model that predicts bike share rental demand.

See this article for steps on how to create a Power Bl supported schema to facilitate consumption of your newly

deployed web service:

Consume a web service

NOTE

in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

This bike share dataset has been modified for this tutorial. This dataset was made available as part of a Kaggle competition

and was originally available via Capital Bikeshare. It can also be found within the UCI Machine Learning Database.

Source: Fanaee-T, Hadi, and Gama, Joao, Event labeling combining ensemble detectors and background knowledge, Progress
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Tutorial: Create a labeling project for multi-class image

classification

4/7/2020 « 9 minutes to read « Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

This tutorial shows you how to manage the process of labeling (also referred to as tagging) images to be used as data for
building machine learning models. Data labeling in Azure Machine Learning is in public preview.

If you want to train a machine learning model to classify images, you need hundreds or even thousands of images that are
correctly labeled. Azure Machine Learning helps you manage the progress of your private team of domain experts as they label
your data.

In this tutorial, you'll use images of cats and dogs. Since each image is either a cat or a dog, this is a mul/ti-class labeling project.
You'll learn how to:

e Create an Azure storage account and upload images to the account.
e Create an Azure Machine Learning workspace.

e Create a multi-class image labeling project.

e |abel your data. Either you or your labelers can perform this task.

e Complete the project by reviewing and exporting the data.

Prerequisites

e An Azure subscription. If you don't have an Azure subscription, create a free account.

Create a workspace

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train, and deploy
machine learning models. It ties your Azure subscription and resource group to an easily consumed object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.
1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.
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3. Use the search bar to find Machine Learning.

4. Select Machine Learning.
5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:
FIELD DESCRIPTION

Workspace name Enter a unique name that identifies your workspace. In this
example, we use docs-ws. Names must be unique across the
resource group. Use a name that's easy to recall and to
differentiate from workspaces created by others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription or enter a
name to create a new resource group. A resource group holds
related resources for an Azure solution. In this example, we use
docs-aml.

Location Select the location closest to your users and the data resources to
create your workspace.

Workspace edition Select Basic as the workspace type for this tutorial. The workspace
type (Basic & Enterprise) determines the features to which you'll
have access and pricing. Everything in this tutorial can be
performed with either a Basic or Enterprise workspace.

7. After you are finished configuring the workspace, select Review + Create.

WARNING

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.



8. To view the new workspace, select Go to resource.

Start a labeling project

Next you will manage the data labeling project in Azure Machine Learning studio, a consolidated interface that includes machine
learning tools to perform data science scenarios for data science practitioners of all skill levels. The studio is not supported on
Internet Explorer browsers.

1. Sign in to Azure Machine Learning studio.
2. Select your subscription and the workspace you created.

Create a datastore

Azure Machine Learning datastores are used to store connection information, like your subscription ID and token authorization.
Here you use a datastore to connect to the storage account that contains the images for this tutorial.

1. On the left side of your workspace, select Datastores.
2. Select + New datastore.

3. Fill out the form with these settings:

FIELD DESCRIPTION
Datastore name Give the datastore a name. Here we use labeling_tutorial.
Datastore type Select the type of storage. Here we use Azure Blob Storage, the

preferred storage for images.

Account selection method Select Enter manually.

URL https://azureopendatastorage.blob.core.windows.net/openimagescontaine
Authentication type Select SAS token.

Account key ?sv=2019-02-02&ss=bfqt&srt=sco&sp=rl&se=2025-03-25T04:51:172&st=2020-

24720:51:17Z&spr=https&sig=7D7SdkQidGT6pURQIR4ASUZWGXZ%2BHINPCSstoSRRV§

4. Select Create to create the datastore.

Add labelers to workspace

Set up your workspace to include all the people who will label data for any of your projects. Later you'll add these labelers to
your specific labeling project.

1. On the left side, select Data labeling.

2. At the top of the page, select Labelers.

3. Select Add labeler to add the email address of a labeler.
4. Continue to add more labelers until you're done.

Create a labeling project

Now that you have your list of labelers and access to the data you want to have labeled, create your labeling project.
1. At the top of the page, select Projects.

2. Select + Add project.
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1. Use the following input for the Project details form:

FIELD
Project name
Labeling task type

Select Next to continue creating the project.

Select or create a dataset

Object Identification (Bounding Box)

Next Cancel

DESCRIPTION

Give your project a name. Here we'll use tutorial-cats-n-dogs.

Select Image Classification Multi-class.

1. Onthe Select or create a dataset form, select the second choice, Create a dataset, then select the link From

datastore.

2. Use the following input for the Create dataset from datastore form:

a. On the Basic info form, add a name, here we'll use images-for-tutorial. Add a description if you wish. Then select

Next.

b. On the Datastore selection form, use the dropdown to select your Previously created datastore, for example

tutorial_images (Azure Blob Storage)

c. Next, still on the Datastore selection form, select Browse and then select MultiClass - DogsCats. Select Save to

use /MultiClass - DogsCats as the path.

d. Select Next to confirm details and then Create to create the dataset.

e. Select the circle next to the dataset name in the list, for example images-for-tutorial.

3. Select Next to continue creating the project.

Label classes

1. On the Label classes form, type a label name, then select + Add label to type the next label. For this project, the labels

are Cat, Dog, and Uncertain.
2. Select Next when have added all the labels.

Labeling instructions

1. On the Labeling instructions form, you can provide a link to a website that provides detailed instructions for your

labelers. We'll leave it blank for this tutorial.

2. You can also add a short description of the task directly on the form. Type Labeling tutorial - Cats & Dogs.

3. Select Next.

4. On the ML assisted labeling form, leave the checkbox unchecked. ML assisted labeling requires more data than you'll

be using in this tutorial.



5. Select Create project.
This page doesn't automatically refresh. After a pause, manually refresh the page until the project's status changes to Created.

Add labelers to your project

Add some or all of your labelers to this project.

—_

. Select the project name to open the project.

2. Atthe top of the page, select Teams.

3. Select the labeling_tutorial Default Team link.

4. Now use Assign labelers to add the labelers you want to participate in this project.

5. Select from the list of labelers you created earlier. Once you've selected all the labelers you wish to use, select Assign
labelers to add them to your default project team.

Start labeling
You have now set up your Azure resources, and configured a data labeling project. It's time to add labels to your data.

Notify labelers

If you have lots of images to label, hopefully you also have lots of labelers to complete the task. You'll now want to send them
instructions so they can access the data and start labeling.

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.
2. Select the project name link.

3. Atthe top of the page, select Details. You see a summary of your project.
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4. Copy the Labeling portal URL link to send to your labelers.

5. Now select Team at the top to find your labeling team.

6. Select the team name link.

7. At the top of the page, select Email team to start your email. Paste in the labeling portal URL you just copied.

Each time a labeler goes to the portal URL, they'll be presented with more images to label, until the queue is empty.
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Tag the images

In this part of the tutorial, you'll switch roles from the project administrator to that of a /abeler. Use the URL you sent to the team.
This URL brings you to the labeling portal for your project. If you had added instructions, you'd see them here when you arrive
on the page.

1. At the top of the page, select Tasks to start labeling.

2. Select a thumbnail image on the right to display the number of images you wish to label in one go. You must label all
these images before you can move on. Only switch layouts when you have a fresh page of unlabeled data. Switching
layouts clears the page's in-progress tagging work.

3. Select one or more images, then select a tag to apply to the selection. The tag appears below the image. Continue to select
and tag all images on the page. To select all the displayed images simultaneously, select Select all. Select at least one
image to apply a tag.

TIP

You can select the first nine tags by using the number keys on your keyboard.

4. Once all the images on the page are tagged, select Submit to submit these labels.

=' (Preview) Azure Data Labeling S¢ X b
< c O @ northcentralus.experiments.azureml.net/labeling-portal/p... ¥t

. GENETH Microsoft Azure | Machine Learning Data Labeling

All Projects >  tutorial

tutorial tags
[] 1) cat
Instructions Tasks D (#2) Dog

D (#3) Uncertain

—————

1. Switch to view four images at a time

5. After you submit tags for the data at hand, Azure refreshes the page with a new set of images from the work queue.

Complete the project
Now you'll switch roles back to the project administrator for the labeling project.
As a manager, you may want to review the work of your labeler.

Review labeled data

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.
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2. Select the project name link.

3. The Dashboard shows you the progress of your project.

4. At the top of the page, select Data.

5. On the left side, select Labeled data to see your tagged images.

6. When you disagree with a label, select the image and then select Reject at the bottom of the page. The tags will be
removed and the image is put back in the queue of unlabeled images.

Export labeled data

You can export the label data for Machine Learning experimentation at any time. Users often export multiple times and train
different models, rather than wait for all the images to be labeled.

Image labels can be exported in COCO format or as an Azure Machine Learning dataset. The dataset format makes it easy to use
for training in Azure Machine Learning.

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.
2. Select the project name link.
3. Select Export and choose Export as Azure ML Dataset.

The status of the export appears just below the Export button.

4. Once the labels are successfully exported, select Datasets on the left side to view the results.

Clean up resources

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.
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2. From the list, select the resource group you created.

3. Select Delete resource group.
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4. Enter the resource group name. Then select Delete.

Next steps

In this tutorial, you labeled images. Now use your labeled data:

Train a machine learning image recognition model.


https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/labeled-datasets/labeled-datasets.ipynb

Tutorial: Get started creating your first ML

experiment with the Python SDK

4/13/2020 « 4 minutes to read « Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you complete the end-to-end steps to get started with the Azure Machine Learning Python SDK
running in Jupyter notebooks. This tutorial is part one of a two-part tutorial series, and covers Python
environment setup and configuration, as well as creating a workspace to manage your experiments and
machine learning models. Part two builds on this to train multiple machine learning models and introduce the
model management process using both Azure Machine Learning studio and the SDK.

In this tutorial, you:

e Create an Azure Machine Learning Workspace to use in the next tutorial.
e Clone the tutorials notebook to your folder in the workspace.

e Create a cloud-based compute instance with Azure Machine Learning Python SDK installed and pre-
configured.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today.

Create a workspace

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,
and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed
object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.
1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.
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3. Use the search bar to find Machine Learning.

N

. Select Machine Learning.

5. Inthe Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

FIELD

Workspace name

Subscription

Resource group

Location

Workspace edition

DESCRIPTION

Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Select the Azure subscription that you want to use.

Use an existing resource group in your subscription or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Select the location closest to your users and the data
resources to create your workspace.

Select Basic as the workspace type for this tutorial. The
workspace type (Basic & Enterprise) determines the
features to which you'll have access and pricing.
Everything in this tutorial can be performed with either a
Basic or Enterprise workspace.

7. After you are finished configuring the workspace, select Review + Create.



WARNING

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

IMPORTANT

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right
place.

Run notebook in your workspace

This tutorial uses the cloud notebook server in your workspace for an install-free and pre-configured experience.

Use your own environment if you prefer to have control over your environment, packages and dependencies.

Follow along with this video or use the detailed steps below to clone and run the tutorial from your workspace.

Clone a notebook folder

You complete the following experiment set-up and run steps in Azure Machine Learning studio, a consolidated
interface that includes machine learning tools to perform data science scenarios for data science practitioners of
all skill levels.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.
3. Select Notebooks on the left.

4. Open the Samples folder.

5. Open the Python folder.

6. Open the folder with a version number on it. This number represents the current release for the Python
SDK.

7. Selectthe "..." at the right of the tutorials folder and then select Clone.


https://www.microsoft.com/en-us/videoplayer/embed/RE4mTUr
https://ml.azure.com/

Microsoft Azure Machine Learning

- New

fnr Home

Author

does-ws > Notebooks

Notebooks

R

Azure ML gallery

[Z] Notebooks

{zﬁ Automated ML &

& Designer @

Assets

&Y Datasets
L Experiments
P Pipelines
Models

&> Endpoints

Manage

Samples

Python

1.0.72

how-to-use-azurem|

tutorials

{} metadata.json

User files

username

I Clone

[ Copy folder path

8. Alist of folders displays showing each user who accesses the workspace. Select your folder to clone the

tutorials folder there.

T Under User Files open your folder and then open the cloned tutorials folder.
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IMPORTANT

You can view notebooks in the samples folder but you cannot run a notebook from there. In order to run a

notebook, make sure you open the cloned version of the notebook in the User Files section.

2. Select the tutorial-1st-experiment-sdk-train.ipynb file in your tutorials/create-first-ml-

experiment folder.

3. On the top bar, select a compute instance to use to run the notebook. These VMs are pre-configured with

everything you need to run Azure Machine Learning.
4. If no VMs are found, select + Add to create the compute instance VM.

a. When you create a VM, provide a name. The name must be between 2 to 16 characters. Valid
characters are letters, digits, and the - character, and must also be unique across your Azure

subscription.
b. Select the Virtual Machine size from the available choices.
¢. Then select Create. It can take approximately 5 minutes to set up your VM.

5. Once the VM is available it will be displayed in the top toolbar. You can now run the notebook either by
using Run all in the toolbar, or by using Shift+Enter in the code cells of the notebook.

If you have custom widgets or prefer using Jupyter/JupyterLab select the Jupyter drop down on the far right,
then select Jupyter or JupyterLab. The new browser window will be opened.



Next steps

In this tutorial, you completed these tasks:

e Created an Azure Machine Learning workspace.

e Created and configured a cloud notebook server in your workspace.

In part two of the tutorial you run the code in tutorial-1ist-experiment-sdk-train.ipynb to train a machine

learning model.

Tutorial: Train your first model

IMPORTANT
If you do not plan on following part 2 of this tutorial or any other tutorials, you should stop the cloud notebook server

VM when you are not using it to reduce cost.




Tutorial: Train your first ML model

4/1/2020 « 7 minutes to read « Edit Online

APPLIES TO: @ Basic edition Enterprise edition (Upgrade to Enterprise edition)

This tutorial is part two of a two-part tutorial series. In the previous tutorial, you created a workspace and
chose a development environment. In this tutorial, you learn the foundational design patterns in Azure Machine
Learning, and train a simple scikit-learn model based on the diabetes data set. After completing this tutorial, you

will have the practical knowledge of the SDK to scale up to developing more-complex experiments and workflows.
In this tutorial, you learn the following tasks:

e Connect your workspace and create an experiment
e | oad data and train scikit-learn models
e View training results in the studio

e Retrieve the best model

Prerequisites

The only prerequisite is to run part one of this tutorial, Setup environment and workspace.

In this part of the tutorial, you run the code in the sample Jupyter notebook tutorials/create-first-ml-
experiment/tutorial-1st-experiment-sdk-train.ipynb opened at the end of part one. This article walks through the
same code that is in the notebook.

Open the notebook

1. Sign in to Azure Machine Learning studio.

2. Open the tutorial-1st-experiment-sdk-train.ipynb in your folder as shown in part one.

WARNING

Do not create a new notebook in the Jupyter interface! The notebook tutorials/create-first-mi-experiment/tutorial- 1st-
experiment-sdk-train.jpynbis inclusive of all code and data needed for this tutorial.

Connect workspace and create experiment

IMPORTANT

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a notebook,
click the code cell and hit Shift+Enter. Or, run the entire notebook by choosing Run all from the top toolbar.

Import the workspace class, and load your subscription information from the file config.json using the function

from_config(). This looks for the JSON file in the current directory by default, but you can also specify a path
parameter to point to the file using from_config(path="your/file/path") .In a cloud notebook server, the file is
automatically in the root directory.

If the following code asks for additional authentication, simply paste the link in a browser and enter the


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-1st-experiment-sdk-train.md
https://ml.azure.com/

authentication token.

from azureml.core import Workspace
ws = Workspace.from_config()

Now create an experiment in your workspace. An experiment is another foundational cloud resource that
represents a collection of trials (individual model runs). In this tutorial you use the experiment to create runs and
track your model training in the Azure Machine Learning studio. Parameters include your workspace reference,
and a string name for the experiment.

from azureml.core import Experiment
experiment = Experiment(workspace=ws, name="diabetes-experiment")

Load data and prepare for training

For this tutorial, you use the diabetes data set, which uses features like age, gender, and BMI to predict diabetes
disease progression. Load the data from the Azure Open Datasets class, and split it into training and test sets using
train_test_split() . This function segregates the data so the model has unseen data to use for testing following

training.
from azureml.opendatasets import Diabetes
from sklearn.model_selection import train_test_split

x_df = Diabetes.get_tabular_dataset().to_pandas_dataframe().dropna()
y_df = x_df.pop("Y")

X_train, X_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.2, random_state=66)

Train a model

Training a simple scikit-learn model can easily be done locally for small-scale training, but when training many
iterations with dozens of different feature permutations and hyperparameter settings, it is easy to lose track of
what models you've trained and how you trained them. The following design pattern shows how to leverage the
SDK to easily keep track of your training in the cloud.

Build a script that trains ridge models in a loop through different hyperparameter alpha values.


https://azure.microsoft.com/services/open-datasets/

from sklearn.linear_model import Ridge

from sklearn.metrics import mean_squared_error
from sklearn.externals import joblib

import math

alphas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

for alpha in alphas:
run = experiment.start_logging()
run.log("alpha_value", alpha)

model = Ridge(alpha=alpha)

model.fit(X=X_train, y=y train)

y_pred = model.predict(X=X_test)

rmse = math.sqrt(mean_squared_error(y_true=y_test, y pred=y_pred))
run.log("rmse", rmse)

model_name = "model_alpha_" + str(alpha) + ".pkl"
filename = "outputs/" + model_name

joblib.dump(value=model, filename=filename)
run.upload_file(name=model_name, path_or_stream=filename)
run.complete()

The above code accomplishes the following:

1. For each alpha hyperparameter value in the alphas array, a new run is created within the experiment. The
alpha value is logged to differentiate between each run.

2. In each run, a Ridge model is instantiated, trained, and used to run predictions. The root-mean-squared-error is
calculated for the actual versus predicted values, and then logged to the run. At this point the run has metadata
attached for both the alpha value and the rmse accuracy.

3. Next, the model for each run is serialized and uploaded to the run. This allows you to download the model file
from the run in the studio.

4. Atthe end of each iteration the run is completed by calling run.complete() .

After the training has completed, call the experiment variable to fetch a link to the experiment in the studio.

experiment
NAME WORKSPACE REPORT PAGE DOCS PAGE
diabetes-experiment your-workspace-name Link to Azure Machine Link to Documentation

Learning studio

View training results in studio

Following the Link to Azure Machine Learning studio takes you to the main experiment page. Here you see
all the individual runs in the experiment. Any custom-logged values ( alpha_value and rmse ,in this case) become
fields for each run, and also become available for the charts and tiles at the top of the experiment page. To add a
logged metric to a chart or tile, hover over it, click the edit button, and find your custom-logged metric.

When training models at scale over hundreds and thousands of separate runs, this page makes it easy to see
every model you trained, specifically how they were trained, and how your unique metrics have changed over
time.



diabetes-experiment Switch to old experience ()
[ Edittable (0 Refresh °) Reset to default view | (® ) Include child runs
(v Add fiiter )
Run status rmse & alpha_value &
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™Y L]
Running Completed . 3 . .
L ]
355.64 . *gl .
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Failed Other o .
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Run Run ID Status Submitted time Duration S
Run 10 10566366-5494-4621-8737-T1a... Completed Apr 1, 2020 117:34 AM 25 S
Run 9 80addac5-deBB-42ad-86da-42d... Completed Apr 1, 2020 11:34 AM 235 S
Run 8 bb569f61-7d61-4a88-b487-34b... Completed  Apr 1, 2020 11:34 AM 1s 5
Run 7 566a5f8b-30ea-4c32-86a6-276... Completed  Apr 1, 2020 11:34 AM 23 S

Select a run number link in the RuN NUMBER column to see the page for an individual run. The default tab Details
shows you more-detailed information on each run. Navigate to the Outputs + logs tab, and you see the .pkl
file for the model that was uploaded to the run during each training iteration. Here you can download the model
file, rather than having to retrain it manually.

Run1 @ Completed Switch to old experience &

() Refresh Resubmit Cancel | m Enable log streaming

Details Metrics Images Child runs | Qutputs + logs Snapshot Raw JSOM Explanations (previ

0 «

(O model_alpha_0.1.pkl E

4 Download

Get the best model

In addition to being able to download model files from the experiment in the studio, you can also download them
programmatically. The following code iterates through each run in the experiment, and accesses both the logged
run metrics and the run details (which contains the run_id). This keeps track of the best run, in this case the run
with the lowest root-mean-squared-error.



minimum_rmse_runid = None
minimum_rmse = None

for run in experiment.get_runs():
run_metrics = run.get_metrics()
run_details = run.get_details()
# each logged metric becomes a key in this returned dict
run_rmse = run_metrics["rmse"]
run_id = run_details["runId"]

if minimum_rmse is None:
minimum_rmse = run_rmse
minimum_rmse_runid = run_id
else:
if run_rmse < minimum_rmse:
minimum_rmse = run_rmse
minimum_rmse_runid = run_id

print("Best run_id: + minimum_rmse_runid)

+ str(minimum_rmse))

print("Best run_id rmse:

Best run_id: 864f5ce7-6729-405d-b457-83250da99c80
Best run_id rmse: 57.234760283951765

Use the best run ID to fetch the individual run using the Run constructor along with the experiment object. Then
call get_file_names() to see all the files available for download from this run. In this case, you only uploaded one
file for each run during training.

from azureml.core import Run
best_run = Run(experiment=experiment, run_id=minimum_rmse_runid)
print(best_run.get_file_names())

[ 'model_alpha_0.1.pkl"]

Call download() on the run object, specifying the model file name to download. By default this function
downloads to the current directory.

best_run.download_file(name="model_alpha_0.1.pkl")

Clean up resources

Do not complete this section if you plan on running other Azure Machine Learning tutorials.

Stop the compute instance

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.
1. In your workspace, select Compute.

2. From the list, select the VM.

3. Select Stop.

4. When you're ready to use the server again, select Start.

Delete everything



IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

A\ my-rg - Microsoft Azure X + - 2 7S
< C (y @& portalazure.com/ e
: i ] user@contoso.com @
P Search resources, services, and docs (G+/) X I Q s ? ®) DEFAULT DIRECTORY ()
« Dashboard > Resource groups > my-rg
—+ Create aresource [.‘] my-rg

Resource group

ﬁ‘ Home
‘,O Search (Ctrl+/) l < == Add  =Z Edit columns | T Delete resource group | ) Refresh = Move

E Dashboard

[ X N Subscription (change) Deployments
:= All services ) Overview Visual Studio Ultimate with MSDN 1 Succeeded
EAVORITES H Activity log Subscription ID

XXXXXX-XXX-XXXX-XXXXX

All resources s Access control (IAM)

Tags (change)

() Resource groups & Tags Click here to add tags
= A
(2 App Services Events
SQL databases Settings | Filter by name... | | All types v | | All locations
= .
@ SQL data warehouses @ Quickstart 14 items D Show hidden types @
& Azure Cosmos DB & Deployments [] name TYPE
K virtual machines ) Policies A i i i
myworkspace Machine Learning service workspace
Load balancers H— i
@ i= Properties A my-workspace Machine Learning service workspace
Storage accounts
3 9 a Locks @ myworkspace0013141752 Application Insights
&> Virtual networks E3 Export template s
v d »

2. From the list, select the resource group you created.
3. Select Delete resource group.
4. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select

Delete.

Next steps

In this tutorial, you did the following tasks:

e Connected your workspace and created an experiment
e Loaded data and trained scikit-learn models

e Viewed training results in the studio and retrieved models

Deploy your model with Azure Machine Learning. Learn how to develop automated machine learning
experiments.


file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png

Tutorial: Train image classification models with

MNIST data and scikit-learn

4/24/2020 « 13 minutes to read » Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you train a machine learning model on remote compute resources. You'll use the training and
deployment workflow for Azure Machine Learning in a Python Jupyter notebook. You can then use the
notebook as a template to train your own machine learning model with your own data. This tutorial is part one
of a two-part tutorial series.

This tutorial trains a simple logistic regression by using the MNIST dataset and scikit-learn with Azure Machine
Learning. MNIST is a popular dataset consisting of 70,000 grayscale images. Each image is a handwritten digit
of 28 x 28 pixels, representing a number from zero to nine. The goal is to create a multi-class classifier to
identify the digit a given image represents.

Learn how to take the following actions:

e Set up your development environment.
e Access and examine the data.
e Train a simple logistic regression model on a remote cluster.

e Review training results and register the best model.

You learn how to select a model and deploy it in part two of this tutorial.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today.

NOTE

Code in this article was tested with Azure Machine Learning SDK version 1.0.83.

Prerequisites

e Complete the Tutorial: Get started creating your first Azure ML experiment to:

o Create a workspace
o Clone the tutorials notebook to your folder in the workspace.
o Create a cloud-based compute instance.

e Inyour cloned tutorials/image-classification-mnist-data folder, open the img-classification-part1-
training.ipynb notebook.

The tutorial and accompanying utils.py file is also available on GitHub if you wish to use it on your own local
environment. Run pip install azureml-sdk[notebooks] azureml-opendatasets matplotlib to install dependencies
for this tutorial.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-models-with-aml.md
http://yann.lecun.com/exdb/mnist/
https://scikit-learn.org
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

IMPORTANT

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a
notebook, click the code cell and hit Shift+Enter. Or, run the entire notebook by choosing Run all from the top toolbar.

Set up your development environment

All the setup for your development work can be accomplished in a Python notebook. Setup includes the
following actions:

Import Python packages.

Connect to a workspace, so that your local computer can communicate with remote resources.

Create an experiment to track all your runs.

Create a remote compute target to use for training.

Import packages

Import Python packages you need in this session. Also display the Azure Machine Learning SDK version:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

import azureml.core
from azureml.core import Workspace

# check core SDK version number
print("Azure ML SDK Version: ", azureml.core.VERSION)

Connect to a workspace

Create a workspace object from the existing workspace. wWorkspace.from_config() reads the file config.json
and loads the details into an object named ws :

# load workspace configuration from the config.json file in the current folder.
ws = Workspace.from_config()
print(ws.name, ws.location, ws.resource_group, sep="\t')

Create an experiment

Create an experiment to track the runs in your workspace. A workspace can have multiple experiments:

from azureml.core import Experiment
experiment_name = 'sklearn-mnist'

exp = Experiment(workspace=ws, name=experiment_name)

Create or attach an existing compute target

By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning
models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you
create Azure Machine Learning Compute as your training environment. You will submit Python code to run on
this VM later in the tutorial.

The code below creates the compute clusters for you if they don't already exist in your workspace.



Creation of the compute target takes about five minutes. If the compute resource is already in the
workspace, the code uses it and skips the creation process.

from azureml.core.compute import AmlCompute
from azureml.core.compute import ComputeTarget
import os

# choose a name for your cluster

compute_name = os.environ.get("AML_COMPUTE_CLUSTER_NAME", "cpucluster")
compute_min_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MIN_NODES", ©)
compute_max_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MAX_NODES", 4)

# This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("AML_COMPUTE_CLUSTER_SKU", "STANDARD_D2_V2")

if compute_name in ws.compute_targets:
compute_target = ws.compute_targets[compute_name]
if compute_target and type(compute_target) is AmlCompute:
print('found compute target. just use it. ' + compute_name)
else:
print('creating a new compute target...')
provisioning_config = AmlCompute.provisioning_configuration(vm_size=vm_size,
min_nodes=compute_min_nodes,
max_nodes=compute_max_nodes)

# create the cluster
compute_target = ComputeTarget.create(
ws, compute_name, provisioning_config)

# can poll for a minimum number of nodes and for a specific timeout.
# if no min node count is provided it will use the scale settings for the cluster
compute_target.wait_for_completion(

show_output=True, min_node_count=None, timeout_in_minutes=20)

# For a more detailed view of current AmlCompute status, use get_status()
print(compute_target.get_status().serialize())

You now have the necessary packages and compute resources to train a model in the cloud.

Explore data

Before you train a model, you need to understand the data that you use to train it. In this section you learn how
to:

e Download the MNIST dataset.

e Display some sample images.

Download the MNIST dataset

Use Azure Open Datasets to get the raw MNIST data files. Azure Open Datasets are curated public datasets that
you can use to add scenario-specific features to machine learning solutions for more accurate models. Each
dataset has a corresponding class, MNIST in this case, to retrieve the data in different ways.

This code retrieves the data as a FileDataset object, which is a subclass of Dataset . A FileDataset references
single or multiple files of any format in your datastores or public urls. The class provides you with the ability to
download or mount the files to your compute by creating a reference to the data source location. Additionally,
you register the Dataset to your workspace for easy retrieval during training.

Follow the how-to to learn more about Datasets and their usage in the SDK.


https://docs.microsoft.com/azure/open-datasets/overview-what-are-open-datasets

from azureml.core import Dataset
from azureml.opendatasets import MNIST

data_folder = os.path.join(os.getcwd(), 'data')
os.makedirs(data_folder, exist_ok=True)

mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)

mnist_file_dataset = mnist_file_dataset.register(workspace=ws,
name="'mnist_opendataset’,
description="training and test dataset’,
create_new_version=True)

Display some sample images

Load the compressed files into numpy arrays. Then use matplotlib to plot 30 random images from the dataset
with their labels above them. This step requires a load_data function that's included in an util.py file. This file
is included in the sample folder. Make sure it's placed in the same folder as this notebook. The 1oad_data
function simply parses the compressed files into numpy arrays.

# make sure utils.py is in the same directory as this code
from utils import load_data
import glob

# note we also shrink the intensity values (X) from ©-255 to ©-1. This helps the model converge faster.
X_train = load_data(glob.glob(os.path.join(data_folder,"**/train-images-idx3-ubyte.gz"), recursive=True)
[e], False) / 255.0

X_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-images-idx3-ubyte.gz"), recursive=True)[@],
False) / 255.0

y_train = load_data(glob.glob(os.path.join(data_folder,"**/train-labels-idx1-ubyte.gz"), recursive=True)
[0], True).reshape(-1)

y_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-1labels-idx1-ubyte.gz"), recursive=True)[0],
True).reshape(-1)

# now let's show some randomly chosen images from the traininng set.
count = @
sample_size = 30
plt.figure(figsize=(16, 6))
for i in np.random.permutation(X_train.shape[0])[:sample_size]:
count = count + 1
plt.subplot(1, sample_size, count)
plt.axhline('")
plt.axvline('")
plt.text(x=10, y=-10, s=y train[i], fontsize=18)
plt.imshow(X_train[i].reshape(28, 28), cmap=plt.cm.Greys)
plt.show()

A random sample of images displays:

8 9 47 9 2 947 8 488 232 4611383813138 4 8
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Now you have an idea of what these images look like and the expected prediction outcome.

Train on a remote cluster

For this task, you submit the job to run on the remote training cluster you set up earlier. To submit a job you:

e C(Create a directory



e (Create a training script
e (Create an estimator object

e Submit the job

Create a directory

Create a directory to deliver the necessary code from your computer to the remote resource.

import os
script_folder = os.path.join(os.getcwd(), "sklearn-mnist")
os.makedirs(script_folder, exist_ok=True)

Create a training script
To submit the job to the cluster, first create a training script. Run the following code to create the training script

called train.py in the directory you just created.



%%writefile $script_folder/train.py

import argparse
import os

import numpy as np
import glob

from sklearn.linear_model import LogisticRegression
import joblib

from azureml.core import Run
from utils import load_data

# let user feed in 2 parameters, the dataset to mount or download, and the regularization rate of the
logistic regression model

parser = argparse.ArgumentParser()

parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point")
parser.add_argument('--regularization', type=float, dest='reg', default=0.01, help='regularization rate')
args = parser.parse_args()

data_folder = args.data_folder
print('Data folder:', data_folder)

# load train and test set into numpy arrays

# note we scale the pixel intensity values to ©-1 (by dividing it with 255.0) so the model can converge
faster.

X_train = load_data(glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'), recursive=True)
[@], False) / 255.0

X_test = load_data(glob.glob(os.path.join(data_folder, '**/t1@k-images-idx3-ubyte.gz'), recursive=True)[0],
False) / 255.0

y_train = load_data(glob.glob(os.path.join(data_folder, '**/train-labels-idx1l-ubyte.gz'), recursive=True)
[0], True).reshape(-1)

y_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-labels-idxl-ubyte.gz'), recursive=True)[0],
True).reshape(-1)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep = '\n")

# get hold of the current run
run = Run.get_context()

print('Train a logistic regression model with regularization rate of', args.reg)
clf = LogisticRegression(C=1.0/args.reg, solver="liblinear", multi_class="auto", random_state=42)
clf.fit(X_train, y_train)

print('Predict the test set')
y_hat = clf.predict(X_test)

# calculate accuracy on the prediction
acc = np.average(y_hat == y_test)
print('Accuracy is', acc)

run.log('regularization rate', np.float(args.reg))
run.log('accuracy', np.float(acc))

os.makedirs('outputs', exist_ok=True)
# note file saved in the outputs folder is automatically uploaded into experiment record
joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl")

Notice how the script gets data and saves models:

e The training script reads an argument to find the directory that contains the data. When you submit the

job later, you point to the datastore for this argument:

parser.add_argument('--data-folder', type=str, dest='data_folder', help='data directory mounting
point")

e The training script saves your model into a directory named outputs. Anything written in this directory



is automatically uploaded into your workspace. You access your model from this directory later in the

tutorial. joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

e The training script requires the file utils.py to load the dataset correctly. The following code copies

utils.py into script_folder so that the file can be accessed along with the training script on the

remote resource.

import shutil
shutil.copy('utils.py', script_folder)

Create an estimator

An estimator object is used to submit the run. Azure Machine Learning has pre-configured estimators for

common machine learning frameworks, as well as generic Estimator. Create an estimator by specifying

The name of the estimator object, est .

The directory that contains your scripts. All the files in this directory are uploaded into the cluster nodes for

execution.

The compute target. In this case, you use the Azure Machine Learning compute cluster you created.

The training script name, train.py.
An environment that contains the libraries needed to run the script.

Parameters required from the training script.

In this tutorial, this target is AmICompute. All files in the script folder are uploaded into the cluster nodes for

run. The data_folder is set to use the dataset. "First, create the environment that contains: the scikit-learn

library, azureml-dataprep required for accessing the dataset, and azureml-defaults which contains the

dependencies for logging metrics. The azureml-defaults also contains the dependencies required for deploying

the model as a web service later in the part 2 of the tutorial.

Once the environment is defined, register it with the Workspace to re-use it in part 2 of the tutorial.

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies

# to install required packages
env = Environment('tutorial-env')

cd = CondaDependencies.create(pip_packages=["'azureml-dataprep[pandas,fuse]>=1.1.14",

conda_packages = ['scikit-learn==0.22.1"])

env.python.conda_dependencies = cd

# Register environment to re-use later
env.register(workspace = ws)

Then create the estimator with the following code.

'azureml-defaults'],



from azureml.train.estimator import Estimator

script_params = {
# to mount files referenced by mnist dataset
'--data-folder': mnist_file_dataset.as_named_input('mnist_opendataset').as_mount(),
'--regularization’': 0.5

est = Estimator(source_directory=script_folder,
script_params=script_params,
compute_target=compute_target,
environment_definition=env,
entry_script="train.py")

Submit the job to the cluster

Run the experiment by submitting the estimator object:

run = exp.submit(config=est)
run

Because the call is asynchronous, it returns a Preparing or Running state as soon as the job is started.

Monitor a remote run

In total, the first run takes about 10 minutes. But for subsequent runs, as long as the script dependencies
don't change, the same image is reused. So the container startup time is much faster.

What happens while you wait:

e Image creation: A Docker image is created that matches the Python environment specified by the
estimator. The image is uploaded to the workspace. Image creation and uploading takes about five

minutes.

This stage happens once for each Python environment because the container is cached for subsequent
runs. During image creation, logs are streamed to the run history. You can monitor the image creation

progress by using these logs.

e Scaling: If the remote cluster requires more nodes to do the run than currently available, additional
nodes are added automatically. Scaling typically takes about five minutes.

e Running: In this stage, the necessary scripts and files are sent to the compute target. Then datastores
are mounted or copied. And then the entry_script is run. While the job is running, stdout and the
./logs directory are streamed to the run history. You can monitor the run's progress by using these logs.

e Post-processing: The ./outputs directory of the run is copied over to the run history in your
workspace, so you can access these results.

You can check the progress of a running job in several ways. This tutorial uses a Jupyter widget and a

wait_for_completion method.

Jupyter widget

Watch the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and
provides live updates every 10 to 15 seconds until the job finishes:

from azureml.widgets import RunDetails
RunDetails(run).show()


https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

The widget will look like the following at the end of training:

Run Properties Output Logs
Status Completed KSE:; I:‘.ﬁ\e;ﬁzgn;:;;:::i:z:::z:\:Z;: I;; driver_log.txt
Start Time 8/10/2018 12:11:42 PM Data folder: /mnt/batch/tasks/shared/LS_rootjjobs/gpucluster225c81517743bf5/azureml/skleamn
Duration 0:07:20 ;:?;éoﬁ;:ﬂ& 100384/mounts/workspacefilestore/mnist
Run Id sklearn- ﬁﬁﬁﬂ%}
mnist_1533921100384 (10000,)

Train a logistic regression model with regularizaion rate of 0.01

Arguments NIA Predict the test set

— . 0.01 Accuracy is 0.9185
reguiarization rase Y The experiment completed successfully. Starting post-processing steps
accuracy 0.9185

Click here to see the run in Azure portal

If you need to cancel a run, you can follow these instructions.

Get log results upon completion

Model training and monitoring happen in the background. Wait until the model has finished training before you

run more code. Use wait_for_completion to show when the model training is finished:

run.wait_for_completion(show_output=False) # specify True for a verbose log

Display run results

You now have a model trained on a remote cluster. Retrieve the accuracy of the model:
print(run.get_metrics())

The output shows the remote model has accuracy of 0.9204:
{'regularization rate': 0.8, 'accuracy': 0.9204}

In the next tutorial, you explore this model in more detail.

Register model

The last step in the training script wrote the file outputs/sklearn_mnist_model.pkl in a directory named outputs
in the VM of the cluster where the job is run. outputs is a special directory in that all content in this directory is
automatically uploaded to your workspace. This content appears in the run record in the experiment under your

workspace. So the model file is now also available in your workspace.

You can see files associated with that run:
print(run.get_file_names())

Register the model in the workspace, so that you or other collaborators can later query, examine, and deploy
this model:

# register model

model = run.register_model(model_name='sklearn_mnist"',
model_path="'outputs/sklearn_mnist_model.pkl")

print(model.name, model.id, model.version, sep='\t")


https://aka.ms/aml-docs-cancel-run

Clean up resources

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning

tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

A\ my-rg - Microsoft Azure X +
< C ( @& portalazure.com/ bxd
L Search resources, services, and docs (G+/) i) () 33
« Dashboard > Resource groups > my-rg
- Create aresource [.’] my-rg

Resource group

2 © user@contoso.com @
DEFAULT DIRECTORY ()

A Home =
‘/O Search (Ctrl+/) ‘ « = Add =2 Editcolumns | T Delete resource group | ) Refresh  =» Move

E Dashboard
~N Subscription (change)

= ;
) Overview Visual Studio Ultimate with MSDN

+= All services
FAVORITES H Activity log Subscription ID
XXXXXX-XXX-XXXX-XXXXX
s Access control (IAM)

All resources
Tags (change)

Deployments
1 Succeeded

»

£ % ‘ ‘ All locations

@) Resource groups X 4 Tags Click here to add tags

!3‘. App Services Efents

SQL databases Settings ‘ Filter by name. ‘ ‘ All types
™ SQL data warehouses € Quickstart 14items [ ] Show hidden types @
& Azure Cosmos DB g1 Deployments [ ] name

K2 Virtual machines Policies A myworkspace

4» Load balancers = Properties A my-workspace

[ storage accounts & Locks 9 myworkspace0013141752

&+ Virtual networks B3 Export template M

5 v 4
2. From the list, select the resource group you created.
3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

You can also delete just the Azure Machine Learning Compute cluster. However, autoscale is turned on, and the

Machine Learning service workspace
Machine Learning service workspace

Application Insights

cluster minimum is zero. So this particular resource won't incur additional compute charges when not in use:

# Optionally, delete the Azure Machine Learning Compute cluster
compute_target.delete()

Next steps

In this Azure Machine Learning tutorial, you used Python for the following tasks:

e Set up your development environment.

Access and examine the data.

Review training details and register the best model.
You're ready to deploy this registered model by using the instructions in the next

Tutorial 2 - Deploy models

Train multiple models on a remote cluster using the popular scikit-learn machine learning library

part of the tutorial series:
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Tutorial: Deploy an image classification model in

Azure Container Instances

4/24/2020 « 7 minutes to read ¢ Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

This tutorial is part two of a two-part tutorial series. In the previous tutorial, you trained machine learning
models and then registered a model in your workspace on the cloud. Now you're ready to deploy the model as a
web service. A web service is an image, in this case a Docker image. It encapsulates the scoring logic and the
model itself.

In this part of the tutorial, you use Azure Machine Learning for the following tasks:

e Setup your testing environment.
e Retrieve the model from your workspace.
e Deploy the model to Container Instances.

e Test the deployed model.

Container Instances is a great solution for testing and understanding the workflow. For scalable production
deployments, consider using Azure Kubernetes Service. For more information, see how to deploy and where.

NOTE

Code in this article was tested with Azure Machine Learning SDK version 1.0.83.

Prerequisites

To run the notebook, first complete the model training in Tutorial (part 1): Train an image classification model.
Then open the img-classification-part2-deploy.ipynb notebook in your cloned tutorials/image-classification-
mnist-data folder.

This tutorial is also available on GitHub if you wish to use it on your own local environment. Make sure you have
installed matplotlib and scikit-learn inyour environment.

IMPORTANT

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a notebook,
click the code cell and hit Shift+Enter. Or, run the entire notebook by choosing Run all from the top toolbar.

Set up the environment

Start by setting up a testing environment.

Import packages
Import the Python packages needed for this tutorial.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-deploy-models-with-aml.md
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

%matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

import azureml.core

# Display the core SDK version number

print("Azure ML SDK Version: ", azureml.core.VERSION)

Deploy as web service

Deploy the model as a web service hosted in ACI.

To build the correct environment for ACI, provide the following:

e A scoring script to show how to use the model

e A configuration file to build the ACI

e The model you trained before

Create scoring script

Create the scoring script, called score.py, used by the web service call to show how to use the model.

You must include two required functions into the scoring script:

e The init() function, which typically loads the model into a global object. This function is run only once

when the Docker container is started.

e The run(input_data) function uses the model to predict a value based on the input data. Inputs and

outputs to the run typically use JSON for serialization and de-serialization, but other formats are

supported.

%kwritefile score.py

import json

import numpy as np

import os

import pickle

import joblib

def

def

init():

global model

# AZUREML_MODEL_DIR is an environment variable created during deployment.

# It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)

# For multiple models, it points to the folder containing all deployed models (./azureml-models)
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), ‘'sklearn_mnist_model.pkl")

model = joblib.load(model_path)

run(raw_data):

data = np.array(json.loads(raw_data)['data'])

# make prediction

y_hat = model.predict(data)

# you can return any data type as long as it is JSON-serializable
return y_hat.tolist()

Create configuration file

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for your ACI

container. While it depends on your model, the default of 1 core and 1 gigabyte of RAM is usually sufficient for

many models. If you feel you need more later, you would have to recreate the image and redeploy the service.



from azureml.core.webservice import AciWebservice

aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
memory_gb=1,
tags={"data": "MNIST", "method" : "sklearn"},
description="'Predict MNIST with sklearn"')

Deploy in ACI

Estimated time to complete: about 2-5 minutes
Configure the image and deploy. The following code goes through these steps:

1. Create environment object containing dependencies needed by the model using the environment (
tutorial-env ) saved during training.

2. Create inference configuration necessary to deploy the model as a web service using:
e The scoring file ( score.py )
e environment object created in previous step

3. Deploy the model to the ACI container.

4. Get the web service HTTP endpoint.

%ktime

from azureml.core.webservice import Webservice
from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment
from azureml.core import Workspace

from azureml.core.model import Model

ws = Workspace.from_config()
model = Model(ws, 'sklearn_mnist')
myenv = Environment.get(workspace=ws, name="tutorial-env", version="1")
inference_config = InferenceConfig(entry_script="score.py", environment=tutorial-env)
service = Model.deploy(workspace=ws,

name="'sklearn-mnist-svc3',

models=[model],

inference_config=inference_config,

deployment_config=aciconfig)

service.wait_for_deployment(show_output=True)

Get the scoring web service's HTTP endpoint, which accepts REST client calls. This endpoint can be shared with

anyone who wants to test the web service or integrate it into an application.

print(service.scoring_ uri)

Test the model

Download test data

Download the test data to the ./data/ directory



import os
from azureml.core import Dataset
from azureml.opendatasets import MNIST

data_folder = os.path.join(os.getcwd(), 'data')
os.makedirs(data_folder, exist_ok=True)

mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)

Load test data
Load the test data from the ./data/ directory created during the training tutorial.

from utils import load_data
import os
import glob

data_folder = os.path.join(os.getcwd(), 'data')

# note we also shrink the intensity values (X) from ©-255 to ©-1. This helps the neural network converge
faster

X_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-images-idx3-ubyte.gz"), recursive=True)[0],
False) / 255.0

y_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-labels-idx1-ubyte.gz"), recursive=True)[0],
True).reshape(-1)

Predict test data

Feed the test dataset to the model to get predictions.

The following code goes through these steps:

1. Send the data as a JSON array to the web service hosted in ACI.

2. Use the SDK's run API to invoke the service. You can also make raw calls using any HTTP tool such as curl.
import json
test = json.dumps({"data": X_test.tolist()})

test = bytes(test, encoding='utf8")
y_hat = service.run(input_data=test)

Examine the confusion matrix

Generate a confusion matrix to see how many samples from the test set are classified correctly. Notice the mis-
classified value for the incorrect predictions.

from sklearn.metrics import confusion_matrix

conf_mx = confusion_matrix(y_test, y_hat)

print(conf_mx)
print('Overall accuracy:', np.average(y_hat == y_test))

The output shows the confusion matrix:



[

[

[ 8 920 20 10 4 10 11 37 3]

[ 0 17 921 2 21 4 12 20 9]

[ 1 2 5 3 915 o 10 2 6 38]

[ 2 41 10 770 17 7 28 7]

[ 3 7 2 6 20 907 1 3 0]

[ 7 22 5 8 1 1 950 5 27]
[ 10 15 5 21 15 27 7 11 851 12]
[ 7 8 2 13 32 13 0 24 12 898]]

Overall accuracy: 0.9204

Use matplotlib to display the confusion matrix as a graph. In this graph, the X axis represents the actual values,
and the Y axis represents the predicted values. The color in each grid represents the error rate. The lighter the
color, the higher the error rate is. For example, many 5's are mis-classified as 3's. So you see a bright grid at (5,3).

# normalize the diagonal cells so that they don't overpower the rest of the cells when visualized
row_sums = conf_mx.sum(axis=1, keepdims=True)

norm_conf_mx = conf_mx / row_sums

np.fill_diagonal(norm_conf_mx, @)

fig = plt.figure(figsize=(8, 5))

ax = fig.add_subplot(111)

cax = ax.matshow(norm_conf_mx, cmap=plt.cm.bone)
ticks = np.arange(0, 10, 1)
ax.set_xticks(ticks)

ax.set_yticks(ticks)
ax.set_xticklabels(ticks)
ax.set_yticklabels(ticks)

fig.colorbar(cax)

plt.ylabel('true labels', fontsize=14)
plt.xlabel('predicted values', fontsize=14)
plt.savefig('conf.png')

plt.show()
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Show predictions

Test the deployed model with a random sample of 30 images from the test data.

1. Print the returned predictions and plot them along with the input images. Red font and inverse image (white
on black) is used to highlight the misclassified samples.

Since the model accuracy is high, you might have to run the following code a few times before you can see a
misclassified sample.



import json

# find 30 random samples from test set
n = 30
sample_indices = np.random.permutation(X_test.shape[0])[0:n]

test_samples = json.dumps({"data": X_test[sample_indices].tolist()})

test_samples = bytes(test_samples, encoding='utf8")

# predict using the deployed model
result = service.run(input_data=test_samples)

# compare actual value vs. the predicted values:
i=90
plt.figure(figsize = (20, 1))

for s in sample_indices:
plt.subplot(1, n, i + 1)
plt.axhline('")
plt.axvline('")

# use different color for misclassified sample
font_color = 'red' if y_test[s] != result[i] else 'black’

clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys

plt.text(x=10, y=-10, s=result[i], fontsize=18, color=font_color)
plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)

i=1i+1
plt.show()

You can also send raw HTTP request to test the web service.

import requests

# send a random row from the test set to score

random_index = np.random.randint(@, len(X_test)-1)

input_data = "{\"data\": [" + str(list(X_test[random_index])) + "]1}"
headers = {'Content-Type': 'application/json'}

# for AKS deployment you'd need to the service key in the header as well
# api_key = service.get_key()

# headers = {'Content-Type':'application/json', ‘'Authorization':('Bearer '+ api_key)}
resp = requests.post(service.scoring_uri, input_data, headers=headers)
print("POST to url", service.scoring_ uri)

#print("input data:", input_data)

print("label:", y_test[random_index])
print("prediction:", resp.text)

Clean up resources

To keep the resource group and workspace for other tutorials and exploration, you can delete only the Container
Instances deployment by using this API call:

service.delete()



IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

/A my-rg - Microsoft Azure
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& Azure Cosmos DB
Q Virtual machines

@ Load balancers
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2. From the list, select the resource group you created.

Dashboard > Resource groups > my-rg

®) my-ro

Resource group

«
lp Search (Ctrl+/) |

) Overview

-] Activity log

;,.'. Access control (IAM)
' Tags

Events

Settings

&4 Quickstart

@ Deployments
] Policies

= Properties

n Locks

B2 Export template v

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

Next steps

e Learn how to create clients for the web service.

© user@contoso.com @
DEFAULT DIRECTORY (P

+ Add  EE Edit columns | [ Delete resource group O Refresh = Move

Subscription (change)
Visual Studio Ultimate with MSDN

Subscription ID
XXXXXX-XXX-XXXX-XXXXX
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Click here to add tags

Deployments
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‘ Filter by name.. ‘ l All types

v ‘ l All locations

14 items

[] name

L myworkspace

D Show hidden types @

L my-workspace
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Learn about all of the deployment options for Azure Machine Learning.

Make predictions on large quantities of data asynchronously.

e Monitor your Azure Machine Learning models with Application Insights.

Try out the automatic algorithm selection tutorial.

Machine Learning service workspace
Machine Learning service workspace

Application Insights
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Tutorial: Use automated machine learning to predict

taxi fares

2/10/2020 « 14 minutes to read = Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you use automated machine learning in Azure Machine Learning to create a regression model to
predict NYC taxi fare prices. This process accepts training data and configuration settings, and automatically
iterates through combinations of different feature normalization/standardization methods, models, and
hyperparameter settings to arrive at the best model.

| :: = | Dataset —
EER
— L, {
s B Optimization
Metri
L] ric ., L
_ Constraints
I (Time/cost)

In this tutorial you learn the following tasks:

Automated Machine Learning
Machine Learning Model

e Download, transform, and clean data using Azure Open Datasets
e Train an automated machine learning regression model

e Calculate model accuracy

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today.

Prerequisites

e Complete the setup tutorial if you don't already have an Azure Machine Learning workspace or notebook
virtual machine.

o After you complete the setup tutorial, open the tutorials/regression-autom/-nyc-taxi-data/regression-
automated-ml.ipynb notebook using the same notebook server.

This tutorial is also available on GitHub if you wish to run it in your own local environment. Run

pip install azureml-sdk[automl] azureml-opendatasets azureml-widgets to get the required packages.

Download and prepare data

Import the necessary packages. The Open Datasets package contains a class representing each data source (
NycTlcGreen for example) to easily filter date parameters before downloading.

from azureml.opendatasets import NycTlcGreen
import pandas as pd

from datetime import datetime

from dateutil.relativedelta import relativedelta


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-auto-train-models.md
https://aka.ms/AMLFree
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

Begin by creating a dataframe to hold the taxi data. When working in a non-Spark environment, Open Datasets
only allows downloading one month of data at a time with certain classes to avoid MemoryError with large

datasets.

To download taxi data, iteratively fetch one month at a time, and before appending itto green_taxi_df randomly
sample 2,000 records from each month to avoid bloating the dataframe. Then preview the data.

green_taxi_df = pd.DataFrame([])
start = datetime.strptime("1/1/2015","%m/%d/%Y")
end = datetime.strptime("1/31/2015","%m/%d/%Y")

for sample_month in range(12):
temp_df_green = NycTlcGreen(start + relativedelta(months=sample_month), end +
relativedelta(months=sample_month)) \
.to_pandas_dataframe()
green_taxi_df = green_taxi_df.append(temp_df_green.sample(2000))

green_taxi_df.head(10)
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10 rows x 23 columns

Now that the initial data is loaded, define a function to create various time-based features from the pickup
datetime field. This will create new fields for the month number, day of month, day of week, and hour of day, and
will allow the model to factor in time-based seasonality. Use the apply() function on the dataframe to iteratively

apply the build_time_features() function to each row in the taxi data.

def build_time_features(vector):
pickup_datetime = vector[0]
month_num = pickup_datetime.month
day_of_month = pickup_datetime.day
day_of_week = pickup_datetime.weekday()
hour_of_day = pickup_datetime.hour

return pd.Series((month_num, day_of_month, day_of_week, hour_of_day))
green_taxi_df[["month_num", "day_of_month","day_of_week", "hour_of _day"]] =

green_taxi_df[["lpepPickupDatetime"]].apply(build_time_features, axis=1)
green_taxi_df.head(10)
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10 rows x 27 columns

Remove some of the columns that you won't need for training or additional feature building.



columns_to_remove = ["lpepPickupDatetime", "lpepDropoffDatetime", "puLocationId", "doLocationId", "extra",

"mtaTax",

]

for col in columns_to_remove:

green_taxi_df.head(5)

Cleanse data

green_taxi_df.pop(col)

"storeAndFwdFlag", "paymentType", "fareAmount", "tipAmount"

Run the describe() function on the new dataframe to see summary statistics for each field.

green_taxi_df.describe()

"improvementSurcharge", "tollsAmount", "ehailFee", "tripType", "rateCodeID",
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From the summary statistics, you see that there are several fields that have outliers or values that will reduce

model accuracy. First filter the lat/long fields to be within the bounds of the Manhattan area. This will filter out

longer taxi trips or trips that are outliers in respect to their relationship with other features.

Additionally filter the tripbistance field to be greater than zero but less than 31 miles (the haversine distance

between the two lat/long pairs). This eliminates long outlier trips that have inconsistent trip cost.




Lastly, the totalamount field has negative values for the taxi fares, which don't make sense in the context of our
model, and the passengercount field has bad data with the minimum values being zero.

Filter out these anomalies using query functions, and then remove the last few columns unnecessary for training.

final_df = green_taxi_df.query("pickupLatitude>=40.53 and pickupLatitude<=40.88")
final_df = final_df.query("pickupLongitude>=-74.09 and pickupLongitude<=-73.72")
final_df = final_df.query("tripDistance>=0.25 and tripDistance<31")

final_df = final_df.query("passengerCount>@ and totalAmount>@")

columns_to_remove_for_training = ["pickupLongitude", "pickupLatitude", "dropofflLongitude",
"dropofflLatitude"]
for col in columns_to_remove_for_training:

final_df.pop(col)

Call describe() again on the data to ensure cleansing worked as expected. You now have a prepared and
cleansed set of taxi, holiday, and weather data to use for machine learning model training.

final_df.describe()

Configure workspace

Create a workspace object from the existing workspace. A Workspace is a class that accepts your Azure
subscription and resource information. It also creates a cloud resource to monitor and track your model runs.
workspace.from_config() reads the file config.json and loads the authentication details into an object named
ws . ws is used throughout the rest of the code in this tutorial.

from azureml.core.workspace import Workspace
ws = Workspace.from_config()

Split the data into train and test sets

Split the data into training and test sets by using the train_test_split functioninthe scikit-learn library. This
function segregates the data into the x (features) data set for model training and the y (values to predict) data
set for testing.

The test_size parameter determines the percentage of data to allocate to testing. The random_state parameter
sets a seed to the random generator, so that your train-test splits are deterministic.

from sklearn.model_selection import train_test_split

y_df
x_df

final_df.pop("totalAmount™)
final_df

x_train, x_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.2, random_state=223)

The purpose of this step is to have data points to test the finished model that haven't been used to train the
model, in order to measure true accuracy.

In other words, a well-trained model should be able to accurately make predictions from data it hasn't already
seen. You now have data prepared for auto-training a machine learning model.

Automatically train a model


https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py

To automatically train a model, take the following steps:

1. Define settings for the experiment run. Attach your training data to the configuration, and modify settings that

control the training process.

2. Submit the experiment for model tuning. After submitting the experiment, the process iterates through

different machine learning algorithms and hyperparameter settings, adhering to your defined constraints. It

chooses the best-fit model by optimizing an accuracy metric.

Define training settings

Define the experiment parameter and model settings for training. View the full list of settings. Submitting the

experiment with these default settings will take approximately 5-20 min, but if you want a shorter run time,

reduce the experiment_timeout_minutes parameter.

PROPERTY

iteration_timeout_minutes

experiment_timeout_minutes

enable_early_stopping

primary_metric

featurization

verbosity

n_cross_validations

import logging

automl_settings = {

"iteration_timeout_minutes": 2,
"experiment_timeout_minutes": 20,
"enable_early_stopping": True,

VALUE IN THIS TUTORIAL

20

True

spearman_correlation

auto

logging.INFO

"primary_metric": 'spearman_correlation’,

"featurization": 'auto',

"verbosity": logging.INFO,
"n_cross_validations": 5

DESCRIPTION

Time limit in minutes for each iteration.
Reduce this value to decrease total
runtime.

Maximum amount of time in minutes
that all iterations combined can take
before the experiment terminates.

Flag to enable early termination if the
score is not improving in the short
term.

Metric that you want to optimize. The
best-fit model will be chosen based on
this metric.

By using auto, the experiment can
preprocess the input data (handling
missing data, converting text to
numeric, etc.)

Controls the level of logging.

Number of cross-validation splits to
perform when validation data is not
specified.

Use your defined training settings as a **kwargs parameter to an AutoMLConfig object. Additionally, specify your

training data and the type of model, which is regression in this case.



from azureml.train.automl import AutoMLConfig

automl_config = AutoMLConfig(task='regression',
debug_log="automated_ml_errors.log’,
X=x_train.values,
y=y_train.values.flatten(),
**automl_settings)

NOTE

Automated machine learning pre-processing steps (feature normalization, handling missing data, converting text to
numeric, etc.) become part of the underlying model. When using the model for predictions, the same pre-processing steps
applied during training are applied to your input data automatically.

Train the automatic regression model

Create an experiment object in your workspace. An experiment acts as a container for your individual runs. Pass
the defined automl_config object to the experiment, and set the output to True to view progress during the run.

After starting the experiment, the output shown updates live as the experiment runs. For each iteration, you see
the model type, the run duration, and the training accuracy. The field BEsT tracks the best running training score
based on your metric type.

from azureml.core.experiment import Experiment
experiment = Experiment(ws, "taxi-experiment™)
local_run = experiment.submit(automl_config, show_output=True)



Running on local machine

Parent Run ID: AutoML_1766cdf7-56cf-4b28-a340-c4aeeel5bl2b

Current status: DatasetFeaturization. Beginning to featurize the dataset.

Current status: DatasetEvaluation. Gathering dataset statistics.

Current status: FeaturesGeneration. Generating features for the dataset.

Current status: DatasetFeaturizationCompleted. Completed featurizing the dataset.

Current status: DatasetCrossValidationSplit. Generating individually featurized CV splits.
Current status: ModelSelection. Beginning model selection.

3k 5k 3k 5k 3k 5k 3k 5k 3k sk 3k sk 3k sk 3k sk 3k sk 3k sk 3k sk 3k sk 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok %k ok k ok k k

ITERATION: The iteration being evaluated.

PIPELINE: A summary description of the pipeline being evaluated.
DURATION: Time taken for the current iteration.

METRIC: The result of computing score on the fitted pipeline.

BEST: The best observed score thus far.
3k 3k 3k sk ok 3k >k >k >k 3k 3k 3k 3k k sk sk sk sk >k >k >k >k >k 3k 3k 3k sk sk sk 5k >k sk >k >k >k >k 3k 3k 3k 3k sk 5k 5k 5k >k >k >k >k 3k 3k 3k 3k sk 5k 5k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k >k 3k >k >k >k %k >k 3k >k 3k 3k 5k >k 5k >k >k >k %k >k %k >k 3k 3k 3k 5k 5k >k >k >k %k *k %k k

ITERATION  PIPELINE DURATION METRIC BEST
@ StandardScalerWrapper RandomForest 0:00:16 0.8746 0.8746
1 MinMaxScaler RandomForest 0:00:15 0.9468 0.9468
2 StandardScalerWrapper ExtremeRandomTrees 0:00:09 0.9303 0.9468
3 StandardScalerWrapper LightGBM 0:00:10 0.9424 0.9468
4 RobustScaler DecisionTree 0:00:09 0.9449 0.9468
5 StandardScalerWrapper Lassolars 0:00:09 0.9440 0.9468
6 StandardScalerWrapper LightGBM 0:00:10 0.9282 0.9468
7  StandardScalerWrapper RandomForest 0:00:12 0.8946 0.9468
8 StandardScalerWrapper Lassolars 0:00:16 0.9439 0.9468
9  MinMaxScaler ExtremeRandomTrees 0:00:35 0.9199 0.9468

10  RobustScaler ExtremeRandomTrees 0:00:19 0.9411 0.9468
11  StandardScalerWrapper ExtremeRandomTrees 0:00:13 0.9077 0.9468
12  StandardScalerWrapper Lassolars 0:00:15 0.9433 0.9468
13 MinMaxScaler ExtremeRandomTrees 0:00:14 0.9186 0.9468
14  RobustScaler RandomForest 0:00:10 0.8810 0.9468
15 StandardScalerWrapper Lassolars 0:00:55 0.9433 0.9468
16  StandardScalerWrapper ExtremeRandomTrees 0:00:13 0.9026 0.9468
17  StandardScalerWrapper RandomForest 0:00:13 0.9140 0.9468
18 VotingEnsemble 0:00:23 0.9471 0.9471
19  StackEnsemble 0:00:27 0.9463 0.9471

Explore the results

Explore the results of automatic training with a Jupyter widget. The widget allows you to see a graph and table of
all individual run iterations, along with training accuracy metrics and metadata. Additionally, you can filter on

different accuracy metrics than your primary metric with the dropdown selector.

from azureml.widgets import RunDetails
RunDetails(local_run).show()


https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

AutoML_797ff8a7-a369-4986-8180-e9bbed938259:
Status: Completed

| | 1 1 1 |
0 5 10 15 20 25

Iteration Pipeline 7 Iteration metric  Best metric  Status Duration  Started Ru
29 Ensemble 0.96225654  0.96225654 Completed 0:01:10 Dec 6, 2018 6:12 PM -
27 MaxAbsScaler, SGD 0.96033526  0.96033526 Completed 0:00:15 Dec 6, 2018 6:11 PM
25 StandardScalerWrapper, ElasticNet 0.96031892 0.96031892 Completed 0:00:11 Dec 6, 2018 6:11 PM
20 MaxAbsScaler, SGD 0.96031661 0.96031661 Completed 0:00:20 Dec 6, 2018 6:09 PM
26 StandardScalerWrapper, ElasticNet 0.96031391 0.96031892 Completed 0:00:12 Dec 6, 2018 6:11 PM .
< »
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Click here to see the run in Azure portal

Retrieve the best model

Select the best model from your iterations. The get_output function returns the best run and the fitted model for
the last fit invocation. By using the overloads on get_output , you can retrieve the best run and fitted model for
any logged metric or a particular iteration.

best_run, fitted_model = local_run.get_output()
print(best_run)
print(fitted_model)

Test the best model accuracy

Use the best model to run predictions on the test data set to predict taxi fares. The function predict uses the
best model and predicts the values of y, trip cost, from the x_test data set. Print the first 10 predicted cost

values from y_predict .

y_predict = fitted_model.predict(x_test.values)
print(y_predict[:10])

Calculate the root mean squared error of the results. Convert the y_test dataframe to a list to compare to the
predicted values. The function mean_squared_error takes two arrays of values and calculates the average squared
error between them. Taking the square root of the result gives an error in the same units as the y variable, cost. It
indicates roughly how far the taxi fare predictions are from the actual fares.



from sklearn.metrics import mean_squared_error
from math import sqrt

y_actual = y_test.values.flatten().tolist()
rmse = sqrt(mean_squared_error(y_actual, y predict))
rmse

Run the following code to calculate mean absolute percent error (MAPE) by using the full y_actual and
y_predict data sets. This metric calculates an absolute difference between each predicted and actual value and
sums all the differences. Then it expresses that sum as a percent of the total of the actual values.

sum_actuals = sum_errors = 0

for actual_val, predict_val in zip(y_actual, y_predict):
abs_error = actual_val - predict_val
if abs_error < 0:
abs_error = abs_error * -1

sum_errors = sum_errors + abs_er‘r‘or‘

sum_actuals = sum_actuals + actual_val
mean_abs_percent_error = sum_errors / sum_actuals
print("Model MAPE:")
print(mean_abs_percent_error)
print()
print("Model Accuracy:")
print(1 - mean_abs_percent_error)

Model MAPE:
0.14353867606052823

Model Accuracy:
0.8564613239394718

From the two prediction accuracy metrics, you see that the model is fairly good at predicting taxi fares from the
data set's features, typically within +- $4.00, and approximately 15% error.

The traditional machine learning model development process is highly resource-intensive, and requires
significant domain knowledge and time investment to run and compare the results of dozens of models. Using
automated machine learning is a great way to rapidly test many different models for your scenario.

Clean up resources

Do not complete this section if you plan on running other Azure Machine Learning tutorials.

Stop the compute instance

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.
1. In your workspace, select Compute.

2. From the list, select the VM.

3. Select Stop.

4. When you're ready to use the server again, select Start.

Delete everything

If you don't plan to use the resources you created, delete them, so you don't incur any charges.



1. In the Azure portal, select Resource groups on the far left.
2. From the list, select the resource group you created.

3. Select Delete resource group.
4

. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select
Delete.

Next steps

In this automated machine learning tutorial, you did the following tasks:

e Configured a workspace and prepared data for an experiment.
e Trained by using an automated regression model locally with custom parameters.

e Explored and reviewed training results.

Deploy your model with Azure Machine Learning.



Tutorial: Build an Azure Machine Learning pipeline

for batch scoring

3/17/2020 « 11 minutes to read « Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

Learn how to build a pipeline in Azure Machine Learning to run a batch scoring job. Machine learning pipelines
optimize your workflow with speed, portability, and reuse, so you can focus on machine learning instead of
infrastructure and automation. After you build and publish a pipeline, you configure a REST endpoint that you can
use to trigger the pipeline from any HTTP library on any platform.

The example uses a pretrained Inception-V3 convolutional neural network model implemented in Tensorflow to
classify unlabeled images. Learn more about machine learning pipelines.

In this tutorial, you complete the following tasks:

e Configure workspace

e Download and store sample data

e C(Create dataset objects to fetch and output data

e Download, prepare, and register the model in your workspace
e Provision compute targets and create a scoring script

e Usethe pParallelrRunstep class for async batch scoring

e Build, run, and publish a pipeline

e Enable a REST endpoint for the pipeline

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today.

Prerequisites

e [f you don't already have an Azure Machine Learning workspace or notebook virtual machine, complete Part 1
of the setup tutorial.

e When you finish the setup tutorial, use the same notebook server to open the tutorials/machine-learning-
pipelines-advanced/tutorial-pipeline-batch-scoring-classification.ipynb notebook.

If you want to run the setup tutorial in your own local environment, you can access the tutorial on GitHub. Run
pip install azureml-sdk[notebooks] azureml-pipeline-core azureml-contrib-pipeline-steps pandas requests to get

the required packages.

Configure workspace and create a datastore

Create a workspace object from the existing Azure Machine Learning workspace.

e Aworkspace is a class that accepts your Azure subscription and resource information. The workspace also
creates a cloud resource you can use to monitor and track your model runs.

® Workspace.from_config() reads the config.json file and then loads the authentication details into an object
named ws . The ws objectis used in the code throughout this tutorial.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-pipeline-batch-scoring-classification.md
https://arxiv.org/abs/1512.00567
https://aka.ms/AMLFree
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py

from azureml.core import Workspace
ws = Workspace.from_config()

Create a datastore for sample images

On the pipelinedata account, getthe ImageNet evaluation public data sample from the sampledata public blob
container. Call register_azure_blob_container() to make the data available to the workspace under the name
images_datastore . Then, set the workspace default datastore as the output datastore. Use the output datastore to

score output in the pipeline.

from azureml.core.datastore import Datastore

batchscore_blob = Datastore.register_azure_blob_container(ws,
datastore_name="images_datastore",
container_name="sampledata",
account_name="pipelinedata”,
overwrite=True)

def_data_store = ws.get_default_datastore()

Create dataset objects

When building pipelines, pataset objects are used for reading data from workspace datastores, and PipelineData

objects are used for transferring intermediate data between pipeline steps.

IMPORTANT

The batch scoring example in this tutorial uses only one pipeline step. In use cases that have multiple steps, the typical flow

will include these steps:

1. Use Dataset objects as inputs to fetch raw data, perform some transformation, and then outputa PipelineData

object.

2. Usethe pipelineData output objectin the preceding step as an input object. Repeat it for subsequent steps.

In this scenario, you create Dataset objects that correspond to the datastore directories for both the input images

and the classification labels (y-test values). You also create a PipelineData oObject for the batch scoring output data.

from azureml.core.dataset import Dataset
from azureml.pipeline.core import PipelineData

input_images = Dataset.File.from_files((batchscore_blob, "batchscoring/images/"))
label_ds = Dataset.File.from_files((batchscore_blob, "batchscoring/labels/*.txt"))
output_dir = PipelineData(name="scores",
datastore=def_data_store,
output_path_on_compute="batchscoring/results")

Next, register the datasets to the workspace.

input_images = input_images.register(workspace = ws, name = "input_images")
label_ds = label_ds.register(workspace = ws, name = "label_ds")



Download and register the model

Download the pretrained Tensorflow model to use it for batch scoring in a pipeline. First, create a local directory

where you store the model. Then, download and extract the model.

import os
import tarfile
import urllib.request

if not os.path.isdir("models"):
os.mkdir("models")

response = urllib.request.urlretrieve("http://download.tensorflow.org/models/inception_v3_2016_08_ 28.tar.gz",
"model.tar.gz")

tar = tarfile.open("model.tar.gz", "r:gz")

tar.extractall("models")

Next, register the model to your workspace, so you can easily retrieve the model in the pipeline process. In the
register() static function, the model_name parameter is the key you use to locate your model throughout the
SDK.

from azureml.core.model import Model

model = Model.register(model_path="models/inception_v3.ckpt",
model_name="inception",
tags={"pretrained": "inception"},
description="Imagenet trained tensorflow inception”,
workspace=ws)

Create and attach the remote compute target

Machine learning pipelines can't be run locally, so you run them on cloud resources or remote compute targets. A
remote compute target is a reusable virtual compute environment where you run experiments and machine

learning workflows.

Run the following code to create a GPU-enabled amlcompute target, and then attach it to your workspace. For
more information about compute targets, see the conceptual article.

from azureml.core.compute import AmlCompute, ComputeTarget
from azureml.exceptions import ComputeTargetException
compute_name = "gpu-cluster"

# checks to see if compute target already exists in workspace, else create it
try:
compute_target = ComputeTarget(workspace=ws, name=compute_name)
except ComputeTargetException:
config = AmlCompute.provisioning_configuration(vm_size="STANDARD_NC6",
vm_priority="lowpriority",
min_nodes=0,
max_nodes=1)

compute_target = ComputeTarget.create(workspace=ws, name=compute_name, provisioning_configuration=config)
compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Write a scoring script

To do the scoring, create a batch scoring script called batch_scoring.py , and then write it to the current directory.
The script takes input images, applies the classification model, and then outputs the predictions to a results file.


https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/concept-compute-target

The batch_scoring.py script takes the following parameters, which get passed from the ParallelRunstep you
create later:

® -_model_name : The name of the model being used.

® --labels_name : The name of the pataset that holds the 1labels.txt file.

The pipeline infrastructure uses the ArgumentParser class to pass parameters into pipeline steps. For example, in
the following code, the first argument --model_name is given the property identifier model_name .In the init()
function, Model.get_model_path(args.model_name) is used to access this property.

%kwritefile batch_scoring.py

import os

import argparse

import datetime

import time

import tensorflow as tf

from math import ceil

import numpy as np

import shutil

from tensorflow.contrib.slim.python.slim.nets import inception_v3

from azureml.core import Run
from azureml.core.model import Model
from azureml.core.dataset import Dataset

slim = tf.contrib.slim

image_size = 299
num_channel = 3

def get_class_label_dict():
label = []
proto_as_ascii_lines = tf.gfile.GFile("labels.txt").readlines()
for 1 in proto_as_ascii_lines:
label.append(1l.rstrip())
return label

def init():
global g tf_sess, probabilities, label_dict, input_images

parser = argparse.ArgumentParser(description="Start a tensorflow model serving")
parser.add_argument('--model_name', dest="model_name", required=True)
parser.add_argument('--labels_name', dest="labels_name", required=True)

args, _ = parser.parse_known_args()

workspace = Run.get_context(allow_offline=False).experiment.workspace
label_ds = Dataset.get_by_name(workspace=workspace, name=args.labels_name)
label_ds.download(target_path='."', overwrite=True)

label_dict = get_class_label dict()
classes_num = len(label_dict)

with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
input_images = tf.placeholder(tf.float32, [1, image_size, image_size, num_channel])

logits, = inception_v3.inception_v3(input_images,

num_classes=classes_num,
is_training=False)

probabilities = tf.argmax(logits, 1)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True

g tf sess = tf.Session(config=config)

g tf sess.run(tf.global variables initializer())



g tf sess.run(tf.local_variables_initializer())

model _path = Model.get_model_path(args.model_name)
saver = tf.train.Saver()
saver.restore(g_tf_sess, model_path)

def file_to_tensor(file_path):
image_string = tf.read_file(file_path)
image = tf.image.decode_image(image_string, channels=3)

image.set_shape([None, None, None])

image = tf.image.resize_images(image, [image_size, image_size])
image = tf.divide(tf.subtract(image, [0]), [255])
image.set_shape([image_size, image_size, num_channel])

return image

def run(mini_batch):
result_list = []
for file_path in mini_batch:
test_image = file_to_tensor(file_path)
out = g tf_sess.run(test_image)
result = g tf_sess.run(probabilities, feed_dict={input_images: [out]})
result_list.append(os.path.basename(file_path) + ": " + label_dict[result[0]])
return result_list

TIP

The pipeline in this tutorial has only one step, and it writes the output to a file. For multi-step pipelines, you also use
ArgumentParser to define a directory to write output data for input to subsequent steps. For an example of passing data
between multiple pipeline steps by using the ArgumentParser design pattern, see the notebook.

Build the pipeline

Before you run the pipeline, create an object that defines the Python environment and creates the dependencies
that your batch_scoring.py scriptrequires. The main dependency required is Tensorflow, but you also install
azureml-defaults for background processes. Create a RunConfiguration object by using the dependencies. Also,
specify Docker and Docker-GPU support.

from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_GPU_IMAGE

cd = CondaDependencies.create(pip_packages=["tensorflow-gpu==1.13.1", "azureml-defaults"])
env = Environment(name="parallelenv")

env.python.conda_dependencies = cd

env.docker.base_image = DEFAULT_GPU_IMAGE

Create the configuration to wrap the script

Create the pipeline step using the script, environment configuration, and parameters. Specify the compute target
you already attached to your workspace.


https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb

from azureml.contrib.pipeline.steps import ParallelRunConfig

parallel run_config = ParallelRunConfig(
environment=env,
entry_script="batch_scoring.py",

source_directory=".",
output_action="append_row",
mini_batch_size="20",
error_threshold=1,
compute_target=compute_target,
process_count_per_node=2,
node_count=1

Create the pipeline step

A pipeline step is an object that encapsulates everything you need to run a pipeline, including:

e Environment and dependency settings
e The compute resource to run the pipeline on
e Input and output data, and any custom parameters

e Reference to a script or SDK logic to run during the step

Multiple classes inherit from the parent class pipelinestep . You can choose classes to use specific frameworks or
stacks to build a step. In this example, you use the parallelRunstep class to define your step logic by using a
custom Python script. If an argument to your script is either an input to the step or an output of the step, the
argument must be defined bothin the arguments array andin either the input or the output parameter,
respectively.

In scenarios where there is more than one step, an object reference in the outputs array becomes available as an

inputfor a subsequent pipeline step.

from azureml.contrib.pipeline.steps import ParallelRunStep

batch_score_step = ParallelRunStep(

name="parallel-step-test”,

inputs=[input_images.as_named_input("input_images")],

output=output_dir,

models=[model],

arguments=["--model_name", "inception",
"--labels_name", "label_ds"],

parallel_run_config=parallel_run_config,

allow_reuse=False

For a list of all the classes you can use for different step types, see the steps package.

Submit the pipeline

Now, run the pipeline. First, create a pipeline object by using your workspace reference and the pipeline step you
created. The steps parameter is an array of steps. In this case, there's only one step for batch scoring. To build
pipelines that have multiple steps, place the steps in order in this array.

Next, use the Experiment.submit() function to submit the pipeline for execution. You also specify the custom
parameter param_batch_size . The wait_for_completion function outputs logs during the pipeline build process.
You can use the logs to see current progress.


https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py

IMPORTANT

The first pipeline run takes roughly 75 minutes. All dependencies must be downloaded, a Docker image is created, and the
Python environment is provisioned and created. Running the pipeline again takes significantly less time because those
resources are reused instead of created. However, total run time for the pipeline depends on the workload of your scripts

and the processes that are running in each pipeline step.

from azureml.core import Experiment
from azureml.pipeline.core import Pipeline

pipeline = Pipeline(workspace=ws, steps=[batch_score_step])
pipeline_run = Experiment(ws, 'batch_scoring').submit(pipeline)
pipeline_run.wait_for_completion(show_output=True)

Download and review output

Run the following code to download the output file that's created from the batch_scoring.py script. Then, explore

the scoring results.

import pandas as pd

batch_run = next(pipeline_run.get_children())
batch_output = batch_run.get_output_data("scores"
batch_output.download(local_path="inception_results")

for root, dirs, files in os.walk("inception_results"):
for file in files:
if file.endswith("parallel run_step.txt"):
result_file = os.path.join(root, file)

df = pd.read_csv(result_file, delimiter=":",
df.columns = ["Filename", "Prediction"]
print("Prediction has ", df.shape[@], " rows"
df.head(10)

header=None)

Publish and run from a REST endpoint

Run the following code to publish the pipeline to your workspace. In your workspace in Azure Machine Learning
studio, you can see metadata for the pipeline, including run history and durations. You can also run the pipeline

manually from the studio.

Publishing the pipeline enables a REST endpoint that you can use to run the pipeline from any HTTP library on any
platform.

published_pipeline = pipeline_run.publish_pipeline(
name="Inception_v3_scoring", description="Batch scoring using Inception v3 model", version="1.0")

published_pipeline

To run the pipeline from the REST endpoint, you need an OAuth2 Bearer-type authentication header. The following
example uses interactive authentication (for illustration purposes), but for most production scenarios that require
automated or headless authentication, use service principal authentication as described in this article.

Service principal authentication involves creating an App Registration in Azure Active Directory. First, you generate
a client secret, and then you grant your service principal role access to your machine learning workspace. Use the
ServicePrincipalAuthentication class to manage your authentication flow.


https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py

Both InteractiveloginAuthentication and ServicePrincipalAuthentication inheritfrom AbstractAuthentication .In

both cases, use the get_authentication_header() function in the same way to fetch the header:

from azureml.core.authentication import InteractiveloginAuthentication

interactive_auth = InteractivelLoginAuthentication()
auth_header = interactive_auth.get_authentication_header()

Get the REST URL from the endpoint property of the published pipeline object. You can also find the REST URL in
your workspace in Azure Machine Learning studio.

Build an HTTP POST request to the endpoint. Specify your authentication header in the request. Add a JSON
payload object that has the experiment name and the batch size parameter. As noted earlier in the tutorial,
param_batch_size is passed through to your batch_scoring.py script because you defined it as a

pipelineParameter objectin the step configuration.

Make the request to trigger the run. Include code to access the 1d key from the response dictionary to get the
value of the run ID.

import requests

rest_endpoint = published_pipeline.endpoint
response = requests.post(rest_endpoint,
headers=auth_header,
json={"ExperimentName": "batch_scoring",
"ParameterAssignments": {"param_batch_size": 50}})
run_id = response.json()["Id"]

Use the run ID to monitor the status of the new run. The new run takes another 10-15 min to finish.
The new run will look similar to the pipeline you ran earlier in the tutorial. You can choose not to view the full

output.

from azureml.pipeline.core.run import PipelineRun
from azureml.widgets import RunDetails

published_pipeline_run = PipelineRun(ws.experiments["batch_scoring"], run_id)
RunDetails(published_pipeline_run).show()

Clean up resources

Don't complete this section if you plan to run other Azure Machine Learning tutorials.

Stop the compute instance

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.

—_

. In your workspace, select Compute.

2. From the list, select the VM.

w

. Select Stop.
4. When you're ready to use the server again, select Start.

Delete everything

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, in the left menu, select Resource groups.


https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.interactiveloginauthentication?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.abstractauthentication?view=azure-ml-py#get-authentication-header--

2. In the list of resource groups, select the resource group you created.
3. Select Delete resource group.

4. Enter the resource group name. Then, select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties, and then
select Delete.

Next steps

In this machine learning pipelines tutorial, you did the following tasks:

e Built a pipeline with environment dependencies to run on a remote GPU compute resource.
e Created a scoring script to run batch predictions by using a pretrained Tensorflow model.

e Published a pipeline and enabled it to be run from a REST endpoint.

For more examples of how to build pipelines by using the machine learning SDK, see the notebook repository.


https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines

Tutorial: Convert ML experimental code to

production code

4/1/2020 « 10 minutes to read « Edit Online

A machine learning project requires experimentation where hypotheses are tested with agile tools like Jupyter
Notebook using real datasets. Once the model is ready for production, the model code should be placed in a
production code repository. In some cases, the model code must be converted to Python scripts to be placed in the
production code repository. This tutorial covers a recommended approach on how to export experimentation code
to Python scripts.

In this tutorial, you learn how to:

e Clean nonessential code
e Refactor Jupyter Notebook code into functions
e Create Python scripts for related tasks

e Create unit tests

Prerequisites

e Generate the MLOpsPython template and use the experimentation/Diabetes Ridge Regression Training.ipynb
and experimentation/Diabetes Ridge Regression Scoring.ipynb notebooks. These notebooks are used as an
example of converting from experimentation to production. You can find these notebooks at
https://github.com/microsoft/MLOpsPython/tree/master/experimentation.

e |Install nbconvert . Follow only the installation instructions under section Installing nbconvert on the

Installation page.

Remove all nonessential code

Some code written during experimentation is only intended for exploratory purposes. Therefore, the first step to
convert experimental code into production code is to remove this nonessential code. Removing nonessential code
will also make the code more maintainable. In this section, you'll remove code from the

experimentation/Diabetes Ridge Regression Training.ipynb notebook.The statements printing the shape of x and
y and the cell calling features.describe are just for data exploration and can be removed. After removing
nonessential code, experimentation/Diabetes Ridge Regression Training.ipynb should look like the foIIowing code

without markdown:


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-convert-ml-experiment-to-production.md
https://github.com/microsoft/MLOpsPython/generate
https://github.com/microsoft/MLOpsPython/tree/master/experimentation
https://nbconvert.readthedocs.io/en/latest/install.html

from sklearn.datasets import load_diabetes

from sklearn.linear_model import Ridge

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split
import joblib

import pandas as pd

sample_data = load_diabetes()

df = pd.DataFrame(
data=sample_data.data,
columns=sample_data.feature_names)
df['Y'] = sample_data.target

df.drop('Y', axis=1).values
df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}

args = {
"alpha": 0.5

reg_model = Ridge(**args)
reg.fit(data["train"]["X"], data["train"]["y"])

preds = reg _model.predict(data["test"]["X"])
mse = mean_squared_error(preds, y_test)
metrics = {"mse": mse}

print(metrics)

model_name = "sklearn_regression_model.pkl"
joblib.dump(value=reg, filename=model_name)

Refactor code into functions

Second, the Jupyter code needs to be refactored into functions. Refactoring code into functions makes unit testing
easier and makes the code more maintainable. In this section, you'll refactor:

e The Diabetes Ridge Regression Training notebook( experimentation/Diabetes Ridge Regression Training.ipynb )

e The Diabetes Ridge Regression Scoring notebook( experimentation/Diabetes Ridge Regression Scoring.ipynb )

Refactor Diabetes Ridge Regression Training notebook into functions

In experimentation/Diabetes Ridge Regression Training.ipynb , complete the following steps:

1. Create a function called split_data to split the data frame into test and train data. The function should take
the dataframe df as a parameter, and return a dictionary containing the keys train and test .

Move the code under the Split Data into Training and Validation Sets heading into the split_data function
and modify it to return the data object.

2. Create a function called train_model , which takes the parameters data and args and returns a trained
model.

Move the code under the heading Training Model on Training Setinto the train_model function and modify
it to return the reg_model object. Remove the args dictionary, the values will come from the args

parameter.



3. Create a function called get_model_metrics , which takes parameters reg model and data , and evaluates the
model then returns a dictionary of metrics for the trained model.

Move the code under the Validate Model on Validation Setheading into the get_model_metrics function and

modify it to return the metrics object.

The three functions should be as follows:

# Split the dataframe into test and train data
def split_data(df):

X = df.drop('Y', axis=1).values

y = df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}
return data

# Train the model, return the model

def train_model(data, args):
reg_model = Ridge(**args)
reg_model.fit(data["train"]["X"], data["train"]["y"])
return reg_model

# Evaluate the metrics for the model
def get_model_metrics(reg_model, data):
preds = reg _model.predict(data["test"]["X"])
mse = mean_squared_error(preds, data["test"]["y"])
metrics = {"mse": mse}
return metrics

Still in experimentation/Diabetes Ridge Regression Training.ipynb , complete the following steps:
1. Create a new function called main , which takes no parameters and returns nothing.
2. Move the code under the "Load Data" heading into the main function.

3. Add invocations for the newly written functions into the main function:

# Split Data into Training and Validation Sets
data = split_data(df)

# Train Model on Training Set
args = {

"alpha": 0.5
}

reg = train_model(data, args)

# Validate Model on Validation Set
metrics = get_model_metrics(reg, data)

4. Move the code under the "Save Model" heading into the main function.

The main function should look like the following code:



def main():
# Load Data
sample_data = load_diabetes()

df = pd.DataFrame(
data=sample_data.data,
columns=sample_data.feature_names)
df['Y'] = sample_data.target

# Split Data into Training and Validation Sets
data = split_data(df)
# Train Model on Training Set
args = {
"alpha": 0.5
}

reg = train_model(data, args)

# Validate Model on Validation Set
metrics = get_model_metrics(reg, data)

# Save Model
model_name = "sklearn_regression_model.pkl"

joblib.dump(value=reg, filename=model_name)

At this stage, there should be no code remaining in the notebook that isn't in a function, other than import
statements in the first cell.

Add a statement that calls the main function.

main()

After refactoring, experimentation/Diabetes Ridge Regression Training.ipynb should look like the following code

without the markdown:



from sklearn.datasets import load_diabetes

from sklearn.linear_model import Ridge

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

import pandas as pd
import joblib

# Split the dataframe into test and train data
def split_data(df):

X = df.drop('Y', axis=1).values
y = df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}
return data

# Train the model, return the model

def

train_model(data, args):

reg_model = Ridge(**args)
reg_model.fit(data["train"]["X"], data["train"]["y"])
return reg_model

# Evaluate the metrics for the model

def

def

get_model_metrics(reg_model, data):

preds = reg_model.predict(data["test"]["X"])

mse = mean_squared_error(preds, data["test"]["y"])
metrics = {"mse": mse}

return metrics

main():
# Load Data
sample_data = load_diabetes()

df = pd.DataFrame(
data=sample_data.data,
columns=sample_data.feature_names)
df['Y'] = sample_data.target

# Split Data into Training and Validation Sets
data = split_data(df)

# Train Model on Training Set
args = {

"alpha": 0.5
}

reg = train_model(data, args)

# Validate Model on Validation Set
metrics = get_model_metrics(reg, data)

# Save Model
model_name = "sklearn_regression_model.pkl"

joblib.dump(value=reg, filename=model_name)

main()

Refactor Diabetes Ridge Regression Scoring notebook into functions

In experimentation/Diabetes Ridge Regression Scoring.ipynb , complete the following steps:



1. Create a new function called init , which takes no parameters and return nothing.

2.

Copy the code under the "Load Model" heading into the init function.

The init function should look like the following code:

def init():
model _path = Model.get_model_path(
model_name="sklearn_regression_model.pkl")
model = joblib.load(model_path)

Once the init function has been created, replace all the code under the heading "Load Model" with a single call to

init as follows:

init()

experimentation/Diabetes Ridge Regression Scoring.ipynb , complete the following steps:

. Create a new function called run , which takes raw_data and request_headers as parameters and returns a

dictionary of results as follows:

{"result": result.tolist()}

. Copy the code under the "Prepare Data" and "Score Data" headings into the run function.

The run function should look like the following code (Remember to remove the statements that set the
variables raw_data and request_headers , which will be used later when the run function is called):

def run(raw_data, request_headers):
data = json.loads(raw_data)["data"]
data = numpy.array(data)
result = model.predict(data)

return {"result": result.tolist()}

Once the run function has been created, replace all the code under the "Prepare Data" and "Score Data" headings

with the following code:

raw_data = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}"
request_header = {}
prediction = run(raw_data, request_header)

print("Test result: ", prediction)

The previous code sets variables raw_data and request_header , calls the run function with raw_data and

request_header , and prints the predictions.

After refactoring, experimentation/Diabetes Ridge Regression Scoring.ipynb should look like the following code

without the markdown:



import json

import numpy

from azureml.core.model import Model
import joblib

def init():
model _path = Model.get_model_path(
model_name="sklearn_regression_model.pkl")
model = joblib.load(model_path)

def run(raw_data, request_headers):
data = json.loads(raw_data)["data"]
data = numpy.array(data)
result = model.predict(data)

return {"result": result.tolist()}

init()

test_row = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
request_header = {}

prediction = run(test_row, {})

print("Test result: ", prediction)

Combine related functions in Python files

Third, related functions need to be merged into Python files to better help code reuse. In this section, you'll be
creating Python files for the following notebooks:

e The Diabetes Ridge Regression Training notebook( experimentation/Diabetes Ridge Regression Training.ipynb )

e The Diabetes Ridge Regression Scoring notebook( experimentation/Diabetes Ridge Regression Scoring.ipynb )

Create Python file for the Diabetes Ridge Regression Training notebook

Convert your notebook to an executable script by running the following statement in a command prompt, which

uses the nbconvert package and the path of experimentation/Diabetes Ridge Regression Training.ipynb :

jupyter nbconvert -- to script "Diabetes Ridge Regression Training.ipynb" -output train

Once the notebook has been converted to train.py , remove any unwanted comments. Replace the call to main()

at the end of the file with a conditional invocation like the following code:

if __name__ == '__main__":
main()

Your train.py file should look like the following code:



from sklearn.datasets import load_diabetes

from sklearn.linear_model import Ridge

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split
import pandas as pd

import joblib

# Split the dataframe into test and train data
def split_data(df):

X = df.drop('Y', axis=1).values

y = df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
"test": {"X": X_test, "y": y_test}}
return data

# Train the model, return the model

def train_model(data, args):
reg_model = Ridge(**args)
reg_model.fit(data["train"]["X"], data["train"]["y"])
return reg_model

# Evaluate the metrics for the model
def get_model_metrics(reg_model, data):
preds = reg_model.predict(data["test"]["X"])
mse = mean_squared_error(preds, data["test"]["y"])
metrics = {"mse": mse}
return metrics

def main():
# Load Data
sample_data = load_diabetes()

df = pd.DataFrame(
data=sample_data.data,
columns=sample_data.feature_names)
df['Y'] = sample_data.target

# Split Data into Training and Validation Sets
data = split_data(df)

# Train Model on Training Set
args = {

"alpha": 0.5
}

reg = train_model(data, args)

# Validate Model on Validation Set
metrics = get_model_metrics(reg, data)

# Save Model
model_name = "sklearn_regression_model.pkl"

joblib.dump(value=reg, filename=model_name)

if __name__ == '__main__":
main()

train.py can now be invoked from a terminal by running python train.py . The functions from train.py can also
be called from other files.



The train_aml.py file foundinthe diabetes_regression/training directory in the MLOpsPython repository calls
the functions defined in train.py in the context of an Azure Machine Learning experiment run. The functions can
also be called in unit tests, covered later in this guide.

Create Python file for the Diabetes Ridge Regression Scoring notebook

Covert your notebook to an executable script by running the following statement in a command prompt that which

uses the nbconvert package and the path of experimentation/Diabetes Ridge Regression Scoring.ipynb :
jupyter nbconvert -- to script "Diabetes Ridge Regression Scoring.ipynb" -output score

Once the notebook has been converted to score.py , remove any unwanted comments. Your score.py file should

look like the following code:

import json

import numpy

from azureml.core.model import Model
import joblib

def init():
model_path = Model.get_model_path(
model_name="sklearn_regression_model.pkl")
model = joblib.load(model_path)

def run(raw_data, request_headers):
data = json.loads(raw_data)["data"]
data = numpy.array(data)
result = model.predict(data)

return {"result": result.tolist()}

init()

test_row = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
request_header = {}

prediction = run(test_row, request_header)

print("Test result: ", prediction)

The model variable needs to be global so that it's visible throughout the script. Add the following statement at the

beginning of the init function:
global model
After adding the previous statement, the init function should look like the following code:
def init():
global model
# load the model from file into a global object
model_path = Model.get_model_path(

model_name="sklearn_regression_model.pkl")
model = joblib.load(model_path)

Create unit tests for each Python file

Fourth, create unit tests for your Python functions. Unit tests protect code against functional regressions and make
it easier to maintain. In this section, you'll be creating unit tests for the functions in train.py .

train.py contains multiple functions, but we'll only create a single unit test for the train_model function using the



Pytest framework in this tutorial. Pytest isn't the only Python unit testing framework, but it's one of the most
commonly used. For more information, visit Pytest.

A unit test usually contains three main actions:

® Arrange object - creating and setting up necessary objects
e Acton an object

e Assertwhat is expected

The unit test will call train_model with some hard-coded data and arguments, and validate that train_model acted
as expected by using the resulting trained model to make a prediction and comparing that prediction to an
expected value.

import numpy as np
from code.training.train import train_model

def test_train_model():
# Arrange
X_train = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1)
y_train = np.array([10, 9, 8, 8, 6, 5])
data = {"train": {"X": X_train, "y": y_train}}

# Act
reg_model = train_model(data, {"alpha": 1.2})

# Assert
preds = reg_model.predict([[1], [2]])
np.testing.assert_almost_equal(preds, [9.93939393939394, 9.03030303030303])

Next steps

Now that you understand how to convert from an experiment to production code, see the following links for more
information and next steps:

o MLOpsPython: Build a CI/CD pipeline to train, evaluate and deploy your own model using Azure Pipelines and
Azure Machine Learning

e Monitor Azure ML experiment runs and metrics

e Monitor and collect data from ML web service endpoints


https://pytest.org
https://github.com/microsoft/MLOpsPython/blob/master/docs/custom_model.md
https://docs.microsoft.com/azure/machine-learning/how-to-track-experiments
https://docs.microsoft.com/azure/machine-learning/how-to-enable-app-insights

Tutorial: Use R to create a machine learning model

4/10/2020 « 14 minutes to read = Edit Online

APPLIES TO: @ Basic edition & Enterprise edition (Upgrade to Enterprise edition)

In this tutorial you'll use the Azure Machine Learning R SDK to create a logistic regression model that predicts the
likelihood of a fatality in a car accident. You'll see how the Azure Machine Learning cloud resources work with R to
provide a scalable environment for training and deploying a model.

In this tutorial, you perform the following tasks:

e Create an Azure Machine Learning workspace

e Clone a notebook folder with the files necessary to run this tutorial into your workspace
e Open RStudio from your workspace

e Load data and prepare for training

e Upload data to a datastore so it is available for remote training

e Create a compute resource to train the model remotely

e Traina caret model to predict probability of fatality

e Deploy a prediction endpoint

e Test the model from R

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of
Azure Machine Learning today.

Create a workspace

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,
and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed
object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.
1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-1st-r-experiment.md
https://aka.ms/AMLFree
https://portal.azure.com/
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3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. Inthe Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

FIELD

Workspace name

Subscription

Resource group

Location

Workspace edition

DESCRIPTION

Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Select the Azure subscription that you want to use.

Use an existing resource group in your subscription or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Select the location closest to your users and the data
resources to create your workspace.

Select Basic as the workspace type for this tutorial. The
workspace type (Basic & Enterprise) determines the
features to which you'll have access and pricing.
Everything in this tutorial can be performed with either a
Basic or Enterprise workspace.

7. After you are finished configuring the workspace, select Review + Create.



WARNING

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

IMPORTANT

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right place.

Clone a notebook folder

This example uses the cloud notebook server in your workspace for an install-free and pre-configured experience.
Use your own environment if you prefer to have control over your environment, packages and dependencies.

You complete the following experiment set-up and run steps in Azure Machine Learning studio, a consolidated
interface that includes machine learning tools to perform data science scenarios for data science practitioners of
all skill levels.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

3. Select Notebooks on the left.

4. Open the Samples folder.

5. Open the R folder.

6. Open the folder with a version number on it. This number represents the current release for the R SDK.

7. Selectthe "..." at the right of the vignettes folder and then select Clone.


https://azure.github.io/azureml-sdk-for-r/articles/installation.html
https://ml.azure.com/
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8. Alist of folders displays showing each user who accesses the workspace. Select your folder to clone the

vignettes folder there.

Use RStudio on a compute instance or Notebook VM to run this tutorial.

1.

Select Compute on the left.

Add a compute resource if one does not already exist.

. Once the compute is running, use the RStudio link to open RStudio.

In RStudio, your vignettes folder is a few levels down from Users in the Files section on the lower right.

Under vignettes, select the train-and-deploy-to-aci folder to find the files needed in this tutorial.

IMPORTANT

The rest of this article contains the same content as you see in the train-and-deploy-to-aciRmdfile. If you are experienced

with RMarkdown, feel free to use the code from that file. Or you can copy/paste the code snippets from there, or from this

article into an R script or the command line.

Set up your development environment

The setup for your development work in this tutorial includes the following actions:

e Install required packages




e Connect to a workspace, so that your compute instance can communicate with remote resources
o Create an experiment to track your runs

e Create a remote compute target to use for training

Install required packages

e |[nstall the latest version from CRAN.

# install the latest version from CRAN
install.packages("azuremlsdk")
azuremlsdk::install_azureml(envname = 'r-reticulate')

e Or install the development version from GitHub.

# or install the development version from GitHub
remotes::install_github('https://github.com/Azure/azureml-sdk-for-r")
azuremlsdk::install_azureml(envname = 'r-reticulate')

Now go ahead and import the azuremlsdk package.

library(azuremlsdk)

The training and scoring scripts ( accidents.R and accident_predict.R ) have some additional dependencies. If you
plan on running those scripts locally, make sure you have those required packages as well.

Load your workspace

Instantiate a workspace object from your existing workspace. The following code will load the workspace details
from the config.json file. You can also retrieve a workspace using get_workspace() .

ws <- load_workspace_from_config()

Create an experiment

An Azure ML experiment tracks a grouping of runs, typically from the same training script. Create an experiment
to track the runs for training the caret model on the accidents data.

experiment_name <- "accident-logreg"
exp <- experiment(ws, experiment_name)

Create a compute target

By using Azure Machine Learning Compute (AmICompute), a managed service, data scientists can train machine
learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial,
you create a single-node AmlCompute cluster as your training environment. The code below creates the compute
cluster for you if it doesn't already exist in your workspace.

You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.


https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html

cluster_name <- "rcluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target)) {
vm_size <- "STANDARD_D2_V2"
compute_target <- create_aml_compute(workspace = ws,
cluster_name = cluster_name,
vm_size = vm_size,
max_nodes = 1)

wait_for_provisioning_completion(compute_target)

Prepare data for training

This tutorial uses data from the US National Highway Traffic Safety Administration (with thanks to Mary C. Meyer

and Tremika Finney). This dataset includes data from over 25,000 car crashes in the US, with variables you can use
to predict the likelihood of a fatality. First, import the data into R and transform it into a new dataframe accidents

for analysis, and export it to an Rdata file.

nassCDS <- read.csv("nassCDS.csv",

colClasses=c("factor","numeric","factor",

"factor","factor", "numeric",

"factor", "numeric", "numeric",

"numeric","character","character",

"numeric", "numeric","character"))

accidents <-
na.omit(nassCDS[,c("dead","dvcat", "seatbelt","frontal","sex","ageOFocc","yearVeh","airbag","occRole")])
accidents$frontal <- factor(accidents$frontal, labels=c("notfrontal”,"frontal"))
accidents$occRole <- factor(accidents$occRole)
accidents$dvcat <- ordered(accidents$dvcat,
levels=c("1-9km/h","10-24","25-39","40-54","55+"))

saveRDS(accidents, file="accidents.Rd")

Upload data to the datastore
Upload data to the cloud so that it can be access by your remote training environment. Each Azure Machine
Learning workspace comes with a default datastore that stores the connection information to the Azure blob

container that is provisioned in the storage account attached to the workspace. The following code will upload the
accidents data you created above to that datastore.

ds <- get_default_datastore(ws)

target_path <- "accidentdata”

upload_files_to_datastore(ds,
list("./accidents.Rd"),
target_path = target_path,
overwrite = TRUE)

Train a model

For this tutorial, fit a logistic regression model on your uploaded data using your remote compute cluster. To
submit a job, you need to:

e Prepare the training script
e Create an estimator

e Submit the job


https://cdan.nhtsa.gov/tsftables/tsfar.htm
https://www.stat.colostate.edu/%7Emeyer/airbags.htm

Prepare the training script

A training script called accidents.R has been provided for you in the same directory as this tutorial. Notice the
following details inside the training script that have been done to leverage Azure Machine Learning for
training:

e The training script takes an argument -d to find the directory that contains the training data. When you define
and submit your job later, you point to the datastore for this argument. Azure ML will mount the storage folder
to the remote cluster for the training job.

e The training script logs the final accuracy as a metric to the run record in Azure ML using log_metric_to_run() .
The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These
metrics are recorded and persisted in the experiment run record. The metrics can then be accessed at any time
or viewed in the run details page in studio. See the reference for the full set of logging methods 1og_*() .

e The training script saves your model into a directory named outputs. The ./outputs folder receives special
treatment by Azure ML. During training, files written to ./outputs are automatically uploaded to your run
record by Azure ML and persisted as artifacts. By saving the trained model to ./outputs , you'll be able to

access and retrieve your model file even after the run is over and you no longer have access to your remote
training environment.

Create an estimator

An Azure ML estimator encapsulates the run configuration information needed for executing a training script on
the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the
Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages.
See the full list of default packages included here.

To create the estimator, define:

e The directory that contains your scripts needed for training ( source_directory ). All the files in this directory are
uploaded to the cluster node(s) for execution. The directory must contain your training script and any
additional scripts required.

e The training script that will be executed ( entry_script ).

e The compute target ( compute_target ), in this case the AmICompute cluster you created earlier.

e The parameters required from the training script ( script_params ). Azure ML will run your training script as a
command-line script with Rscript . In this tutorial you specify one argument to the script, the data directory

mounting point, which you can access with ds$path(target_path) .

e Any environment dependencies required for training. The default Docker image built for training already
contains the three packages ( caret , e1071 ,and optparse ) needed in the training script. So you don't need to
specify additional information. If you are using R packages that are not included by default, use the estimator's

cran_packages parameter to add additional CRAN packages. See the estimator() reference for the full set of
configurable options.

est <- estimator(source_directory = ".",
entry_script = "accidents.R",
script_params = list("--data_folder" = ds$path(target_path)),
compute_target = compute_target

)

Submit the job on the remote cluster

Finally submit the job to run on your cluster. submit_experiment() returns a Run object that you then use to
interface with the run. In total, the first run takes about 10 minutes. But for later runs, the same Docker image is
reused as long as the script dependencies don't change. In this case, the image is cached and the container startup
time is much faster.


https://ml.azure.com
https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation
https://azure.github.io/azureml-sdk-for-r/reference/estimator.html

run <- submit_experiment(exp, est)

You can view the run's details in RStudio Viewer. Clicking the "Web View" link provided will bring you to Azure
Machine Learning studio, where you can monitor the run in the Ul.

view_run_details(run)
Model training happens in the background. Wait until the model has finished training before you run more code.
wait_for_run_completion(run, show_output = TRUE)

You -- and colleagues with access to the workspace -- can submit multiple experiments in parallel, and Azure ML
will take of scheduling the tasks on the compute cluster. You can even configure the cluster to automatically scale
up to multiple nodes, and scale back when there are no more compute tasks in the queue. This configuration is a
cost-effective way for teams to share compute resources.

Retrieve training results

Once your model has finished training, you can access the artifacts of your job that were persisted to the run
record, including any metrics logged and the final trained model.

Get the logged metrics

In the training script accidents.R , you logged a metric from your model: the accuracy of the predictions in the
training data. You can see metrics in the studio, or extract them to the local session as an R list as follows:

metrics <- get_run_metrics(run)
metrics

If you've run multiple experiments (say, using differing variables, algorithms, or hyperparamers), you can use the
metrics from each run to compare and choose the model you'll use in production.

Get the trained model

You can retrieve the trained model and look at the results in your local R session. The following code will
download the contents of the ./outputs directory, which includes the model file.

download_files_from_run(run, prefix="outputs/")
accident_model <- readRDS("outputs/model.rds")
summary(accident_model)

You see some factors that contribute to an increase in the estimated probability of death:

e higher impact speed
e maledriver
e older occupant

® passenger
You see lower probabilities of death with:

e presence of airbags
® presence seatbelts

e frontal collision


https://ml.azure.com

The vehicle year of manufacture does not have a significant effect.

You can use this model to make new predictions:

newdata <- data.frame( # valid values shown below

dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
seatbelt="none", # "none" "belted"

frontal="frontal", # "notfrontal" "frontal"

sex="f", # " "m"

ageOFocc=16, # age in years, 16-97

yearVeh=2002, # year of vehicle, 1955-2003

airbag="none", # "none" "airbag"

occRole="pass" # "driver" "pass"

)

## predicted probability of death for these variables, as a percentage
as.numeric(predict(accident_model,newdata, type="response")*100)

Deploy as a web service

With your model, you can predict the danger of death from a collision. Use Azure ML to deploy your model as a
prediction service. In this tutorial, you will deploy the web service in Azure Container Instances (ACI).

Register the model

First, register the model you downloaded to your workspace with register_model() . A registered model can be
any collection of files, but in this case the R model object is sufficient. Azure ML will use the registered model for
deployment.

model <- register_model(ws,
model_path = "outputs/model.rds",
model_name = "accidents_model",
description = "Predict probablity of auto accident™)

Define the inference dependencies

To create a web service for your model, you first need to create a scoring script ( entry_script ), an R script that
will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use
the provided scoring file accident_predict.Rr . The scoring script must contain an init() method that loads your
model and returns a function that uses the model to make a prediction based on the input data. See the

documentation for more details.

Next, define an Azure ML environment for your script's package dependencies. With an environment, you specify
R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of
environment variables that your script can reference to modify its behavior. By default, Azure ML will build the
same default Docker image used with the estimator for training. Since the tutorial has no special requirements,

create an environment with no special attributes.
r_env <- r_environment(name = "basic_env")

If you want to use your own Docker image for deployment instead, specify the custom_docker_image parameter.
See the r_environment() reference for the full set of configurable options for defining an environment.

Now you have everything you need to create an inference config for encapsulating your scoring script and
environment dependencies.


https://docs.microsoft.com/azure/container-instances/
https://azure.github.io/azureml-sdk-for-r/reference/register_model.html
https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details
https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html

inference_config <- inference_config(
entry_script = "accident_predict.R",
environment = r_env)

Deploy to ACI

In this tutorial, you will deploy your service to ACI. This code provisions a single container to respond to inbound

requests, which is suitable for testing and light loads. See aci_webservice_deployment_config() for additional

configurable options. (For production-scale deployments, you can also deploy to Azure Kubernetes Service.)

aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)

Now you deploy your model as a web service. Deployment can take several minutes.

aci_service <- deploy_model(ws,
‘accident-pred’,
list(model),
inference_config,
aci_config)

wait_for_deployment(aci_service, show_output = TRUE)

Test the deployed service

Now that your model is deployed as a service, you can test the service from R using
a new set of data to predict from, convert it to JSON, and send it to the service.

library(jsonlite)

newdata <- data.frame( # valid values shown below

dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
seatbelt="none", # "none" "belted"

frontal="frontal", # "notfrontal" "frontal"

sex="f", # " "m"

ageOFocc=22, # age in years, 16-97

yearVeh=2002, # year of vehicle, 1955-2003

airbag="none", # "none" "airbag"

occRole="pass" # "driver" "pass"

)

prob <- invoke_webservice(aci_service, toJSON(newdata))
prob

invoke_webservice() . Provide

You can also get the web service's HTTP endpoint, which accepts REST client calls. You can share this endpoint with

anyone who wants to test the web service or integrate it into an application.

aci_service$scoring_uri

Clean up resources

Delete the resources once you no longer need them. Don't delete any resource you plan to still use.

Delete the web service:


https://azure.github.io/azureml-sdk-for-r/reference/aci_webservice_deployment_config.html
https://azure.github.io/azureml-sdk-for-r/articles/deploy-to-aks/deploy-to-aks.html
https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html

delete_webservice(aci_service)

Delete the registered model:

delete_model(model)

Delete the compute cluster:

delete_compute(compute)

Delete everything

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.
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2. From the list, select the resource group you created.
3. Select Delete resource group.
4. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select
Delete.

Next steps

e Now that you've completed your first Azure Machine Learning experiment in R, learn more about the Azure


file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://azure.github.io/azureml-sdk-for-r/index.html

Machine Learning SDK for R.

e Learn more about Azure Machine Learning with R from the examples in the other vignettes folders.



Tutorial: Train and deploy a model from the CLI

4/17/2020 « 14 minutes to read = Edit Online

APPLIES TO: @ Basic edition Enterprise edition (Upgrade to Enterprise edition)
In this tutorial, you use the machine learning extension for the Azure CLI to train, register, and deploy a model.

The Python training scripts in this tutorial use scikit-learn to train a basic model. The focus of this tutorial is not on
the scripts or the model, but the process of using the CLI to work with Azure Machine Learning.

Learn how to take the following actions:

e [nstall the machine learning extension

e Create an Azure Machine Learning workspace

e C(Create the compute resource used to train the model
e Define and register the dataset used to train the model
e Starta training run

e Register and download a model

e Deploy the model as a web service

e Score data using the web service

Prerequisites

e An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try
the free or paid version of Azure Machine Learning today.

e To use the CLI commands in this document from your local environment, you need the Azure CLI.

If you use the Azure Cloud Shell, the CLI is accessed through the browser and lives in the cloud.

Download the example project

For this tutorial, download the https://github.com/microsoft/MLOps project. The files in the
examples/cli-train-deploy directory are used by the steps in this tutorial.

To get a local copy of the files, either download a .zip archive, or use the following Git command to clone the
repository:

git clone https://github.com/microsoft/MLOps.git

Training files

The examples/cli-train-deploy directory from the project contains the following files, which are used when
training a model:

® .azureml\mnist.runconfig : Arun configuration file. This file defines the runtime environment needed to train
the model. In this example, it also mounts the data used to train the model into the training environment.

® scripts\train.py : The training script. This file trains the model.

® scripts\utils.py : A helper file used by the training script.

® .azureml\conda_dependencies.yml : Defines the software dependencies needed to run the training script.

® dataset.json : The dataset definition. Used to register the MNIST dataset in the Azure Machine Learning


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-deploy-model-cli.md
https://scikit-learn.org/
https://aka.ms/AMLFree
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
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workspace.

Deployment files

The repository contains the following files, which are used to deploy the trained model as a web service:

® aciDeploymentConfig.yml : A deployment configuration file. This file defines the hosting environment needed
for the model.

® inferenceConfig.json : Aninference configuration file. This file defines the software environment used by
the service to score data with the model.

® score.py : A python script that accepts incoming data, scores it using the model, and then returns a response.

® scoring-env.yml : The conda dependencies needed to run the model and score.py script.

® testdata.json : A data file that can be used to test the deployed web service.

Connect to your Azure subscription

There are several ways that you can authenticate to your Azure subscription from the CLI. The most basic is to
interactively authenticate using a browser. To authenticate interactively, open a command line or terminal and use
the following command:

az login

If the CLI can open your default browser, it will do so and load a sign-in page. Otherwise, you need to open a
browser and follow the instructions on the command line. The instructions involve browsing to
https://aka.ms/devicelogin and entering an authorization code.

TIP

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with
isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the same one

that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure portal by visiting the

overview page for your workspace. You can also use the SDK to get the subscription ID from the workspace object. For

example, workspace.from_config().subscription_id

To select another subscription, use the az account set -s <subscription name or ID> command and specify the
subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

Install the machine learning extension

To install the machine learning extension, use the following command:
az extension add -n azure-cli-ml

If you get a message that the extension is already installed, use the following command to update to the latest

version:

az extension update -n azure-cli-ml

Create a resource group

A resource group is a basic container of resources on the Azure platform. When working with the Azure Machine


https://aka.ms/devicelogin
https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest

Learning, the resource group will contain your Azure Machine Learning workspace. It will also contain other Azure
services used by the workspace. For example, if you train your model using a cloud-based compute resource, that

resource is created in the resource group.

To create a new resource group, use the following command. Replace <resource-group-name> with the name to

use for this resource group. Replace <location> with the Azure region to use for this resource group:

TIP

You should select a region where the Azure Machine Learning is available. For information, see Products available by region.

az group create --name <resource-group-name> --location <location>

The response from this command is similar to the following JSON:

"id": "/subscriptions/<subscription-GUID>/resourceGroups/<resourcegroupname>",
"location™: "<location>",
"managedBy": null,
"name": "<resource-group-name>",
"properties": {
"provisioningState": "Succeeded"

})
"tags": null,
"type": null

For more information on working with resource groups, see az group.

Create a workspace

To create a new workspace, use the following command. Replace <workspace-name> with the name you want to use

for this workspace. Replace <resource-group-name> with the name of the resource group:
az ml workspace create -w <workspace-name> -g <resource-group-name>

The output of this command is similar to the following JSON:


https://azure.microsoft.com/global-infrastructure/services/?products=machine-learning-service
https://docs.microsoft.com//cli/azure/group?view=azure-cli-latest

"applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/<application-insight-name>",

"containerRegistry": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.containerregistry/registries/<acr-name>",

"creationTime": "2019-08-30T20:24:19.6984254+00:00",

"description”: ""
"friendlyName": "<workspace-name>",
"id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-

name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",

"identityPrincipalId": "<GUID>",

"identityTenantId": "<GUID>",

"identityType": "SystemAssigned”,

"keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",

"location": "<location>",

"name": "<workspace-name>",

"resourceGroup": "<resource-group-name>",

"storageAccount”: "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",

"type": "Microsoft.MachinelLearningServices/workspaces”,

"workspaceid": "<GUID>"

Connect local project to workspace

From a terminal or command prompt, use the following commands change directories to the cli-train-deploy
directory, then connect to your workspace:

cd ~/MLOps/examples/cli-train-deploy
az ml folder attach -w <workspace-name> -g <resource-group-name>

The output of this command is similar to the following JSON:

{
"Experiment name": "model-training",
"Project path": "/home/user/MLOps/examples/cli-train-deploy",
"Resource group": "<resource-group-name>",
"Subscription id": "<subscription-id>",
"Workspace name": "<workspace-name>"
}

This command creates a .azureml/config.json file, which contains information needed to connect to your
workspace. The rest of the az m1 commands used in this tutorial will use this file, so you don't have to add the

workspace and resource group to all commands.

Create the compute target for training

This example uses an Azure Machine Learning Compute cluster to train the model. To create a new compute
cluster, use the following command:

az ml computetarget create amlcompute -n cpu-cluster --max-nodes 4 --vm-size Standard_D2_V2

The output of this command is similar to the following JSON:



"location": "<location>",
"name": "cpu-cluster”,
"provisioningErrors": null,
"provisioningState": "Succeeded"

This command creates a new compute target named cpu-cluster , with a maximum of four nodes. The VM size

selected provides a VM with a GPU resource. For information on the VM size, see [VM types and sizes].

IMPORTANT
The name of the compute target ( cpu-cluster in this case), is important; it is referenced by the

.azureml/mnist.runconfig file used in the next section.

Define the dataset

To train a model, you can provide the training data using a dataset. To create a dataset from the CLI, you must
provide a dataset definition file. The dataset.json file provided in the repo creates a new dataset using the MNIST

data. The dataset it creates is named mnist-dataset .

To register the dataset using the dataset.json file, use the following command:
az ml dataset register -f dataset.json --skip-validation

The output of this command is similar to the following JSON:

"definition": [
"GetFiles"
])
"registration”: {
"description": "mnist dataset”,
"id": "al3a4034-02d1-40bd-8107-b5d591a464b7",
"name": "mnist-dataset",
"tags": {
"sample-tag": "mnist"
s
"version": 1,
"workspace": "Workspace.create(name="myworkspace', subscription_id="mysubscriptionid’,
resource_group="myresourcegroup')"
s
"source": [
"http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz",
"http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz",
"http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz",
"http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"

IMPORTANT

Copy the value of the id entry, as it is used in the next section.

To see a more comprehensive template for a dataset, use the following command:



az ml dataset register --show-template

Reference the dataset

To make the dataset available in the training environment, you must reference it from the runconfig file. The
.azureml/mnist.runconfig file contains the following YAML entries:

# The arguments to the script file.
arguments:

- --data-folder

- DatasetConsumptionConfig:mnist

# The configuration details for data.
data:
mnist:
# Data Location
datalLocation:
# the Dataset used for this run.
dataset:
# Id of the dataset.
id: a13a4034-02d1-40bd-8107-b5d591a464b7
# the DataPath used for this run.
datapath:
# Whether to create new folder.
createOutputDirectories: false
# The mode to handle
mechanism: mount
# Point where the data is download or mount or upload.
environmentVariableName: mnist
# relative path where the data is download or mount or upload.
pathOnCompute:
# Whether to overwrite the data if existing.
overwrite: false

Change the value of the id entry to match the value returned when you registered the dataset. This value is used

to load the data into the compute target during training.
This YAML results in the following actions during training:

e Mounts the dataset (based on the ID of the dataset) in the training environment, and stores the path to the
mount point in the mnist environment variable.
e Passes the location of the data (mount point) inside the training environment to the script using the
--data-folder argument.

The runconfig file also contains information used to configure the environment used by the training run. If you
inspect this file, you'll see that it references the cpu-compute compute target you created earlier. It also lists the
number of nodes to use when training ( "nodeCount": "4" ), and contains a "condaDependencies" section that lists

the Python packages needed to run the training script.

TIP
While it is possible to manually create a runconfig file, the one in this example was created using the
generate-runconfig.py file included in the repository. This file gets a reference to the registered dataset, creates a run

config programatically, and then persists it to file.

For more information on run configuration files, see Set up and use compute targets for model training. For a



complete JSON reference, see the runconfigschema.json.

Submit the training run

To start a training run on the cpu-cluster compute target, use the following command:
az ml run submit-script -c mnist -e myexperiment --source-directory scripts -t runoutput.json

This command specifies a name for the experiment ( myexperiment ). The experiment stores information about this

run in the workspace.
The -c mnist parameter specifies the .azureml/mnist.runconfig file.

The -t parameter stores a reference to this run in a JSON file, and will be used in the next steps to register and
download the model.

As the training run processes, it streams information from the training session on the remote compute resource.
Part of the information is similar to the following text:

Predict the test set
Accuracy is 0.9185

This text is logged from the training script and displays the accuracy of the model. Other models will have different
performance metrics.

If you inspect the training script, you'll notice that it also uses the alpha value when it stores the trained model to

outputs/sklearn_mnist_model.pkl .

The model was saved to the ./outputs directory on the compute target where it was trained. In this case, the
Azure Machine Learning Compute instance in the Azure cloud. The training process automatically uploads the
contents of the ./outputs directory from the compute target where training occurs to your Azure Machine
Learning workspace. It's stored as part of the experiment ( myexperiment in this example).

Register the model

To register the model directly from the stored version in your experiment, use the following command:

az ml model register -n mymodel -f runoutput.json --asset-path "outputs/sklearn_mnist_model.pkl" -t
registeredmodel.json

This command registers the outputs/sklearn_mnist_model.pkl file created by the training run as a new model
registration named mymodel . The --assets-path references a path in an experiment. In this case, the experiment
and run information are loaded from the runoutput.json file created by the training command. The

-t registeredmodel.json creates a JSON file that references the new registered model created by this command,

and is used by other CLI commands that work with registered models.

The output of this command is similar to the following JSON:


https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json

"createdTime": "2019-09-19T15:25:32.411572+00:00",

"description": ""
"experimentName": "myexperiment",
"framework": "Custom",

"frameworkVersion": null,
"id": "mymodel:1",

"name": "mymodel",

"properties™: ""

"runId": "myexperiment_1568906070_5874522d",
"tags": ""

"version": 1

Model versioning

Note the version number returned for the model. The version is incremented each time you register a new model
with this name. For example, you can download the model and register it from a local file by using the following
commands:

az ml model download -i "mymodel:1" -t .
az ml model register -n mymodel -p "sklearn_mnist_model.pkl"

The first command downloads the registered model to the current directory. The file name is
sklearn_mnist_model.pkl , which is the file referenced when you registered the model. The second command

registers the local model ( -p "sklearn_mnist_model.pkl" ) with the same name as the previous registration (
mymodel ). This time, the JSON data returned lists the version as 2.

Deploy the model

To deploy a model, use the following command:

az ml model deploy -n myservice -m "mymodel:1" --ic inferenceConfig.json --dc aciDeploymentConfig.yml

NOTE

You may receive a warning about "Failed to check LocalWebservice existence" or "Failed to create Docker client". You can
safely ignore this, as you are not deploying a local web service.

This command deploys a new service named myservice , using version 1 of the model that you registered

previously.

The inferenceconfig.yml file provides information on how to use the model for inference. For example, it

references the entry script ( score.py ) and software dependencies.

For more information on the structure of this file, see the Inference configuration schema. For more information
on entry scripts, see Deploy models with the Azure Machine Learning.

The aciDeploymentConfig.yml describes the deployment environment used to host the service. The deployment
configuration is specific to the compute type that you use for the deployment. In this case, an Azure Container
Instance is used. For more information, see the Deployment configuration schema.

It will take several minutes before the deployment process completes.



TIP

In this example, Azure Container Instances is used. Deployments to ACI automatically create the needed ACI resource. If you
were to instead deploy to Azure Kubernetes Service, you must create an AKS cluster ahead of time and specify it as part of
the az ml model deploy command. For an example of deploying to AKS, see Deploy a model to an Azure Kubernetes

Service cluster.

After several minutes, information similar to the following JSON is returned:

ACI service creation operation finished, operation "Succeeded"

{
"computeType": "ACI",
{...ommitted for space...}
"runtimeType": null,
"scoringUri": "http://6c061467-4e44-4f05-9db5-9f9a22ef7a5d.eastus2.azurecontainer.io/score",
"state": "Healthy",
"tags": "",
"updatedAt": "2019-09-19T18:22:32.227401+00:00"

The scoring URI

The scoringuri returned from the deployment is the REST endpoint for a model deployed as a web service. You
can also get this URI by using the following command:

az ml service show -n myservice

This command returns the same JSON document, including the scoringuri .

The REST endpoint can be used to send data to the service. For information on creating a client application that
sends data to the service, see Consume an Azure Machine Learning model deployed as a web service

Send data to the service

While you can create a client application to call the endpoint, the machine learning CLI provides a utility that can
act as a test client. Use the following command to send data in the testdata.json file to the service:

az ml service run -n myservice -d @testdata.json

TIP

If you use PowerShell, use the following command instead:

az ml service run -n myservice -d “@testdata.json

The response from the command is similarto [ 3 ] .

Clean up resources

IMPORTANT

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.




Delete deployed service

If you plan on continuing to use the Azure Machine Learning workspace, but want to get rid of the deployed
service to reduce costs, use the following command:

az ml service delete -n myservice

This command returns a JSON document that contains the name of the deleted service. It may take several
minutes before the service is deleted.

Delete the training compute

If you plan on continuing to use the Azure Machine Learning workspace, but want to get rid of the cpu-cluster

compute target created for training, use the following command:

az ml computetarget delete -n cpu-cluster

This command returns a JSON document that contains the ID of the deleted compute target. It may take several
minutes before the compute target has been deleted.

Delete everything
If you don't plan to use the resources you created, delete them so you don't incur additional charges.

To delete the resource group, and all the Azure resources created in this document, use the following command.
Replace <resource-group-name> with the name of the resource group you created earlier:

az group delete -g <resource-group-name> -y

Next steps

In this Azure Machine Learning tutorial, you used the machine learning CLI for the following tasks:

o |nstall the machine learning extension

e Create an Azure Machine Learning workspace

e (Create the compute resource used to train the model
e Define and register the dataset used to train the model
e Starta training run

e Register and download a model

e Deploy the model as a web service

e Score data using the web service

For more information on using the CLI, see Use the CLI extension for Azure Machine Learning.



Set up Azure Machine Learning Visual Studio Code

extension

4/13/2020 « 3 minutes to read « Edit Online

Learn how to install and run scripts using the Azure Machine Learning Visual Studio Code extension.
In this tutorial, you learn the following tasks:

e |Install the Azure Machine Learning Visual Studio Code extension
e Sign into your Azure account from Visual Studio Code

e Use the Azure Machine Learning extension to run a sample script

Prerequisites

e Azure subscription. If you don't have one, sign up to try the free or paid version of Azure Machine Learning.
e Visual Studio Code. If you don't have it, install it.

e Python 3

Install the extension

1. Open Visual Studio Code.
2. Select Extensions icon from the Activity Bar to open the Extensions view.
3. In the Extensions view, search for "Azure Machine Learning".

4. SelectInstall.
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NOTE

Alternatively, you can install the Azure Machine Learning extension via the Visual Studio Marketplace by downloading the
installer directly.

The rest of the steps in this tutorial have been tested with version 0.6.8 of the extension.

Sign in to your Azure Account

In order to provision resources and run workloads on Azure, you have to sign in with your Azure account
credentials. To assist with account management, Azure Machine Learning automatically installs the Azure Account
extension. Visit the following site to learn more about the Azure Account extension.

1. Open the command palette by selecting View > Command Palette from the menu bar.

2. Enter the command "Azure: Sign In" into the command palette to start the sign in process.

Run a machine learning model training script in Azure

Now that you have signed into Azure with your account credentials, Use the steps in this section to learn how to
use the extension to train a machine learning model.

1. Download and unzip the VS Code Tools for Al repository anywhere on your computer.
2. Open the mnist-vscode-docs-sample directory in Visual Studio Code.
3. Select the Azure icon in the Activity Bar.

4. Select the Run Experiment icon at the top of the Azure Machine Learning View.
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5. When the command palette expands, follow the prompts.

a. Select your Azure subscription.

b. From the list of environments, select Conda dependencies file.

c. Press Enter to browse the Conda dependencies file. This file contains the dependencies required to run
your script. In this case, the dependencies file is the env.ym1 file inside the mnist-vscode-docs-sample
directory.

d. Press Enter to browse the training script file. This is the file that contains code to a machine learning

model that categorize images of handwritten digits. In this case, the script to train the model is the
train.py file inside the mnist-vscode-docs-sample directory.


https://aka.ms/vscodetoolsforai
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://github.com/microsoft/vscode-tools-for-ai/archive/master.zip

6. At this point, a configuration file similar to the one below appears in the text editor. The configuration
contains the information required to run the training job like the file that contains the code to train the
model and any Python dependencies specified in the previous step.

{
"workspace": "WS04131142",
"resourceGroup": "WS04131142-rgl",
"location": "South Central US",
"experiment": "WS04131142-expl"”,
"compute": {
"name": "WS@4131142-coml”,
"vmSize": "Standard_D1_v2, Cores: 1; RAM: 3.5GB;"
})
"runConfiguration": {
"filename": "WS04131142-coml-rcl",
"environment": {
"name": "WS©4131142-env1l",
"conda_dependencies": [
"python=3.6.2",
"tensorflow=1.15.0",
"pip"
1
"pip_dependencies": [
"azureml-defaults"
1
"environment_variables": {}
¥
}
}

7. Once you're satisfied with your configuration, submit your experiment by opening the command palette
and entering the following command:

Azure ML: Submit Experiment

This sends the train.py and configuration file to your Azure Machine Learning workspace. The training

job is then started on a compute resource in Azure.

Track the progress of the training script

Running your script can take several minutes. To track its progress:
1. Select the Azure icon from the activity bar.
2. Expand your subscription node.

3. Expand your currently running experiment's node. This is located inside the
{workspace}/Experiments/{experiment} node where the values for your workspace and experiment are the

same as the properties defined in the configuration file.

4. All of the runs for the experiment are listed, as well as their status. To get the most recent status, click the
refresh icon at the top of the Azure Machine Learning View.
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Download the trained model

When the experiment run is complete, the output is a trained model. To download the outputs locally:

1. Right-click the most recent run and select Download Outputs.
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2. Select a location where to save the outputs to.
3. Afolder with the name of your run is downloaded locally. Navigate to it.

4. The model files are inside the outputs/outputs/model directory.

Next steps

e Tutorial: Train and deploy an image classification TensorFlow model using the Azure Machine Learning Visual
Studio Code Extension.



Train and deploy an image classification TensorFlow
model using the Azure Machine Learning Visual

Studio Code Extension

4/13/2020 « 9 minutes to read « Edit Online

Learn how to train and deploy an image classification model to recognize hand-written numbers using TensorFlow
and the Azure Machine Learning Visual Studio Code Extension.

In this tutorial, you learn the following tasks:

e Understand the code

e Create a workspace

e Create an experiment

e Configure Computer Targets
e Run a configuration file

e Train a model

e Register a model

e Deploy a model

Prerequisites

e Azure subscription. If you don't have one, sign up to try the free or paid version of Azure Machine Learning.
e |Install Visual Studio Code, a lightweight, cross-platform code editor.

e Azure Machine Learning Studio Visual Studio Code extension. For install instructions see the Setup Azure

Machine Learning Visual Studio Code extension tutorial

Understand the code

The code for this tutorial uses TensorFlow to train an image classification machine learning model that categorizes
handwritten digits from 0-9. It does so by creating a neural network that takes the pixel values of 28 px x 28 px
image as input and outputs a list of 10 probabilities, one for each of the digits being classified. Below is a sample of
what the data looks like.
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Get the code for this tutorial by downloading and unzipping the VS Code Tools for Al repository anywhere on your

computer.

Create a workspace

The first thing you have to do to build an application in Azure Machine Learning is to create a workspace. A
workspace contains the resources to train models as well as the trained models themselves. For more information,
see what is a workspace.

1. On the Visual Studio Code activity bar, select the Azure icon to open the Azure Machine Learning view.

2. Right-click your Azure subscription and select Create Workspace.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-deploy-image-classification-model-vscode.md
https://aka.ms/AMLFree
https://code.visualstudio.com/docs/setup/setup-overview
https://github.com/microsoft/vscode-tools-for-ai/archive/master.zip
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3. By default a name is generated containing the date and time of creation. In the text input box, change the
name to "TeamWorkspace" and press Enter.

4. SelectCreate a new resource group.
5. Name your resource group "TeamWorkspace-rg" and press Enter.

6. Choose a location for your workspace. It's recommended to choose a location that is closest to the location
you plan to deploy your model. For example, "West US 2".

7. When prompted to select the type of workspace, select Basic to create a basic workspace. For more

information on different workspace offerings, see Azure Machine Learning overview.

At this point, a request to Azure is made to create a new workspace in your account. After a few minutes, the new
workspace appears in your subscription node.

Create an experiment

One or more experiments can be created in your workspace to track and analyze individual model training runs.
Runs can be done in the Azure cloud or on your local machine.

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

[\

. Expand your subscription node.

w

. Expand the TeamWorkspace node.

N

. Right-click the Experiments node.

5. Select Create Experiment from the context menu.
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6. Name your experiment "MNIST" and press Enter to create the new experiment.

Like workspaces, a request is sent to Azure to create an experiment with the provided configurations. After a few
minutes, the new experiment appears in the Experiments node of your workspace.

Configure Compute Targets

A compute target is the computing resource or environment where you run scripts and deploy trained models. For
more information, see the Azure Machine Learning compute targets documentation.

To create a compute target:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

N

. Expand your subscription node.

w

. Expand the TeamWorkspace node.

4. Under the workspace node, right-click the Compute node and choose Create Compute.
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5. Select Azure Machine Learning Compute (AmICompute). Azure Machine Learning Compute is a
managed-compute infrastructure that allows the user to easily create a single or multi-node compute that
can be used with other users in your workspace.

6. Choose a VM size. Select Standard_F2s_v2 from the list of options. The size of your VM has an impact on
the amount of time it takes to train your models. For more information on VM sizes, see sizes for Linux

virtual machines in Azure.

7. Name your compute "TeamWkspc-com" and press Enter to create your compute.


https://docs.microsoft.com/azure/virtual-machines/linux/sizes

A file appears in VS Code with content similar to the one below:

"location": "westus2",
"tags": {},
"properties": {
"computeType": "AmlCompute",
"description": "",
"properties": {
"vmSize": "Standard_F2s_v2",
"vmPriority": "dedicated",
"scaleSettings": {
"maxNodeCount": 4,
"minNodeCount": 0,
"nodeIdleTimeBeforeScaleDown": 120
s
"userAccountCredentials": {
"adminUserName": "",
"adminUserPassword": ""
"adminUserSshPublicKey": ""
s
"subnetName": "",
"vnetName":

wn
E}

"vnetResourceGroupName": "",

"remoteLoginPortPublicAccess":

When satisfied with the configuration, open the command palette by selecting View > Command Palette.

. Enter the following command into the command palette to save your run configuration file.

Azure ML: Save and Continue

After a few minutes, the new compute target appears in the Compute node of your workspace.

Create a run configuration

When you submit a training run to a compute target, you also submit the configuration needed to run the training

job. For example, the script that contains the training code and the Python dependencies needed to run it.

To create a run configuration:

1.

On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

Expand your subscription node.

. Expand the TeamWorkspace > Compute node.

Under the compute node, right-click the TeamWkspc-com compute node and choose Create Run
Configuration.
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. Name your run configuration "MNIST-rc" and press Enter to create your run configuration.

. Then, select Create new Azure ML Environment. Environments define the dependencies required to run
your scripts.

. Name your environment "MNIST-env" and press Enter.
. Select Conda dependencies file from the list.

. Press Enter to browse the Conda dependencies file. In this case, the dependencies file is the env.yml file

inside the vscode-tools-for-ai/mnist-vscode-docs-sample directory.

A file appears in VS Code with content similar to the one below:



10.

11.

"name": "MNIST-env",
"version": "1",
"python": {

"interpreterPath": "python",
"userManagedDependencies": false,
"condaDependencies”: {
"name": "vs-code-azure-ml-tutorial",
"channels": [
"defaults"
1,
"dependencies": [
"python=3.6.2",
"tensorflow=1.15.0",

"pip"”,

"azureml-defaults"

¥

"baseCondaEnvironment"”: null
s
"environmentVariables": {},
"docker": {
"baseImage": "mcr.microsoft.com/azureml/base:intelmpi2@18.3-ubuntul6.04",
"baseDockerfile": null,
"baseImageRegistry": {
"address": null,
"username": null,
"password": null
9
"enabled": false,
"arguments": []
s
"spark": {
"repositories": [],
"packages": [],
"precachePackages": true
})

"inferencingStackVersion": null

Once you're satisfied with your configuration, save it by opening the command palette and entering the

following command:

Azure ML: Save and Continue

Press Enter to browse the script file to run on the compute. In this case, the script to train the model is the

train.py file inside the vscode-tools-for-ai/mnist-vscode-docs-sample directory.

Afile called MNIST-rc.runconfig appears in VS Code with content similar to the one below:



"script": "train.py",
"framework": "Python",
"communicator": "None",
"target": "TeamWkspc-com",
"environment": {
"name": "MNIST-env",
"version": "1",
"python": {
"interpreterPath": "python",
"userManagedDependencies": false,
"condaDependencies": {
"name": "vs-code-azure-ml-tutorial”,
"channels": [
"defaults"”
1,
"dependencies": [
"python=3.6.2",
"tensorflow=1.15.0",

"pip",
{
"pip": [
"azureml-defaults"”
1
}
1
¥
"baseCondaEnvironment": null
s
"environmentVariables": {},
"docker": {
"baseImage": "mcr.microsoft.com/azureml/base:intelmpi2@18.3-ubuntul6.04",
"baseDockerfile": null,
"baseImageRegistry": {
"address": null,
"username": null,
"password": null
¥
"enabled": false,
"arguments": []
¥
"spark": {
"repositories": [],
"packages": [],
"precachePackages": true
3
"inferencingStackVersion": null
3
"history": {
"outputCollection": true,
"snapshotProject": false,
"directoriesToWatch": [
"logs"
1
}

12. Once you're satisfied with your configuration, save it by opening the command palette and entering the
following command:

Azure ML: Save and Continue

The MnIST-rc run configuration is added under the TeamWkspc-com compute node and the MNIST-env
environment configuration is added under the £nvironments node.



Train the model

During the training process, a TensorFlow model is created by processing the training data and learning patterns
embedded within it for each of the respective digits being classified.

To run an Azure Machine Learning experiment:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

[\

. Expand your subscription node.

w

. Expand the TeamWorkspace > Experiments node.
4. Right-click the MNIST experiment.

5. Select Run Experiment.

®) File Edit Selection Miew Go Bun  Terminal Help
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6. From the list of compute target options, select the TeamWkspc-com compute target.
7. Then, select the MNIST-rc run configuration.

8. At this point, a request is sent to Azure to run your experiment on the selected compute target in your
workspace. This process takes several minutes. The amount of time to run the training job is impacted by
several factors like the compute type and training data size. To track the progress of your experiment, right-
click the current run node and select View Run in Azure portal.

9. When the dialog requesting to open an external website appears, select Open.

®) File Edit Selection Wiew Go Bun  Terminal Help
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When the model is done training, the status label next to the run node updates to "Completed".



Register the model

Now that you've trained your model, you can register it in your workspace.

To register your model:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.
2. Expand your subscription node.

3. Expand the TeamWorkspace > Experiments > MNIST node.

4. Get the model outputs generated from training the model. Right-click the Run 1 run node and select

Download outputs.

] File Edit Selection Wiew Go Run Terminal Help
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5. Choose the directory to save the downloaded outputs to. By default, the outputs are placed in the directory
currently opened in Visual Studio Code.

6. Right-click the Models node and choose Register Model.

) FEile Edit Sedection View Go Bun  Terminal Help
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7. Name your model "MNIST-TensorFlow-model" and press Enter.

8. ATensorFlow model is made up of several files. Select Model folder as the model path format from the list
of options.

9. Select the azureml_outputs/Run_1/outputs/outputs/model directory.

A file containing your model configurations appears in Visual Studio Code with similar content to the one
below:



"modelName": "MNIST-TensorFlow-model",

"tags": {

}J

"modelPath": "c:\\Dev\\vscode-tools-for-ai\\mnist-vscode-docs-
sample\\azureml_outputs\\Run_1\\outputs\\outputs\\model",

"description": ""

10. Once you're satisfied with your configuration, save it by opening the command palette and entering the
following command:

Azure ML: Save and Continue

After a few minutes, the model appears under the Mode/s node.

Deploy the model
In Visual Studio Code, you can deploy your model as a web service to:

o Azure Container Instances (ACI).

e Azure Kubernetes Service (AKS).

You don't need to create an ACI container to test in advance, because ACI containers are created as needed.
However, you do need to configure AKS clusters in advance. For more information on deployment options, see
deploy models with Azure Machine Learning .

To deploy a web service as an ACI :

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.
2. Expand your subscription node.

3. Expand the TeamWorkspace > Models node.

4. Right-click the MNIST-TensorFlow-model and select Deploy Service from Registered Model.

®) File Edit Selection Wiew Go Bun  Terminal Help
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5. Select Azure Container Instances.
6. Name your service "mnist-tensorflow-svc" and press Enter.

7. Choose the script to run in the container by pressing Enter in the input box and browsing for the score.py



filein the mnist-vscode-docs-sample directory.

8. Provide the dependencies needed to run the script by pressing Enter in the input box and browsing for the

env.yml file in the mnist-vscode-docs-sample directory.

A file containing your model configurations appears in Visual Studio Code with similar content to the one
below:

{

"name": "mnist-tensorflow-svc",

"imageConfig": {
"runtime”: "python",
"executionScript": "score.py",
"dockerFile": null,
"condaFile": "env.yml",
"dependencies": [],
"schemaFile": null,
"enableGpu": false,
"description": ""

9

"deploymentConfig": {
"cpu_cores": 1,
"memory_gb": 10,
"tags": {
3
"description": ""

s

"deploymentType": "ACI",

"modelIds": [
"MNIST-TensorFlow-model:1"

]

}

9. Once you're satisfied with your configuration, save it by opening the command palette and entering the
following command:

Azure ML: Save and Continue

At this point, a request is sent to Azure to deploy your web service. This process takes several minutes. Once
deployed, the new service appears under the £ndpoints node.

Next steps

e For a walkthrough of how to train with Azure Machine Learning outside of Visual Studio Code, see Tutorial: Train
models with Azure Machine Learning.

e For a walkthrough of how to edit, run, and debug code locally, see the Python hello-world tutorial.


https://code.visualstudio.com/docs/Python/Python-tutorial

Explore Azure Machine Learning with Jupyter

notebooks
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The example Azure Machine Learning Notebooks repository includes the latest Azure Machine Learning Python
SDK samples. These Juypter notebooks are designed to help you explore the SDK and serve as models for your
own machine learning projects.

This article shows you how to access the repository from the following environments:

e Azure Machine Learning compute instance
e Bring your own notebook server

o Data Science Virtual Machine

NOTE

Once you've cloned the repository, you'll find tutorial notebooks in the tutorials folder and feature-specific notebooks in
the how-to-use-azureml folder.

Get samples on Azure Machine Learning compute instance

The easiest way to get started with the samples is to complete the Tutorial: Setup environment and workspace.
Once completed, you'll have a dedicated notebook server pre-loaded with the SDK and the sample repository. No
downloads or installation necessary.

Get samples on your notebook server

If you'd like to bring your own notebook server for local development, follow these steps:

1. Use the instructions at Azure Machine Learning SDK to install the Azure Machine Learning SDK for Python
2. Create an Azure Machine Learning workspace.

3. Write a configuration file file (@ml_config/config.json).

4. Clone the GitHub repository.
git clone https://github.com/Azure/MachineLearningNotebooks.git
5. Start the notebook server from your cloned directory.

jupyter notebook

These instructions install the base SDK packages necessary for the quickstart and tutorial notebooks. Other
sample notebooks may require you to install extra components. For more information, see Install the Azure
Machine Learning SDK for Python.

Get samples on DSVM


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/samples-notebooks.md
https://github.com/azure/machinelearningnotebooks
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
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https://docs.microsoft.com/python/api/overview/azure/ml/install

The Data Science Virtual Machine (DSVM) is a customized VM image built specifically for doing data science. If
you create a DSVM, the SDK and notebook server are installed and configured for you. However, you'll still need

to create a workspace and clone the sample repository.
1. Create an Azure Machine Learning workspace.

2. Clone the GitHub repository.

git clone https://github.com/Azure/MachineLearningNotebooks.git

3. Add a workspace configuration file to the cloned directory using either of these methods:

o |n the Azure portal, select Download config.json from the Overview section of your workspace.
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e Create a new workspace using code in the configuration.ipynb notebook in your cloned directory.

4. Start the notebook server from your cloned directory.

jupyter notebook

Next steps

Explore the sample notebooks to discover what Azure Machine Learning can do, or try these tutorials:
e Train and deploy an image classification model with MNIST

e Prepare data and use automated machine learning to train a regression model with the NYC taxi data set


https://aka.ms/aml-notebooks
https://ms.portal.azure.com
https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb
https://aka.ms/aml-notebooks

Sample datasets in Azure Machine Learning designer

(JENEW
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When you create a new pipeline in Azure Machine Learning designer (preview), a number of sample datasets are
included by default. These sample datasets are used by the sample pipelines in the designer homepage.

The sample datasets are available under Datasets-Samples category. You can find this in the module palette to
the left of the canvas in the designer. You can use any of these datasets in your own pipeline by dragging it to the
canvas.

Datasets

DATASET NAME DATASET DESCRIPTION

Adult Census Income Binary Classification dataset A subset of the 1994 Census database, using working adults
over the age of 16 with an adjusted income index of > 100.
Usage: Classify people using demographics to predict
whether a person earns over 50K a year.
Related Research: Kohavi, R, Becker, B., (1996). UCI Machine
Learning Repository. Irvine, CA: University of California, School
of Information and Computer Science

Automobile price data (Raw) Information about automobiles by make and model, including
the price, features such as the number of cylinders and MPG,
as well as an insurance risk score.

The risk score is initially associated with auto price. It is then
adjusted for actual risk in a process known to actuaries as
symboling. A value of +3 indicates that the auto is risky, and a
value of -3 that it is probably safe.

Usage: Predict the risk score by features, using regression or
multivariate classification.

Related Research: Schlimmer, J.C. (1987). UCI Machine
Learning Repository. Irvine, CA: University of California, School
of Information and Computer Science.

CRM Appetency Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_small_train_appetency.labels).

CRM Churn Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_small_train_churn.labels).

CRM Dataset Shared This data comes from the KDD Cup 2009 customer
relationship prediction challenge (orange_small_train.data.zip).
The dataset contains 50K customers from the French Telecom
company Orange. Each customer has 230 anonymized
features, 190 of which are numeric and 40 are categorical. The
features are very sparse.

CRM Upselling Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_large_train_upselling.labels


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/sample-designer-datasets.md
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
http://www.sigkdd.org/site/2009/files/orange_small_train_appetency.labels
http://www.sigkdd.org/site/2009/files/orange_small_train_churn.labels
http://www.sigkdd.org/site/2009/files/orange_small_train.data.zip
http://www.sigkdd.org/site/2009/files/orange_large_train_upselling.labels

DATASET NAME

Flight Delays Data

German Credit Card UCI dataset

IMDB Movie Titles

Movie Ratings

DATASET DESCRIPTION

Passenger flight on-time performance data taken from the
TranStats data collection of the U.S. Department of
Transportation (On-Time).

The dataset covers the time period April-October 2013. Before
uploading to the designer, the dataset was processed as
follows:

- The dataset was filtered to cover only the 70 busiest airports
in the continental US

- Canceled flights were labeled as delayed by more than 15
minutes

- Diverted flights were filtered out

- The following columns were selected: Year, Month,
DayofMonth, DayOfWeek, Carrier, OriginAirportID,
DestAirportlD, CRSDepTime, DepDelay, DepDel15,
CRSArrTime, ArrDelay, ArrDel15, Canceled

The UCI Statlog (German Credit Card) dataset
(Statlog+German+Credit+Data), using the german.data file.
The dataset classifies people, described by a set of attributes,
as low or high credit risks. Each example represents a person.
There are 20 features, both numerical and categorical, and a
binary label (the credit risk value). High credit risk entries have
label = 2, low credit risk entries have label = 1. The cost of
misclassifying a low risk example as high is 1, whereas the cost
of misclassifying a high risk example as low is 5.

The dataset contains information about movies that were
rated in Twitter tweets: IMDB movie ID, movie name, genre,
and production year. There are 17K movies in the dataset. The
dataset was introduced in the paper "S. Dooms, T. De
Pessemier and L. Martens. MovieTweetings: a Movie Rating
Dataset Collected From Twitter. Workshop on Crowdsourcing
and Human Computation for Recommender Systems,
CrowdRec at RecSys 2013."

The dataset is an extended version of the Movie Tweetings
dataset. The dataset has 170K ratings for movies, extracted
from well-structured tweets on Twitter. Each instance
represents a tweet and is a tuple: user ID, IMDB movie ID,
rating, timestamp, number of favorites for this tweet, and
number of retweets of this tweet. The dataset was made
available by A. Said, S. Dooms, B. Loni and D. Tikk for
Recommender Systems Challenge 2014.


https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

DATASET NAME

Weather Dataset

Wikipedia SP 500 Dataset

Next steps

DATASET DESCRIPTION

Hourly land-based weather observations from NOAA (merged
data from 201304 to 201310).

The weather data covers observations made from airport
weather stations, covering the time period April-October
2013. Before uploading to the designer, the dataset was
processed as follows:

- Weather station IDs were mapped to corresponding airport
IDs

- Weather stations not associated with the 70 busiest airports
were filtered out

- The Date column was split into separate Year, Month, and
Day columns

- The following columns were selected: AirportlD, Year, Month,
Day, Time, TimeZone, SkyCondition, Visibility, WeatherType,
DryBulbFarenheit, DryBulbCelsius, WetBulbFarenheit,
WetBulbCelsius, DewPointFarenheit, DewPointCelsius,
RelativeHumidity, WindSpeed, WindDirection,
ValueForWindCharacter, StationPressure, PressureTendency,
PressureChange, SealLevelPressure, RecordType, HourlyPrecip,
Altimeter

Data is derived from Wikipedia (https://www.wikipedia.org/)
based on articles of each S&P 500 company, stored as XML
data.

Before uploading to the designer, the dataset was processed
as follows:

- Extract text content for each specific company

- Remove wiki formatting

- Remove non-alphanumeric characters

- Convert all text to lowercase

- Known company categories were added

Note that for some companies an article could not be found,
so the number of records is less than 500.

e Learn the basics of predictive analytics and machine learning with Tutorial: Predict automobile price with the

designer

e Learn how to modify existing designer samples to adapt them to your needs.


https://az754797.vo.msecnd.net/data/WeatherDataset.csv
https://www.wikipedia.org/

Designer sample pipelines
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Use the built-in examples in Azure Machine Learning designer to quickly get started building your own machine
learning pipelines. The Azure Machine Learning designer GitHub repository contains detailed documentation to
help you understand some common machine learning scenarios.

Prerequisites

e An Azure subscription. If you don't have an Azure subscription, create a free account.

e An Azure Machine Learning workspace with the Enterprise SKU.

How to use sample pipelines

The designer saves a copy of the sample pipelines to your studio workspace. You can edit the pipeline to adapt it to
your needs and save it as your own. Use them as a starting point to jumpstart your projects.

Open a sample pipeline

1. Sign in to ml.azure.com, and select the workspace you want to work with.
2. Select Designer.
3. Select a sample pipeline under the New pipeline section.

Select Show more samples for a complete list of samples.

Submit a pipeline run

To run a pipeling, you first have to set default compute target to run the pipeline on.
1. In the Settings pane to the right of the canvas, select Select compute target.
2. In the dialog that appears, select an existing compute target or create a new one. Select Save.

3. Select Submit at the top of the canvas to submit a pipeline run.

Depending on the sample pipeline and compute settings, runs may take some time to complete. The default
compute settings have a minimum node size of 0, which means that the designer must allocate resources after
being idle. Repeated pipeline runs will take less time since the compute resources are already allocated.
Additionally, the designer uses cached results for each module to further improve efficiency.

Review the results

After the pipeline finishes running, you can review the pipeline and view the output for each module to learn more.
Use the following steps to view module outputs:

1. Select a module in the canvas.

(]

2. In the module details pane to the right of the canvas, select Outputs + logs. Select the graph icon to
see the results of each module.

Use the samples as starting points for some of the most common machine learning scenarios.

Regression samples


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/samples-designer.md
https://github.com/Azure/MachineLearningDesigner
https://aka.ms/AMLFree
https://ml.azure.com?tabs=jre

Learn more about the built-in regression samples.

SAMPLE TITLE DESCRIPTION

Sample 1: Regression - Automobile Price Prediction (Basic) Predict car prices using linear regression.

Sample 2: Regression - Automobile Price Prediction Predict car prices using decision forest and boosted decision
(Advanced) tree regressors. Compare models to find the best algorithm.

Classification samples

Learn more about the built-in classification samples. You can learn more about the samples without
documentation links by opening the samples and viewing the module comments instead.

SAMPLE TITLE DESCRIPTION

Sample 3: Binary Classification with Feature Selection - Predict income as high or low, using a two-class boosted
Income Prediction decision tree. Use Pearson correlation to select features.
Sample 4: Binary Classification with custom Python script - Classify credit applications as high or low risk. Use the Execute
Credit Risk Prediction Python Script module to weight your data.

Sample 5: Binary Classification - Customer Relationship Predict customer churn using two-class boosted decision
Prediction trees. Use SMOTE to sample biased data.

Sample 7: Text Classification - Wikipedia SP 500 Dataset Classify company types from Wikipedia articles with multiclass

logistic regression.

Sample 12: Multiclass Classification - Letter Recognition Create an ensemble of binary classifiers to classify written
letters.

Recommender samples

Learn more about the built-in recommender samples. You can learn more about the samples without
documentation links by opening the samples and viewing the module comments instead.

SAMPLE TITLE DESCRIPTION
Sample 10: Recommendation - Movie Rating Tweets Build a movie recommender engine from movie titles and
rating.

Utility samples

Learn more about the samples that demonstrate machine learning utilities and features. You can learn more about
the samples without documentation links by opening the samples and viewing the module comments instead.

SAMPLE TITLE DESCRIPTION
Sample 6: Use custom R script - Flight Delay Prediction

Sample 8: Cross Validation for Binary Classification - Adult Use cross validation to build a binary classifier for adult
Income Prediction income.


https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-regression-automobile-price-basic.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-regression-automobile-price-compare-algorithms.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-predict-income.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-credit-risk-cost-sensitive.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-churn.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-text-classification.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-flight-delay.md

SAMPLE TITLE

Sample 9: Permutation Feature Importance

Sample 11: Tune Parameters for Binary Classification - Adult
Income Prediction

Clean up resources

DESCRIPTION

Use permutation feature importance to compute importance
scores for the test dataset.

Use Tune Model Hyperparameters to find optimal
hyperparameters to build a binary classifier.

IMPORTANT

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to articles.

Delete everything

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any charges.

1. In the Azure portal, select Resource groups on the left side of the window.
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2. In the list, select the resource group that you created.

3. Select Delete resource group.

Deleting the resource group also deletes all resources that you created in the designer.

Delete individual assets

In the designer where you created your experiment, delete individual assets by selecting them and then selecting

the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This

action is taken to minimize charges. If you want to delete the compute target, take these steps:
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You can unregister datasets from your workspace by selecting each dataset and selecting Unregister.
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Sample usage [

# azureml-core of version 1.0.72 or higher is required
from azureml.core import Workspace, Dataset

subscription_id = ‘ee85ed72-2b26-48f6-a@e8-cbsbcf9sfbd9”
resource_group = ‘test-like'
workspace_name = 'like_test’

workspace = Workspace(subscription_id, resource_group, workspace_name)

dataset = Dataset.get by _name(workspace, name='TD-Sample_1: Regression_-_Aui
dataset.download(target_path=".", overwrite=False)

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually

delete those assets.

Next steps

Learn how to build and deploy machine learning models with Tutorial: Predict automobile price with the designer



What is an Azure Machine Learning workspace?
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The workspace is the top-level resource for Azure Machine Learning, providing a centralized place to work with
all the artifacts you create when you use Azure Machine Learning. The workspace keeps a history of all training
runs, including logs, metrics, output, and a snapshot of your scripts. You use this information to determine which
training run produces the best model.

Once you have a model you like, you register it with the workspace. You then use the registered model and
scoring scripts to deploy to Azure Container Instances, Azure Kubernetes Service, or to a field-programmable
gate array (FPGA) as a REST-based HTTP endpoint. You can also deploy the model to an Azure loT Edge device as
amodule.

Pricing and features available depend on whether Basic or Enterprise edition is selected for the workspace. You

select the edition when you create the workspace. You can also upgrade from Basic to Enterprise edition.

Taxonomy

A taxonomy of the workspace is illustrated in the following diagram:
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The diagram shows the following components of a workspace:

e A workspace can contain Azure Machine Learning compute instances, cloud resources configured with the
Python environment necessary to run Azure Machine Learning.

e User roles enable you to share your workspace with other users, teams or projects.

e Compute targets are used to run your experiments.

e \When you create the workspace, associated resources are also created for you.

e Experiments are training runs you use to build your models.

e Pipelines are reusable workflows for training and retraining your model.

e Datasets aid in management of the data you use for model training and pipeline creation.
e Once you have a model you want to deploy, you create a registered model.

e Use the registered model and a scoring script to create a deployment endpoint.
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Tools for workspace interaction

You can interact with your workspace in the following ways:

e On the web:

o Azure Machine Learning studio

o Azure Machine Learning designer (preview) - Available only in Enterprise edition workspaces.

e [n any Python environment with the Azure Machine Learning SDK for Python.

e Inany R environment with the Azure Machine Learning SDK for R.

e On the command line using the Azure Machine Learning CLI extension

Machine learning with a workspace

Machine learning tasks read and/or write artifacts to your workspace.

e Run an experiment to train a model - writes experiment run results to the workspace.

e Use automated ML to train a model - writes training results to the workspace.

e Register a model in the workspace.

e Deploy a model - uses the registered model to create a deployment.

e Create and run reusable workflows.

e View machine learning artifacts such as experiments, pipelines, models, deployments.

e Track and monitor models.

Workspace management

You can also perform the following workspace management tasks:

WORKSPACE
MANAGEMENT TASK

Create a workspace

Manage workspace
access

Upgrade to
Enterprise edition

Create and manage
compute resources

Create a Notebook
VM

PORTAL

v

STUDIO PYTHON SDK / R SDK
v

v

v v

v

CLI

WARNING

tenant, is not supported. Doing so may cause errors.

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a new

Create a workspace

When you create a workspace, you decide whether to create it with Basic or Enterprise edition. The edition

determines the features available in the workspace. Among other features, Enterprise edition gives you access to
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Azure Machine Learning designer and the studio version of building automated machine learning experiments.
For more details and pricing information, see Azure Machine Learning pricing.

There are multiple ways to create a workspace:

e Use the Azure portal for a point-and-click interface to walk you through each step.

e Use the Azure Machine Learning SDK for Python to create a workspace on the fly from Python scripts or
Jupiter notebooks

e Use an Azure Resource Manager template or the Azure Machine Learning CLI when you need to automate or
customize the creation with corporate security standards.

e [f you work in Visual Studio Code, use the VS Code extension.

NOTE

The workspace name is case-insensitive.

Upgrade to Enterprise edition

You can upgrade your workspace from Basic to Enterprise edition using Azure portal. You cannot downgrade an
Enterprise edition workspace to a Basic edition workspace.

Associated resources

When you create a new workspace, it automatically creates several Azure resources that are used by the
workspace:

e Azure Container Registry: Registers docker containers that you use during training and when you deploy a
model. To minimize costs, ACR is lazy-loaded until deployment images are created.

e Azure Storage account: Is used as the default datastore for the workspace. Jupyter notebooks that are used
with your Azure Machine Learning compute instances are stored here as well.

e Azure Application Insights: Stores monitoring information about your models.

e Azure Key Vault: Stores secrets that are used by compute targets and other sensitive information that's
needed by the workspace.

NOTE

In addition to creating new versions, you can also use existing Azure services.

Next steps
To get started with Azure Machine Learning, see:

e Azure Machine Learning overview

e Create a workspace

e Manage a workspace

e Tutorial: Get started creating your first ML experiment with the Python SDK
e Tutorial: Get started with Azure Machine Learning with the R SDK

e Tutorial: Create your first classification model with automated machine learning (Available only in Enterprise
edition workspaces)

e Tutorial: Predict automobile price with the designer (Available only in Enterprise edition workspaces)
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What are Azure Machine Learning environments?

3/20/2020 « 4 minutes to read = Edit Online

APPLIES TO: @ Basic edition & Enterprise edition (Upgrade to Enterprise edition)

Azure Machine Learning environments specify the Python packages, environment variables, and software settings
around your training and scoring scripts. They also specify run times (Python, Spark, or Docker). The environments
are managed and versioned entities within your Machine Learning workspace that enable reproducible, auditable,
and portable machine learning workflows across a variety of compute targets.

You can use an Environment object on your local compute to:

e Develop your training script.
e Reuse the same environment on Azure Machine Learning Compute for model training at scale.

e Deploy your model with that same environment.

The following diagram illustrates how you can use a single Environment objectin both your run configuration, for
training, and your inference and deployment configuration, for web service deployments.

2o
]

Training script Environment Compute target Scoring script
| |
Run configuration Inferencing and deployment Model

configuration

l l

Run Web service deployment

Types of environments

Environments can broadly be divided into three categories: curated, user-managed, and system-managed.

Curated environments are provided by Azure Machine Learning and are available in your workspace by default.
They contain collections of Python packages and settings to help you get started with various machine learning
frameworks.

In user-managed environments, you're responsible for setting up your environment and installing every package
that your training script needs on the compute target. Conda doesn't check your environment or install anything
for you. If you're defining your own environment, you must list azureml-defaults with version >= 1.8.45 as a pip

dependency. This package contains the functionality that's needed to host the model as a web service.

You use system-managed environments when you want Conda to manage the Python environment and the script
dependencies for you. The service assumes this type of environment by default, because of its usefulness on
remote compute targets that are not manually configurable.

Create and manage environments

You can create environments by:


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-environments.md
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e Defining new Environment objects, either by using a curated environment or by defining your own
dependencies.

e Using existing Environment objects from your workspace. This approach allows for consistency and
reproducibility with your dependencies.

e Importing from an existing Anaconda environment definition.

e Using the Azure Machine Learning CLI

For specific code samples, see the "Create an environment" section of Reuse environments for training and
deployment. Environments are also easily managed through your workspace. They include the following

functionality:

e Environments are automatically registered to your workspace when you submit an experiment. They can also be
manually registered.

e You can fetch environments from your workspace to use for training or deployment, or to make edits to the
environment definition.

e With versioning, you can see changes to your environments over time, which ensures reproducibility.

e You can build Docker images automatically from your environments.

For code samples, see the "Manage environments" section of Reuse environments for training and deployment.

Environment building, caching, and reuse

The Azure Machine Learning service builds environment definitions into Docker images and conda environments.
It also caches the environments so they can be reused in subsequent training runs and service endpoint
deployments.

Building environments as Docker images

Typically, when you first submit a run using an environment, the Azure Machine Learning service invokes an ACR
Build Task on the Azure Container Registry (ACR) associated with the Workspace. The built Docker image is then
cached on the Workspace ACR. At the start of the run execution, the image is retrieved by the compute target.

The image build consists of two steps:

1. Downloading a base image, and executing any Docker steps

2. Building a conda environment according to conda dependencies specified in the environment definition.

The second step is omitted if you specify user-managed dependencies. In this case you're responsible for installing
any Python packages, by including them in your base image, or specifying custom Docker steps within the first

step. You're also responsible for specifying the correct location for the Python executable.

Image caching and reuse

If you use the same environment definition for another run, the Azure Machine Learning service reuses the cached
image from the Workspace ACR.

To view the details of a cached image, use Environment.get_image_details method.

To determine whether to reuse a cached image or build a new one, the service computes a hash value from the
environment definition and compares it to the hashes of existing environments. The hash is based on:

e Base image property value
e Custom docker steps property value
e List of Python packages in Conda definition

e List of packages in Spark definition

The hash doesn't depend on environment name or version. Environment definition changes, such as adding or
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removing a Python package or changing the package version, causes the hash value to change and triggers an
image rebuild. However, if you simply rename your environment or create a new environment with the exact
properties and packages of an existing one, then the hash value remains the same and the cached image is used.

See the following diagram that shows three environment definitions. Two of them have different name and version,
but identical base image and Python packages. They have the same hash and therefore correspond to the same
cached image. The third environment has different Python packages and versions, and therefore corresponds to a
different cached image.

E\Jlame: my-eny E\Jlame: my-env-2 I—_Nlilme: my-env-3
Version: 1 Version: 2 Version: 3
Packages: numpy, scikit learn Packages: numpy, scikit learn Packages: numpy, pandas, scikit learn = 0.20
Base image: base ubuntu 16.04 Base image: base ubuntu 16.04 Base image: base ubuntu 16.04
Hash 001 Hash 001 Hash 002

e - |

|
el R

container registry Image A Image B

IMPORTANT

If you create an environment with an unpinned package dependency, for example numpy , that environment will keep using
the package version installed at the time of environment creation. Also, any future environment with matching definition will

keep using the old version.

To update the package, specify a version number to force image rebuild, for example numpy==1.18.1 . Note that new
dependencies, including nested ones will be installed that might break a previously working scenario.

WARNING

The Environment.build method will rebuild the cached image, with possible side-effect of updating unpinned packages and
breaking reproducibility for all environment definitions corresponding to that cached image.

Next steps

® Learn how to create and use environments in Azure Machine Learning.
e See the Python SDK reference documentation for the environment class.

e See the R SDK reference documentation for environments.
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In this article, you learn the pros and cons of the following data ingestion options available with Azure Machine

Learning.

1. Azure Data Factory pipelines

2. Azure Machine Learning Python SDK

Data ingestion is the process in which unstructured data is extracted from one or multiple sources and then
prepared for training machine learning models. It's also time intensive, especially if done manually, and if you have
large amounts of data from multiple sources. Automating this effort frees up resources and ensures your models
use the most recent and applicable data.

Azure Data Factory (ADF) is specifically built to extract, load, and transform data, however the Python SDK let's you
develop a custom code solution for basic data ingestion tasks. If neither are quite what you need, you can also use
ADF and the Python SDK together to create an overall data ingestion workflow that meets your needs.

Use Azure Data Factory

Azure Data Factory offers native support for data source monitoring and triggers for data ingestion pipelines.

The following table summarizes the pros and cons for using Azure Data Factory for your data ingestion workflows.

PROS

Specifically built to extract, load, and transform data.

Allows you to create data-driven workflows for orchestrating
data movement and transformations at scale.

Integrated with various Azure tools like Azure Databricks and
Azure Functions

Natively supports data source triggered data ingestion

Data preparation and model training processes are separate.

Embedded data lineage capability for Azure Data Factory
dataflows

Provides a low code experience user interface for non-scripting

approaches

CONS

Currently offers a limited set of Azure Data Factory pipeline
tasks

Expensive to construct and maintain. See Azure Data Factory's
pricing page for more information.

Doesn't natively run scripts, instead relies on separate
compute for script runs

These steps and the following diagram illustrate Azure Data Factory's data ingestion workflow.

1. Pull the data from its sources

2. Transform and save the data to an output blob container, which serves as data storage for Azure Machine

Learning

3. With prepared data stored, the Azure Data Factory pipeline invokes a training Machine Learning pipeline that
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receives the prepared data for model training

Learn how to build a data ingestion pipeline for Machine Learning with Azure Data Factory.

Use the Python SDK

With the Python SDK, you can incorporate data ingestion tasks into an Azure Machine Learning pipeline step.

The following table summarizes the pros and con for using the SDK and an ML pipelines step for data ingestion

tasks.
PROS CONS
Configure your own Python scripts Does not natively support data source change triggering.
Requires Logic App or Azure Function implementations
Data preparation as part of every model training execution Requires development skills to create a data ingestion script
Supports data preparation scripts on various compute targets, Does not provide a user interface for creating the ingestion
including Azure Machine Learning compute mechanism

In the following diagram, the Azure Machine Learning pipeline consists of two steps: data ingestion and model
training. The data ingestion step encompasses tasks that can be accomplished using Python libraries and the
Python SDK, such as extracting data from local/web sources, and basic data transformations, like missing value
imputation. The training step then uses the prepared data as input to your training script to train your machine
learning model.

d Azure Machine Learning pipeline

Data ingestion Train model
+ Pull data Training
+ Transform data script
Next steps

e Learn how to build a data ingestion pipeline for Machine Learning with Azure Data Factory

e Learn how to automate and manage the development life cycles of your data ingestion pipelines with Azure
Pipelines.


https://docs.microsoft.com/python/api/overview/azure/ml
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Azure Machine Learning makes it easy to connect to your data in the cloud. It provides an abstraction layer over the
underlying storage service, so you can securely access and work with your data without having to write code
specific to your storage type. Azure Machine Learning also provides the following data capabilities:

e Versioning and tracking of data lineage
e Data labeling
e Data drift monitoring

e Interoperability with Pandas and Spark DataFrames

Data workflow

When you're ready to use the data in your cloud-based storage solution, we recommend the following data
delivery workflow. This workflow assumes you have an Azure storage account and data in a cloud-based storage
service in Azure.

1. Create an Azure Machine Learning datastore to store connection information to your Azure storage.

2. From that datastore, create an Azure Machine Learning dataset to point to a specific file(s) in your
underlying storage.

3. To use that dataset in your machine learning experiment you can either
a. Mount it to your experiment's compute target for model training.
OR

b. Consume it directly in Azure Machine Learning solutions like, automated machine learning
(automated ML) experiment runs, machine learning pipelines, or the Azure Machine Learning
designer.

4. Create dataset monitors for your model output dataset to detect for data drift.
5. If data drift is detected, update your input dataset and retrain your model accordingly.

The following diagram provides a visual demonstration of this recommended workflow.

Datastores

Azure Machine Learning datastores securely keep the connection information to your Azure storage, so you don't
have to code it in your scripts. Register and create a datastore to easily connect to your storage account, and access
the data in your underlying Azure storage service.

Supported cloud-based storage services in Azure that can be registered as datastores:

e Azure Blob Container

Azure File Share

Azure Data Lake
Azure Data Lake Gen2
Azure SQL Database
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e Azure Database for PostgreSQL
e Databricks File System
e Azure Database for MySQL

Datasets

Azure Machine Learning datasets are references that point to the data in your storage service. They aren't copies of
your data, so no extra storage cost is incurred. To interact with your data in storage, create a dataset to package
your data into a consumable object for machine learning tasks. Register the dataset to your workspace to share and

reuse it across different experiments without data ingestion complexities.

Datasets can be created from local files, public urls, Azure Open Datasets, or Azure storage services via datastores.
To create a dataset from an in memory pandas dataframe, write the data to a local file, like a parquet, and create

your dataset from that file.
We support 2 types of datasets:

e ATabularDataset represents data in a tabular format by parsing the provided file or list of files. You can load
a TabularDataset into a Pandas or Spark DataFrame for further manipulation and cleansing. For a complete
list of data formats you can create TabularDatasets from, see the TabularDatasetFactory class.

o AFileDataset references single or multiple files in your datastores or public URLs. You can download or
mount files referenced by FileDatasets to your compute target.

Additional datasets capabilities can be found in the following documentation:

e Version and track dataset lineage.

e Monitor your dataset to help with data drift detection.

Work with your data

With datasets, you can accomplish a number of machine learning tasks through seamless integration with Azure

Machine Learning features.

e C(Create a data labeling project.

e Train machine learning models:

o

automated ML experiments

o

the designer

o

notebooks

(e]

Azure Machine Learning pipelines
e Access datasets for scoring with batch inference in machine learning pipelines.

e Set up a dataset monitor for data drift detection.

Data labeling

Labeling large amounts of data has often been a headache in machine learning projects. Those with a computer
vision component, such as image classification or object detection, generally require thousands of images and
corresponding labels.

Azure Machine Learning gives you a central location to create, manage, and monitor labeling projects. Labeling
projects help coordinate the data, labels, and team members, allowing you to more efficiently manage the labeling
tasks. Currently supported tasks are image classification, either multi-label or multi-class, and object identification
using bounded boxes.

Create a data labeling project, and output a dataset for use in machine learning experiments.
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Data drift

In the context of machine learning, data drift is the change in model input data that leads to model performance

degradation. It is one of the top reasons model accuracy degrades over time, thus monitoring data drift helps
detect model performance issues.

See the Create a dataset monitor article, to learn more about how to detect and alert to data drift on new data in a
dataset.
Next steps

e Create a dataset in Azure Machine Learning studio or with the Python SDK using these steps.
e Try out dataset training examples with our sample notebooks.

e For data drift examples, see this data drift tutorial.
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Azure Machine Learning provides several ways to train your models, from code first solutions using the SDK to low
code solutions such as automated machine learning and the visual designer. Use the following list to determine
which training method is right for you:

e Azure Machine Learning SDK for Python: The Python SDK provides several ways to train models, each with
different capabilities.

TRAINING METHOD DESCRIPTION

Run configuration A generic way to train models is to use a training
script and run configuration. The run configuration
provides the information needed to configure the training
environment used to train your model. You can take a run
configuration, your training script, and a compute target
(the training environment) and run a training job.

Automated machine learning Automated machine learning allows you to train models
without extensive data science or programming
knowledge. For people with a data science and
programming background, it provides a way to save time
and resources by automating algorithm selection and
hyperparameter tuning. You don't have to worry about
defining a run configuration when using automated
machine learning.

Estimators Estimator classes make it easy to train models based
on popular machine learning frameworks. There are
estimator classes for Scikit-learn, PyTorch, TensorFlow,
and Chainer. There is also a generic estimator that can be
used with frameworks that do not already have a
dedicated estimator class. You don't have to worry about
defining a run configuration when using estimators.
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TRAINING METHOD DESCRIPTION

Machine learning pipeline Pipelines are not a different training method, but a way of
defining a workflow using modular, reusable steps,
that can include training as part of the workflow. Machine
learning pipelines support using automated machine
learning, estimators, and run configuration to train models.
Since pipelines are not focused specifically on training, the
reasons for using a pipeline are more varied than the other
training methods. Generally, you might use a pipeline
when:

* You want to schedule unattended processes such as
long running training jobs or data preparation.

* Use multiple steps that are coordinated across
heterogeneous compute resources and storage locations.
* Use the pipeline as a reusable template for specific
scenarios, such as retraining or batch scoring.

*Track and version data sources, inputs, and
outputs for your workflow.

* Your workflow is implemented by different teams
that work on specific steps independently. Steps can
then be joined together in a pipeline to implement the
workflow.

e Azure Machine Learning SDK for Python: The SDK uses the reticulate package to bind to Azure Machine
Learning's Python SDK. This allows you access to core objects and methods implemented in the Python SDK

from any R environment.

e Designer: Azure Machine Learning designer (preview) provides an easy entry-point into machine learning
for building proof of concepts, or for users with little coding experience. It allows you to train models using a
drag and drop web-based Ul. You can use Python code as part of the design, or train models without writing

any code.

® CLI: The machine learning CLI provides commands for common tasks with Azure Machine Learning, and is
often used for scripting and automating tasks. For example, once you've created a training script or
pipeline, you might use the CLI to start a training run on a schedule or when the data files used for training
are updated. For training models, it provides commands that submit training jobs. It can submit jobs using

run configurations or pipelines.

Each of these training methods can use different types of compute resources for training. Collectively, these
resources are referred to as compute targets. A compute target can be a local machine or a cloud resource, such
as an Azure Machine Learning Compute, Azure HDInsight, or a remote virtual machine.

Python SDK

The Azure Machine Learning SDK for Python allows you to build and run machine learning workflows with Azure
Machine Learning. You can interact with the service from an interactive Python session, Jupyter Notebooks, Visual
Studio Code, or other IDE.

e What is the Azure Machine Learning SDK for Python
e |Install/update the SDK

e Configure a development environment for Azure Machine Learning

Run configuration

A generic training job with Azure Machine Learning can be defined using the RunConfiguration. The run
configuration is then used, along with your training script(s) to train a model on a compute target.

You may start with a run configuration for your local computer, and then switch to one for a cloud-based compute
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target as needed. When changing the compute target, you only change the run configuration you use. A run also
logs information about the training job, such as the inputs, outputs, and logs.

e Whatis a run configuration?
e Tutorial: Train your first ML model
e Examples: Jupyter Notebook examples of training models

e How to: Set up and use compute targets for model training

Automated Machine Learning

Define the iterations, hyperparameter settings, featurization, and other settings. During training, Azure Machine
Learning tries different algorithms and parameters in parallel. Training stops once it hits the exit criteria you
defined. You don't have to worry about defining a run configuration when using estimators.

TIP

In addition to the Python SDK, you can also use Automated ML through Azure Machine Learning studio.

e What is automated machine learning?

o Tutorial: Create your first classification model with automated machine learning
e Tutorial: Use automated machine learning to predict taxi fares

e Examples: Jupyter Notebook examples for automated machine learning

e How to: Configure automated ML experiments in Python

e How to: Autotrain a time-series forecast model

e How to: Create, explore, and deploy automated machine learning experiments with Azure Machine Learning
studio

Estimators

Estimators make it easy to train models using popular ML frameworks. If you're using Scikit-learn, PyTorch,
TensorFlow, or Chainer, you should consider using an estimator for training. There is also a generic estimator
that can be used with frameworks that do not already have a dedicated estimator class. You don't have to worry
about defining a run configuration when using estimators.

o What are estimators?

Tutorial: Train image classification models with MNIST data and scikit-learn using Azure Machine Learning

Examples: Jupyter Notebook examples of using estimators

e How to: Create estimators in training

Machine learning pipeline

Machine learning pipelines can use the previously mentioned training methods (run configuration, estimators, and
automated machine learning). Pipelines are more about creating a workflow, so they encompass more than just the
training of models. In a pipeline, you can train a model using automated machine learning, estimators, or run
configurations.

e What are ML pipelines in Azure Machine Learning?

e Create and run machine learning pipelines with Azure Machine Learning SDK
e Tutorial: Use Azure Machine Learning Pipelines for batch scoring

e Examples: Jupyter Notebook examples for machine learning pipelines

e Examples: Pipeline with automated machine learning

e Examples: Pipeline with estimators

R SDK
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The R SDK enables you to use the R language with Azure Machine Learning. The SDK uses the reticulate package to
bind to Azure Machine Learning's Python SDK. This allows you access to core objects and methods implemented in
the Python SDK from any R environment.

For more information, see the following articles:

e Tutorial: Create a logistic regression model

® Azure Machine Learning SDK for R reference

Azure Machine Learning designer
The designer lets you to train models using a drag and drop interface in your web browser.

e What is the designer?

e Tutorial : Predict automobile price

® Regression: Predict price

e (Classification: Predict income

e (Classification: Predict churn, appetency, and up-selling
e C(lassification with custom R script: Predict flight delays
o Text Classification: Wikipedia SP 500 Dataset

CLl

The machine learning CLI is an extension for the Azure CLI. It provides cross-platform CLI commands for working
with Azure Machine Learning. Typically, you use the CLI to automate tasks, such as training a machine learning
model.

e Use the CLI extension for Azure Machine Learning

® MLOps on Azure

Next steps

Learn how to Set up training environments.
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In this article, you learn about distributed training and how Azure Machine Learning supports it for deep learning

models.

In distributed training the workload to train a model is split up and shared among multiple mini processors, called
worker nodes. These worker nodes work in parallel to speed up model training. Distributed training can be used for
traditional ML models, but is better suited for compute and time intensive tasks, like deep learning for training deep

neural networks.

Deep learning and distributed training

There are two main types of distributed training: data parallelism and model parallelism. For distributed training on
deep learning models, the Azure Machine Learning SDK in Python supports integrations with popular frameworks,
PyTorch and TensorFlow. Both frameworks employ data parallelism for distributed training, and can leverage
horovod for optimizing compute speeds.

e Distributed training with PyTorch
e Distributed training with TensorFlow

For ML models that don't require distributed training, see train models with Azure Machine Learning for the
different ways to train models using the Python SDK.

Data parallelism

Data parallelism is the easiest to implement of the two distributed training approaches, and is sufficient for most

use cases.

In this approach, the data is divided into partitions, where the number of partitions is equal to the total number of
available nodes, in the compute cluster. The model is copied in each of these worker nodes, and each worker
operates on its own subset of the data. Keep in mind that each node has to have the capacity to support the model

that's being trained, that is the model has to entirely fit on each node.

Each node independently computes the errors between its predictions for its training samples and the labeled
outputs. In turn, each node updates its model based on the errors and must communicate all of its changes to the
other nodes to update their corresponding models. This means that the worker nodes need to synchronize the
model parameters, or gradients, at the end of the batch computation to ensure they are training a consistent model.

Model parallelism

In model parallelism, also known as network parallelism, the model is segmented into different parts that can run
concurrently in different nodes, and each one will run on the same data. The scalability of this method depends on
the degree of task parallelization of the algorithm, and it is more complex to implement than data parallelism.

In model parallelism, worker nodes only need to synchronize the shared parameters, usually once for each forward
or backward-propagation step. Also, larger models aren't a concern since each node operates on a subsection of
the model on the same training data.

Next steps


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-distributed-training.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://horovod.readthedocs.io/en/latest/summary_include.html

Learn how to set up training environments with the Python SDK.
For a technical example, see the reference architecture scenario.
Train ML models with TensorFlow.

Train ML models with PyTorch.


https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning
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monitoring with Azure Machine Learning
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In this article, learn about how to use Azure Machine Learning to manage the lifecycle of your models. Azure
Machine Learning uses a Machine Learning Operations (MLOps) approach. MLOps improves the quality and
consistency of your machine learning solutions.

What is MLOps?

Machine Learning Operations (MLOps) is based on DevOps principles and practices that increase the efficiency of
workflows. For example, continuous integration, delivery, and deployment. MLOps applies these principles to the
machine learning process, with the goal of:

e Faster experimentation and development of models
e Faster deployment of models into production

e Quality assurance
Azure Machine Learning provides the following MLOps capabilities:

e Create reproducible ML pipelines. Machine Learning pipelines allow you to define repeatable and
reusable steps for your data preparation, training, and scoring processes.

o Create reusable software environments for training and deploying models.

e Register, package, and deploy models from anywhere. You can also track associated metadata required
to use the model.

e Capture the governance data for the end-to-end ML lifecycle. The logged information can include
who is publishing models, why changes were made, and when models were deployed or used in production.

e Notify and alert on events in the ML lifecycle. For example, experiment completion, model registration,
model deployment, and data drift detection.

e Monitor ML applications for operational and ML-related issues. Compare model inputs between
training and inference, explore model-specific metrics, and provide monitoring and alerts on your ML
infrastructure.

e Automate the end-to-end ML lifecycle with Azure Machine Learning and Azure Pipelines. Using
pipelines allows you to frequently update models, test new models, and continuously roll out new ML models

alongside your other applications and services.

Create reproducible ML pipelines

Use ML pipelines from Azure Machine Learning to stitch together all of the steps involved in your model training
process.

An ML pipeline can contain steps from data preparation to feature extraction to hyperparameter tuning to model

evaluation. For more information, see ML pipelines.

If you use the Designer to create your ML pipelines, you may at any time click the "..." at the top-right of the
Designer page and then select Clone. Cloning your pipeline allows you to iterate your pipeline design without
losing your old versions.

Create reusable software environments


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-model-management-and-deployment.md
https://azure.microsoft.com/overview/what-is-devops/

Azure Machine Learning environments allow you to track and reproduce your projects' software dependencies as
they evolve. Environments allow you to ensure that builds are reproducible without manual software
configurations.

Environments describe the pip and Conda dependencies for your projects, and can be used for both training and
deployment of models. For more information, see What are Azure Machine Learning environments.

Register, package, and deploy models from anywhere

Register and track ML models

Model registration allows you to store and version your models in the Azure cloud, in your workspace. The model
registry makes it easy to organize and keep track of your trained models.

TIP

A registered model is a logical container for one or more files that make up your model. For example, if you have a model
that is stored in multiple files, you can register them as a single model in your Azure Machine Learning workspace. After

registration, you can then download or deploy the registered model and receive all the files that were registered.

Registered models are identified by name and version. Each time you register a model with the same name as an
existing one, the registry increments the version. Additional metadata tags can be provided during registration.
These tags are then used when searching for a model. Azure Machine Learning supports any model that can be
loaded using Python 3.5.2 or higher.

TIP

You can also register models trained outside Azure Machine Learning.

You can't delete a registered model that is being used in an active deployment. For more information, see the
register model section of Deploy models.
Profile models

Azure Machine Learning can help you understand the CPU and memory requirements of the service that will be
created when you deploy your model. Profiling tests the service that runs your model and returns information
such as the CPU usage, memory usage, and response latency. It also provides a CPU and memory
recommendation based on the resource usage. For more information, see the profiling section of Deploy models.
Package and debug models

Before deploying a model into production, it is packaged into a Docker image. In most cases, image creation

happens automatically in the background during deployment. You can manually specify the image.

If you run into problems with the deployment, you can deploy on your local development environment for
troubleshooting and debugging.

For more information, see Deploy models and Troubleshooting deployments.

Convert and optimize models

Converting your model to Open Neural Network Exchange (ONNX) may improve performance. On average,
converting to ONNX can yield a 2x performance increase.

For more information on ONNX with Azure Machine Learning, see the Create and accelerate ML models article.

Use models

Trained machine learning models are deployed as web services in the cloud or locally. You can also deploy


https://onnx.ai

models to Azure loT Edge devices. Deployments use CPU, GPU, or field-programmable gate arrays (FPGA) for
inferencing. You can also use models from Power BI.

When using a model as a web service or loT Edge device, you provide the following items:

e The model(s) that are used to score data submitted to the service/device.
® An entry script. This script accepts requests, uses the model(s) to score the data, and return a response.

e An Azure Machine Learning environment that describes the pip and Conda dependencies required by the
model(s) and entry script.

e Any additional assets such as text, data, etc. that are required by the model(s) and entry script.

You also provide the configuration of the target deployment platform. For example, the VM family type, available
memory, and number of cores when deploying to Azure Kubernetes Service.

When the image is created, components required by Azure Machine Learning are also added. For example, assets
needed to run the web service and interact with loT Edge.

Batch scoring

Batch scoring is supported through ML pipelines. For more information, see Batch predictions on big data.
Real-time web services

You can use your models in web services with the following compute targets:

o Azure Container Instance
o Azure Kubernetes Service

e Local development environment

To deploy the model as a web service, you must provide the following items:

o The model or ensemble of models.

e Dependencies required to use the model. For example, a script that accepts requests and invokes the model,
conda dependencies, etc.

e Deployment configuration that describes how and where to deploy the model.
For more information, see Deploy models.
Controlled rollout

When deploying to Azure Kubernetes Service, you can use controlled rollout to enable the following scenarios:

e Create multiple versions of an endpoint for a deployment

e Perform A/B testing by routing traffic to different versions of the endpoint.

e Switch between endpoint versions by updating the traffic percentage in endpoint configuration.
For more information, see Controlled rollout of ML models.

loT Edge devices

You can use models with |loT devices through Azure loT Edge modules. IoT Edge modules are deployed to a
hardware device, which enables inference, or model scoring, on the device.

For more information, see Deploy models.

Analytics

Microsoft Power Bl supports using machine learning models for data analytics. For more information, see Azure
Machine Learning integration in Power Bl (preview).

Capture the governance data required for capturing the end-to-end
ML lifecycle


https://docs.microsoft.com/power-bi/service-machine-learning-integration

Azure ML gives you the capability to track the end-to-end audit trail of all of your ML assets by using metadata.

e Azure ML integrates with Git to track information on which repository / branch / commit your code came
from.

e Azure ML Datasets help you track, profile, and version data.

e Interpretability allows you to explain your models, meet regulatory compliance, and understand how models
arrive at a result for given input.

e Azure ML Run history stores a snapshot of the code, data, and computes used to train a model.

e The Azure ML Model Registry captures all of the metadata associated with your model (which experiment
trained it, where it is being deployed, if its deployments are healthy).

e Integration with Azure Event Grid allows you to act on events in the ML lifecycle. For example, model

registration, deployment, data drift, and training (run) events.

TIP
While some information on models and datasets is automatically captured, you can add additional information by using

tags. When looking for registered models and datasets in your workspace, you can use tags as a filter.

Associating a dataset with a registered model is an optional step. For information on referencing a dataset when

registering a model, see the Model class reference.

Notify, automate, and alert on events in the ML lifecycle

Azure ML publishes key events to Azure EventGrid, which can be used to notify and automate on events in the
ML lifecycle. For more information, please see this document.

Monitor for operational & ML issues

Monitoring enables you to understand what data is being sent to your model, and the predictions that it returns.

This information helps you understand how your model is being used. The collected input data may also be
useful in training future versions of the model.

For more information, see How to enable model data collection.

Retrain your model on new data

Often, you'll want to validate your model, update it, or even retrain it from scratch, as you receive new
information. Sometimes, receiving new data is an expected part of the domain. Other times, as discussed in
Detect data drift (preview) on datasets, model performance can degrade in the face of such things as changes to a
particular sensor, natural data changes such as seasonal effects, or features shifting in their relation to other

features.

There is no universal answer to "How do | know if | should retrain?" but Azure ML event and monitoring tools
previously discussed are good starting points for automation. Once you have decided to retrain, you should:

e Preprocess your data using a repeatable, automated process
e Train your new model
e Compare the outputs of your new model to those of your old model

e Use predefined criteria to choose whether to replace your old model

A theme of the above steps is that your retraining should be automated, not ad hoc. Azure Machine Learning
pipelines are a good answer for creating workflows relating to data preparation, training, validation, and
deployment. Read Retrain models with Azure Machine Learning designer (preview) to see how pipelines and the


https://docs.microsoft.com/python/api/azureml-core/azureml.core.model(class)?view=azure-ml-py

Azure Machine Learning designer fit into a retraining scenario.

Automate the ML lifecycle

You can use GitHub and Azure Pipelines to create a continuous integration process that trains a model. In a
typical scenario, when a Data Scientist checks a change into the Git repo for a project, the Azure Pipeline will start
a training run. The results of the run can then be inspected to see the performance characteristics of the trained
model. You can also create a pipeline that deploys the model as a web service.

The Azure Machine Learning extension makes it easier to work with Azure Pipelines. It provides the following
enhancements to Azure Pipelines:

e Enables workspace selection when defining a service connection.

e Enables release pipelines to be triggered by trained models created in a training pipeline.

For more information on using Azure Pipelines with Azure Machine Learning, see the following links:

e Continuous integration and deployment of ML models with Azure Pipelines
e Azure Machine Learning MLOps repository.
® Azure Machine Learning MLOpsPython repository.

You can also use Azure Data Factory to create a data ingestion pipeline that prepares data for use with training.
For more information, see Data ingestion pipeline.

Next steps

Learn more by reading and exploring the following resources:

e How & where to deploy models with Azure Machine Learning
e Tutorial: Deploy an image classification model in ACI.

e End-to-end MLOps examples repo

e CI/CD of ML models with Azure Pipelines

e Create clients that consume a deployed model

® Machine learning at scale

e Azure Al reference architectures & best practices rep
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APPLIES TO: @ Basic edition Enterprise edition (Upgrade to Enterprise edition)

Overview of model interpretability

Interpretability is critical for data scientists, auditors, and business decision makers alike to ensure compliance with
company policies, industry standards, and government regulations:

e Data scientists need the ability to explain their models to executives and stakeholders, so they can
understand the value and accuracy of their findings. They also require interpretability to debug their models
and make informed decisions about how to improve them.

e | egal auditors require tools to validate models with respect to regulatory compliance and monitor how
models' decisions are impacting humans.

e Business decision makers need peace-of-mind by having the ability to provide transparency for end users.
This allows them to earn and maintain trust.

Enabling the capability of explaining a machine learning model is important during two main phases of model
development:

e During the training phase, as model designers and evaluators can use interpretability output of a model to
verify hypotheses and build trust with stakeholders. They also use the insights into the model for
debugging, validating model behavior matches their objectives, and to check for model unfairness or
insignificant features.

e During the inferencing phase, as having transparency around deployed models empowers executives to
understand "when deployed" how the model is working and how its decisions are treating and impacting
people in real life.

Interpretability with Azure Machine Learning

The interpretability classes are made available through multiple SDK packages: (Learn how to install SDK packages
for Azure Machine Learning)

® azureml.interpret , the main package, containing functionalities supported by Microsoft.
® azureml.contrib.interpret , preview, and experimental functionalities that you can try.
® azureml.train.automl.automlexplainer package for interpreting automated machine learning models.

Use pip install azureml-interpret and pip install azureml-interpret-contrib for general use, and

pip install azureml-interpret-contrib for AutoML use to get the interpretability packages.

IMPORTANT

Content in the contrib namespace is not fully supported. As the experimental functionalities become mature, they will

gradually be moved to the main namespace. .

How to interpret your model


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-machine-learning-interpretability.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Using the classes and methods in the SDK, you can:

e Explain model prediction by generating feature importance values for the entire model and/or individual
datapoints.
e Achieve model interpretability on real-world datasets at scale, during training and inference.

e Use an interactive visualization dashboard to discover patterns in data and explanations at training time

In machine learning, features are the data fields used to predict a target data point. For example, to predict credit
risk, data fields for age, account size, and account age might be used. In this case, age, account size, and account
age are features. Feature importance tells you how each data field affected the model's predictions. For example,
age may be heavily used in the prediction while account size and age do not affect the prediction values
significantly. This process allows data scientists to explain resulting predictions, so that stakeholders have visibility

into what features are most important in the model.

Learn about supported interpretability techniques, supported machine learning models, and supported run

environments here.

Supported interpretability techniques

azureml-interpret uses the interpretability techniques developed in Interpret-Community, an open source python
package for training interpretable models and helping to explain blackbox Al systems. Interpret-Community serves
as the host for this SDK's supported explainers, and currently supports the following interpretability techniques:

INTERPRETABILITY TECHNIQUE DESCRIPTION TYPE

1. SHAP Tree Explainer SHAP's tree explainer, which focuses on Model-specific
polynomial time fast SHAP value
estimation algorithm specific to trees
and ensembles of trees.

2. SHAP Deep Explainer Based on the explanation from SHAP, Model-specific
Deep Explainer "is a high-speed
approximation algorithm for SHAP
values in deep learning models that
builds on a connection with DeepLIFT
described in the SHAP NIPS paper.
TensorFlow models and Keras models
using the TensorFlow backend are
supported (there is also preliminary
support for PyTorch)".

3. SHAP Linear Explainer SHAP's Linear explainer computes SHAP Model-specific
values for a linear model, optionally
accounting for inter-feature
correlations.

4. SHAP Kernel Explainer SHAP's Kernel explainer uses a specially Model-agnostic
weighted local linear regression to
estimate SHAP values for any model.
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INTERPRETABILITY TECHNIQUE

5. Mimic Explainer (Global Surrogate)

6. Permutation Feature Importance
Explainer (PFI)

DESCRIPTION

Mimic explainer is based on the idea of
training global surrogate models to
mimic blackbox models. A global
surrogate model is an intrinsically
interpretable model that is trained to
approximate the predictions of any
black box model as accurately as
possible. Data scientists can interpret
the surrogate model to draw
conclusions about the black box model.
You can use one of the following
interpretable models as your surrogate
model: LightGBM
(LGBMExplainableModel), Linear
Regression (LinearExplainableModel),
Stochastic Gradient Descent explainable
model (SGDExplainableModel), and
Decision Tree
(DecisionTreeExplainableModel).

Permutation Feature Importance is a
technique used to explain classification
and regression models that is inspired
by Breiman's Random Forests paper
(see section 10). At a high level, the way
it works is by randomly shuffling data
one feature at a time for the entire
dataset and calculating how much the
performance metric of interest changes.
The larger the change, the more
important that feature is. PFl can
explain the overall behavior of any
underlying model but does not
explain individual predictions.

TYPE

Model-agnostic

Model-agnostic

Besides the interpretability techniques described above, we support another SHAP-based explainer, called

TabularExplainer . Depending on the model, TabularExplainer uses one of the supported SHAP explainers:

TreeExplainer for all tree-based models

DeepExplainer for DNN models

LinearExplainer for linear models

KernelExplainer for all other models

TabularExplainer has also made significant feature and performance enhancements over the direct SHAP

Explainers:

Summarization of the initialization dataset. In cases where speed of explanation is most important, we

summarize the initialization dataset and generate a small set of representative samples, which speeds up the

generation of overall and individual feature importance values.

Sampling the evaluation data set. If the user passes in a large set of evaluation samples but does not

actually need all of them to be evaluated, the sampling parameter can be set to true to speed up the calculation

of overall model explanations.

The following diagram shows the current structure of supported explainers.


https://christophm.github.io/interpretable-ml-book/global.html
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https://github.com/slundberg/shap

Tabular Data Interpretability Techniques
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Supported machine learning models

The azureml.interpret package of the SDK supports models trained with the following dataset formats:

® numpy.array
® pandas.DataFrame
® iml.datatypes.DenseData

® scipy.sparse.csr_matrix

The explanation functions accept both models and pipelines as input. If a model is provided, the model must
implement the prediction function predict or predict_proba thatconforms to the Scikit convention. If your
model does not support this, you can wrap your model in a function that generates the same outcome as predict
or predict_proba in Scikit and use that wrapper function with the selected explainer. If a pipeline is provided, the
explanation function assumes that the running pipeline script returns a prediction. Using this wrapping technique,
azureml.interpret can support models trained via PyTorch, TensorFlow, and Keras deep learning frameworks as

well as classic machine learning models.

Local and remote compute target

The azureml.interpret package is designed to work with both local and remote compute targets. If run locally, The

SDK functions will not contact any Azure services.


file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability/interpretability-architecture.png#lightbox

You can run explanation remotely on Azure Machine Learning Compute and log the explanation info into the Azure
Machine Learning Run History Service. Once this information is logged, reports and visualizations from the
explanation are readily available on Azure Machine Learning studio for user analysis.

Next steps

See the how-to for enabling interpretability for models training both locally and on Azure Machine Learning
remote compute resources. See the sample notebooks for additional scenarios.


https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model
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APPLIES TO: '* Basic edition & Enterprise edition (Upgrade to Enterprise)

Azure Machine Learning designer lets you visually connect datasets and modules on an interactive canvas to
create machine learning models. To learn how to get started with the designer, see Tutorial: Predict automobile
price with the designer
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The designer uses your Azure Machine Learning workspace to organize shared resources such as:

e Pipelines
e Datasets
e Compute resources
® Registered models
e Published pipelines

® Real-time endpoints

Model training and deployment

The designer gives you a visual canvas to build, test, and deploy machine learning models. With the designer you
can:

e Drag-and-drop datasets and modules onto the canvas.

e Connect the modules together to create a pipeline draft.

e Submit a pipeline run using the compute resources in your Azure Machine Learning workspace.
e Convertyour training pipelines to inference pipelines.

e Publish your pipelines to a REST pipeline endpoint to submit new pipeline runs with different parameters
and datasets.

o Publish atraining pipeline to reuse a single pipeline to train multiple models while changing
parameters and datasets.

o Publish a batch inference pipeline to make predictions on new data by using a previously trained


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-designer.md

model.

e Deploy areal-time inference pipeline to a real-time endpoint to make predictions on new data in real
time.
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Pipeline

A pipeline consists of datasets and analytical modules, which you connect together. Pipelines have many uses:
you can make a pipeline that trains a single model, or one that trains multiple models. You can create a pipeline
that makes predictions in real time or in batch, or make a pipeline that only cleans data. Pipelines let you reuse
your work and organize your projects.

Pipeline draft

As you edit a pipeline in the designer, your progress is saved as a pipeline draft. You can edit a pipeline draft at
any point by adding or removing modules, configuring compute targets, creating parameters, and so on.

A valid pipeline has these characteristics:

e Datasets can only connect to modules.

Modules can only connect to either datasets or other modules.

All input ports for modules must have some connection to the data flow.

All required parameters for each module must be set.



When you're ready to run your pipeline draft, you submit a pipeline run.

Pipeline run

Each time you run a pipeline, the configuration of the pipeline and its results are stored in your workspace as a
pipeline run. You can go back to any pipeline run to inspect it for troubleshooting or auditing purposes. Clone
a pipeline run to create a new pipeline draft for you to edit.

Pipeline runs are grouped into experiments to organize run history. You can set the experiment for every pipeline

run.

Datasets

A machine learning dataset makes it easy to access and work with your data. A number of sample datasets are
included in the designer for you to experiment with. You can register more datasets as you need them.

Module

A module is an algorithm that you can perform on your data. The designer has a number of modules ranging
from data ingress functions to training, scoring, and validation processes.

A module may have a set of parameters that you can use to configure the module's internal algorithms. When
you select a module on the canvas, the module's parameters are displayed in the Properties pane to the right of
the canvas. You can modify the parameters in that pane to tune your model. You can set the compute resources
for individual modules in the designer.
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For some help navigating through the library of machine learning algorithms available, see Algorithm & module

reference overview

Compute resources

Use compute resources from your workspace to run your pipeline and host your deployed models as real-time

endpoints or pipeline endpoints (for batch inference). The supported compute targets are:

COMPUTE TARGET TRAINING DEPLOYMENT
Azure Machine Learning compute v
Azure Kubernetes Service v

Compute targets are attached to your Azure Machine Learning workspace. You manage your compute targets in

your workspace in Azure Machine Learning Studio (classic).

Deploy

To perform real-time inferencing, you must deploy a pipeline as a real-time endpoint. The real-time endpoint
creates an interface between an external application and your scoring model. A call to a real-time endpoint
returns prediction results to the application in real time. To make a call to a real-time endpoint, you pass the API
key that was created when you deployed the endpoint. The endpoint is based on REST, a popular architecture
choice for web programming projects.

Real-time endpoints must be deployed to an Azure Kubernetes Service cluster.

To learn how to deploy your model, see Tutorial: Deploy a machine learning model with the designer.

Publish

You can also publish a pipeline to a pipeline endpoint. Similar to a real-time endpoint, a pipeline endpoint lets
you submit new pipeline runs from external applications using REST calls. However, you cannot send or receive

data in real-time using a pipeline endpoint.

Published pipelines are flexible, they can be used to train or retrain models, perform batch inferencing, process
new data, and much more. You can publish multiple pipelines to a single pipeline endpoint and specify which

pipeline version to run.
A published pipeline runs on the compute resources you define in the pipeline draft for each module.

The designer creates the same PublishedPipeline object as the SDK.

Moving from the visual interface to the designer

The visual interface (preview) has been updated and is now Azure Machine Learning designer (preview). The
designer has been rearchitected to use a pipeline-based backend that fully integrates with the other features of
Azure Machine Learning.

As a result of these updates, some concepts and terms for the visual interface have been changed or renamed.
See the table below for the most important conceptual changes.

CONCEPT IN THE DESIGNER PREVIOUSLY IN THE VISUAL INTERFACE

Pipeline draft Experiment


https://ml.azure.com
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.publishedpipeline?view=azure-ml-py

CONCEPT IN THE DESIGNER PREVIOUSLY IN THE VISUAL INTERFACE

Real-time endpoint Web service

Migrating to the designer

You can convert existing visual interface experiments and web services to pipelines and real-time endpoints in
the designer. Use the following steps to migrate your visual interface assets:

1. Sign in to Azure Machine Learning studio.
2. Upgrade your workspace to Enterprise edition.

After upgrading, all of your visual interface experiments will convert to pipeline drafts in the designer.

NOTE

You don't need to upgrade to the Enterprise edition to convert visual interface web services to real-time endpoints.

3. Go to the designer section of the workspace to view your list of pipeline drafts.
Converted web services can be found by navigating to Endpoints > Real-time endpoints.
4. Select a pipeline draft to open it.

If there was an error during the conversion process, an error message will appear with instructions to
resolve the issue.

Known issues

Below are known migration issues that need to be addressed manually:
e Import Data or Export Data modules

If you have an Import Data or Export Data module in the experiment, you need to update the data
source to use a datastores. To learn how to create a datastore, see How to Access Data in Azure storage
services. Your cloud storage account information have been added in the comments of the Import Data
or Export Data module for your convenience.

Next steps

e Learn the basics of predictive analytics and machine learning with Tutorial: Predict automobile price with the
designer

e Learn how to modify existing designer samples to adapt them to your needs.


https://ml.azure.com

What is automated machine learning (AutoML)?
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Automated machine learning, also referred to as automated ML or AutoML, is the process of automating the time
consuming, iterative tasks of machine learning model development. It allows data scientists, analysts, and
developers to build ML models with high scale, efficiency, and productivity all while sustaining model quality.
Automated ML is based on a breakthrough from our Microsoft Research division.

Traditional machine learning model development is resource-intensive, requiring significant domain knowledge
and time to produce and compare dozens of models. With automated machine learning, you'll accelerate the time
it takes to get production-ready ML models with great ease and efficiency.

When to use AutoML: classify, regression, & forecast

Apply automated ML when you want Azure Machine Learning to train and tune a model for you using the target
metric you specify. Automated ML democratizes the machine learning model development process, and
empowers its users, no matter their data science expertise, to identify an end-to-end machine learning pipeline
for any problem.

Data scientists, analysts, and developers across industries can use automated ML to:

e Implement ML solutions without extensive programming knowledge
e Save time and resources
e Leverage data science best practices

e Provide agile problem-solving

Classification

Classification is a common machine learning task. Classification is a type of supervised learning in which models
learn using training data, and apply those learnings to new data. Azure Machine Learning offers featurizations
specifically for these tasks, such as deep neural network text featurizers for classification. Learn more about
featurization options.

The main goal of classification models is to predict which categories new data will fall into based on learnings
from its training data. Common classification examples include fraud detection, handwriting recognition, and
object detection. Learn more and see an example of classification with automated machine learning.

See examples of classification and automated machine learning in these Python notebooks: Fraud Detection,
Marketing Prediction, and Newsgroup Data Classification

Regression

Similar to classification, regression tasks are also a common supervised learning task. Azure Machine Learning
offers featurizations specifically for these tasks.

Different from classification where predicted output values are categorical, regression models predict numerical
output values based on independent predictors. In regression, the objective is to help establish the relationship
among those independent predictor variables by estimating how one variable impacts the others. For example,
automobile price based on features like, gas mileage, safety rating, etc. Learn more and see an example of
regression with automated machine learning.

See examples of regression and automated machine learning for predictions in these Python notebooks: CPU
Performance Prediction,


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-automated-ml.md
https://arxiv.org/abs/1705.05355
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Time-series forecasting

Building forecasts is an integral part of any business, whether it's revenue, inventory, sales, or customer demand.
You can use automated ML to combine techniques and approaches and get a recommended, high-quality time-

series forecast. Learn more with this how-to: automated machine learning for time series forecasting.

An automated time-series experiment is treated as a multivariate regression problem. Past time-series values are
"pivoted" to become additional dimensions for the regressor together with other predictors. This approach, unlike
classical time series methods, has an advantage of naturally incorporating multiple contextual variables and their
relationship to one another during training. Automated ML learns a single, but often internally branched model
for all items in the dataset and prediction horizons. More data is thus available to estimate model parameters and
generalization to unseen series becomes possible.

Advanced forecasting configuration includes:

e holiday detection and featurization

e time-series and DNN learners (Auto-ARIMA, Prophet, ForecastTCN)
e many models support through grouping

e rolling-origin cross validation

e configurable lags

e rolling window aggregate features

See examples of regression and automated machine learning for predictions in these Python notebooks: Sales
Forecasting, Demand Forecasting, and Beverage Production Forecast.

How AutoML works

During training, Azure Machine Learning creates a number of pipelines in parallel that try different algorithms
and parameters for you. The service iterates through ML algorithms paired with feature selections, where each
iteration produces a model with a training score. The higher the score, the better the model is considered to "fit"
your data. It will stop once it hits the exit criteria defined in the experiment.

Using Azure Machine Learning, you can design and run your automated ML training experiments with these
steps:

1. ldentify the ML problem to be solved: classification, forecasting, or regression

2. Choose whether you want to use the Python SDK or the studio web experience: Learn about the
parity between the Python SDK and studio web experience.

e For limited or no code experience, try the Azure Machine Learning studio web experience at
https://ml.azure.com

e For Python developers, check out the Azure Machine Learning Python SDK

IMPORTANT

The functionality in this studio, https://ml.azure.com, is accessible from Enterprise workspaces only. Learn
more about editions and upgrading.

3. Specify the source and format of the labeled training data: Numpy arrays or Pandas dataframe

4. Configure the compute target for model training, such as your local computer, Azure Machine
Learning Computes, remote VMs, or Azure Databricks. Learn about automated training on a remote
resource.

5. Configure the automated machine learning parameters that determine how many iterations over
different models, hyperparameter settings, advanced preprocessing/featurization, and what metrics to look


https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb
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at when determining the best model.
6. Submit the training run.
7. Review the results

The following diagram illustrates this process.

Automated machine learning

Training scores Leaderboard
Rank  Model  Score
Fesles + Parameters mp  50%
1 A 95%
Features + Parameters mp 76% 2 fs
3 A 53%

Features + Parameters mp  53%

Features + Parameters mp  95%

A.n Features + Algorithm + Parameters mp  43%

You can also inspect the logged run information, which contains metrics gathered during the run. The training run

produces a Python serialized object ( .pk1 file) that contains the model and data preprocessing.

While model building is automated, you can also learn how important or relevant features are to the generated
models.

Preprocessing

In every automated machine learning experiment, your data is preprocessed using the default methods and
optionally through advanced preprocessing.

NOTE

Automated machine learning pre-processing steps (feature normalization, handling missing data, converting text to
numeric, etc.) become part of the underlying model. When using the model for predictions, the same pre-processing steps
applied during training are applied to your input data automatically.

Automatic preprocessing (standard)

In every automated machine learning experiment, your data is automatically scaled or normalized to help
algorithms perform well. During model training, one of the following scaling or normalization techniques will be
applied to each model.

SCALING & NORMALIZATION DESCRIPTION

StandardScaleWrapper Standardize features by removing the mean and scaling to
unit variance

MinMaxScalar Transforms features by scaling each feature by that column's
minimum and maximum

MaxAbsScaler Scale each feature by its maximum absolute value

RobustScalar This Scaler features by their quantile range


https://www.microsoft.com/videoplayer/embed/RE2Xc9t
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SCALING & NORMALIZATION DESCRIPTION

PCA Linear dimensionality reduction using Singular Value
Decomposition of the data to project it to a lower
dimensional space

TruncatedSVDWrapper This transformer performs linear dimensionality reduction by
means of truncated singular value decomposition (SVD).
Contrary to PCA, this estimator does not center the data
before computing the singular value decomposition, which
means it can work with scipy.sparse matrices efficiently

SparseNormalizer Each sample (that is, each row of the data matrix) with at
least one non-zero component is rescaled independently of
other samples so that its norm (11 or I12) equals one

Advanced preprocessing & featurization

Additional advanced preprocessing and featurization are also available, such as data guardrails, encoding, and
transforms. Learn more about what featurization is included. Enable this setting with:

e Azure Machine Learning studio: Enable Automatic featurization in the View additional configuration
section with these steps.

e Python SDK: Specifying "feauturization": 'auto' / 'off' / 'FeaturizationConfig' for the AutoMLConfig

class.

The studio vs SDK

Learn about the parity and differences between the high-level automated ML capabilities available through the
Python SDK and the studio in Azure Machine Learning.

Experiment settings

The following settings allow you to configure your automated ML experiment.

THE PYTHON SDK THE STUDIO WEB EXPERIENCE
Split data into train/validation sets v v
Supports ML tasks: classification, v v
regression, and forecasting
Optimizes based on primary metric v v
Supports AML compute as compute v v
target
Configure forecast horizon, target lags v v
& rolling window
Set exit criteria v v
Set concurrent iterations v v

Drop columns v v
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THE PYTHON SDK THE STUDIO WEB EXPERIENCE

Block algorithms v v

Cross validation v v

Supports training on Azure Databricks v

clusters

View engineered feature names v
Featurization summary v
Featurization for holidays v
Log file verbosity levels v

Model settings

These settings can be applied to the best model as a result of your automated ML experiment.

THE PYTHON SDK THE STUDIO WEB EXPERIENCE
Best model registration, deployment, v v
explainability
Enable voting ensemble & stack v v
ensemble models
Show best model based on non- v
primary metric
Enable/disable ONNX model v
compatibility
Test the model v

Run control settings

These settings allow you to review and control your experiment runs and its child runs.

THE PYTHON SDK THE STUDIO WEB EXPERIENCE
Run summary table v v
Cancel runs & child runs v v
Get guardrails v v
Pause & resume runs v

Ensemble models

Automated machine learning supports ensemble models, which are enabled by default. Ensemble learning
improves machine learning results and predictive performance by combining multiple models as opposed to



using single models. The ensemble iterations appear as the final iterations of your run. Automated machine
learning uses both voting and stacking ensemble methods for combining models:

e Voting: predicts based on the weighted average of predicted class probabilities (for classification tasks) or
predicted regression targets (for regression tasks).

e Stacking: stacking combines heterogenous models and trains a meta-model based on the output from the
individual models. The current default meta-models are LogisticRegression for classification tasks and
ElasticNet for regression/forecasting tasks.

The Caruana ensemble selection algorithm with sorted ensembile initialization is used to decide which models to
use within the ensemble. At a high level, this algorithm initializes the ensemble with up to five models with the
best individual scores, and verifies that these models are within 5% threshold of the best score to avoid a poor
initial ensemble. Then for each ensemble iteration, a new model is added to the existing ensemble and the
resulting score is calculated. If a new model improved the existing ensemble score, the ensemble is updated to
include the new model.

See the how-to for changing default ensemble settings in automated machine learning.

AutoML & ONNX

With Azure Machine Learning, you can use automated ML to build a Python model and have it converted to the
ONNX format. Once the models are in the ONNX format, they can be run on a variety of platforms and devices.
Learn more about accelerating ML models with ONNX.

See how to convert to ONNX format in this Jupyter notebook example. Learn which algorithms are supported in
ONNX.

The ONNX runtime also supports C#, so you can use the model built automatically in your C# apps without any
need for recoding or any of the network latencies that REST endpoints introduce. Learn more about inferencing
ONNX models with the ONNX runtime C# API.

Next steps

See examples and learn how to build models using automated machine learning:

Follow the Tutorial: Automatically train a regression model with Azure Machine Learning

Configure the settings for automatic training experiment:

o In Azure Machine Learning studio, use these steps.

o With the Python SDK, use these steps.

Learn how to auto train using time series data, use these steps.

Try out Jupyter Notebook samples for automated machine learning

Automated ML is also available in other Microsoft solutions such as, ML.NET, HDInsight, Power Bl and SQL
Server
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Prevent overfitting and imbalanced data with

automated machine learning
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Over-fitting and imbalanced data are common pitfalls when you build machine learning models. By default, Azure
Machine Learning's automated machine learning provides charts and metrics to help you identify these risks, and
implements best practices to help mitigate them.

|dentify over-fitting

Over-fitting in machine learning occurs when a model fits the training data too well, and as a result can't accurately
predict on unseen test data. In other words, the model has simply memorized specific patterns and noise in the
training data, but is not flexible enough to make predictions on real data.

Consider the following trained models and their corresponding train and test accuracies.

MODEL TRAIN ACCURACY TEST ACCURACY
A 99.9% 95%
B 87% 87%
C 99.9% 45%

Considering model A, there is a common misconception that if test accuracy on unseen data is lower than training
accuracy, the model is over-fitted. However, test accuracy should always be less than training accuracy, and the
distinction for over-fit vs. appropriately fit comes down to how much less accurate.

When comparing models A and B, model A is a better model because it has higher test accuracy, and although the
test accuracy is slightly lower at 95%, it is not a significant difference that suggests over-fitting is present. You

wouldn't choose model B simply because the train and test accuracies are closer together.

Model C represents a clear case of over-fitting; the training accuracy is very high but the test accuracy isn't
anywhere near as high. This distinction is subjective, but comes from knowledge of your problem and data, and
what magnitudes of error are acceptable.

Prevent over-fitting

In the most egregious cases, an over-fitted model will assume that the feature value combinations seen during
training will always result in the exact same output for the target.

The best way to prevent over-fitting is to follow ML best-practices including:

e Using more training data, and eliminating statistical bias
e Preventing target leakage

e Using fewer features

e Regularization and hyperparameter optimization
e Model complexity limitations

e Cross-validation


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-manage-ml-pitfalls.md

In the context of automated ML, the first three items above are best-practices you implement. The last three
bolded items are best-practices automated ML implements by default to protect against over-fitting. In
settings other than automated ML, all six best-practices are worth following to avoid over-fitting models.

Best practices you implement

Using more data is the simplest and best possible way to prevent over-fitting, and as an added bonus typically
increases accuracy. When you use more data, it becomes harder for the model to memorize exact patterns, and it is
forced to reach solutions that are more flexible to accommodate more conditions. It's also important to recognize
statistical bias, to ensure your training data doesn't include isolated patterns that won't exist in live-prediction
data. This scenario can be difficult to solve, because there may not be over-fitting between your train and test sets,
but there may be over-fitting present when compared to live test data.

Target leakage is a similar issue, where you may not see over-fitting between train/test sets, but rather it appears at
prediction-time. Target leakage occurs when your model "cheats" during training by having access to data that it
shouldn't normally have at prediction-time. For example, if your problem is to predict on Monday what a
commodity price will be on Friday, but one of your features accidentally included data from Thursdays, that would
be data the model won't have at prediction-time since it cannot see into the future. Target leakage is an easy
mistake to miss, but is often characterized by abnormally high accuracy for your problem. If you are attempting to
predict stock price and trained a model at 95% accuracy, there is likely target leakage somewhere in your features.

Removing features can also help with over-fitting by preventing the model from having too many fields to use to
memorize specific patterns, thus causing it to be more flexible. It can be difficult to measure quantitatively, but if
you can remove features and retain the same accuracy, you have likely made the model more flexible and have
reduced the risk of over-fitting.

Best practices automated ML implements

Regularization is the process of minimizing a cost function to penalize complex and over-fitted models. There are
different types of regularization functions, but in general they all penalize model coefficient size, variance, and
complexity. Automated ML uses L1 (Lasso), L2 (Ridge), and ElasticNet (L1 and L2 simultaneously) in different
combinations with different model hyperparameter settings that control over-fitting. In simple terms, automated

ML will vary how much a model is regulated and choose the best result.

Automated ML also implements explicit model complexity limitations to prevent over-fitting. In most cases this
implementation is specifically for decision tree or forest algorithms, where individual tree max-depth is limited, and
the total number of trees used in forest or ensemble techniques are limited.

Cross-validation (CV) is the process of taking many subsets of your full training data and training a model on each
subset. The idea is that a model could get "lucky" and have great accuracy with one subset, but by using many
subsets the model won't achieve this high accuracy every time. When doing CV, you provide a validation holdout
dataset, specify your CV folds (number of subsets) and automated ML will train your model and tune
hyperparameters to minimize error on your validation set. One CV fold could be over-fit, but by using many of
them it reduces the probability that your final model is over-fit. The tradeoff is that CV does result in longer training
times and thus greater cost, because instead of training a model once, you train it once for each n CV subsets.

NOTE

Cross-validation is not enabled by default; it must be configured in automated ML settings. However, after cross-validation is

configured and a validation data set has been provided, the process is automated for you. See

|dentify models with imbalanced data

Imbalanced data is commonly found in data for machine learning classification scenarios, and refers to data that
contains a disproportionate ratio of observations in each class. This imbalance can lead to a falsely perceived
positive effect of a model's accuracy, because the input data has bias towards one class, which results in the trained



model to mimic that bias.

As classification algorithms are commonly evaluated by accuracy, checking a model's accuracy score is a good way
to identify if it was impacted by imbalanced data. Did it have really high accuracy or really low accuracy for certain

classes?

In addition, automated ML runs generate the following charts automatically, which can help you understand the
correctness of the classifications of your model, and identify models potentially impacted by imbalanced data.

CHART DESCRIPTION

Confusion Matrix Evaluates the correctly classified labels against the actual labels
of the data.

Precision-recall Evaluates the ratio of correct labels against the ratio of found

label instances of the data

ROC Curves Evaluates the ratio of correct labels against the ratio of false-
positive labels.

Handle imbalanced data

As part of its goal of simplifying the machine learning workflow, automated ML has built in capabilities to help deal
with imbalanced data such as,

e Aweight column: automated ML supports a weighted column as input, causing rows in the data to be
weighted up or down, which can make a class more or less "important".

e The algorithms used by automated ML can properly handle imbalance of up to 20:1, meaning the most
common class can have 20 times more rows in the data than the least common class.

The following techniques are additional options to handle imbalanced data outside of automated ML.

e Resampling to even the class imbalance, either by up-sampling the smaller classes or down-sampling the

larger classes. These methods require expertise to process and analyze.

e Use a performance metric that deals better with imbalanced data. For example, the F1 score is a weighted
average of precision and recall. Precision measures a classifier's exactness-- low precision indicates a high
number of false positives--, while recall measures a classifier's completeness-- low recall indicates a high

number of false negatives.

Next steps

See examples and learn how to build models using automated machine learning:
e Follow the Tutorial: Automatically train a regression model with Azure Machine Learning
e Configure the settings for automatic training experiment:

o In Azure Machine Learning studio, use these steps.

o With the Python SDK, use these steps.



What is an Azure Machine Learning compute

Instance?
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An Azure Machine Learning compute instance (preview) is a fully-managed cloud-based workstation for data
scientists.

Compute instances make it easy to get started with Azure Machine Learning development as well as provide
management and enterprise readiness capabilities for IT administrators.

Use a compute instance as your fully configured and managed development environment in the cloud.

Compute instances are typically used as development environments. They can also be used as a compute target
for training and inferencing for development and testing. For large tasks, an Azure Machine Learning compute
cluster with multi-node scaling capabilities is a better compute target choice.

Why use a compute instance?

A compute instance is a fully-managed cloud-based workstation optimized for your machine learning
development environment. It provides the following benéefits:

KEY BENEFITS

Productivity Data scientists can build and deploy models using integrated
notebooks and the following tools in their web browser:
- Jupyter
- JupyterLab
- RStudio

Managed & secure Reduce your security footprint and add compliance with
enterprise security requirements. Compute instances provide
robust management policies and secure networking
configurations such as:

- Auto-provisioning from Resource Manager templates or
Azure Machine Learning SDK

- Role-based access control (RBAC)

- Virtual network support

- SSH policy to enable/disable SSH access

Preconfigured or ML Save time on setup tasks with pre-configured and up-to-date
ML packages, deep learning frameworks, GPU drivers.

Fully customizable Broad support for Azure VM types including GPUs and
persisted low-level customization such as installing packages
and drivers makes advanced scenarios a breeze.

Tools and environments

Azure Machine Learning compute instance enables you to author, train, and deploy models in a fully integrated
notebook experience in your workspace.

These tools and environments are installed on the compute instance:


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-compute-instance.md
https://docs.microsoft.com/azure/role-based-access-control/overview

GENERAL TOOLS & ENVIRONMENTS

Drivers

Intel MPI library

Azure CLI

Azure Machine Learning samples

Azure Machine Learning EDAT engine

Docker

Nginx

NCCL 2.0

Protobuf

R TOOLS & ENVIRONMENTS

RStudio Server Open Source Edition

R kernel

Azure Machine Learning SDK for R

PYTHON TOOLS & ENVIRONMENTS

Anaconda Python

Jupyter and extensions

Jupyterlab and extensions

Visual Studio Code

Azure Machine Learning SDK for Python
from PyPI

DETAILS

CUDA
CuDNN
NVIDIA
Blob FUSE

DETAILS

azuremlsdk
SDK samples

DETAILS

azureml-sdk[notebooks,contrib,automl,explain]
azureml-contrib-datadrift

azureml-telemetry

azureml-tensorboard
azureml-contrib-opendatasets
azureml-opendatasets
azureml-contrib-reinforcementlearning
azureml-mlflow

azureml-contrib-interpret


https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

PYTHON TOOLS & ENVIRONMENTS DETAILS

Other PyPI packages jupytext
jupyterlab-git
tensorboard
nbconvert
notebook

Pillow

Conda packages cython

numpy
ipykernel
scikit-learn
matplotlib
tqdm

joblib
nodejs

nb_conda_kernels

Deep learning packages PyTorch
TensorFlow
Keras
Horovod
MLFlow
pandas-ml

scrapbook

ONNX packages keras2onnx
onnx
onnxconverter-common
skl2onnx

onnxmltools
Azure Machine Learning Python & R SDK samples

Python packages are all installed in the Python 3.6 - AzureML environment.

Compute instances are typically used as development environments. They can also be used as a compute target
for training and inferencing for development and testing. For large tasks, an Azure Machine Learning compute
cluster with multi-node scaling capabilities is a better compute target choice.

Installing packages

You can install packages directly in a Jupyter notebook or Rstudio:

e RStudio Use the Packages tab on the bottom right, or the Console tab on the top left.

e Python: Add install code and execute in a Jupyter notebook cell.

Or you can access a terminal window in any of these ways:

e RStudio: Select the Terminal tab on top left.
e Jupyter Lab: Select the Terminal tile under the Other heading in the Launcher tab.
e Jupyter: Select New >Terminal on top right in the Files tab.

e SSH to the machine. Then install Python packages into the Python 3.6 - AzureML environment. Install R
packages into the R environment.



Accessing files

Notebooks and R scripts are stored in the default storage account of your workspace in Azure file share. These
files are located under your “User files” directory. This storage makes it easy to share notebooks between compute
instances. The storage account also keeps your notebooks safely preserved when you stop or delete a compute
instance.

The Azure file share account of your workspace is mounted as a drive on the compute instance. This drive is the
default working directory for Jupyter, Jupyter Labs, and RStudio.

The files in the file share are accessible from all compute instances in the same workspace. Any changes to these

files on the compute instance will be reliably persisted back to the file share.

You can also clone the latest Azure Machine Learning samples to your folder under the user files directory in the
workspace file share.

Writing small files can be slower on network drives than writing to the VM itself. If you are writing many small
files, try using a directory directly on the compute instance, such as a /tmp directory. Please note these files will
not be accessible from other compute instances in the workspace.

Managing a compute instance

In your workspace in Azure Machine Learning studio, select Compute, then select Compute Instance on the top.

A Azure Machine Learning studio [ X +

< C ¢ @ mlazure.com/compute/list/instances i

Microsoft Azure Machine Learning

docs-ws > Compute > Compute Instances

| T New Compute

(it Home

Author Compute Instances Training Clusters Inference Clusters Attached Compute

Motebooks

|-|> New () Refresh Start Stop Restart Delete @ Show created by me only Y Search to filter items

£ Automated ML @

& Designer @ Name Status Application URI Virtual Machine size Created on |
Assets

B} Datasets

L Experiments

% Pipelines &

T Models

> Endpoints

Manage

| Ll Compute

E Datastores No Compute Instances to display
[l Data labeling

You can perform the following actions:

e Create a compute instance. Specify the name, Azure VM type including GPUs (please note VM type can not be
changed after creation), enable/disable SSH access, and configure virtual network settings optionally. You can
also create an instance directly from integrated notebooks, Azure portal, Resource Manager template, or Azure
Machine Learning SDK. The dedicated cores per region quota which applies to compute instance creation is
unified and shared with Azure Machine Learning compute cluster quota.

e Refresh the compute instances tab
e Start, stop and restart a compute instance

e Delete a compute instance

For each compute instance in your workspace you can:



e Access Jupyter, JupyterLab, RStudio on the compute instance

e SSHinto compute instance. SSH access is disabled by default but can be enabled at compute instance creation
time. SSH access is through public/private key mechanism. The tab will give you details for SSH connection

such as IP address, username, and port number.

e Get details about a specific compute instance such as IP address, and region.

RBAC allows you to control which users in the workspace can create, delete, start, stop, restart a compute instance.
All users in the workspace contributor and owner role can create, delete, start, stop, and restart compute instances
across the workspace. However, only the creator of a specific compute instance is allowed to access Jupyter,
JupyterLab, and RStudio on that compute instance. The creator of the compute instance has the compute instance
dedicated to them, have root access, and can terminal in through Jupyter. Compute instance will have single-user
login of creator user and all actions will use that user’s identity for RBAC and attribution of experiment runs. SSH

access is controlled through public/private key mechanism.
You can also create an instance

e Directly from the integrated notebooks experience
e In Azure portal

e From Azure Resource Manager template

e With Azure Machine Learning SDK

The dedicated cores per region quota, which applies to compute instance creation is unified and shared with Azure
Machine Learning training cluster quota.

Compute Target

Compute instances can be used as a training compute target similar to Azure Machine Learning compute training
clusters. Provision a multi-GPU VM to run distributed training jobs using TensorFlow/PyTorch estimators. You can
also create a run configuration and use it to run your experiment on compute instance. You can use compute
instance as a local inferencing deployment target for testing/debugging scenarios.

What happened to Notebook VM?

Compute instances are replacing the Notebook VM.

Any notebook files stored in the workspace file share and data in workspace data stores will be accessible from a
compute instance. However, any custom packages previously installed on a Notebook VM will need to be re-
installed on the compute instance. Quota limitations which apply to compute clusters creation will apply to

compute instance creation as well.

New Notebook VMs cannot be created. However, you can still access and use Notebook VMs you have created,
with full functionality. Compute instances can be created in same workspace as the existing Notebook VMs.

Next steps

e Tutorial: Train your first ML model shows how to use a compute instance with an integrated notebook.


https://docs.microsoft.com/azure/role-based-access-control/overview

What are compute targets in Azure Machine

Learning?
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A compute target is a designated compute resource/environment where you run your training script or host
your service deployment. This location may be your local machine or a cloud-based compute resource. Using
compute targets make it easy for you to later change your compute environment without having to change your
code.

In a typical model development lifecycle, you might:

1. Start by developing and experimenting on a small amount of data. At this stage, we recommend your local
environment (local computer or cloud-based VM) as your compute target.

2. Scale up to larger data, or do distributed training using one of these training compute targets.

3. Once your model is ready, deploy it to a web hosting environment or loT device with one of these deployment
compute targets.

The compute resources you use for your compute targets are attached to a workspace. Compute resources other
than the local machine are shared by users of the workspace.

Training compute targets

Azure Machine Learning has varying support across different compute resources. You can also attach your own
compute resource, although support for various scenarios may vary.

Compute targets can be reused from one training job to the next. For example, once you attach a remote
VM to your workspace, you can reuse it for multiple jobs. For machine learning pipelines, use the appropriate
pipeline step for each compute target.

AZURE MACHINE LEARNING

TRAINING TARGETS AUTOMATED ML ML PIPELINES DESIGNER
Local computer yes

Azure Machine Learning yes & yes yes
compute cluster hyperparameter tuning

Remote VM yes & yes

hyperparameter tuning

Azure Databricks yes (SDK local mode only) yes
Azure Data Lake Analytics yes
Azure HDInsight yes
Azure Batch yes

Learn more about setting up and using a compute target for model training.


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-compute-target.md
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py

Deployment targets

The following compute resources can be used to host your model deployment.

COMPUTE TARGET USED FOR

GPU SUPPORT

FPGA SUPPORT

Local web service

Azure Machine
Learning compute
instance web service

Azure Kubernetes
Service (AKS)

Azure Container
Instances

Azure Machine
Learning compute
clusters

Azure Functions

Azure loT Edge

Azure Data Box Edge

Testing/debugging

Testing/debugging

Yes (web service Yes
deployment)

Real-time inference

Testing or
development

(Preview) Yes (machine learning
Batch inference pipeline)

(Preview) Real-time
inference

(Preview) loT module

Via loT Edge Yes

DESCRIPTION

Use for limited
testing and
troubleshooting.
Hardware
acceleration depends
on use of libraries in
the local system.

Use for limited
testing and
troubleshooting.

Use for high-scale
production
deployments.
Provides fast
response time and
autoscaling of the
deployed service.
Cluster autoscaling
isn't supported
through the Azure
Machine Learning
SDK. To change the
nodes in the AKS
cluster, use the Ul for
your AKS cluster in
the Azure portal. AKS
is the only option
available for the
designer.

Use for low-scale
CPU-based
workloads that
require less than 48
GB of RAM.

Run batch scoring on
serverless compute.
Supports normal and
low-priority VMs.

Deploy and serve ML
models on loT
devices.

Deploy and serve ML
models on loT
devices.


https://docs.microsoft.com/en-us/azure/databox-online/data-box-edge-overview

NOTE

Although compute targets like local, Azure Machine Learning compute instance, and Azure Machine Learning compute
clusters support GPU for training and experimentation, using GPU for inference when deployed as a web service is
supported only on Azure Kubernetes Service.

Using a GPU for inference when scoring with a machine learning pipeline is supported only on Azure Machine
Learning Compute.

Learn where and how to deploy your model to a compute target.

Azure Machine Learning compute (managed)

A managed compute resource is created and managed by Azure Machine Learning. This compute is optimized for
machine learning workloads. Azure Machine Learning compute clusters and compute instances are the only
managed computes. Additional managed compute resources may be added in the future.

You can create Azure Machine Learning compute instances (preview) or compute clusters from:

e Azure Machine Learning studio

e Azure portal

e Python SDK Computelnstance and AmlCompute classes
e RSDK

e Resource Manager template
You can also create compute clusters using the machine learning extension for the Azure CLI.

When created these compute resources are automatically part of your workspace unlike other kinds of compute
targets.

Compute clusters

You can use Azure Machine Learning compute clusters for training and for batch inferencing (preview). With this
compute resource, you have:

e Single- or multi-node cluster

Autoscales each time you submit a run

Automatic cluster management and job scheduling

Support for both CPU and GPU resources

Unmanaged compute

An unmanaged compute target is not managed by Azure Machine Learning. You create this type of compute
target outside Azure Machine Learning, then attach it to your workspace. Unmanaged compute resources can
require additional steps for you to maintain or to improve performance for machine learning workloads.

Next steps

Learn how to:

e Setup a compute target to train your model

e Deploy your model to a compute target


https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.computeinstance(class)?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute(class)?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-compute-targets

What are Azure Machine Learning pipelines?
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Azure Machine Learning pipelines allow you to create workflows in your machine learning projects. These
workflows have a number of benefits:

e Simplicity

e Speed

® Repeatability

o Flexibility

e Versioning and tracking
e Modularity

e Quality assurance

e Cost control

These benefits become significant as soon as your machine learning project moves beyond pure exploration
and into iteration. Even simple one-step pipelines can be valuable. Machine learning projects are often in a
complex state, and it can be a relief to make the precise accomplishment of a single workflow a trivial process.

Learn how to create your first pipeline.

Prepare Data

a8

Train Model

Package Model

Validate Model

Deploy Model

Monitor Model

@H@ EH@ H@”H@

Which Azure pipeline technology should | use?

The Azure cloud provides several other pipelines, each with a different purpose. The following table lists the

different pipelines and what they are used for:

PRIMARY AZURE CANONICAL

SCENARIO PERSONA OFFERING OSS OFFERING PIPE STRENGTHS

Model Data scientist Azure Machine Kubeflow Data -> Model Distribution,

orchestration Learning Pipelines caching, code-

(Machine Pipelines first, reuse

learning)

Data Data engineer Azure Data Apache Airflow Data -> Data Strongly-typed

orchestration Factory pipelines movement.

(Data prep) Data-centric
activities.

Code & app App Developer / Azure DevOps Jenkins Code + Model - Most open and

orchestration Ops Pipelines > App/Service flexible activity

(CI/CD) support,
approval queues,
phases with

gating


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-ml-pipelines.md
https://docs.microsoft.com/azure/data-factory/concepts-pipelines-activities
https://azure.microsoft.com/services/devops/pipelines/

What can Azure ML pipelines do?

An Azure Machine Learning pipeline is an independently executable workflow of a complete machine learning
task. Subtasks are encapsulated as a series of steps within the pipeline. An Azure Machine Learning pipeline can
be as simple as one that calls a Python script, so may do just about anything. Pipelines should focus on machine

learning tasks such as:

e Data preparation including importing, validating and cleaning, munging and transformation, normalization,
and staging

e Training configuration including parameterizing arguments, filepaths, and logging / reporting configurations

e Training and validating efficiently and repeatedly. Efficiency might come from specifying specific data
subsets, different hardware compute resources, distributed processing, and progress monitoring

e Deployment, including versioning, scaling, provisioning, and access control

Independent steps allow multiple data scientists to work on the same pipeline at the same time without over-
taxing compute resources. Separate steps also make it easy to use different compute types/sizes for each step.

After the pipeline is designed, there is often more fine-tuning around the training loop of the pipeline. When
you rerun a pipeline, the run jumps to the steps that need to be rerun, such as an updated training script. Steps
that do not need to be rerun are skipped. The same analysis applies to unchanged scripts used for the
accomplishment of the step. This reuse functionality helps to avoid running costly and time-intensive steps like
data ingestion and transformation if the underlying data hasn't changed.

With Azure Machine Learning, you can use various toolkits and frameworks, such as PyTorch or TensorFlow, for
each step in your pipeline. Azure coordinates the various compute targets you use, so your intermediate data
can be shared with the downstream compute targets.

You can track the metrics for your pipeline experiments directly in Azure portal or your workspace landing page
(preview). After a pipeline has been published, you can configure a REST endpoint, which allows you to rerun
the pipeline from any platform or stack.

In short, all of the complex tasks of the machine learning lifecycle can be helped with pipelines. Other Azure
pipeline technologies have their own strengths. Azure Data Factory pipelines excels at working with data and
Azure Pipelines is the right tool for continuous integration and deployment. But if your focus is machine
learning, Azure Machine Learning pipelines are likely to be the best choice for your workflow needs.

What are Azure ML pipelines?

An Azure ML pipeline performs a complete logical workflow with an ordered sequence of steps. Each step is a
discrete processing action. Pipelines run in the context of an Azure Machine Learning Experiment.

In the early stages of an ML project, it's fine to have a single Jupyter notebook or Python script that does all the
work of Azure workspace and resource configuration, data preparation, run configuration, training, and
validation. But just as functions and classes quickly become preferable to a single imperative block of code, ML
workflows quickly become preferable to a monolithic notebook or script.

By modularizing ML tasks, pipelines support the Computer Science imperative that a component should "do
(only) one thing well." Modularity is clearly vital to project success when programming in teams, but even when
working alone, even a small ML project involves separate tasks, each with a good amount of complexity. Tasks
include: workspace configuration and data access, data preparation, model definition and configuration, and
deployment. While the outputs of one or more tasks form the inputs to another, the exact implementation
details of any one task are, at best, irrelevant distractions in the next. At worst, the computational state of one
task can cause a bug in another.

Analyzing dependencies

Many programming ecosystems have tools that orchestrate resource, library, or compilation dependencies.


https://docs.microsoft.com/azure/machine-learning/how-to-track-experiments
https://ml.azure.com
https://docs.microsoft.com/azure/data-factory/concepts-pipelines-activities
https://azure.microsoft.com/services/devops/pipelines/
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py

Generally, these tools use file timestamps to calculate dependencies. When a file is changed, only it and its
dependents are updated (downloaded, recompiled, or packaged). Azure ML pipelines extend this concept
dramatically. Like traditional build tools, pipelines calculate dependencies between steps and only perform the
necessary recalculations.

The dependency analysis in Azure ML pipelines is more sophisticated than simple timestamps though. Every
step may run in a different hardware and software environment. Data preparation might be a time-consuming
process but not need to run on hardware with powerful GPUs, certain steps might require OS-specific software,
you might want to use distributed training, and so forth. While the cost savings for optimizing resources may
be significant, it can be overwhelming to manually juggle all the different variations in hardware and software
resources. It's even harder to do all that without ever making a mistake in the data you transfer between steps.

Pipelines solve this problem. Azure Machine Learning automatically orchestrates all of the dependencies
between pipeline steps. This orchestration might include spinning up and down Docker images, attaching and
detaching compute resources, and moving data between the steps in a consistent and automatic manner.

Reusing results

Additionally, the output of a step may, if you choose, be reused. If you specify reuse as a possibility and there are
no upstream dependencies triggering recalculation, the pipeline service will use a cached version of the step's
results. Such reuse can dramatically decrease development time. If you have a complex data preparation task,
you probably rerun it more often than is strictly necessary. Pipelines relieve you of that worry: if necessary, the
step will run, if not, it won't.

All of this dependency analysis, orchestration, and activation are handled by Azure Machine Learning when you
instantiate a Pipeline object, pass it to an Experiment , and call submit() .

Coordinating the steps involved

When you create and run a Pipeline object, the following high-level steps occur:

e For each step, the service calculates requirements for:

o Hardware compute resources

o OS resources (Docker image(s))

o Software resources (Conda / virtualenv dependencies)

o Data inputs
e The service determines the dependencies between steps, resulting in a dynamic execution graph
e When each node in the execution graph runs:

o The service configures the necessary hardware and software environment (perhaps reusing existing
resources)

o The step runs, providing logging and monitoring information to its containing Experiment object
o When the step completes, its outputs are prepared as inputs to the next step and/or written to storage

o Resources that are no longer needed are finalized and detached


https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline(class)?view=azure-ml-py
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Building pipelines with the Python SDK

In the Azure Machine Learning Python SDK, a pipeline is a Python object defined in the azureml.pipeline.core
module. A Pipeline object contains an ordered sequence of one or more PipelineStep objects. The Pipelinestep
class is abstract and the actual steps will be of subclasses such as EstimatorStep, PythonScriptStep, or
DataTransferStep. The ModuleStep class holds a reusable sequence of steps that can be shared among pipelines.

A Pipeline runs as part of an Experiment .

An Azure ML pipeline is associated with an Azure Machine Learning workspace and a pipeline step is associated
with a compute target available within that workspace. For more information, see Create and manage Azure

Machine Learning workspaces in the Azure portal or What are compute targets in Azure Machine Learning?.

In Azure Machine Learning, a compute target is the environment in which an ML phase occurs. The software
environment may be a Remote VM, Azure Machine Learning Compute, Azure Databricks, Azure Batch, and so
on. The hardware environment can also vary greatly, depending on GPU support, memory, storage, and so
forth. You may specify the compute target for each step, which gives you fine-grained control over costs. You
can use more- or less- powerful resources for the specific action, data volume, and performance needs of your

project.

Building pipelines with the designer

Developers who prefer a visual design surface can use the Azure Machine Learning designer to create pipelines.
You can access this tool from the Designer selection on the homepage of your workspace. The designer allows
you to drag and drop steps onto the design surface. For rapid development, you can use existing modules
across the spectrum of ML tasks; existing modules cover everything from data transformation to algorithm
selection to training to deployment. Or you can create a fully custom pipeline by combining your own steps
defined in Python scripts.

When you visually design pipelines, the inputs and outputs of a step are displayed visibly. You can drag and
drop data connections, allowing you to quickly understand and modify the dataflow of your pipeline.


https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimatorstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.pythonscriptstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.modulestep?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace
https://docs.microsoft.com/azure/machine-learning/concept-compute-target
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Understanding the execution graph

The steps within a pipeline may have dependencies on other steps. The Azure ML pipeline service does the work
of analyzing and orchestrating these dependencies. The nodes in the resulting "execution graph" are processing
steps. Each step may involve creating or reusing a particular combination of hardware and software, reusing
cached results, and so on. The service's orchestration and optimization of this execution graph can significantly
speed up an ML phase and reduce costs.

Because steps run independently, objects to hold the input and output data that flows between steps must be
defined externally. This is the role of DataSetand PipelineData, objects. These data objects are associated with a
Datastore object that encapsulates their storage configuration. The Pipelinestep base class is always created
with a name string, a listof inputs ,and a list of outputs . Usually, it also has a list of arguments and often it
will have a list of resource_inputs . Subclasses will generally have additional arguments as well (for instance,

Pythonscriptstep requires the filename and path of the script to run).

The execution graph is acyclic, but pipelines can be run on a recurring schedule and can run Python scripts that
can write state information to the file system, making it possible to create complex profiles. If you design your
pipeline so that certain steps may run in parallel or asynchronously, Azure Machine Learning transparently
handles the dependency analysis and coordination of fan-out and fan-in. You generally don't have to concern
yourself with the details of the execution graph, but it's available via the Pipeline.graph attribute.

A simple Python Pipeline

This snippet shows the objects and calls needed to create and run a basic Pipeline :


https://docs.microsoft.com/python/api/azureml-core/azureml.data.data_reference.datareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py#attributes

ws = Workspace.from_config()

blob_store = Datastore(ws, "workspaceblobstore")
compute_target = ws.compute_targets["STANDARD_NC6"]
experiment = Experiment(ws, 'MyExperiment')

input_data = Dataset.File.from_files(
DataPath(datastore, '2@newsgroups/20news.pkl'))

output_data = PipelineData("output_data", datastore=blob_store)
input_named = input_data.as_named_input('input")

steps = [ PythonScriptStep(
script_name="train.py",
arguments=["--input", input_named.as_download(), "--output", output_data],
inputs=[input_data],
outputs=[output_data],
compute_target=compute_target,
source_directory="myfolder"

) ]
pipeline = Pipeline(workspace=ws, steps=steps)

pipeline_run = experiment.submit(pipeline)
pipeline_run.wait_for_completion()

The snippet starts with common Azure Machine Learning objects, a workspace , a Datastore ,a ComputeTarget,
and an Experiment . Then, the code creates the objects to hold input_data and output_data . The array steps
holds a single element, a Pythonscriptstep that will use the data objects and run on the compute_target . Then,
the code instantiates the Pipeline object itself, passing in the workspace and steps array. The call to

experiment.submit(pipeline) begins the Azure ML pipeline run. The call to wait_for_completion() blocks until
the pipeline is finished.

To learn more about connecting your pipeline to your data, see the articles Data access in Azure Machine
Learning and Moving data into and between ML pipeline steps (Python).

Best practices when using pipelines

As you can see, creating an Azure ML pipeline is a little more complex than starting a script. Pipelines require a
few Python objects be configured and created.

Some situations that suggest using a pipeline:

e |n ateam environment: divide ML tasks into multiple independent steps so that developers can work and

evolve their programs independently.

e When in or near deployment: nail down the configuration and use scheduled and event-driven
operations to stay on top of changing data.

e In the early stages of an ML project or working alone: use pipelines to automate the build. If you've
started worrying about recreating the configuration and computational state before implementing a new
idea, that's a signal that you might consider using a pipeline to automate the workflow.

It's easy to become enthusiastic about reusing cached results, fine-grained control over compute costs, and
process isolation, but pipelines do have costs. Some anti-patterns include:

e Using pipelines as the sole means to separate concerns. Python's built-in functions, objects, and modules
go a long way to avoid confusing programmatic state! A pipeline step is much more expensive than a
function call.


https://docs.microsoft.com/python/api/azureml-core/azureml.core.computetarget?view=azure-ml-py

e Heavy coupling between pipeline steps. If refactoring a dependent step frequently requires modifying the
outputs of a previous step, it's likely that separate steps are currently more of a cost than a benefit.
Another clue that steps are overly coupled is arguments to a step that are not data but flags to control

processing.

e Prematurely optimizing compute resources. For instance, there are often several stages to data
preparation and one can often see "Oh, here's a place where | could use an mpistep for parallel-
programming but here's a place where | could use a Pythonscriptstep with a less-powerful compute
target," and so forth. And maybe, in the long run, creating fine-grained steps like that might prove
worthwhile, especially if there's a possibility to use cached results rather than always recalculating. But

pipelines are not intended to be a substitute for Python's native multiprocessing module.

Until a project gets large or nears deployment, your pipelines should be coarser rather than fine-grained. If you
think of your ML project as involving stages and a pipeline as providing a complete workflow to move you
through a particular stage, you're on the right path.

Key advantages

The key advantages of using pipelines for your machine learning workflows are:
KEY ADVANTAGE DESCRIPTION

Unattended runs Schedule steps to run in parallel or in sequence in a reliable
and unattended manner. Data preparation and modeling can
last days or weeks, and pipelines allow you to focus on other
tasks while the process is running.

Heterogenous compute Use multiple pipelines that are reliably coordinated across
heterogeneous and scalable compute resources and storage
locations. Make efficient use of available compute resources
by running individual pipeline steps on different compute
targets, such as HDInsight, GPU Data Science VMs, and
Databricks.

Reusability Create pipeline templates for specific scenarios, such as
retraining and batch-scoring. Trigger published pipelines
from external systems via simple REST calls.

Tracking and versioning Instead of manually tracking data and result paths as you
iterate, use the pipelines SDK to explicitly name and version
your data sources, inputs, and outputs. You can also manage
scripts and data separately for increased productivity.

Modularity Separating areas of concerns and isolating changes allows
software to evolve at a faster rate with higher quality.

Collaboration Pipelines allow data scientists to collaborate across all areas
of the machine learning design process, while being able to
concurrently work on pipeline steps.

Choosing the proper PipelineStep subclass

The Pythonscriptstep is the most flexible subclass of the abstract pipelinestep . Other subclasses, such as
EstimatorStep subclasses and DataTransferstep can accomplish specific tasks with less code. For instance, an
EstimatorStep can be created just by passing in a name for the step, an Estimator , and a compute target. Or,

you can override inputs and outputs, pipeline parameters, and arguments. For more information, see Train

models with Azure Machine Learning using estimator.



The pataTransferstep makes it easy to move data between data sources and sinks. The code to do this transfer
manually is straightforward but repetitive. Instead, you can just create a DataTransferstep with a name,
references to a data source and a data sink, and a compute target. The notebook Azure Machine Learning
Pipeline with DataTransferStep demonstrates this flexibility.

Modules

While pipeline steps allow the reuse of the results of a previous run, in many cases the construction of the step
assumes that the scripts and dependent files required must be locally available. If a data scientist wants to build
on top of existing code, the scripts and dependencies often must be cloned from a separate repository.

Modules are similar in usage to pipeline steps, but provide versioning facilitated through the workspace, which
enables collaboration and reusability at scale. Modules are designed to be reused in multiple pipelines and can
evolve to adapt a specific computation to different use-cases. Users can do the following tasks through the
workspace, without using external repositories:

e Create new modules, and publish new versions of existing modules

e Deprecate existing versions

e Mark versions disabled to prevent consumers from using that version
e Designate default versions

e Retrieve modules by version from the workspace, to ensure teams are using the same code

See the notebook for code examples on how to create, connect, and use modules in Azure Machine Learning
pipelines.

Next steps

Azure ML pipelines are a powerful facility that begins delivering value in the early development stages. The
value increases as the team and project grows. This article has explained how pipelines are specified with the
Azure Machine Learning Python SDK and orchestrated on Azure. You've seen some basic source code and been
introduced to a few of the Pipelinestep classes that are available. You should have a sense of when to use
Azure ML pipelines and how Azure runs them.

e Learn how to create your first pipeline.

e Learn how to run batch predictions on large data.

See the SDK reference docs for pipeline core and pipeline steps.

e Try out example Jupyter notebooks showcasing Azure Machine Learning pipelines. Learn how to run
notebooks to explore this service.


https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-modulestep.ipynb
https://docs.microsoft.com/python/api/azureml-pipeline-core/?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines
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Learn how using the Open Neural Network Exchange (ONNX) can help optimize the inference of your machine
learning model. Inference, or model scoring, is the phase where the deployed model is used for prediction, most

commonly on production data.

Optimizing machine learning models for inference (or model scoring) is difficult since you need to tune the model
and the inference library to make the most of the hardware capabilities. The problem becomes extremely hard if
you want to get optimal performance on different kinds of platforms (cloud/edge, CPU/GPU, etc.), since each one
has different capabilities and characteristics. The complexity increases if you have models from a variety of
frameworks that need to run on a variety of platforms. It's very time consuming to optimize all the different
combinations of frameworks and hardware. A solution to train once in your preferred framework and run
anywhere on the cloud or edge is needed. This is where ONNX comes in.

Microsoft and a community of partners created ONNX as an open standard for representing machine learning
models. Models from many frameworks including TensorFlow, PyTorch, SciKit-Learn, Keras, Chainer, MXNet, and
MATLAB can be exported or converted to the standard ONNX format. Once the models are in the ONNX format,
they can be run on a variety of platforms and devices.

ONNX Runtime is a high-performance inference engine for deploying ONNX models to production. It's optimized
for both cloud and edge and works on Linux, Windows, and Mac. Written in C++, it also has C, Python, and C#
APIs. ONNX Runtime provides support for all of the ONNX-ML specification and also integrates with accelerators
on different hardware such as TensorRT on NVidia GPUs.

The ONNX Runtime is used in high scale Microsoft services such as Bing, Office, and Cognitive Services.
Performance gains are dependent on a number of factors but these Microsoft services have seen an average 2x
performance gain on CPU. ONNX Runtime is also used as part of Windows ML on hundreds of millions of
devices. You can use the runtime with Azure Machine Learning. By using ONNX Runtime, you can benefit from the

extensive production-grade optimizations, testing, and ongoing improvements.
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You can obtain ONNX models in several ways:

e Train a new ONNX model in Azure Machine Learning (see examples at the bottom of this article)
e Convert existing model from another format to ONNX (see the tutorials)
e Get a pre-trained ONNX model from the ONNX Model Zoo (see examples at the bottom of this article)

® Generate a customized ONNX model from Azure Custom Vision service

Many models including image classification, object detection, and text processing can be represented as ONNX
models. However some models may not be able to be converted successfully. If you run into this situation, please
file an issue in the GitHub of the respective converter that you used. You can continue using your existing format
model until the issue is addressed.

Deploy ONNX models in Azure

With Azure Machine Learning, you can deploy, manage, and monitor your ONNX models. Using the standard
deployment workflow and ONNX Runtime, you can create a REST endpoint hosted in the cloud. See example
Jupyter notebooks at the end of this article to try it out for yourself.

Install and use ONNX Runtime with Python

Python packages for ONNX Runtime are available on PyPi.org (CPU, GPU). Please read system requirements
before installation.

To install ONNX Runtime for Python, use one of the following commands:

pip install onnxruntime # CPU build
pip install onnxruntime-gpu # GPU build

To call ONNX Runtime in your Python script, use:

import onnxruntime
session = onnxruntime.InferenceSession("path to model")

The documentation accompanying the model usually tells you the inputs and outputs for using the model. You can
also use a visualization tool such as Netron to view the model. ONNX Runtime also lets you query the model
metadata, inputs, and outputs:

session.get_modelmeta()
first_input_name = session.get_inputs()[@].name
first_output_name = session.get_outputs()[0].name

To inference your model, use run and pass in the list of outputs you want returned (leave empty if you want all of

them) and a map of the input values. The result is a list of the outputs.

results = session.run(["outputl”, "output2"], {
"inputl": indatal, "input2": indata2})
results = session.run([], {"inputl": indatal, "input2": indata2})

For the complete Python API reference, see the ONNX Runtime reference docs.

Examples

See how-to-use-azureml/deployment/onnx for example notebooks that create and deploy ONNX models.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.
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More info
Learn more about ONNX or contribute to the project:

o ONNX project website
e ONNX code on GitHub

Learn more about ONNX Runtime or contribute to the project:

o ONNX Runtime GitHub Repo
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Enterprise security for Azure Machine Learning

4/24/2020 « 17 minutes to read = Edit Online

In this article, you'll learn about security features available for Azure Machine Learning.

When you use a cloud service, a best practice is to restrict access to only the users who need it. Start by
understanding the authentication and authorization model used by the service. You might also want to restrict
network access or securely join resources in your on-premises network with the cloud. Data encryption is also
vital, both at rest and while data moves between services. Finally, you need to be able to monitor the service and

produce an audit log of all activity.

NOTE

The information in this article works with the Azure Machine Learning Python SDK version 1.0.83.1 or higher.

Authentication

Multi-factor authentication is supported if Azure Active Directory (Azure AD) is configured to use it. Here's the
authentication process:

1. The client signs in to Azure AD and gets an Azure Resource Manager token. Users and service principals are
fully supported.

2. The client presents the token to Azure Resource Manager and to all Azure Machine Learning.

3. The Machine Learning service provides a Machine Learning service token to the user compute target (for
example, Machine Learning Compute). This token is used by the user compute target to call back into the
Machine Learning service after the run is complete. Scope is limited to the workspace.

Azure
Machine Learning
Client Azure AD service User Compute
Login & Get
Token for Resource manager
Request using
Azure AD Token
AML Token
during compute

For more information, see Set up authentication for Azure Machine Learning resources and workflows. This article
provides information and examples on authentication, including using service principals and automated

workflows.

Authentication for web service deployment

Azure Machine Learning supports two forms of authentication for web services: key and token. Each web service
can enable only one form of authentication at a time.

AZURE CONTAINER
AUTHENTICATION METHOD DESCRIPTION INSTANCES AKS
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AUTHENTICATION METHOD

Key

Token

AZURE CONTAINER

DESCRIPTION INSTANCES

Keys are static and do not
need to be refreshed. Keys
can be regenerated
manually.

Disabled by default

Tokens expire after a Not available
specified time period and

need to be refreshed.

For code examples, see the web-service authentication section.

Authorization

AKS

Enabled by default

Disabled by default

You can create multiple workspaces, and each workspace can be shared by multiple people. When you share a

workspace, you can control access to it by assigning these roles to users:

e Owner
e Contributor

® Reader

The following table lists some of the major Azure Machine Learning operations and the roles that can perform

them:

AZURE MACHINE LEARNING
OPERATION

Create workspace

Share workspace

Upgrade workspace to
Enterprise edition

Create compute target

Attach compute target

Attach data stores

Run experiment

View runs/metrics

Register model

Create image

Deploy web service

View models/images

Call web service

OWNER CONTRIBUTOR
v v
v

v

v v
v v
v v
v v
v v
v v
v v
v v
v v
v v

READER



If the built-in roles don't meet your needs, you can create custom roles. Custom roles are supported only for
operations on the workspace and Machine Learning Compute. Custom roles can have read, write, or delete
permissions on the workspace and on the compute resource in that workspace. You can make the role available at
a specific workspace level, a specific resource-group level, or a specific subscription level. For more information,
see Manage users and roles in an Azure Machine Learning workspace.

WARNING

Azure Machine Learning is not currently supported with Azure Active Directory business-to-business collaboration.

Securing compute targets and data

Owners and contributors can use all compute targets and data stores that are attached to the workspace.

Each workspace also has an associated system-assigned managed identity that has the same name as the
workspace. The managed identity has the following permissions on attached resources used in the workspace.

For more information on managed identities, see Managed identities for Azure resources.

RESOURCE PERMISSIONS
Workspace Contributor

Storage account Storage Blob Data Contributor

Key vault Access to all keys, secrets, certificates
Azure Container Registry Contributor

Resource group that contains the workspace Contributor

Resource group that contains the key vault (if different from Contributor

the one that contains the workspace)

We don't recommend that admins revoke the access of the managed identity to the resources mentioned in the

preceding table. You can restore access by using the resync keys operation.

Azure Machine Learning creates an additional application (the name starts with aml- or
Microsoft-AzureML-Support-App- ) with contributor-level access in your subscription for every workspace region.
For example, if you have one workspace in East US and one in North Europe in the same subscription, you'll see
two of these applications. These applications enable Azure Machine Learning to help you manage compute

resources.

Network security

Azure Machine Learning relies on other Azure services for compute resources. Compute resources (compute
targets) are used to train and deploy models. You can create these compute targets in a virtual network. For
example, you can use Azure Data Science Virtual Machine to train a model and then deploy the model to AKS.

For more information, see How to run experiments and inference in a virtual network.

You can also enable Azure Private Link for your workspace. Private Link allows you to restrict communications to
your workspace from an Azure Virtual Network. For more information, see How to configure Private Link.


https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview

TIP
You can combine virtual network and Private Link together to protect communication between your workspace and other
Azure resources. However, some combinations require an Enterprise edition workspace. Use the following table to
understand what scenarios require Enterprise edition:
ENTERPRISE BASIC

SCENARIO EDITION EDITION

No virtual network or Private Link v v

Workspace without Private Link. Other v v

resources (except Azure Container

Registry) in a virtual network

Workspace without Private Link. Other v

resources with Private Link

Workspace with Private Link. Other v v

resources (except Azure Container

Registry) in a virtual network

Workspace and any other resource with v

Private Link

Workspace with Private Link. Other v v

resources without Private Link or virtual

network

Azure Container Registry in a virtual v

network

Customer Managed Keys for workspace v
WARNING
Azure Machine Learning compute instances preview is not supported in a workspace where Private Link is enabled.
Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled. Instead, you can
use Azure Kubernetes Service in a virtual network. For more information, see Secure Azure ML experimentation and
inference jobs within an Azure Virtual Network.

Data encryption

Encryption at rest

IMPORTANT

If your workspace contains sensitive data we recommend setting the hbi_workspace flag while creating your workspace.

The hbi_workspace flag controls the amount of data Microsoft collects for diagnostic purposes and enables
additional encryption in Microsoft managed environments. In addition it enables the following:

e Starts encrypting the local scratch disk in your Amlcompute cluster provided you have not created any previous
clusters in that subscription. Else, you need to raise a support ticket to enable encryption of the scratch disk of
your compute clusters

e Cleans up your local scratch disk between runs


https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--exist-ok-false--show-output-true-

e Securely passes credentials for your storage account, container registry and SSH account from the execution
layer to your compute clusters using your key vault
e Enables IP filtering to ensure the underlying batch pools cannot be called by any external services other than

AzureMachineLearningService

For more information on how encryption at rest works in Azure, see Azure data encryption at rest.

Azure Blob storage
Azure Machine Learning stores snapshots, output, and logs in the Azure Blob storage account that's tied to the
Azure Machine Learning workspace and your subscription. All the data stored in Azure Blob storage is encrypted at

rest with Microsoft-managed keys.

For information on how to use your own keys for data stored in Azure Blob storage, see Azure Storage encryption

with customer-managed keys in Azure Key Vault.

Training data is typically also stored in Azure Blob storage so that it's accessible to training compute targets. This
storage isn't managed by Azure Machine Learning but mounted to compute targets as a remote file system.

If you need to rotate or revoke your key, you can do so at any time. When rotating a key, the storage account will
start using the new key (latest version) to encrypt data at rest. When revoking (disabling) a key, the storage
account takes care of failing requests. It usually takes an hour for the rotation or revocation to be effective.

For information on regenerating the access keys, see Regenerate storage access keys.

Azure Cosmos DB
Azure Machine Learning stores metrics and metadata in an Azure Cosmos DB instance. This instance is associated
with a Microsoft subscription managed by Azure Machine Learning. All the data stored in Azure Cosmos DB is

encrypted at rest with Microsoft-managed keys.

To use your own (customer-managed) keys to encrypt the Azure Cosmos DB instance, you can create a dedicated
Cosmos DB instance for use with your workspace. We recommend this approach if you want to store your data,
such as run history information, outside of the multi-tenant Cosmos DB instance hosted in our Microsoft

subscription.

To enable provisioning a Cosmos DB instance in your subscription with customer-managed keys, perform the

following actions:

e Enable customer-managed key capabilities for Cosmos DB. At this time, you must request access to use this

capability. To do so, please contact cosmosdbpm@microsoft.com.

e Register the Azure Machine Learning and Azure Cosmos DB resource providers in your subscription, if not

done already.

e Authorize the Machine Learning App (in Identity and Access Management) with contributor permissions on

your subscription.
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Security
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e Use the following parameters when creating the Azure Machine Learning workspace. Both parameters are
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mandatory and supported in SDK, CLI, REST APIs, and Resource Manager templates.

0 resource_cmk_uri : This parameter is the full resource URI of the customer managed key in your key

vault, including the version information for the key.

O cmk_keyvault : This parameter is the resource ID of the key vault in your subscription. This key vault
needs to be in the same region and subscription that you will use for the Azure Machine Learning

workspace.

NOTE
This key vault instance can be different than the key vault that is created by Azure Machine Learning when
you provision the workspace. If you want to use the same key vault instance for the workspace, pass the

same key vault while provisioning the workspace by using the key_vault parameter.

This Cosmos DB instance is created in a Microsoft-managed resource group in your subscription. The managed

resource group is named in the format <AML Workspace Resource Group Name><GUID> .

IMPORTANT
® |fyou need to delete this Cosmos DB instance, you must delete the Azure Machine Learning workspace that uses it.

e The default Request Units for this Cosmos DB account is set at 8000. Changing this value is unsupported.

If you need to rotate or revoke your key, you can do so at any time. When rotating a key, Cosmos DB will start
using the new key (latest version) to encrypt data at rest. When revoking (disabling) a key, Cosmos DB takes care
of failing requests. It usually takes an hour for the rotation or revocation to be effective.

For more information on customer-managed keys with Cosmos DB, see Configure customer-managed keys for

your Azure Cosmos DB account.

Azure Container Registry
All container images in your registry (Azure Container Registry) are encrypted at rest. Azure automatically
encrypts an image before storing it and decrypts it when Azure Machine Learning pulls the image.

To use your own (customer-managed) keys to encrypt your Azure Container Registry, you need to create your own
ACR and attach it while provisioning the workspace or encrypt the default instance that gets created at the time of

workspace provisioning.
For an example of creating a workspace using an existing Azure Container Registry, see the following articles:

e Create a workspace for Azure Machine Learning with Azure CLI.

e Use an Azure Resource Manager template to create a workspace for Azure Machine Learning

Azure Container Instance

You may encrypt a deployed Azure Container Instance (ACI) resource using customer-managed keys. The
customer-managed key used for ACI can be stored in the Azure Key Vault for your workspace. For information on
generating a key, see Encrypt data with a customer-managed key.

To use the key when deploying a model to Azure Container Instance, create a new deployment configuration using
AcilWebservice.deploy_configuration() . Provide the key information using the following parameters:

® cmk_vault_base_url : The URL of the key vault that contains the key.
® cmk_key_name : The name of the key.

® cmk_key_version : The version of the key.

For more information on creating and using a deployment configuration, see the following articles:


https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates
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e AciWebservice.deploy_configuration() reference
e Where and how to deploy

e Deploy a model to Azure Container Instances

For more information on using a customer-managed key with ACI, see Encrypt data with a customer-managed key.

Azure Kubernetes Service
You may encrypt a deployed Azure Kubernetes Service resource using customer-managed keys at any time. For
more information, see Bring your own keys with Azure Kubernetes Service.

This process allows you to encrypt both the Data and the OS Disk of the deployed virtual machines in the

Kubernetes cluster.

IMPORTANT

This process only works with AKS K8s version 1.17 or higher. Azure Machine Learning added support for AKS 1.17 on Jan 13,
2020.

Machine Learning Compute

The OS disk for each compute node stored in Azure Storage is encrypted with Microsoft-managed keys in Azure
Machine Learning storage accounts. This compute target is ephemeral, and clusters are typically scaled down when
no runs are queued. The underlying virtual machine is de-provisioned, and the OS disk is deleted. Azure Disk
Encryption isn't supported for the OS disk.

Each virtual machine also has a local temporary disk for OS operations. If you want, you can use the disk to stage
training data. The disk is encrypted by default for workspaces with the hbi_workspace parameter setto TRUE . This
environment is short-lived only for the duration of your run, and encryption support is limited to system-managed
keys only.

Azure Databricks

Azure Databricks can be used in Azure Machine Learning pipelines. By default, the Databricks File System (DBFS)

used by Azure Databricks is encrypted using a Microsoft-managed key. To configure Azure Databricks to use

customer-managed keys, see Configure customer-managed keys on default (root) DBFS.

Encryption in transit

Azure Machine Learning uses TLS to secure internal communication between various Azure Machine Learning

microservices. All Azure Storage access also occurs over a secure channel.

To secure external calls to the scoring endpoint Azure Machine Learning uses TLS. For more information, see Use

TLS to secure a web service through Azure Machine Learning.

Using Azure Key Vault

Azure Machine Learning uses the Azure Key Vault instance associated with the workspace to store credentials of

various kinds:

e The associated storage account connection string
e Passwords to Azure Container Repository instances

e Connection strings to data stores

SSH passwords and keys to compute targets like Azure HDInsight and VMs are stored in a separate key vault that's
associated with the Microsoft subscription. Azure Machine Learning doesn't store any passwords or keys provided
by users. Instead, it generates, authorizes, and stores its own SSH keys to connect to VMs and HDInsight to run the

experiments.

Each workspace has an associated system-assigned managed identity that has the same name as the workspace.
This managed identity has access to all keys, secrets, and certificates in the key vault.
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Data collection and handling

Microsoft collected data

Microsoft may collect non-user identifying information like resource names (for example the dataset name, or the
machine learning experiment name), or job environment variables for diagnostic purposes. All such data is stored
using Microsoft-managed keys in storage hosted in Microsoft owned subscriptions and follows Microsoft's
standard Privacy policy and data handling standards.

Microsoft also recommends not storing sensitive information (such as account key secrets) in environment
variables. Environment variables are logged, encrypted, and stored by us. Similarly when naming runid, avoid
including sensitive information such as user names or secret project names. This information may appear in

telemetry logs accessible to Microsoft Support engineers.

You may opt out from diagnostic data being collected by setting the hbi_workspace parameter to TRUE while
provisioning the workspace. This functionality is supported when using the AzureML Python SDK, CLI, REST APIs,
or Azure Resource Manager templates.

Microsoft-generated data

When using services such as Automated Machine Learning, Microsoft may generate a transient, pre-processed
data for training multiple models. This data is stored in a datastore in your workspace, which allows you to enforce
access controls and encryption appropriately.

You may also want to encrypt diagnostic information logged from your deployed endpoint into your Azure
Application Insights instance.

Monitoring

Metrics

You can use Azure Monitor metrics to view and monitor metrics for your Azure Machine Learning workspace. In
the Azure portal, select your workspace and then select Metrics:
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The metrics include information on runs, deployments, and registrations.
For more information, see Metrics in Azure Monitor.

Activity log
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You can view the activity log of a workspace to see various operations that are performed on the workspace. The

log includes basic information like the operation name, event initiator, and timestamp.

This screenshot shows the activity log of a workspace:

Dashboard > Machine Learning service workspaces > VNetValidation2 - Activity log

ﬁ| VNetValidation2 - Activity log <

Machine Learning service workspace

O Search (Ctrl+/) ‘ « £E Edit columns D Refresh m Export to Event Hub \_L Download as CSV g@ Logs ‘ ﬁ Pin current filters N Reset filters
& Overview \ 0 Search 3 \ £ Quick Insights
H Activity log (" Management Group : None ) (" Subscription : Aashish's Subscription ) (_ Timespan : Last month ) (* Event severity : All )
M Access control (IAM) [ Resource group : VNetValidationRG @ ) ( Resource : VNetValidation2 @ ) ( +7 Add Filter )
Tags
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OPERATION NAME STATUS TIME TIME STAMP SUBSCRIPTION EVENT INITIATED BY
Settings . .

» @ List secrets for compute resources in Mac Succeeded 2 wk ago Tue Feb 12 2. Subscription Subscription @microsoft.com
ﬂ Locks

» @ List secrets for compute resources in Mac Succeeded 2 wk ago Tue Feb 12 2...  Subscription Subscription @microsoft.com
B2 Automation script
. » @ List nodes for compute resource in Mach Succeeded 3 wk ago Wed Feb 06 ... Subscription Subscription @microsoft.com
' Properties

» @ Creates or updates the compute resource Succeeded 3 wk ago Wed Feb 06 ... . Subscription Subscription @microsoft.com
Application

» @ List nodes for compute resource in Mach Succeeded 3 wk ago Wed Feb 06 ... Subscription Subscription @microsoft.com
@ Experiments
% Piveli » @ List nodes for compute resource in Mach Succeeded 3wk ago Wed Feb 06 ... Subscription Subscription @microsoft.com

ipelines

£3 Compute » @ Creates or updates the compute resource Succeeded 3 wk ago Wed Feb 06 ...  Subscription Subscription @microsoft.com
® Models » @ Creates or updates the compute resource Failed 3wk ago Wed Feb 06 ...  Subscription Subscription @microsoft.com
i Images » @ Deletes the compute resources in Machir Succeeded 3wk ago Wed Feb 06 ... Subscription Subscription @microsoft.com
@ Deployments » @ Deletes the compute resources in Machir Succeeded 3 wk ago Wed Feb 06 ...  Subscription Subscription @microsoft.com
@ Activities

» @ Deletes the compute resources in Machir Succeeded 3 wk ago Wed Feb 06 ...  Subscription Subscription @microsoft.com
Support + troubleshooting » @ Deletes the compute resources in Machir Succeeded 3wk ago Wed Feb 06 ...  Subscription Subscription @microsoft.com

Scoring request details are stored in Application Insights. Application Insights is created in your subscription when
you create a workspace. Logged information includes fields such as:

e HTTPMethod
e UserAgent

o ComputeType
e RequestUrl

e StatusCode
e Requestld

e Duration

IMPORTANT
Some actions in the Azure Machine Learning workspace don't log information to the activity log. For example, the start of a

training run and the registration of a model aren't logged.

Some of these actions appear in the Activities area of your workspace, but these notifications don't indicate who initiated

the activity.

Data flow diagrams

Create workspace

The following diagram shows the create workspace workflow.

e You sign in to Azure AD from one of the supported Azure Machine Learning clients (Azure CLI, Python SDK,
Azure portal) and request the appropriate Azure Resource Manager token.

e You call Azure Resource Manager to create the workspace.

e Azure Resource Manager contacts the Azure Machine Learning resource provider to provision the workspace.
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Additional resources are created in the user's subscription during workspace creation:

e Key Vault (to store secrets)
e An Azure storage account (including blob and file share)

e Azure Container Registry (to store Docker images for inference/scoring and experimentation)

Application Insights (to store telemetry)

The user can also provision other compute targets that are attached to a workspace (like Azure Kubernetes Service
or VMs) as needed.
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Save source code (training scripts)
The following diagram shows the code snapshot workflow.
Associated with an Azure Machine Learning workspace are directories (experiments) that contain the source code

(training scripts). These scripts are stored on your local machine and in the cloud (in the Azure Blob storage for
your subscription). The code snapshots are used for execution or inspection for historical auditing.
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Training

The following diagram shows the training workflow.
e Azure Machine Learning is called with the snapshot ID for the code snapshot saved in the previous section.

e Azure Machine Learning creates a run ID (optional) and a Machine Learning service token, which is later

used by compute targets like Machine Learning Compute/VMs to communicate with the Machine Learning
service.

e You can choose either a managed compute target (like Machine Learning Compute) or an unmanaged
compute target (like VMs) to run training jobs. Here are the data flows for both scenarios:

o VMs/HDInsight, accessed by SSH credentials in a key vault in the Microsoft subscription. Azure Machine
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Learning runs management code on the compute target that:

1. Prepares the environment. (Docker is an option for VMs and local computers. See the following steps for
Machine Learning Compute to understand how running experiments on Docker containers works.)

Downloads the code.

Sets up environment variables and configurations.

M won

Runs user scripts (the code snapshot mentioned in the previous section).

o Machine Learning Compute, accessed through a workspace-managed identity. Because Machine
Learning Compute is a managed compute target (that is, it's managed by Microsoft) it runs under your
Microsoft subscription.

1. Remote Docker construction is kicked off, if needed.

2. Management code is written to the user's Azure Files share.

3. The container is started with an initial command. That is, management code as described in the previous
step.

Querying runs and metrics

In the flow diagram below, this step occurs when the training compute target writes the run metrics back to Azure
Machine Learning from storage in the Cosmos DB database. Clients can call Azure Machine Learning. Machine
Learning will in turn pull metrics from the Cosmos DB database and return them back to the client.
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Creating web services

The following diagram shows the inference workflow. Inference, or model scoring, is the phase in which the
deployed model is used for prediction, most commonly on production data.

Here are the details:

e The user registers a model by using a client like the Azure Machine Learning SDK.
e The user creates an image by using a model, a score file, and other model dependencies.
e The Docker image is created and stored in Azure Container Registry.

e The web service is deployed to the compute target (Container Instances/AKS) using the image created in the
previous step.

e Scoring request details are stored in Application Insights, which is in the user's subscription.

e Telemetry is also pushed to the Microsoft/Azure subscription.
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Next steps

e Secure Azure Machine Learning web services with TLS

e Consume a Machine Learning model deployed as a web service

e How to run batch predictions

e Monitor your Azure Machine Learning models with Application Insights
e Collect data for models in production

e Azure Machine Learning SDK

e Use Azure Machine Learning with Azure Virtual Network

® Best practices for building recommendation systems

e Build a real-time recommendation APl on Azure
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Manage access to an Azure Machine Learning

workspace

3/8/2020 « 5 minutes to read « Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to manage access to an Azure Machine Learning workspace. Role-based access
control (RBAC) is used to manage access to Azure resources. Users in your Azure Active Directory are assigned
specific roles, which grant access to resources. Azure provides both built-in roles and the ability to create custom
roles.

Default roles

An Azure Machine Learning workspace is an Azure resource. Like other Azure resources, when a new Azure
Machine Learning workspace is created, it comes with three default roles. You can add users to the workspace and
assign them to one of these built-in roles.

ROLE ACCESS LEVEL

Reader Read-only actions in the workspace. Readers can list and view
assets in a workspace, but can't create or update these assets.

Contributor View, create, edit, or delete (where applicable) assets in a
workspace. For example, contributors can create an
experiment, create or attach a compute cluster, submit a run,
and deploy a web service.

Owner Full access to the workspace, including the ability to view,
create, edit, or delete (where applicable) assets in a workspace.
Additionally, you can change role assignments.

IMPORTANT

Role access can be scoped to multiple levels in Azure. For example, someone with owner access to a workspace may not have

owner access to the resource group that contains the workspace. For more information, see How RBAC works.

For more information on specific built-in roles, see Built-in roles for Azure.

Manage workspace access

If you're an owner of a workspace, you can add and remove roles for the workspace. You can also assign roles to
users. Use the following links to discover how to manage access:

e Azure portal Ul

PowerShell
Azure CLI
REST API

e Azure Resource Manager templates

If you have installed the Azure Machine Learning CLI, you can also use a CLI command to assign roles to users.
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az ml workspace share -w <workspace_name> -g <resource_group_name> --role <role_name> --user
<user_corp_email_address>

The user field is the email address of an existing user in the instance of Azure Active Directory where the

workspace parent subscription lives. Here is an example of how to use this command:

az ml workspace share -w my_workspace -g my_resource_group --role Contributor --user jdoe@contoson.com

Create custom role

If the built-in roles are insufficient, you can create custom roles. Custom roles might have read, write, delete, and
compute resource permissions in that workspace. You can make the role available at a specific workspace level, a
specific resource group level, or a specific subscription level.

NOTE

You must be an owner of the resource at that level to create custom roles within that resource.

To create a custom role, first construct a role definition JSON file that specifies the permission and scope for the
role. The following example defines a custom role named "Data Scientist" scoped at a specific workspace level:

data_scientist_role.json

"Name": "Data Scientist",
"IsCustom": true,

"Description”: "Can run experiment but can't create or delete compute.

"Actions": ["*"],

"NotActions": [
"Microsoft.MachinelLearningServices/workspaces/*/delete",
"Microsoft.MachinelLearningServices/workspaces/computes/*/write",
"Microsoft.MachinelLearningServices/workspaces/computes/*/delete",
"Microsoft.Authorization/*/write"

1,

"AssignableScopes": [

"/subscriptions/<subscription_id>/resourceGroups/<resource_group_name>/providers/Microsoft.MachineLearningServ
ices/workspaces/<workspace_name>"

]

You can change the Assignablescopes field to set the scope of this custom role at the subscription level, the
resource group level, or a specific workspace level.

This custom role can do everything in the workspace except for the following actions:

It can't create or update a compute resource.

It can't delete a compute resource.

It can't add, delete, or alter role assignments.

It can't delete the workspace.

To deploy this custom role, use the following Azure CLI command:

az role definition create --role-definition data_scientist_role.json



After deployment, this role becomes available in the specified workspace. Now you can add and assign this role in
the Azure portal. Or, you can assign this role to a user by using the az ml workspace share CLIcommand:

az ml workspace share -w my_workspace -g my_resource_group --role "Data Scientist" --user jdoe@contoson.com

For more information on custom roles, see Custom roles for Azure resources.

For more information on the operations (actions) usable with custom roles, see Resource provider operations.

Frequently asked questions

Q. What are the permissions needed to perform various actions in the Azure Machine Learning service?

The following table is a summary of Azure Machine Learning activities and the permissions required to perform
them at the least scope. As an example if an activity can be performed with a workspace scope (Column 4), then all
higher scope with that permission will also work automatically. All paths in this table are relative paths to

Microsoft.MachinelLearningServices/ .

SUBSCRIPTION-LEVEL RESOURCE GROUP-LEVEL

ACTIVITY SCOPE SCOPE WORKSPACE-LEVEL SCOPE

Create new workspace Not required Owner or contributor N/A (becomes Owner or
inherits higher scope role
after creation)

Create new compute cluster Not required Not required Owner, contributor, or
custom role allowing:
workspaces/computes/write

Create new Notebook VM Not required Owner or contributor Not possible

Create new compute Not required Not required Owner, contributor, or

instance custom role allowing:
workspaces/computes/write

Data plane activity like Not required Not required Owner, contributor, or

submitting run, accessing custom role allowing:

data, deploying model or workspaces/*/write

publishing pipeline Note that you also need a

datastore registered to the
workspace to allow MSI to
access data in your storage
account.

Q. How do 1 list all the custom roles in my subscription?

In the Azure CLI, run the following command.

az role definition list --subscription <sub-id> --custom-role-only true

Q. How do I find the role definition for a role in my subscription?

In the Azure CLI, run the following command. Note that <role-name> should be in the same format returned by the

command above.

az role definition list -n <role-name> --subscription <sub-id>


https://docs.microsoft.com/azure/role-based-access-control/custom-roles
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Q. How do | update a role definition?

In the Azure CLI, run the following command.

az role definition update --role-definition update_def.json --subscription <sub-id>

Note that you need to have permissions on the entire scope of your new role definition. For example if this new
role has a scope across three subscriptions, you need to have permissions on all three subscriptions.

NOTE

Role updates can take 15 minutes to an hour to apply across all role assignments in that scope.

Q. Can | define a role that prevents updating the workspace Edition?

Yes, you can define a role that prevents updating the workspace Edition. Since the workspace update is a PATCH call
on the workspace object, you do this by putting the following action in the "NotActions" array in your JSON
definition:

"Microsoft.MachinelLearningServices/workspaces/write"

Q. What permissions are needed to perform quota operations in a workspace?

You need subscription level permissions to perform any quota related operation in the workspace. This means
setting either subscription level quota or workspace level quota for your managed compute resources can only
happen if you have write permissions at the subscription scope.

Next steps

Enterprise security overview

Securely run experiments and inference/score inside a virtual network

Tutorial: Train models

® Resource provider operations
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Secure Azure ML experimentation and inference jobs

within an Azure Virtual Network

4/24/2020 « 21 minutes to read = Edit Online

APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)

In this article, you'll learn how to secure experimentation/training jobs and inference/scoring jobs in Azure
Machine Learning within an Azure Virtual Network (vnet).

Avirtual network acts as a security boundary, isolating your Azure resources from the public internet. You can
also join an Azure virtual network to your on-premises network. By joining networks, you can securely train your
models and access your deployed models for inference.

Azure Machine Learning relies on other Azure services for compute resources. Compute resources, or compute
targets, are used to train and deploy models. The targets can be created within a virtual network. For example, you
can use Microsoft Data Science Virtual Machine to train a model and then deploy the model to Azure Kubernetes
Service (AKS). For more information about virtual networks, see Azure Virtual Network overview.

This article also provides detailed information about advanced security settings, information that isn't necessary
for basic or experimental use cases. Certain sections of this article provide configuration information for a variety
of scenarios. You don't need to complete the instructions in order or in their entirety.

TIP

Unless specifically called out, using resources such as storage accounts or compute targets inside a virtual network will work
with both machine learning pipelines, and non-pipeline workflows such as script runs.

WARNING

Microsoft does not support using the Azure Machine Learning Studio features such as Automated ML, Datasets,
Datalabeling, Designer, and Notebooks if the underlying storage has virtual network enabled.

Prerequisites

e An Azure Machine Learning workspace.
e General working knowledge of both the Azure Virtual Network service and IP networking.

e A pre-existing virtual network and subnet to use with your compute resources.

Use a storage account for your workspace

WARNING
If you have data scientists that use the Azure Machine Learning designer, they will receive an error when visualizing data

from a storage account inside a virtual network. The following text is the error that they receive:

Error: Unable to profile this dataset. This might be because your data is stored behind a virtual network or
your data does not support profile.
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To use an Azure storage account for the workspace in a virtual network, use the following steps:

1. Create a compute resource (for example, a Machine Learning compute instance or cluster) behind a virtual
network, or attach a compute resource to the workspace (for example, an HDInsight cluster, virtual machine,
or Azure Kubernetes Service cluster). The compute resource can be for experimentation or model
deployment.

For more information, see the Use a Machine Learning compute, Use a virtual machine or HDInsight cluster,
and Use Azure Kubernetes Service sections in this article.

2. Inthe Azure portal, go to the storage that's attached to your workspace.
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3. Onthe Azure Storage page, select Firewalls and virtual networks.
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I %4 Firewalls and virtual networks

4. Onthe Firewalls and virtual networks page, do the following actions:

e Select Selected networks.
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e Under Virtual networks, select the Add existing virtual network link. This action adds the
virtual network where your compute resides (see step 1).

IMPORTANT

The storage account must be in the same virtual network and subnet as the compute instances or clusters

used for training or inference.

e Select the Allow trusted Microsoft services to access this storage account check box.

IMPORTANT

When working with the Azure Machine Learning SDK, your development environment must be able to connect to
the Azure Storage Account. When the storage account is inside a virtual network, the firewall must allow access from
the development environment's IP address.

To enable access to the storage account, visit the Firewalls and virtual networks for the storage account from a
web browser on the development client. Then use the Add your client IP address check box to add the client's IP
address to the ADDRESS RANGE. You can also use the ADDRESS RANGE field to manually enter the IP address of
the development environment. Once the IP address for the client has been added, it can access the storage account
using the SDK.

amlservicews4464378632 - Firewalls and virtual networks

- Firewalls and virtual networks

H Save M Discard 0 Refresh

o Firewall settings allowing access to storage services will remain in effect for up to a minute after saving updated settings restricting access.
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D Allow read access to storage logging from any network

I:‘ Allow read access to storage metrics from any network

IMPORTANT

You can place the both the default storage account for Azure Machine Learning, or non-default storage accounts in a virtual

network.
The default storage account is automatically provisioned when you create a workspace.

For non-default storage accounts, the storage_account parameter in the Workspace.create() function allows you to

specify a custom storage account by Azure resource ID.

Use Azure Data Lake Storage Gen 2

Azure Data Lake Storage Gen 2 is a set of capabilities for big data analytics, built on Azure Blob storage. It can be
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used to store data used to train models with Azure Machine Learning.

To use Data Lake Storage Gen 2 inside the virtual network of your Azure Machine Learning workspace, use the
following steps:

1. Create an Azure Data Lake Storage gen 2 account. For more information, see Create an Azure Data Lake
Storage Gen2 storage account.

2. Use the steps 2-4 in the previous section, Use a storage account for your workspace, to put the account in

the virtual network.

When using Azure Machine Learning with Data Lake Storage Gen 2 inside a virtual network, use the following

guidance:

e [f you use the SDK to create a dataset, and the system running the code is not in the virtual network,
use the validate=False parameter. This parameter skips validation, which fails if the system is not in the

same virtual network as the storage account. For more information, see the from_files() method.

e \When using Azure Machine Learning Compute Instance or compute cluster to train a model using the
dataset, it must be in the same virtual network as the storage account.

Use a key vault instance with your workspace

The key vault instance that's associated with the workspace is used by Azure Machine Learning to store the
following credentials:

e The associated storage account connection string
e Passwords to Azure Container Repository instances

e Connection strings to data stores

To use Azure Machine Learning experimentation capabilities with Azure Key Vault behind a virtual network, use the

following steps:

1. Go to the key vault that's associated with the workspace.
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2. Onthe Key Vault page, in the left pane, select Firewalls and virtual networks.
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3. Onthe Firewalls and virtual networks page, do the following actions:

e Under Allow access from, select Selected networks.

e Under Virtual networks, select Add existing virtual networks to add the virtual network where
your experimentation compute resides.

e Under Allow trusted Microsoft services to bypass this firewall, select Yes.
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Use a Machine Learning Compute

To use an Azure Machine Learning compute instance or compute cluster in a virtual network, the following
network requirements must be met:

e The virtual network must be in the same subscription and region as the Azure Machine Learning workspace.
e The subnet that's specified for the compute instance or cluster must have enough unassigned IP addresses to

accommodate the number of VMs that are targeted. If the subnet doesn't have enough unassigned IP
addresses, a compute cluster will be partially allocated.

e Check to see whether your security policies or locks on the virtual network's subscription or resource group
restrict permissions to manage the virtual network. If you plan to secure the virtual network by restricting
traffic, leave some ports open for the compute service. For more information, see the Required ports section.

e [f you're going to put multiple compute instances or clusters in one virtual network, you might need to request

a quota increase for one or more of your resources.

e |f the Azure Storage Account(s) for the workspace are also secured in a virtual network, they must be in the
same virtual network as the Azure Machine Learning compute instance or cluster.

TIP

The Machine Learning compute instance or cluster automatically allocates additional networking resources in the resource
group that contains the virtual network. For each compute instance or cluster, the service allocates the following
resources:

® One network security group
® One public IP address

® One load balancer

In the case of clusters these resources are deleted (and recreated) every time the cluster scales down to 0 nodes, however
for an instance the resources are held onto till the instance is completely deleted (stopping does not remove the resources).
These resources are limited by the subscription's resource quotas.

Required ports

Machine Learning Compute currently uses the Azure Batch service to provision VMs in the specified virtual
network. The subnet must allow inbound communication from the Batch service. You use this communication to
schedule runs on the Machine Learning Compute nodes and to communicate with Azure Storage and other
resources. The Batch service adds network security groups (NSGs) at the level of network interfaces (NICs) that are
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attached to VMs. These NSGs automatically configure inbound and outbound rules to allow the following traffic:
e Inbound TCP traffic on ports 29876 and 29877 from a Service Tag of BatchNodeManagement.

U Add inbound security rule X

desvm-vnet-n =g

4" Basic

* Source @

| Service Tag “ |

* Source service tag @
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* Source port ranges @

*

* Destination @

Any A

* Destination port ranges @
| 20876-29877 v

* Protocol
Any TCP UDP

* Action

* Priority @
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Description

Add

(Optional) Inbound TCP traffic on port 22 to permit remote access. Use this port only if you want to connect
by using SSH on the public IP.

Outbound traffic on any port to the virtual network.

Outbound traffic on any port to the internet.

For compute instance inbound TCP traffic on port 44224 from a Service Tag of AzureMachineLearning.

Exercise caution if you modify or add inbound or outbound rules in Batch-configured NSGs. If an NSG blocks
communication to the compute nodes, the compute service sets the state of the compute nodes to unusable.

You don't need to specify NSGs at the subnet level, because the Azure Batch service configures its own NSGs.
However, if the specified subnet has associated NSGs or a firewall, configure the inbound and outbound security

rules as mentioned earlier.

The NSG rule configuration in the Azure portal is shown in the following images:



¥ dsvm-nsg | Inbound security rules
= Network security group

[2_searen (cxri+h) ] < ~+ Add = Default rules () Refresh

& Overview Priority Name Port Protocol Source Destination Action
E Activity log 1040 AzureBatch 29876-29877 TCP BatchNodeManagem... Any @ Allow
0, Access control (IAM) 1050 AzureMachinelLearning 44224 TCP AzureMachinelearning  Any @ Allow
® Tags 65000 AllowVnetinBound Any Any VirtualNetwork VirtualNetwork @ Allow
£ Diagnose and solve problems 65001 AllowAzureLoadBalancerinBound Any Any AzureloadBalancer Any @ Allow
Settings 65500 DenyAllinBound Any Any Any Any & Deny
. Inbound security rules I

. Outbound security rules

Outbound security rules
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65500 DenyAllOutBound Any Any Any Any 9 Deny

Limit outbound connectivity from the virtual network

If you don't want to use the default outbound rules and you do want to limit the outbound access of your virtual

network, use the following steps:
e Deny outbound internet connection by using the NSG rules.
e For acompute instance or acompute cluster, limit outbound traffic to the following items:

o Azure Storage, by using Service Tag of Storage.RegionName. Where {RegionName} is the name of an
Azure region.
o Azure Container Registry, by using Service Tag of AzureContainerRegistry.RegionName. Where
{RegionName} is the name of an Azure region.
o Azure Machine Learning, by using Service Tag of AzureMachinelLearning
o Azure Resource Manager, by using Service Tag of AzureResourceManager

o Azure Active Directory, by using Service Tag of AzureActiveDirectory

The NSG rule configuration in the Azure portal is shown in the following image:

[0 search (ctrl+) |« +add = Defauttrules O Refresh

@ Overview Priority Name Port Protocol Source Destination Action
Activity log 3700 AAD Any Any Any AzureActiveDirectory 9 Allow
2. Access control (IAM) 3800 ARM Any Any Any AzureResourceManager © Allow
® Tags 3850 AML Any Any Any AzureMachineLearning @ Allow
&’ Diagnose and solve problems 3900 ACR Any Any Any AzureContainerRegistry.UKSouth @ Allow
Settings 3950 Storage Any Any Any Storage.UKSouth © Allow
% Inbound security rules 4000 DenyInternet Any Any Any Internet © Deny

2 Outbound sec ty rules 65000 AllowVnetOutBound Any Any VirtualNetwork VirtualNetwork 9 Allow

@ Network interfaces 65001 AllowInternetOutBound Any Any Any Internet @ Allow
<> Subnets 65500 DenyAllOutBound Any Any Any Any © Deny

Properties
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NOTE

If you plan on using default Docker images provided by Microsoft, and enabling user managed dependencies, you must also
use a Service Tag of MicrosoftContainerRegistry.Region_Name (For example, MicrosoftContainerRegistry.EastUS).

This configuration is needed when you have code similar to the following snippets as part of your training scripts:

RunConfig training

# create a new runconfig object
run_config = RunConfiguration()

# configure Docker

run_config.environment.docker.enabled = True

# For GPU, use DEFAULT_GPU_IMAGE
run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE
run_config.environment.python.user_managed_dependencies = True

Estimator training

est

Estimator(source_directory=".",
script_params=script_params,
compute_target="local",
entry_script="dummy_train.py"',
user_managed=True)

run = exp.submit(est)

User-defined routes for forced tunneling

If you're using forced tunneling with the Machine Learning Compute, add user-defined routes (UDRs) to the subnet
that contains the compute resource.

e Establish a UDR for each IP address that's used by the Azure Batch service in the region where your
resources exist. These UDRs enable the Batch service to communicate with compute nodes for task
scheduling. Also add the IP address for the Azure Machine Learning service where the resources exist, as
this is required for access to Compute Instances. To get a list of IP addresses of the Batch service and Azure
Machine Learning service, use one of the following methods:

o Download the Azure IP Ranges and Service Tags and search the file for
BatchNodeManagement.<region> and AzureMachinelLearning.<region> , where <region> is your Azure
region.

o Use the Azure CLI to download the information. The following example downloads the IP address
information and filters out the information for the East US 2 region:

az network list-service-tags -1 "East US 2" --query "values[?starts_with(id, 'Batch')] | [?
properties.region=="eastus2']"

az network list-service-tags -1 "East US 2" --query "values[?starts_with(id,
'AzureMachinelLearning')] | [?properties.region=="'eastus2']"

e Outbound traffic to Azure Storage must not be blocked by your on-premises network appliance. Specifically,
the URLs are in the form <account>.table.core.windows.net , <account>.queue.core.windows.net , and

<account>.blob.core.windows.net

When you add the UDRs, define the route for each related Batch IP address prefix and set Next hop type to
Internet. The following image shows an example of this UDR in the Azure portal:


https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview
https://www.microsoft.com/download/details.aspx?id=56519
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

* Route name

| Allow-BatchService-Communication-Route v |

* Address prefis @

| 10.1.100.101/32 /|

Next hop type @

| Internet ~ |

Next hop address @

For more information, see Create an Azure Batch pool in a virtual network.

Create a compute cluster in a virtual network

To create a Machine Learning Compute cluster, use the following steps:

1.

Sign in to Azure Machine Learning studio, and then select your subscription and workspace.

. Select Compute on the left.

. Select Training clusters from the center, and then select +.

In the New Training Cluster dialog, expand the Advanced settings section.

To configure this compute resource to use a virtual network, perform the following actions in the
Configure virtual network section:

a. Inthe Resource group drop-down list, select the resource group that contains the virtual network.
b. In the Virtual network drop-down list, select the virtual network that contains the subnet.

¢. Inthe Subnet drop-down list, select the subnet to use.


https://docs.microsoft.com/en-us/azure/batch/batch-virtual-network
https://ml.azure.com/
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@ Learn more about how to enable virtual network for training cluster

You can also create a Machine Learning Compute cluster by using the Azure Machine Learning SDK. The following
code creates a new Machine Learning Compute cluster in the default subnet of a virtual network named

mynetwork :



from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

# The Azure virtual network name, subnet, and resource group
vnet_name = "mynetwork’

subnet_name = ‘'default’

vnet_resourcegroup_name = 'mygroup’

# Choose a name for your CPU cluster
cpu_cluster_name = "cpucluster”

# Verify that cluster does not exist already

try:
cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)
print("Found existing cpucluster™)

except ComputeTargetException:
print("Creating new cpucluster")

# Specify the configuration for the new cluster

compute_config = AmlCompute.provisioning_configuration(vm_size="STANDARD_D2_V2",
min_nodes=0,
max_nodes=4,
vnet_resourcegroup_name=vnet_resourcegroup_name,
vnet_name=vnet_name,
subnet_name=subnet_name)

# Create the cluster with the specified name and configuration
cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)

# Wait for the cluster to be completed, show the output log

cpu_cluster.wait_for_completion(show_output=True)

When the creation process finishes, you train your model by using the cluster in an experiment. For more
information, see Select and use a compute target for training.

Use Azure Databricks

To use Azure Databricks in a virtual network with your workspace, the following requirements must be met:

e The virtual network must be in the same subscription and region as the Azure Machine Learning workspace.

e |f the Azure Storage Account(s) for the workspace are also secured in a virtual network, they must be in the
same virtual network as the Azure Databricks cluster.

e |n addition to the databricks-private and databricks-public subnets used by Azure Databricks, the default
subnet created for the virtual network is also required.

For specific information on using Azure Databricks with a virtual network, see Deploy Azure Databricks in your
Azure Virtual Network.

Use a virtual machine or HDInsight cluster

IMPORTANT

Azure Machine Learning supports only virtual machines that are running Ubuntu.

To use a virtual machine or Azure HDInsight cluster in a virtual network with your workspace, use the following
steps:

1. Create a VM or HDInsight cluster by using the Azure portal or the Azure CLI, and put the cluster in an Azure
virtual network. For more information, see the following articles:


https://docs.azuredatabricks.net/administration-guide/cloud-configurations/azure/vnet-inject.html

e (Create and manage Azure virtual networks for Linux VMs
e Extend HDInsight using an Azure virtual network

2. To allow Azure Machine Learning to communicate with the SSH port on the VM or cluster, configure a
source entry for the network security group. The SSH port is usually port 22. To allow traffic from this
source, do the following actions:

o In the Source drop-down list, select Service Tag.

e Inthe Source service tag drop-down list, select AzureMachineLearning.
e IntheSource port ranges drop-down list, select *.

e |n the Destination drop-down list, select Any.

e In the Destination port ranges drop-down list, select 22.

e Under Protocol, select Any.

e Under Action, select Allow.

Fl save P Discarc .{" Basic @ Delete

* Source @

| Service Tag
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| AzureMachinelearning

* Source port ranges @

*
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22

* Protocol
ERNTE

* Action

Allow Deny

* Priority @
| 1030

Description

Keep the default outbound rules for the network security group. For more information, see the default
security rules in Security groups.

If you don't want to use the default outbound rules and you do want to limit the outbound access of your
virtual network, see the Limit outbound connectivity from the virtual network section.


https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-virtual-network
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network
https://docs.microsoft.com/azure/virtual-network/security-overview#default-security-rules

3. Attach the VM or HDInsight cluster to your Azure Machine Learning workspace. For more information, see
Set up compute targets for model training.

Use Azure Kubernetes Service (AKS)

To add AKS in a virtual network to your workspace, use the following steps:

IMPORTANT
Before you begin the following procedure, follow the prerequisites in the Configure advanced networking in Azure

Kubernetes Service (AKS) how-to and plan the IP addressing for your cluster.

The AKS instance and the Azure virtual network must be in the same region. If you secure the Azure Storage Account(s)

used by the workspace in a virtual network, they must be in the same virtual network as the AKS instance.

WARNING

Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled.

1. Sign in to Azure Machine Learning studio, and then select your subscription and workspace.
2. Select Compute on the left.

3. SelectInference clusters from the center, and then select +.

4. In the New Inference Cluster dialog, select Advanced under Network configuration.

5. To configure this compute resource to use a virtual network, perform the following actions:

g

In the Resource group drop-down list, select the resource group that contains the virtual network.

o

In the Virtual network drop-down list, select the virtual network that contains the subnet.

¢. Inthe Subnet drop-down list, select the subnet.

d. Inthe Kubernetes Service address range box, enter the Kubernetes service address range. This
address range uses a Classless Inter-Domain Routing (CIDR) notation IP range to define the IP addresses
that are available for the cluster. It must not overlap with any subnet IP ranges (for example, 10.0.0.0/16).

e. Inthe Kubernetes DNS service IP address box, enter the Kubernetes DNS service IP address. This IP
address is assigned to the Kubernetes DNS service. It must be within the Kubernetes service address
range (for example, 10.0.0.10).

f. In the Docker bridge address box, enter the Docker bridge address. This IP address is assigned to

Docker Bridge. It must not be in any subnet IP ranges, or the Kubernetes service address range (for

example, 172.17.0.1/16).


https://docs.microsoft.com/azure/aks/configure-advanced-networking#prerequisites
https://ml.azure.com/
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6. Make sure that the NSG group that controls the virtual network has an inbound security rule enabled for
the scoring endpoint so that it can be called from outside the virtual network.

IMPORTANT

Keep the default outbound rules for the NSG. For more information, see the default security rules in Security groups.



https://docs.microsoft.com/azure/virtual-network/security-overview#default-security-rules
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1000 ScoringlP 80 TCP Internet 137.135.117.175 @ Allow
1002 AML Any Any AzureMachineLearning  Any @ Allow
65000 AllowVnetinBound Any Any VirtualNetwork VirtualNetwork S Allow
65001 AllowAzureLoadBalancerinBound Any Any AzureloadBalancer Any @ Allow
65500 DenyAllinBound Any Any Any Any @ Deny

You can also use the Azure Machine Learning SDK to add Azure Kubernetes Service in a virtual network. If you
already have an AKS cluster in a virtual network, attach it to the workspace as described in How to deploy to AKS.
The following code creates a new AKS instance in the default subnet of a virtual network named mynetwork :

from azureml.core.compute import ComputeTarget, AksCompute

# Create the compute configuration and set virtual network information
config = AksCompute.provisioning_configuration(location="eastus2")
config.vnet_resourcegroup_name = "mygroup"

config.vnet_name = "mynetwork"

config.subnet_name = "default"

config.service_cidr = "10.0.0.0/16"

config.dns_service_ip = "10.0.0.10"

config.docker_bridge_cidr = "172.17.0.1/16"

# Create the compute target

aks_target = ComputeTarget.create(workspace=ws,
name="myaks",
provisioning_configuration=config)

When the creation process is completed, you can run inference, or model scoring, on an AKS cluster behind a

virtual network. For more information, see How to deploy to AKS.

Use private IPs with Azure Kubernetes Service

By default, a public IP address is assigned to AKS deployments. When using AKS inside a virtual network, you can
use a private IP address instead. Private IP addresses are only accessible from inside the virtual network or joined

networks.

A private IP address is enabled by configuring AKS to use an internal load balancer.

IMPORTANT

You cannot enable private IP when creating the Azure Kubernetes Service cluster. It must be enabled as an update to an

existing cluster.

The following code snippet demonstrates how to create a new AKS cluster, and then update it to use a private

IP/internal load balancer:


file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/aks-vnet-inbound-nsg-scoring.png#lightbox

import azureml.core
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute import AksCompute, ComputeTarget

# Verify that cluster does not exist already

try:
aks_target = AksCompute(workspace=ws, name=aks_cluster_name)
print("Found existing aks cluster")

except:

print("Creating new aks cluster")

# Subnet to use for AKS

subnet_name = "default”

# Create AKS configuration

prov_config = AksCompute.provisioning_configuration(location = "eastus2")
# Set info for existing virtual network to create the cluster in
prov_config.vnet_resourcegroup_name = "myvnetresourcegroup"
prov_config.vnet_name = "myvnetname"

prov_config.service_cidr = "10.0.0.0/16"
prov_config.dns_service_ip = "10.0.0.10"

prov_config.subnet_name = subnet_name
prov_config.docker_bridge_cidr = "172.17.0.1/16"

# Create compute target

aks_target = ComputeTarget.create(workspace = ws, name = "myaks", provisioning_configuration =
prov_config)

# Wait for the operation to complete

aks_target.wait_for_completion(show_output = True)

# Update AKS configuration to use an internal load balancer

update_config = AksUpdateConfiguration(None, "InternallLoadBalancer", subnet_name)
aks_target.update(update_config)

# Wait for the operation to complete

aks_target.wait_for_completion(show_output = True)

Azure CLI

az rest --method put --uri https://management.azure.com"/subscriptions/<subscription-
id>/resourcegroups/<resource-group>/providers/Microsoft.ContainerService/managedClusters/<aks-resource-id>?
api-version=2018-11-19 --body @body.json

The contents of the body.json file referenced by the command are similar to the following JSON document:

"location": "<region>",
"properties": {
"resourceId": "/subscriptions/<subscription-id>/resourcegroups/<resource-
group>/providers/Microsoft.ContainerService/managedClusters/<aks-resource-id>",
"computeType": "AKS",
"provisioningState": "Succeeded",
"properties": {
"loadBalancerType": "InternallLoadBalancer",
"agentCount": <agent-count>,
"agentVmSize": "vm-size",
"clusterFqdn": "<cluster-fqdn>"



NOTE

Currently, you cannot configure the load balancer when performing an attach operation on an existing cluster. You must
first attach the cluster, and then perform an update operation to change the load balancer.

For more information on using the internal load balancer with AKS, see Use internal load balancer with Azure

Kubernetes Service.

Use Azure Container Instances (ACl)

Azure Container Instances are dynamically created when deploying a model. To enable Azure Machine Learning to
create ACl inside the virtual network, you must enable subnet delegation for the subnet used by the
deployment.

To use ACl in a virtual network to your workspace, use the following steps:

1. To enable subnet delegation on your virtual network, use the information in the Add or remove a subnet
delegation article. You can enable delegation when creating a virtual network, or add it to an existing
network.

IMPORTANT

When enabling delegation, use Microsoft.ContainerInstance/containerGroups as the Delegate subnet to

service value.

2. Deploy the model using AciWebservice.deploy_configuration(), use the vnet_name and subnet_name
parameters. Set these parameters to the virtual network name and subnet where you enabled delegation.

Use Azure Firewall

When using Azure Firewall, you must configure a network rule to allow traffic to and from the following addresses:

® * batchai.core.windows.net

® ml.azure.com

® *. azureml.ms

® * experiments.azureml.net

® * _modelmanagement.azureml.net
® mlworkspace.azure.ai

® * aether.ms

When adding the rule, set the Protocol to any, and the ports to * .

For more information on configuring a network rule, see Deploy and configure Azure Firewall.

Use Azure Container Registry


https://docs.microsoft.com/azure/aks/internal-lb
https://docs.microsoft.com/en-us/azure/virtual-network/manage-subnet-delegation
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciwebservice?view=azure-ml-py#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--primary-key-none--secondary-key-none--collect-model-data-none--cmk-vault-base-url-none--cmk-key-name-none--cmk-key-version-none--vnet-name-none--subnet-name-none-
https://docs.microsoft.com/azure/firewall/tutorial-firewall-deploy-portal#configure-a-network-rule

IMPORTANT

Azure Container Registry (ACR) can be put inside a virtual network, however you must meet the following prerequisites:

® Your Azure Machine Learning workspace must be Enterprise edition. For information on upgrading, see Upgrade to

Enterprise edition.
® Your Azure Container Registry must be Premium version . For more information on upgrading, see Changing SKUs.

® Your Azure Container Registry must be in the same virtual network and subnet as the storage account and compute

targets used for training or inference.
® Your Azure Machine Learning workspace must contain an Azure Machine Learning compute cluster.

When ACR is behind a virtual network, Azure Machine Learning cannot use it to directly build Docker images.

Instead, the compute cluster is used to build the images.

1. To find the name of the Azure Container Registry for your workspace, use one of the following methods:
Azure portal

From the overview section of your workspace, the Registry value links to the Azure Container Registry.

‘;g Eearch (Ctrl+) | « 1 Download configjson [l Delete
- Workspace edition : Enterprise Storage : sarxekmvapdhjno

& Overview = )

Resource group :amlpl [ Registry . amlplcfas1398 l
& Activity log

Location : South Central US Key Vault : kvrxekmvapdhjno
Ro. Access control (IAM)

Subscription Visual Studio Ultimate with MSDN Application Insights : airkekmvapdhjno

Azure CLI

If you have installed the Machine Learning extension for Azure CLI, you can use the az ml workspace show

command to show the workspace information.

az ml workspace show -w yourworkspacename -g resourcegroupname --query 'containerRegistry’

This command returns a value similar to
"/subscriptions/{GUID}/resourceGroups/{resourcegroupname}/providers/Microsoft.ContainerRegistry/registries/{ACRname}"

. The last part of the string is the name of the Azure Container Registry for the workspace.

2. To limit access to your virtual network, use the steps in Configure network access for registry. When adding
the virtual network, select the virtual network and subnet for your Azure Machine Learning resources.

3. Use the Azure Machine Learning Python SDK to configure a compute cluster to build docker images. The
following code snippet demonstrates how to do this:

from azureml.core import Workspace

# Load workspace from an existing config file

ws = Workspace.from_config()

# Update the workspace to use an existing compute cluster
ws.update(image_build_compute = 'mycomputecluster')

IMPORTANT

Your storage account, compute cluster, and Azure Container Registry must all be in the same subnet of the virtual

network.

For more information, see the update() method reference.


https://docs.microsoft.com/azure/container-registry/container-registry-skus#changing-skus
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-vnet
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py#update-friendly-name-none--description-none--tags-none--image-build-compute-none--enable-data-actions-none-

4. If you are using Private Link for your Azure Machine Learning workspace, and put the Azure Container
Registry for your workspace in a virtual network, you must also apply the following Azure Resource
Manager template. This template enables your workspace to communicate with ACR over the Private Link.

{
"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"keyVaultArmId": {
"type": "string"
P
"workspaceName": {
"type": "string"
P
"containerRegistryArmId": {
"type": "string"
3
"applicationInsightsArmId": {
"type": "string"
s
"storageAccountArmId": {
"type": "string"
3
"location": {
"type": "string"

}
s
"resources": [
{
"type": "Microsoft.MachineLearningServices/workspaces”,
"apiVersion": "2019-11-01",
"name": "[parameters('workspaceName')]",
"location": "[parameters('location')]",
"identity": {
"type": "SystemAssigned"
s
"sku": {
"tier": "enterprise",
"name": "enterprise"
s

"properties": {
"sharedPrivatelLinkResources":
[{"Name":"Acr","Properties":{"PrivateLinkResourceId":"[concat(parameters('containerRegistryArmId'),

'/privateLinkResources/registry')]", "GroupId":"registry", "RequestMessage":"Approve","Status":"Pending"}
1
"keyVault": "[parameters('keyVaultArmId')]",
"containerRegistry": "[parameters('containerRegistryArmId')]",
"applicationInsights": "[parameters('applicationInsightsArmId')]",
"storageAccount": "[parameters('storageAccountArmId')]"
}
}
1
¥

Next steps

e Setup training environments
e Where to deploy models

e Use TLS to secure a web service through Azure Machine Learning



Configure Azure Private Link for an Azure Machine

Learning workspace (Preview)

4/15/2020 « 13 minutes to read » Edit Online

In this document, you learn how to use Azure Private Link with your Azure Machine Learning workspace. This

capability is currently in preview, and is available in the US East, US West 2, US South Central regions.

Azure Private Link enables you to connect to your workspace using a private endpoint. The private endpoint is a set
of private IP addresses within your virtual network. You can then limit access to your workspace to only occur over
the private IP addresses. Private Link helps reduce the risk of data exfiltration. To learn more about private
endpoints, see the Azure Private Link article.

IMPORTANT

Azure Private Link does not effect Azure control plane (management operations) such as deleting the workspace or
managing compute resources. For example, creating, updating, or deleting a compute target. These operations are performed
over the public Internet as normal.

Azure Machine Learning compute instances preview is not supported in a workspace where Private Link is enabled.

Create a workspace that uses a private endpoint

Currently, we only support enabling a private endpoint when creating a new Azure Machine Learning workspace.
The following templates are provided for several popular configurations:

TIP

Auto-approval controls the automated access to the Private Link enabled resource. For more information, see What is Azure
Private Link service.

Workspace with customer-managed keys and auto-approval for Private Link

Workspace with customer-managed keys and manual approval for Private Link

e Workspace with Microsoft-managed keys and auto-approval for Private Link

Workspace with Microsoft-managed keys and manual approval for Private Link

When deploying a template, you must provide the following information:

e Workspace name

® Azure region to create the resources in

e Workspace edition (Basic or Enterprise)

e If high confidentiality settings for the workspace should be enabled

e [f encryption for the workspace with a customer-managed key should be enabled, and associated values for the
key

e Virtual Network and Subnet name, template will create new virtual network and subnet

Once a template has been submitted and provisioning completes, the resource group that contains your workspace
will contain three new artifact types related to Private Link:

e Private endpoint


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-configure-private-link.md
https://docs.microsoft.com/azure/private-link/private-link-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-service-overview

o Network interface

e Private DNS zone

The workspace also contains an Azure Virtual Network that can communicate with the workspace over the private

endpoint.

Deploy the template using the Azure portal

1. Follow the steps in Deploy resources from custom template. When you arrive at the Edit template screen,

paste in one of the templates from the end of this document.

2. Select Save to use the template. Provide the following information and agree to the listed terms and

conditions:

e Subscription: Select the Azure subscription to use for these resources.

e Resource group: Select or create a resource group to contain the services.

e Workspace name: The name to use for the Azure Machine Learning workspace that will be created. The
workspace name must be between 3 and 33 characters. It may only contain alphanumeric characters and

o

e |ocation: Select the location where the resources will be created.
For more information, see Deploy resources from custom template.

Deploy the template using Azure PowerShell

This example assumes that you have saved one of the templates from the end of this document to a file named

azuredeploy.json in the current directory:

New-AzResourceGroup -Name examplegroup -Location "East US"
new-azresourcegroupdeployment -name exampledeployment °

-resourcegroupname examplegroup -location "East US" °

-templatefile .\azuredeploy.json -workspaceName "exampleworkspace" -sku "basic"

For more information, see Deploy resources with Resource Manager templates and Azure PowerShell and Deploy

private Resource Manager template with SAS token and Azure PowerShell.

Deploy the template using the Azure CLI

This example assumes that you have saved one of the templates from the end of this document to a file named

azuredeploy.json in the current directory:

az group create --name examplegroup --location "East US"
az group deployment create \
--name exampledeployment \
--resource-group examplegroup \
--template-file azuredeploy.json \
--parameters workspaceName=exampleworkspace location=eastus sku=basic

For more information, see Deploy resources with Resource Manager templates and Azure CLI and Deploy private

Resource Manager template with SAS token and Azure CLI.

Using a workspace over a private endpoint

Since communication to the workspace is only allowed from the virtual network, any development environments
that use the workspace must be members of the virtual network. For example, a virtual machine in the virtual
network or a machine connected to the virtual network using a VPN gateway.


https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy-portal#deploy-resources-from-custom-template
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token

IMPORTANT

To avoid temporary disruption of connectivity, Microsoft recommends flushing the DNS cache on machines connecting to the

workspace after enabling Private Link.

For information on Azure Virtual Machines, see the Virtual Machines documentation.

For information on VPN gateways, see What is VPN gateway.

Using Azure Storage

To secure the Azure Storage account used by your workspace, put it inside the virtual network.

For information on putting the storage account in the virtual network, see Use a storage account for your

workspace.

Using Azure Key Vault

To secure the Azure Key Vault used by your workspace, you can either put it inside the virtual network or enable
Private Link for it.

For information on putting the key vault in the virtual network, see Use a key vault instance with your workspace.

For information on enabling Private Link for the key vault, see Integrate Key Vault with Azure Private Link.

Using Azure Kubernetes Services

To secure the Azure Kubernetes services used by your workspace, put it inside a virtual network. For more

information, see Use Azure Kubernetes Services with your workspace.

WARNING

Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled.

Azure Container Registry

For information on securing Azure Container Registry inside the virtual network, see Use Azure Container Registry.

IMPORTANT
If you are using Private Link for your Azure Machine Learning workspace, and put the Azure Container Registry for your
workspace in a virtual network, you must also apply the following Azure Resource Manager template. This template enables

your workspace to communicate with ACR over the Private Link.



https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/key-vault/private-link-service

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {

"keyVaultArmId": {

"type": "string"

s

"workspaceName": {

"type": "string"

})

"containerRegistryArmId": {

"type": "string"

s

"applicationInsightsArmId": {

"type": "string"

})

"storageAccountArmId": {

"type": "string"

s

"location": {

"type": "string"

}
s
"resources": [
{
"type": "Microsoft.MachineLearningServices/workspaces”,
"apiVersion": "2019-11-01",
"name": "[parameters('workspaceName')]",
"location": "[parameters('location')]",
"identity": {
"type": "SystemAssigned"
s
"sku": {
"tier": "enterprise",
"name": "enterprise"
s

"properties": {
"sharedPrivatelLinkResources":
[{"Name":"Acr","Properties":{"PrivateLinkResourceId":"[concat(parameters('containerRegistryArmId"'),

'/privateLinkResources/registry')]","GroupId": "registry", "RequestMessage":"Approve","Status":"Pending"}}],
"keyVault": "[parameters('keyVaultArmId')]",

"containerRegistry": "[parameters('containerRegistryArmId')]",
"applicationInsights": "[parameters('applicationInsightsArmId')]",
"storageAccount": "[parameters('storageAccountArmId')]"

}

}

Azure Resource Manager templates

Workspace with customer-managed keys and auto-approval for Private Link

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"workspaceName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning workspace."
}
¥
"location": {
"type": "string",



"allowedValues": [
"eastus",
"southcentralus"”,
"westus2"

1,

"metadata": {
"description": "Specifies the location for all resources."

}

9
"sku":{

"type": "string",

"defaultValue": "basic",

"allowedValues": [
"basic",

"enterprise"
])

"metadata": {

"description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning

workspace."
}
s
"hbi_workspace":{
"type": "string",
"defaultValue": "false",
"allowedValues": [

"false",
"true"
1,
"metadata": {
"description": "Specifies that the Azure Machine Learning workspace holds highly confidential data."
}
¥

"encryption_status":{
"type": "string",
"defaultValue": "Disabled",
"allowedValues": [
"Enabled",
"Disabled"
1,

"metadata": {

"description”: "Specifies if the Azure Machine Learning workspace should be encrypted with customer

managed key."
¥
s
"cmk_keyvault":{
"type": "string",
"metadata": {
"description": "Specifies the customer managed keyVault id."
¥
s
"resource_cmk_uri":{
"type": "string",
"metadata": {
"description": "Specifies if the customer managed keyvault key uri."
¥
s
"subnetName": {
"type": "string"
})
"vnetName": {
"type": "string"

}J

"variables": {
"storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
"storageAccountType": "Standard_LRS",

"keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
"tenantId": "[subscription().tenantId]",

"applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]",



"privateDnsGuid": "[guid(resourceGroup().id, deployment().name)]"
s
"resources": [
{
"type": "Microsoft.Storage/storageAccounts”,
"apiVersion": "2019-04-01",
"name": "[variables('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {
"name": "[variables('storageAccountType')]"
})
"kind": "StorageVv2",
"properties": {
"encryption": {
"services": {
"blob": {
"enabled": true
s
"file": {
"enabled": true
¥
3
"keySource": "Microsoft.Storage"
3
"supportsHttpsTrafficOnly": true

"type": "Microsoft.KeyVault/vaults",
"apiVersion": "2018-02-14",
"name": "[variables('keyVaultName')]",
"location": "[parameters('location')]",
"properties": {
"tenantId": "[variables('tenantId')]",
"sku": {
"name": "standard",
“"family": "A"
})

"accessPolicies": []

"type": "Microsoft.Insights/components”,
"apiVersion": "2018-05-01-preview",
"name": "[variables('applicationInsightsName')]",
"location": "
[if(or(equals(parameters('location'), 'eastus2'),equals(parameters('location'), 'westcentralus')), 'southcentralu
s',parameters('location'))]",

"kind": "web",

"properties": {

"Application_Type": "web"

"type": "Microsoft.MachinelLearningServices/workspaces”,

"apiVersion": "2020-01-01",

"name": "[parameters('workspaceName')]",

"location": "[parameters('location')]",

"dependsOn": [
"[resourceld('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
"[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
"[resourceld('Microsoft.Insights/components', variables('applicationInsightsName'))]"

]J
"identity": {
"type": "systemAssigned"
}J
"sku": {

"tier": "[parameters('sku')]",
"name": "[parameters('sku')1"



s
"properties": {
"friendlyName": "[parameters('workspaceName')]",
"keyVault": "[resourceld('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
"applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
"storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/"',variables('storageAccountName'))]",
"encryption”: {
"status": "[parameters('encryption_status')]",
"keyVaultProperties": {
"keyVaultArmId": "[parameters('cmk_keyvault')]",

"keyIdentifier": "[parameters('resource_cmk_uri')]"

1

"hbi_workspace": "[parameters('hbi_workspace')]"

"type": "Microsoft.Network/virtualNetworks",
"apiVersion": "2019-09-01",
"name": "[parameters('vnetName')]",
"location": "[parameters('location')]",
"properties": {
"addressSpace": {
"addressPrefixes": [
"10.0.0.0/27"

1

"virtualNetworkPeerings": [],
"enableDdosProtection": false,
"enableVmProtection": false

}J

"type": "Microsoft.Network/virtualNetworks/subnets",
"apiVersion": "2019-09-01",
"name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
"dependsOn": [
"[resourceIld( 'Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
])
"properties": {
"addressPrefix": "10.0.0.0/27",
"delegations": [],
"privateEndpointNetworkPolicies": "Disabled",
"privateLinkServiceNetworkPolicies": "Enabled"

"apiVersion": "2019-04-01",
"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"type": "Microsoft.Network/privateEndpoints”,
"location": "[parameters('location')]",
"dependsOn": [
"[resourceld('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
"[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName') )]"
1,
"properties": {
"privateLinkServiceConnections": [
{
"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"properties": {
"privateLinkServiceId": "[resourceId('Microsoft.MachinelLearningServices/workspaces',
parameters('workspaceName'))]",
"groupIds": [
"amlworkspace"



}

1,
"manualPrivatelLinkServiceConnections™: [],
"subnet": {
"id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName') )]"
}
}
})
{
"type": "Microsoft.Resources/deployments",
"apiVersion": "2017-05-10",
"name": "[concat('PrivateDns-', variables('privateDnsGuid'))]",

"dependsOn": [
"[resourceId('Microsoft.Network/privateEndpoints', concat(parameters('workspaceName'), '-
PrivateEndpoint'))]"

])
"properties": {
"mode": "Incremental",
"template": {
"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"resources": [
{
"type": "Microsoft.Network/privateDnsZones",
"apiVersion": "2018-09-01",
"name": "privatelink.api.azureml.ms",
"location": "global",
"tags": {},
"properties": {}
¥
{
"type": "Microsoft.Network/privateDnsZones/virtualNetworkLinks",
"apiVersion": "2018-09-01",
"name": "[concat('privatelink.api.azureml.ms', '/',

uniqueString(resourceld('Microsoft.Network/virtualNetworks', parameters('vnetName'))))]",
"location": "global",
"dependsOn": [
"privatelink.api.azureml.ms"
1
"properties": {
"virtualNetwork": {

"id": "[resourceId('Microsoft.Network/virtualNetworks",
parameters('vnetName'))]"
3
"registrationEnabled": false
¥
¥
{
"apiVersion": "2017-05-10",
"name": "[concat('EndpointDnsRecords-', variables('privateDnsGuid'))]",
"type": "Microsoft.Resources/deployments",

"dependsOn": [
"privatelink.api.azureml.ms"

1
"properties": {
"mode": "Incremental”,
"templatelink": {
"contentVersion": "1.0.0.0",
"uri":

"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpoint.json"
¥
"parameters": {
"privateDnsName": {
"value": "privatelink.api.azureml.ms"
¥

"privateEndpointNicResourceId": {

oo o 00



vdiue
[reference(resourceld('Microsoft.Network/privateEndpoints',concat(parameters('workspaceName"'), '-
PrivateEndpoint'))).networkInterfaces[0].id]"
s
"nicRecordsTemplateUri": {
"value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointNic.json"

¥
"ipConfigRecordsTemplateUri™: {

"value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointIpConfig.json"

3
"uniqueId": {
"value": "[variables('privateDnsGuid')]"
¥
"existingRecords": {
"value": {}
}
¥
¥
¥
]
}
3
"resourceGroup": "[resourceGroup().name]"
}
1
}

Workspace with customer-managed keys and manual approval for Private Link

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"workspaceName": {
"type": "string",
"metadata": {
"description": "Specifies the name of the Azure Machine Learning workspace."
}
})
"location": {
"type": "string",
"allowedValues": [
"eastus",
"southcentralus",
"westus2"
1,
"metadata": {
"description": "Specifies the location for all resources.”
}
9
"sku":{
"type": "string",
"defaultvalue": "basic",
"allowedValues": [
"basic",
"enterprise”
1,
"metadata": {
"description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
}
1
"hbi_workspace":{

"tvne": "strine".
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"defaultValue": "false",
"allowedValues": [

"false",
"true"
]J
"metadata": {
"description": "Specifies that the Azure Machine Learning workspace holds highly confidential data."

}
s
"encryption_status":{
"type": "string",
"defaultValue": "Disabled",
"allowedValues": [
"Enabled",
"Disabled"
])
"metadata": {
"description": "Specifies if the Azure Machine Learning workspace should be encrypted with customer
managed key."
}
3
"cmk_keyvault":{
"type": "string",
"metadata": {
"description": "Specifies the customer managed keyVault id."
}
1
"resource_cmk_uri":{
"type": "string",
"metadata": {
"description": "Specifies if the customer managed keyvault key uri."
}
})
"subnetName": {
"type": "string"
¥
"vnetName": {
"type": "string"

}
s
"variables": {
"storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]1",
"storageAccountType": "Standard_LRS",
"keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
"tenantId": "[subscription().tenantId]",
"applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]"
})
"resources": [
{
"type": "Microsoft.Storage/storageAccounts”,
"apiVersion": "2019-04-01",
"name": "[variables('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {
"name": "[variables('storageAccountType')]"
s

"kind": "Storagev2",
"properties": {
"encryption": {
"services": {
"blob": {
"enabled": true
¥
"file": {
"enabled": true
}
¥

"keySource": "Microsoft.Storage"



I
"supportsHttpsTrafficOnly": true

"type": "Microsoft.KeyVault/vaults",
"apiVersion": "2018-02-14",
"name": "[variables('keyVaultName')]",
"location": "[parameters('location')]",
"properties": {

"tenantId": "[variables('tenantId')]",

"sku": {
"name": "standard",
"family": "A"
9
"accessPolicies": []
}
})
{
"type": "Microsoft.Insights/components”,
"apiVersion": "2018-05-01-preview",
"name": "[variables('applicationInsightsName')]",
"location": "

[if(or(equals(parameters('location'), 'eastus2'),equals(parameters('location'), 'westcentralus')), 'southcentralu
s',parameters('location'))]",
"kind": "web",
"properties": {
"Application_Type": "web"

"type": "Microsoft.MachineLearningServices/workspaces”,
"apiVersion": "2020-01-01",
"name": "[parameters('workspaceName')]",
"location": "[parameters('location')]",
"dependsOn": [
"[resourceld('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
"[resourceld('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
"[resourceld('Microsoft.Insights/components', variables('applicationInsightsName'))]"
1,
"identity": {
"type": "systemAssigned"
})
"sku": {
"tier": "[parameters('sku')]",
"name": "[parameters('sku')]"
})
"properties": {
"friendlyName": "[parameters('workspaceName')]",
"keyVault": "[resourceId('Microsoft.KeyVault/vaults',6variables('keyVaultName'))]",
"applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
"storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/"',variables('storageAccountName'))]",
"encryption": {
"status": "[parameters('encryption_status')]",
"keyVaultProperties": {
"keyVaultArmId": "[parameters('cmk_keyvault')]",
"keyIdentifier": "[parameters('resource_cmk_uri')]"

¥

"hbi_workspace": "[parameters('hbi_workspace')]"

"type": "Microsoft.Network/virtualNetworks",
"apiVersion": "2019-09-01",

"name": "[parameters('vnetName')]",
"location": "[parameters('location')]",



“properties”: {
"addressSpace": {
"addressPrefixes": [
"10.0.0.0/27"

¥

"virtualNetworkPeerings": [],
"enableDdosProtection": false,
"enableVmProtection": false

}
})
{
"type": "Microsoft.Network/virtualNetworks/subnets",
"apiVersion": "2019-09-01",
"name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
"dependsOn": [
"[resourceId('Microsoft.Network/virtualNetworks"', parameters('vnetName'))]"
1,
"properties": {
"addressPrefix": "10.0.0.0/27",
"delegations™": [],
"privateEndpointNetworkPolicies": "Disabled",
"privatelLinkServiceNetworkPolicies": "Enabled"
}
¥
{
"apiVersion": "2019-04-01",
"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"type": "Microsoft.Network/privateEndpoints",
"location": "[parameters('location')]",

"dependsOn": [
"[resourceId('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",

"[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName') )]"
1,
"properties": {
"privatelLinkServiceConnections": [],
"manualPrivatelLinkServiceConnections": [
{
"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"properties": {
"privateLinkServiceId": "[resourceId('Microsoft.MachinelLearningServices/workspaces',
parameters('workspaceName'))]",
"groupIds": [
"amlworkspace"

}
1,
"subnet": {
"id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),

parameters('subnetName') )]"

Workspace with Microsoft-managed keys and auto-approval for Private Link

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"workspaceName": {
"type": "string",
"metadata": {

"Aacrrnintinn".
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}
})
"location": {
"type": "string",
"allowedValues": [
"eastus",
"southcentralus",
"westus2"
1
"metadata": {
"description": "Specifies the location for all resources.”
}
s
"sku": {
"type": "string",
"defaultValue": "basic",
"allowedValues": [
"basic",
"enterprise"
])
"metadata": {
"description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace.”
}
3
"subnetName": {
"type": "string"
s
"vnetName": {
"type": "string"
}
s
"variables": {
"storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]1",
"storageAccountType": "Standard_LRS",
"keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
"tenantId": "[subscription().tenantId]",
"applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]",
"privateDnsGuid": "[guid(resourceGroup().id, deployment().name)]"

})
"resources": [
{
"type": "Microsoft.Storage/storageAccounts”,
"apiVersion": "2019-04-01",
"name": "[variables('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {
"name": "[variables('storageAccountType')]"
s
"kind": "Storagev2",
"properties": {
"encryption": {
"services": {
"blob": {
"enabled": true
s
"file": {
"enabled": true
}
s
"keySource": "Microsoft.Storage"
s
"supportsHttpsTrafficOnly": true
}
s
{
"type": "Microsoft.KeyVault/vaults",
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"name": "[variables('keyVaultName')]",
"location": "[parameters('location')]",
"properties": {

"tenantId": "[variables('tenantId')]",

"sku": {
"name": "standard",
"family": "A"
s
"accessPolicies": []
}
})
{
"type": "Microsoft.Insights/components”,
"apiVersion": "2018-05-01-preview",
"name": "[variables('applicationInsightsName')]",
"location": "

[if(or(equals(parameters('location'), 'eastus2'),equals(parameters('location'), 'westcentralus')), 'southcentralu
s',parameters('location'))]",
"kind": "web",
"properties": {
"Application_Type": "web"

"type": "Microsoft.MachineLearningServices/workspaces",
"apiVersion": "2019-11-01",
"name": "[parameters('workspaceName')]",
"location": "[parameters('location')]",
"dependsOn": [
"[resourceld('Microsoft.Storage/storageAccounts’, variables('storageAccountName'))]",
"[resourceld('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
"[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
1,
"identity": {
"type": "systemAssigned"
})
"sku": {
"tier": "[parameters('sku')]",
"name": "[parameters('sku')]"
})
"properties": {
"friendlyName": "[parameters('workspaceName')]",
"keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
"applicationInsights": "
[resourceld('Microsoft.Insights/components',variables('applicationInsightsName'))]",
"storageAccount": "[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"

"type": "Microsoft.Network/virtualNetworks",
"apiVersion": "2019-09-01",
"name": "[parameters('vnetName')]",
"location": "[parameters('location')]",
"properties": {
"addressSpace": {
"addressPrefixes": [
"10.0.0.0/27"
]
3
"virtualNetworkPeerings": [],
"enableDdosProtection": false,
"enableVmProtection": false
}
¥
{

"type": "Microsoft.Network/virtualNetworks/subnets",
"apiVersion": "2019-09-01",
"name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",



"dependsOn": [
"[resourceld( 'Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
])
"properties": {
"addressPrefix": "10.0.0.0/27",
"delegations": [],
"privateEndpointNetworkPolicies": "Disabled",
"privateLinkServiceNetworkPolicies": "Enabled"

"apiVersion": "2019-04-01",

"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",

"type": "Microsoft.Network/privateEndpoints”,

"location": "[parameters('location')]",

"dependsOn": [
"[resourceld('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
"[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),

parameters('subnetName') )]"

1,

"properties": {
"privateLinkServiceConnections": [

{
"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"properties": {
"privateLinkServiceId": "[resourceId('Microsoft.MachineLearningServices/workspaces',
parameters('workspaceName'))]",
"groupIds": [
"amlworkspace"
]
}
}
1,
"subnet": {
"id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName') )]"
}
}
3
{
"type": "Microsoft.Resources/deployments"”,
"apiVersion": "2017-05-10",
"name": "[concat('PrivateDns-', variables('privateDnsGuid'))]",

"dependsOn": [
"[resourceIld('Microsoft.Network/privateEndpoints', concat(parameters('workspaceName'), '-
PrivateEndpoint'))]"

1,
"properties": {
"mode": "Incremental”,
"template": {
"$schema”: "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"resources": [
{
"type": "Microsoft.Network/privateDnsZones",
"apiVersion": "2018-09-01",
"name": "privatelink.api.azureml.ms",
"location": "global",
"tags": {},
"properties": {}
¥
{
"type": "Microsoft.Network/privateDnsZones/virtualNetworkLinks",
"apiVersion": "2018-09-01",
"name": "[concat('privatelink.api.azureml.ms', '/",

uniqueString(resourceld('Microsoft.Network/virtualNetworks', parameters('vnetName'))))]1",
"location": "global",
"dependsOn": [
"privatelink.api.azureml.ms"



1,
"properties": {
"virtualNetwork": {

"id": "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"

¥
"registrationEnabled": false
¥
1
{
"apiVersion": "2017-05-10",
"name": "[concat('EndpointDnsRecords-', variables('privateDnsGuid'))]",
"type": "Microsoft.Resources/deployments"”,
"dependsOn": [
"privatelink.api.azureml.ms"
1,
"properties": {
"mode": "Incremental”,
"templatelink": {

"contentVersion": "1.0.0.0",

"uri”:
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpoint.json"

¥
"parameters": {
"privateDnsName": {

"value": "privatelink.api.azureml.ms"
1
"privateEndpointNicResourceId": {
"value": "

[reference(resourceld('Microsoft.Network/privateEndpoints',concat(parameters('workspaceName"'), '-
PrivateEndpoint'))).networkInterfaces[0].id]"
¥
"nicRecordsTemplateUri": {
"value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointNic.json"

¥
"ipConfigRecordsTemplateUri™: {

"value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat

eEndpointIpConfig.json"

¥
"uniqueId": {
"value": "[variables('privateDnsGuid')]"
¥
"existingRecords": {
"value": {}
}
¥
¥
}
1
}
9
"resourceGroup”: "[resourceGroup().name]"

Workspace with Microsoft-managed keys and manual approval for Private Link

"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"workspaceName": {
"type": "string",



"metadata”: {
"description": "Specifies the name of the Azure Machine Learning workspace."
}
})
"location": {
"type": "string",
"allowedValues": [
"eastus",
"southcentralus",
"westus2"
1
"metadata": {
"description": "Specifies the location for all resources.”
}
s
"sku": {
"type": "string",
"defaultValue": "basic",
"allowedValues": [
"basic",
"enterprise"
])
"metadata": {
"description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace.”
}
3
"subnetName": {
"type": "string"
s
"vnetName": {
"type": "string"
}
s
"variables": {
"storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]1",
"storageAccountType": "Standard_LRS",
"keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
"tenantId": "[subscription().tenantId]",
"applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]"
})
"resources": [
{
"type": "Microsoft.Storage/storageAccounts”,
"apiVersion": "2019-04-01",
"name": "[variables('storageAccountName')]",
"location": "[parameters('location')]",
"sku": {
"name": "[variables('storageAccountType')]"
s
"kind": "Storagev2",
"properties": {
"encryption": {
"services": {
"blob": {
"enabled": true
s
"file": {
"enabled": true
}
s
"keySource": "Microsoft.Storage"
s
"supportsHttpsTrafficOnly": true
}
3
{

"type": "Microsoft.KeyVault/vaults",
"apiVersion": "2018-02-14",



"name": "[variables('keyVaultName')]",
"location": "[parameters('location')]",
"properties": {

"tenantId": "[variables('tenantId')]",

"sku": {
"name": "standard",
"family": "A"
9
"accessPolicies": []
}
})
{
"type": "Microsoft.Insights/components”,
"apiVersion": "2018-05-01-preview",
"name": "[variables('applicationInsightsName')]",
"location": "

[if(or(equals(parameters('location'), 'eastus2'),equals(parameters('location'), 'westcentralus')), 'southcentralu
s',parameters('location'))]",
"kind": "web",
"properties": {
"Application_Type": "web"

"type": "Microsoft.MachineLearningServices/workspaces",
"apiVersion": "2019-11-01",
"name": "[parameters('workspaceName')]",
"location": "[parameters('location')]",
"dependsOn": [
"[resourceld('Microsoft.Storage/storageAccounts’, variables('storageAccountName'))]",
"[resourceld('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
"[resourceld('Microsoft.Insights/components', variables('applicationInsightsName'))]"
1,
"identity": {
"type": "systemAssigned"
})
"sku": {
"tier": "[parameters('sku')]",
"name": "[parameters('sku')]"
})
"properties": {
"friendlyName": "[parameters('workspaceName')]",
"keyVault": "[resourceId('Microsoft.KeyVault/vaults',6variables('keyVaultName'))]",
"applicationInsights": "
[resourceld('Microsoft.Insights/components',variables('applicationInsightsName'))]",
"storageAccount": "[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"

"type": "Microsoft.Network/virtualNetworks",
"apiVersion": "2019-09-01",
"name": "[parameters('vnetName')]",
"location": "[parameters('location')]",
"properties": {
"addressSpace": {
"addressPrefixes": [
"10.0.0.0/27"
]
s
"virtualNetworkPeerings": [],
"enableDdosProtection": false,
"enableVmProtection": false

"type": "Microsoft.Network/virtualNetworks/subnets",

"apiVersion": "2019-09-01",

"name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
"dependsOn": [



"[resourceld( 'Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
])
"properties": {
"addressPrefix": "10.0.0.0/27",
"delegations™: [],
"privateEndpointNetworkPolicies": "Disabled",
"privateLinkServiceNetworkPolicies": "Enabled"

}
}J

"apiVersion": "2019-04-01",

"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"type": "Microsoft.Network/privateEndpoints"”,

"location": "[parameters('location')]",

"dependsOn": [
"[resourceld('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",

"[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName') )]"
1,
"properties": {
"privateLinkServiceConnections": [],
"manualPrivatelLinkServiceConnections": [

{

"name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
"properties": {
"privateLinkServiceId": "[resourceId('Microsoft.MachinelLearningServices/workspaces',
parameters('workspaceName'))]",
"groupIds": [
"amlworkspace"

}
1

"subnet": {
"id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),

parameters('subnetName') )]"

Next steps

For more information on securing your Azure Machine Learning workspace, see the Enterprise security article.



Use TLS to secure a web service through Azure

Machine Learning
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APPLIES TO: @ Basic edition @ Enterprise edition (Upgrade to Enterprise edition)
This article shows you how to secure a web service that's deployed through Azure Machine Learning.

You use HTTPS to restrict access to web services and secure the data that clients submit. HTTPS helps secure
communications between a client and a web service by encrypting communications between the two. Encryption
uses Transport Layer Security (TLS). TLS is sometimes still referred to as Secure Sockets Layer (SSL), which was
the predecessor of TLS.

TIP

The Azure Machine Learning SDK uses the term "SSL" for properties that are related to secure communications. This doesn't
mean that your web service doesn't use 7LS. SSL is just a more commonly recognized term.

Specifically, web services deployed through Azure Machine Learning only support TLS version 1.2.

TLS and SSL both rely on digital certificates, which help with encryption and identity verification. For more
information on how digital certificates work, see the Wikipedia topic Public key infrastructure.

WARNING
If you don't use HTTPS for your web service, data that's sent to and from the service might be visible to others on the

internet.

HTTPS also enables the client to verify the authenticity of the server that it's connecting to. This feature protects clients
against man-in-the-middle attacks.

This is the general process to secure a web service:

1. Get a domain name.

2. Get a digital certificate.

3. Deploy or update the web service with TLS enabled.

4. Update your DNS to point to the web service.

IMPORTANT

If you're deploying to Azure Kubernetes Service (AKS), you can purchase your own certificate or use a certificate that's
provided by Microsoft. If you use a certificate from Microsoft, you don't need to get a domain name or TLS/SSL certificate.
For more information, see the Enable TLS and deploy section of this article.

There are slight differences when you secure s across deployment targets.

Get a domain name


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-secure-web-service.md
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

If you don't already own a domain name, purchase one from a domain name registrar. The process and price
differ among registrars. The registrar provides tools to manage the domain name. You use these tools to map a
fully qualified domain name (FQDN) (such as www.contoso.com) to the IP address that hosts your web service.

Get a TLS/SSL certificate

There are many ways to get an TLS/SSL certificate (digital certificate). The most common is to purchase one from
a certificate authority (CA). Regardless of where you get the certificate, you need the following files:

o Acertificate. The certificate must contain the full certificate chain, and it must be "PEM-encoded."

e Akey. The key must also be PEM-encoded.

When you request a certificate, you must provide the FQDN of the address that you plan to use for the web
service (for example, www.contoso.com). The address that's stamped into the certificate and the address that the
clients use are compared to verify the identity of the web service. If those addresses don't match, the client gets an
error message.

TIP

If the certificate authority can't provide the certificate and key as PEM-encoded files, you can use a utility such as OpenSSL

to change the format.

WARNING

Use self-signed certificates only for development. Don't use them in production environments. Self-signed certificates can
cause problems in your client applications. For more information, see the documentation for the network libraries that your
client application uses.

Enable TLS and deploy

To deploy (or redeploy) the service with TLS enabled, set the ss/_enabled parameter to "True" wherever it's
applicable. Set the ss/_certificate parameter to the value of the certificatefile. Set the ss/_key to the value of the
keyfile.

Deploy on AKS and field-programmable gate array (FPGA)

NOTE

The information in this section also applies when you deploy a secure web service for the designer. If you aren't familiar with
using the Python SDK, see What is the Azure Machine Learning SDK for Python?.

When you deploy to AKS, you can create a new AKS cluster or attach an existing one. For more information on
creating or attaching a cluster, see Deploy a model to an Azure Kubernetes Service cluster.

e [f you create a new cluster, you use AksCompute.provisioning_configuration().

e [f you attach an existing cluster, you use AksCompute.attach_configuration(). Both return a configuration
object that has an enable_ssl method.

The enable_ssl method can use a certificate that's provided by Microsoft or a certificate that you purchase.

e When you use a certificate from Microsoft, you must use the /eaf domain_label parameter. This parameter
generates the DNS name for the service. For example, a value of "contoso" creates a domain name of
"contoso<six-random-characters>.<azureregion>.cloudapp.azure.com", where <azureregion> is the
region that contains the service. Optionally, you can use the overwrite_existing_domain parameter to


https://www.openssl.org/
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#provisioning-configuration-agent-count-none--vm-size-none--ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--location-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--service-cidr-none--dns-service-ip-none--docker-bridge-cidr-none--cluster-purpose-none--load-balancer-type-none--load-balancer-subnet-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#attach-configuration-resource-group-none--cluster-name-none--resource-id-none--cluster-purpose-none-

overwrite the existing /eaf_domain_label.

To deploy (or redeploy) the service with TLS enabled, set the ss/_enabled parameter to "True" wherever it's
applicable. Set the ss/_certificate parameter to the value of the certificatefile. Set the ss/_key to the value of
the key file.

IMPORTANT

When you use a certificate from Microsoft, you don't need to purchase your own certificate or domain name.

The following example demonstrates how to create a configuration that enables an TLS/SSL certificate
from Microsoft:

from azureml.core.compute import AksCompute

# Config used to create a new AKS cluster and enable TLS
provisioning config = AksCompute.provisioning_configuration()

# Leaf domain label generates a name using the formula

# "<leaf-domain-label>#it#i##.<azure-region>.cloudapp.azure.net”
# where "######" is a random series of characters

provisioning config.enable_ssl(leaf_domain_label = "contoso")

# Config used to attach an existing AKS cluster to your workspace and enable TLS

attach_config = AksCompute.attach_configuration(resource_group = resource_group,
cluster_name = cluster_name)

# Leaf domain label generates a name using the formula

# "<leaf-domain-label>#i#it#i##.<azure-region>.cloudapp.azure.net”

# where "######" is a random series of characters

attach_config.enable_ssl(leaf_domain_label = "contoso")

o When you use a certificate that you purchased, you use the ss/_cert pem_file, ssl_key_pem_file and
ss|_cname parameters. The following example demonstrates how to use .pem files to create a configuration
that uses a TLS/SSL certificate that you purchased:

from azureml.core.compute import AksCompute
# Config used to create a new AKS cluster and enable TLS
provisioning_config = AksCompute.provisioning_configuration()
provisioning_config.enable_ssl(ssl_cert_pem file="cert.pem",
ssl_key_pem_file="key.pem", ssl_cname="www.contoso.com")
# Config used to attach an existing AKS cluster to your workspace and enable SSL
attach_config = AksCompute.attach_configuration(resource_group = resource_group,
cluster_name = cluster_name)
attach_config.enable_ssl(ssl_cert_pem_file="cert.pem",
ssl_key pem_file="key.pem", ssl_cname="www.contoso.com")

For more information about enable_ss/, see AksProvisioningConfiguration.enable_ssl() and
AksAttachConfiguration.enable_ssl().

Deploy on Azure Container Instances

When you deploy to Azure Container Instances, you provide values for TLS-related parameters, as the following
code snippet shows:

from azureml.core.webservice import AciWebservice

aci_config = AciWebservice.deploy_configuration(
ssl_enabled=True, ssl_cert_pem_file="cert.pem", ssl_key pem_file="key.pem", ssl_cname="www.contoso.com")

For more information, see AciWebservice.deploy_configuration().
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Update your DNS

Next, you must update your DNS to point to the web service.

For Container Instances:

Use the tools from your domain name registrar to update the DNS record for your domain name. The

record must point to the IP address of the service.

There can be a delay of minutes or hours before clients can resolve the domain name, depending on the

registrar and the "time to live" (TTL) that's configured for the domain name.

For AKS:

WARNING

If you used leaf domain_label to create the service by using a certificate from Microsoft, don't manually update the

DNS value for the cluster. The value should be set automatically.

Update the DNS of the Public IP Address of the AKS cluster on the Configuration tab under Settings in
the left pane. (See the following image.) The Public IP Address is a resource type that's created under the
resource group that contains the AKS agent nodes and other networking resources.
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Update the TLS/SSL certificate

TLS/SSL certificates expire and must be renewed. Typically this happens every year. Use the information in the

following sections to update and renew your certificate for models deployed to Azure Kubernetes Service:

Update a Microsoft generated certificate

If the certificate was originally generated by Microsoft (when using the /eaf domain_labelto create the service),

use one of the following examples to update the certificate:

Use the SDK

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

# Get the existing cluster
aks_target = AksCompute(ws, clustername)

# Update the existing certificate by referencing the leaf domain label

ssl_configuration = SslConfiguration(leaf_domain_label="myaks", overwrite_existing_domain=True)
update_config = AksUpdateConfiguration(ssl_configuration)

aks_target.update(update_config)


file:///T:/i2pk/machine-learning/media/how-to-secure-web-service/aks-public-ip-address-expanded.png

Use the CLI

az ml computetarget update aks -g "myresourcegroup” -w "myresourceworkspace" -n "myaks" --ssl-leaf-domain-
label "myaks" --ssl-overwrite-domain True

For more information, see the following reference docs:

e SslConfiguration

o AksUpdateConfiguration

Update custom certificate
If the certificate was originally generated by a certificate authority, use the following steps:

1. Use the documentation provided by the certificate authority to renew the certificate. This process creates
new certificate files.

2. Use either the SDK or CLI to update the service with the new certificate:

Use the SDK

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

# Read the certificate file
def get_content(file_name):
with open(file_name, 'r') as f:
return f.read()

# Get the existing cluster
aks_target = AksCompute(ws, clustername)

# Update cluster with custom certificate
ssl_configuration = SslConfiguration(cname="myaks", cert=get_content('cert.pem'),
key=get_content('key.pem'))

update_config = AksUpdateConfiguration(ssl_configuration)
aks_target.update(update_config)

Use the CLI

az ml computetarget update aks -g "myresourcegroup” -w "myresourceworkspace" -n "myaks" --ssl-cname
"myaks"--ssl-cert-file "cert.pem" --ssl-key-file "key.pem"
For more information, see the following reference docs:

e SslConfiguration

e AksUpdateConfiguration

Disable TLS

To disable TLS for a model deployed to Azure Kubernetes Service, create an sslconfiguration with
status="Disabled" , then perform an update:


https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.sslconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksupdateconfiguration?view=azure-ml-py
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https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksupdateconfiguration?view=azure-ml-py

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

# Get the existing cluster
aks_target = AksCompute(ws, clustername)

# Disable TLS

ssl_configuration = SslConfiguration(status="Disabled")
update_config = AksUpdateConfiguration(ssl_configuration)
aks_target.update(update_config)

Next steps

Learn how to:

e Consume a machine learning model deployed as a web service

e Securely run experiments and inference inside an Azure virtual network
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In this how-to, you learn how to assign an Azure Active Directory (AAD) identity to your deployed machine learning
model in Azure Kubernetes Service. The AAD Pod Identity project allows applications to access cloud resources
securely with AAD by using a Managed Identity and Kubernetes primitives. This allows your web service to securely
access your Azure resources without having to embed credentials or manage tokens directly inside your score.py

script. This article explains the steps to create and install an Azure Identity in your Azure Kubernetes Service cluster
and assign the identity to your deployed web service.

Prerequisites

o The Azure CLI extension for the Machine Learning service, the Azure Machine Learning SDK for Python, or
the Azure Machine Learning Visual Studio Code extension.

e Access to your AKS cluster using the kubectl command. For more information, see Connect to the cluster

e An Azure Machine Learning web service deployed to your AKS cluster.

Create and install an Azure Identity in your AKS cluster

1. To determine if your AKS cluster is RBAC enabled, use the following command:

az aks show --name <AKS cluster name> --resource-group <resource group name> --subscription
<subscription id> --query enableRbac

This command returns a value of true if RBAC is enabled. This value determines the command to use in the
next step.

2. Toinstall AAD Pod Identity in your AKS cluster, use one of the following commands:

e [f your AKS cluster has RBAC enabled use the following command:

kubectl apply -f https://raw.githubusercontent.com/Azure/aad-pod-
identity/master/deploy/infra/deployment-rbac.yaml

e If your AKS cluster does not have RBAC enabled, use the following command:

kubectl apply -f https://raw.githubusercontent.com/Azure/aad-pod-
identity/master/deploy/infra/deployment.yaml

The output of the command is similar to the following text:


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-azure-ad-identity.md
https://github.com/Azure/aad-pod-identity
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://github.com/Azure/aad-pod-identity#getting-started

customresourcedefinition
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customresourcedefinition.
customresourcedefinition.
customresourcedefinition.
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.apiextensions.

apiextensions.
apiextensions.
apiextensions.

daemonset.apps/nmi created
deployment.apps/mic created

k8s.

k8s.
k8s.
k8s.

io/azureassignedidentities.aadpodidentity.k8s.io

io/azureidentitybindings.aadpodidentity.k8s.io created
io/azureidentities.aadpodidentity.k8s.io created
io/azurepodidentityexceptions.aadpodidentity.k8s.io

3. Create an Azure Identity following the steps shown in AAD Pod Identity project page.

4. Install the Azure Identity following the steps shown in AAD Pod Identity project page.

5. Install the Azure Identity Binding following the steps shown in AAD Pod Identity project page.

6. If the Azure Identity created in the previous step is not in the same resource group as your AKS cluster,

follow Set Permissions for MIC following the steps shown in AAD Pod Identity project page.

Assign Azure Identity to machine learning web service

The following steps use the Azure Identity created in the previous section, and assign it to your AKS web service

through a selector label.

First, identify the name and namespace of your deployment in your AKS cluster that you want to assign the Azure
Identity. You can get this information by running the following command. The namespaces should be your Azure
Machine Learning workspace name and your deployment name should be your endpoint name as shown in the

portal.

kubectl get deployment --selector=isazuremlapp=true --all-namespaces --show-labels

Add the Azure Identity selector label to your deployment by editing the deployment spec. The selector value should

be the one that you defined in step 5 of Install the Azure Identity Binding.

apiVersion: "aadpodidentity.k8s.io/v1"

kind: AzureIdentityBinding
metadata:

name: demol-azure-identity-binding

spec:
Azureldentity: <a-idname>

Selector: <label value to match>

Edit the deployment to add the Azure Identity selector label. Go to the following section under

/spec/template/metadata/labels . You should see values such as isazuremlapp: “true” . Add the aad—pod—identity

label like shown below.

kubectl edit deployment/<name of deployment> -n azureml-<name of workspace>

spec:
template:
metadata:
labels:

- aadpodidbinding: "<value of Selector in AzureIdentityBinding>"

To verify that the label was correctly added, run the following command.
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kubectl get deployment <name of deployment> -n azureml-<name of workspace> --show-labels

To see all pod statuses, run the following command.
kubectl get pods -n azureml-<name of workspace>

Once the pods are up and running, the web services for this deployment will now be able to access Azure resources
through your Azure Identity without having to embed the credentials in your code.

Assign the appropriate roles to your Azure |dentity

Assign your Azure Managed Identity with appropriate roles to access other Azure resources. Ensure that the roles
you are assigning have the correct Data Actions. For example, the Storage Blob Data Reader Role will have read
permissions to your Storage Blob while the generic Reader Role might not.

Use Azure Identity with your machine learning web service

Deploy a model to your AKS cluster. The score.py script can contain operations pointing to the Azure resources
that your Azure Identity has access to. Ensure that you have installed your required client library dependencies for
the resource that you are trying to access to. Below are a couple examples of how you can use your Azure Identity
to access different Azure resources from your service.

Access Key Vault from your web service

If you have given your Azure Identity read access to a secret inside a Key Vault, your score.py can access it using

the following code.

from azure.identity import DefaultAzureCredential
from azure.keyvault.secrets import SecretClient

my_vault_name = "yourkeyvaultname"
my_vault_url = "https://{}.vault.azure.net/".format(my_vault_name)
my_secret_name = "sample-secret”

# This will use your Azure Managed Identity

credential = DefaultAzureCredential()

secret_client = SecretClient(
vault_url=my_vault_url,
credential=credential)

secret = secret_client.get_secret(my_secret_name)

Access Blob from your web service

If you have given your Azure Identity read access to data inside a Storage Blob, your score.py can access it using

the following code.


https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/how-to-manage-ua-identity-portal
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#storage-blob-data-reader
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#reader

from azure.identity import DefaultAzureCredential
from azure.storage.blob import BlobServiceClient

my_storage_account_name = "yourstorageaccountname"
my_storage_account_url = "https://{}.blob.core.windows.net/".format(my_storage_account_name)

# This will use your Azure Managed Identity
credential = DefaultAzureCredential()
blob_service_client = BlobServiceClient(
account_url=my_storage_account_url,
credential=credential
)
blob_client = blob_service_client.get_blob_client(container="some-container", blob="some_text.txt")
blob_data = blob_client.download_blob()
blob_data.readall()

Next steps

e For more information on how to use the Python Azure Identity client library, see the repository on GitHub.

e For a detailed guide on deploying models to Azure Kubernetes Service clusters, see the how-to.


https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity#azure-identity-client-library-for-python

Regenerate storage account access keys
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APPLIES TO: @ Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to change the access keys for Azure Storage accounts used by Azure Machine Learning. Azure Machine
Learning can use storage accounts to store data or trained models.

For security purposes, you may need to change the access keys for an Azure Storage account. When you
regenerate the access key, Azure Machine Learning must be updated to use the new key. Azure Machine Learning
may be using the storage account for both model storage and as a datastore.

Prerequisites
e An Azure Machine Learning workspace. For more information, see the Create a workspace article.
e The Azure Machine Learning SDK.

e The Azure Machine Learning CLI extension.

NOTE

The code snippets in this document were tested with version 1.0.83 of the Python SDK.

What needs to be updated

Storage accounts can be used by the Azure Machine Learning workspace (storing logs, models, snapshots, etc.) and
as a datastore. The process to update the workspace is a single Azure CLI command, and can be ran after updating

the storage key. The process of updating datastores is more involved, and requires discovering what datastores are
currently using the storage account and then re-registering them.

IMPORTANT

Update the workspace using the Azure CLI, and the datastores using Python, at the same time. Updating only one or the
other is not sufficient, and may cause errors until both are updated.

To discover the storage accounts that are used by your datastores, use the following code:


https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-change-storage-access-key.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

import azureml.core
from azureml.core import Workspace, Datastore

ws = Workspace.from_config()
default_ds = ws.get_default_datastore()

print("Default datstore: " + default_ds.name +
default_ds.account_name +

, storage account name: +

, container name: " + default_ds.container_name)

datastores = ws.datastores
for name, ds in datastores.items():

if ds.datastore_type == "AzureBlob":
print("Blob store - datastore name: " + name + ", storage account name: " +
ds.account_name + ", container name: " + ds.container_name)
if ds.datastore_type == "AzureFile":
print("File share - datastore name: " + name + ", storage account name: " +
ds.account_name + ", container name: " + ds.container_name)

This code looks for any registered datastores that use Azure Storage and lists the following information:

e Datastore name: The name of t