
Contents

 Azure Machine Learning Documentation
 Overview

 What is Azure Machine Learning?
 Azure Machine Learning vs Studio
 Architecture & terms

 Tutorials
 Studio

 Designer (drag-n-drop)
 1. Train a regression model
 2. Deploy that model

 Automated ML (UI)
 Create automated ML experiments
 Forecast demand (Bike share data)

 Label image data
 Python SDK

 Create first ML experiment
 1. Set up workspace & dev environment
 2. Train your first model

 Image classification (MNIST data)
 1. Train a model
 2. Deploy a model

 Regression with Automated ML (NYC Taxi data)
 Auto-train an ML model

 Machine Learning pipelines (advanced)
 Batch score a classification model

 Go from experiment to production
 R SDK

 Create first ML experiment (R)
 Machine Learning CLI

file:///T:/i2pk/machine-learning/index.yml

 Visual Studio Code
 Set up Azure Machine Learning extension
 Train and deploy a TensorFlow image classification model

 Samples
 Jupyter Notebooks
 Designer datasets
 Designer sample pipelines
 End-to-end MLOps examples
 Open Datasets (public)

 Concepts
 Workspace
 Environments
 Data ingestion
 Data access
 Model training
 Distributed training
 Model management (MLOps)
 Interpretability
 Designer: no-code ML
 Algorithm cheat sheet
 How to select algorithms
 Automated ML
 Overfitting & imbalanced data
 Compute instance
 Compute target
 ML pipelines
 ONNX
 Enterprise readiness & security

 Enterprise security
 Enterprise security overview
 Manage users and roles
 Use virtual networks

https://github.com/microsoft/MLOps
https://docs.microsoft.com/azure/open-datasets/samples
https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet
https://docs.microsoft.com/azure/machine-learning/how-to-select-algorithms

 Use Private Link
 Secure web services with TLS
 Use Azure AD identity in AKS deployments
 Regenerate storage access keys

 Set up authentication
 Monitor Azure Machine Learning

 Event grid integration
 Deep learning

 How-to guides
 Create & manage workspaces

 Use Azure portal
 Use Azure CLI
 Use REST
 Use Resource Manager template

 Set up your environment
 Set up dev environments
 Set up software environments
 Enable logging
 Set input & output directories
 Interactive debugging
 Git integration

 Work with data
 Label data

 Get data labeled
 Label images
 Create datasets with labels

 Get data
 Data ingestion with Azure Data Factory
 DevOps for data ingestion
 Import data in the designer

 Access data
 Connect to Azure Storage

 Get data from a datastore
 Manage & consume data

 Train with datasets
 Detect drift on datasets
 Version & track datasets

 Train models
 Use estimators for ML

 Create estimators in training
 Set up training environments
 Tune hyperparameters
 Use Key Vault when training

 Scikit-learn
 TensorFlow
 Keras
 PyTorch

 Explain models
 Explain ML models
 Explain automated ML models

 Automate machine learning
 Use automated ML (Python)
 Use automated ML (interface)
 Use remote compute targets
 Define ML tasks
 Auto-train a forecast model
 Understand charts and metrics

 Track & monitor experiments
 Start, monitor or cancel runs
 Log metrics for training runs
 Track experiments with MLflow
 Visualize runs with TensorBoard

 Deploy & serve models
 Where and how to deploy

 Deployment scenarios
 Azure ML compute instances
 Azure Kubernetes Service
 Azure Container Instances
 GPU inference
 Azure App Service
 Azure Functions
 Azure IoT Edge devices
 FPGA inference
 Custom Docker images
 Non-Azure ML models

 Troubleshoot & debug
 Call service endpoint
 Monitor models

 Collect & evaluate model data
 Detect data drift
 Monitor with Application Insights

 Build & use ML pipelines
 Create ML pipelines (Python)
 Moving data into and between ML pipeline steps (Python)
 Schedule a pipeline (Python)
 Trigger a pipeline
 Debug & troubleshoot pipelines
 Debug pipelines in Application Insights
 Azure Pipelines for CI/CD
 Designer retrain using published pipelines
 Designer batch predictions
 Designer execute Python code
 Use parallel run step
 Debug & troubleshoot parallel run step

 Manage resource quotas
 Export and delete data

https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-machine-learning
https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning

 Create event driven workflows
 Reference

 Python SDK
 R SDK
 CLI
 REST API
 Designer module reference
 ML at scale
 Monitor data reference
 Machine learning pipeline YAML reference

 Resources
 Release notes
 Azure roadmap
 Pricing
 Regional availability
 Known issues
 User forum
 Stack Overflow
 Compare our ML products
 What happened to Workbench
 Designer accessibility features

https://docs.microsoft.com/python/api/overview/azure/ml/intro
https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/rest/api/azureml/
https://docs.microsoft.com/azure/architecture/data-guide/big-data/machine-learning-at-scale
https://azure.microsoft.com/roadmap/
https://azure.microsoft.com/pricing/details/machine-learning-services/
https://azure.microsoft.com/regions/services/
https://aka.ms/aml-forum-service
https://stackoverflow.com/questions/tagged/azure-machine-learning-service
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/data-science-and-machine-learning

What is Azure Machine Learning?
1/22/2020 • 6 minutes to read • Edit Online

TIP

What is machine learning?

Machine learning tools to fit each task

In this article, you learn about Azure Machine Learning, a cloud-based environment you can use to train, deploy,

automate, manage, and track ML models.

Azure Machine Learning can be used for any kind of machine learning, from classical ml to deep learning,

supervised, and unsupervised learning. Whether you prefer to write Python or R code or zero-code/low-code

options such as the designer, you can build, train, and track highly accurate machine learning and deep-learning

models in an Azure Machine Learning Workspace.

Start training on your local machine and then scale out to the cloud.

The service also interoperates with popular open-source tools, such as PyTorch, TensorFlow, and scikit-learn.

Free trial! If you don’t have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today. You get credits to spend on Azure services. After they're used up, you can keep the account

and use free Azure services. Your credit card is never charged unless you explicitly change your settings and ask to be

charged.

Machine learning is a data science technique that allows computers to use existing data to forecast future

behaviors, outcomes, and trends. By using machine learning, computers learn without being explicitly

programmed.

Forecasts or predictions from machine learning can make apps and devices smarter. For example, when you shop

online, machine learning helps recommend other products you might want based on what you've bought. Or

when your credit card is swiped, machine learning compares the transaction to a database of transactions and

helps detect fraud. And when your robot vacuum cleaner vacuums a room, machine learning helps it decide

whether the job is done.

Azure Machine Learning provides all the tools developers and data scientists need for their machine learning

workflows, including:

The Azure Machine Learning designer (preview): drag-n-drop modules to build your experiments and then

deploy pipelines.

Jupyter notebooks: use our example notebooks or create your own notebooks to leverage our SDK for

Python samples for your machine learning.

R scripts or notebooks in which you use the SDK for R to write your own code, or use the R modules in the

designer.

Visual Studio Code extension

Machine learning CLI

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/overview-what-is-azure-ml.md
https://channel9.msdn.com/Events/Connect/Microsoft-Connect--2018/D240/player?nocookie=true
https://aka.ms/AMLFree
https://azure.microsoft.com/free/
https://aka.ms/aml-notebooks
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html

Build ML models in Python or R

Build ML models with no-code tools

Open-source frameworks such as PyTorch, TensorFlow, and scikit-learn and many more

You can even use MLflow to track metrics and deploy models or Kubeflow to build end-to-end workflow pipelines.

Start training on your local machine using the Azure Machine Learning Python SDK or R SDK. Then, you can scale

out to the cloud.

With many available compute targets, like Azure Machine Learning Compute and Azure Databricks, and with

advanced hyperparameter tuning services, you can build better models faster by using the power of the cloud.

You can also automate model training and tuning using the SDK.

For code-free or low-code training and deployment, try:

Azure Machine Learning designer (preview)

Use the designer to prep data, train, test, deploy, manage, and track machine learning models without

writing any code. There is no programming required, you visually connect datasets and modules to

construct your model. Try out the designer tutorial.

Learn more in the Azure Machine Learning designer overview article.

Automated machine learning UI

Learn how to create automated ML experiments in the easy-to-use interface.

https://www.kubeflow.org/docs/azure/
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks

MLOps: Deploy & lifecycle management

Integration with other services

When you have the right model, you can easily use it in a web service, on an IoT device, or from Power BI. For

more information, see the article on how to deploy and where.

Then you can manage your deployed models by using the Azure Machine Learning SDK for Python, Azure

Machine Learning studio, or the machine learning CLI.

These models can be consumed and return predictions in real time or asynchronously on large quantities of data.

And with advanced machine learning pipelines, you can collaborate on each step from data preparation, model

training and evaluation, through deployment. Pipelines allow you to:

Automate the end-to-end machine learning process in the cloud

Reuse components and only rerun steps when needed

Use different compute resources in each step

Run batch scoring tasks

If you want to use scripts to automate your machine learning workflow, the machine learning CLI provides

command-line tools that perform common tasks, such as submitting a training run or deploying a model.

To get started using Azure Machine Learning, see Next steps.

Azure Machine Learning works with other services on the Azure platform, and also integrates with open source

tools such as Git and MLFlow.

Compute targets such as Azure Kubernetes Ser vice , Azure Container Instances , Azure Databricks ,

Azure Data Lake Analytics , and Azure HDInsight. For more information on compute targets, see What are

compute targets?.

Azure Event Grid. For more information, see Consume Azure Machine Learning events.

Azure Monitor . For more information, see Monitoring Azure Machine Learning.

Data stores such as Azure Storage accounts , Azure Data Lake Storage, Azure SQL Database, Azure

file:///T:/i2pk/machine-learning/media/overview-what-is-azure-ml/azure-machine-learning-automated-ml-ui.jpg
https://aka.ms/aml-sdk
https://ml.azure.com

Secure communications

Basic & Enterprise editions

Next steps

Database for PostgreSQL , and Azure Open Datasets . For more information, see Access data in Azure

storage services and Create datasets with Azure Open Datasets.

Azure Vir tual Networks . For more information, see Secure experimentation and inference in a virtual

network.

Azure Pipelines . For more information, see Train and deploy machine learning models.

Git repositor y logs . For more information, see Git integration.

MLFlow . For more information, see MLflow to track metrics and deploy models

Kubeflow . For more information, see build end-to-end workflow pipelines.

Your Azure Storage account, compute targets, and other resources can be used securely inside a virtual network to

train models and perform inference. For more information, see Secure experimentation and inference in a virtual

network.

Azure Machine Learning offers two editions tailored for your machine learning needs:

Basic (generally available)

Enterprise (preview)

These editions determine which machine learning tools are available to developers and data scientists from their

workspace.

Basic workspaces allow you to continue using Azure Machine Learning and pay for only the Azure resources

consumed during the machine learning process. Enterprise edition workspaces will be charged only for their Azure

consumption while the edition is in preview. Learn more about what's available in the Azure Machine Learning

edition overview & pricing page.

You assign the edition whenever you create a workspace. And, pre-existing workspaces have been converted to the

Basic edition for you. Basic edition includes all features that were already generally available as of October 2019.

Any experiments in those workspaces that were built using Enterprise edition features will continue to be available

to you in read-only until you upgrade to Enterprise. Learn how to upgrade a Basic workspace to Enterprise edition.

Customers are responsible for costs incurred on compute and other Azure resources during this time.

Create your first experiment with your preferred method:

Use Python notebooks to train & deploy ML models

Use R Markdown to train & deploy ML models

Use automated machine learning to train & deploy ML models

Use the designer's drag & drop capabilities to train & deploy

Use the machine learning CLI to train and deploy a model

Learn about machine learning pipelines to build, optimize, and manage your machine learning scenarios.

Read the in-depth Azure Machine Learning architecture and concepts article.

https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning
https://www.kubeflow.org/docs/azure/
https://azure.microsoft.com/pricing/details/machine-learning/

Azure Machine Learning vs Machine Learning Studio
(classic)
3/27/2020 • 2 minutes to read • Edit Online

Quick comparison

M A C H IN E L EA RN IN G ST UDIO (C L A SSIC) A Z URE M A C H IN E L EA RN IN G

Drag and drop interface Supported Supported - Azure Machine Learning
designer (preview)

Experiment Scalable (10-GB training data limit) Scale with compute target

Training compute targets Proprietary compute target, CPU
support only

Wide range of customizable training
compute targets. Includes GPU and
CPU support

Deployment compute targets Proprietary web service format, not
customizable

Wide range of customizable deployment
compute targets. Includes GPU and
CPU support

ML Pipeline Not supported Build flexible, modular pipelines to
automate workflows

MLOps Basic model management and
deployment

Entity versioning (model, data,
workflows), workflow automation,
integration with CICD tooling, and more

Model format Proprietary format, Studio (classic) only Multiple supported formats depending
on training job type

Automated model training and
hyperparameter tuning

Not supported Supported in the SDK and visual
workspace

Data drift detection Not supported Supported in SDK and visual workspace

Migrate from Machine Learning Studio (classic)

In this article, you learn the difference between Azure Machine Learning and Machine Learning Studio (classic).

Azure Machine Learning provides Python and R SDKs and the "drag-and-drop" designer to build and deploy

machine learning models. Studio (classic) only offers a standalone drag-and-drop experience.

We recommend that new users choose Azure Machine Learning for the widest range of cutting-edge machine

learning tools.

The following table summarizes some of the key differences between Azure Machine Learning and Studio (classic):

Currently, there's no way to migrate Studio (classic) assets to Azure Machine Learning designer (preview). Current

Studio (classic) users can continue to use their machine learning assets. However, we encourage all users to

considering using the designer, which provides a familiar drag-and-drop experience with improved workflow plus

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/compare-azure-ml-to-studio-classic.md

Get started with Azure Machine Learning

Next steps

scalability, version control, and enterprise security.

The following resources can help you get started with Azure Machine Learning.

Read the Azure Machine Learning overview.

Create your first experiment with the Python SDK.

Create your first designer pipeline to predict auto prices.

In addition to the drag-and-drop capabilities in the designer, Azure Machine Learning has other tools available:

Use Python notebooks to train & deploy ML models

Use R Markdown to train & deploy ML models

Use automated machine learning to train & deploy ML models

Use the machine learning CLI to train and deploy a model

How Azure Machine Learning works: Architecture
and concepts
4/10/2020 • 11 minutes to read • Edit Online

Workflow

Tools for Azure Machine Learning

NOTE

Learn about the architecture, concepts, and workflow for Azure Machine Learning. The major components of the

service and the general workflow for using the service are shown in the following diagram:

The machine learning model workflow generally follows this sequence:

1. Train

Develop machine learning training scripts in Python, R , or with the visual designer.

Create and configure a compute target.

Submit the scr ipts to a configured compute target to run in that environment. During training, the

scripts can read from or write to datastores . The logs and output produced during training are saved as

runs in the workspace and grouped under experiments .

2. Package - After a satisfactory run is found, register the persisted model in the model registr y .

3. Validate - Quer y the experiment for logged metrics from the current and past runs. If the metrics don't

indicate a desired outcome, loop back to step 1 and iterate on your scripts.

4. Deploy - Develop a scoring script that uses the model and Deploy the model as a web ser vice in Azure,

or to an IoT Edge device.

5. Monitor - Monitor for data dr ift between the training dataset and inference data of a deployed model.

When necessary, loop back to step 1 to retrain the model with new training data.

Use these tools for Azure Machine Learning:

Interact with the service in any Python environment with the Azure Machine Learning SDK for Python.

Interact with the service in any R environment with the Azure Machine Learning SDK for R.

Automate your machine learning activities with the Azure Machine Learning CLI.

Use Azure Machine Learning designer (preview) to perform the workflow steps without writing code.

Although this article defines terms and concepts used by Azure Machine Learning, it does not define terms and concepts for

the Azure platform. For more information about Azure platform terminology, see the Microsoft Azure glossary.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-azure-machine-learning-architecture.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli
https://docs.microsoft.com/azure/azure-glossary-cloud-terminology

Glossary

Activities

Workspaces

Experiments

Runs

Activity

Workspace

Experiments

ML pipelines

Models

Endpoints

Dataset & datastores

Compute targets

Run

Run configuration

Snapshot

Git tracking

Logging

Environments

Training script

Estimators

Web service

IoT modules

An activity represents a long running operation. The following operations are examples of activities:

Creating or deleting a compute target

Running a script on a compute target

Activities can provide notifications through the SDK or the web UI so that you can easily monitor the progress of

these operations.

The workspace is the top-level resource for Azure Machine Learning. It provides a centralized place to work with

all the artifacts you create when you use Azure Machine Learning. You can share a workspace with others. For a

detailed description of workspaces, see What is an Azure Machine Learning workspace?.

An experiment is a grouping of many runs from a specified script. It always belongs to a workspace. When you

submit a run, you provide an experiment name. Information for the run is stored under that experiment. If you

submit a run and specify an experiment name that doesn't exist, a new experiment with that newly specified name

is automatically created.

For an example of using an experiment, see Tutorial: Train your first model.

A run is a single execution of a training script. An experiment will typically contain multiple runs.

Azure Machine Learning records all runs and stores the following information in the experiment:

Metadata about the run (timestamp, duration, and so on)

Metrics that are logged by your script

Output files that are autocollected by the experiment or explicitly uploaded by you

A snapshot of the directory that contains your scripts, prior to the run

Run configurations

Snapshots

NOTE

GitHub tracking and integration

Logging

ML Pipelines

Models

You produce a run when you submit a script to train a model. A run can have zero or more child runs. For example,

the top-level run might have two child runs, each of which might have its own child run.

A run configuration is a set of instructions that defines how a script should be run in a specified compute target.

The configuration includes a wide set of behavior definitions, such as whether to use an existing Python

environment or to use a Conda environment that's built from a specification.

A run configuration can be persisted into a file inside the directory that contains your training script, or it can be

constructed as an in-memory object and used to submit a run.

For example run configurations, see Select and use a compute target to train your model.

When you submit a run, Azure Machine Learning compresses the directory that contains the script as a zip file and

sends it to the compute target. The zip file is then extracted, and the script is run there. Azure Machine Learning

also stores the zip file as a snapshot as part of the run record. Anyone with access to the workspace can browse a

run record and download the snapshot.

To prevent unnecessary files from being included in the snapshot, make an ignore file (.gitignore or .amlignore). Place this file

in the Snapshot directory and add the filenames to ignore in it. The .amlignore file uses the same syntax and patterns as the

.gitignore file. If both files exist, the .amlignore file takes precedence.

When you start a training run where the source directory is a local Git repository, information about the

repository is stored in the run history. This works with runs submitted using an estimator, ML pipeline, or script

run. It also works for runs submitted from the SDK or Machine Learning CLI.

For more information, see Git integration for Azure Machine Learning.

When you develop your solution, use the Azure Machine Learning Python SDK in your Python script to log

arbitrary metrics. After the run, query the metrics to determine whether the run has produced the model you want

to deploy.

You use machine learning pipelines to create and manage workflows that stitch together machine learning phases.

For example, a pipeline might include data preparation, model training, model deployment, and inference/scoring

phases. Each phase can encompass multiple steps, each of which can run unattended in various compute targets.

Pipeline steps are reusable, and can be run without rerunning the previous steps if the output of those steps hasn't

changed. For example, you can retrain a model without rerunning costly data preparation steps if the data hasn't

changed. Pipelines also allow data scientists to collaborate while working on separate areas of a machine learning

workflow.

For more information about machine learning pipelines with this service, see Pipelines and Azure Machine

Learning.

At its simplest, a model is a piece of code that takes an input and produces output. Creating a machine learning

model involves selecting an algorithm, providing it with data, and tuning hyperparameters. Training is an iterative

process that produces a trained model, which encapsulates what the model learned during the training process.

A model is produced by a run in Azure Machine Learning. You can also use a model that's trained outside of Azure

https://git-scm.com/docs/gitignore

TIP

Environments

Training scripts

Estimators

Machine Learning. You can register a model in an Azure Machine Learning workspace.

Azure Machine Learning is framework agnostic. When you create a model, you can use any popular machine

learning framework, such as Scikit-learn, XGBoost, PyTorch, TensorFlow, and Chainer.

For an example of training a model using Scikit-learn and an estimator, see Tutorial: Train an image classification

model with Azure Machine Learning.

The model registr y keeps track of all the models in your Azure Machine Learning workspace.

Models are identified by name and version. Each time you register a model with the same name as an existing

one, the registry assumes that it's a new version. The version is incremented, and the new model is registered

under the same name.

When you register the model, you can provide additional metadata tags and then use the tags when you search

for models.

A registered model is a logical container for one or more files that make up your model. For example, if you have a model

that is stored in multiple files, you can register them as a single model in your Azure Machine Learning workspace. After

registration, you can then download or deploy the registered model and receive all the files that were registered.

You can't delete a registered model that is being used by an active deployment.

For an example of registering a model, see Train an image classification model with Azure Machine Learning.

Azure ML Environments are used to specify the configuration (Docker / Python / Spark / etc.) used to create a

reproducible environment for data preparation, model training and model serving. They are managed and

versioned entities within your Azure Machine Learning workspace that enable reproducible, auditable, and

portable machine learning workflows across different compute targets.

You can use an environment object on your local compute to develop your training script, reuse that same

environment on Azure Machine Learning Compute for model training at scale, and even deploy your model with

that same environment.

Learn how to create and manage a reusable ML environment for training and inference.

To train a model, you specify the directory that contains the training script and associated files. You also specify an

experiment name, which is used to store information that's gathered during training. During training, the entire

directory is copied to the training environment (compute target), and the script that's specified by the run

configuration is started. A snapshot of the directory is also stored under the experiment in the workspace.

For an example, see Tutorial: Train an image classification model with Azure Machine Learning.

To facilitate model training with popular frameworks, the estimator class allows you to easily construct run

configurations. You can create and use a generic Estimator to submit training scripts that use any learning

framework you choose (such as scikit-learn).

For PyTorch, TensorFlow, and Chainer tasks, Azure Machine Learning also provides respective PyTorch, TensorFlow,

and Chainer estimators to simplify using these frameworks.

For more information, see the following articles:

Train ML models with estimators.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py

Endpoints

Web service endpoint

IoT module endpoints

Compute instance (preview)

Datasets and datastores

Compute targets

Train Pytorch deep learning models at scale with Azure Machine Learning.

Train and register TensorFlow models at scale with Azure Machine Learning.

Train and register Chainer models at scale with Azure Machine Learning.

An endpoint is an instantiation of your model into either a web service that can be hosted in the cloud or an IoT

module for integrated device deployments.

When deploying a model as a web service the endpoint can be deployed on Azure Container Instances, Azure

Kubernetes Service, or FPGAs. You create the service from your model, script, and associated files. These are

placed into a base container image which contains the execution environment for the model. The image has a

load-balanced, HTTP endpoint that receives scoring requests that are sent to the web service.

Azure helps you monitor your web service by collecting Application Insights telemetry or model telemetry, if

you've chosen to enable this feature. The telemetry data is accessible only to you, and it's stored in your

Application Insights and storage account instances.

If you've enabled automatic scaling, Azure automatically scales your deployment.

For an example of deploying a model as a web service , see Deploy an image classification model in Azure

Container Instances.

A deployed IoT module endpoint is a Docker container that includes your model and associated script or

application and any additional dependencies. You deploy these modules by using Azure IoT Edge on edge devices.

If you've enabled monitoring, Azure collects telemetry data from the model inside the Azure IoT Edge module. The

telemetry data is accessible only to you, and it's stored in your storage account instance.

Azure IoT Edge ensures that your module is running, and it monitors the device that's hosting it.

An Azure Machine Learning compute instance (formerly Notebook VM) is a fully managed cloud-based

workstation that includes multiple tools and environments installed for machine learning. Compute instances can

be used as a compute target for training and inferencing jobs. For large tasks, Azure Machine Learning compute

clusters with multi-node scaling capabilities is a better compute target choice.

Learn more about compute instances.

Azure Machine Learning Datasets (preview) make it easier to access and work with your data. Datasets

manage data in various scenarios such as model training and pipeline creation. Using the Azure Machine Learning

SDK, you can access underlying storage, explore data, and manage the life cycle of different Dataset definitions.

Datasets provide methods for working with data in popular formats, such as using from_delimited_files() or

to_pandas_dataframe() .

For more information, see Create and register Azure Machine Learning Datasets. For more examples using

Datasets, see the sample notebooks.

A datastore is a storage abstraction over an Azure storage account. The datastore can use either an Azure blob

container or an Azure file share as the back-end storage. Each workspace has a default datastore, and you can

register additional datastores. Use the Python SDK API or the Azure Machine Learning CLI to store and retrieve

files from the datastore.

A compute target lets you specify the compute resource where you run your training script or host your service

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/work-with-data/datasets

Next steps

deployment. This location may be your local machine or a cloud-based compute resource.

Learn more about the available compute targets for training and deployment.

To get started with Azure Machine Learning, see:

What is Azure Machine Learning?

Create an Azure Machine Learning workspace

Tutorial (part 1): Train a model

Tutorial: Predict automobile price with the designer
(preview)
3/30/2020 • 13 minutes to read • Edit Online

NOTE

Create a new pipeline

Create a new workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this two-part tutorial, you learn how to use the Azure Machine Learning designer to train and deploy a

machine learning model that predicts the price of any car. The designer is a drag-and-drop tool that lets you

create machine learning models without a single line of code.

In part one of the tutorial, you'll learn how to:

Create a new pipeline.

Import data.

Prepare data.

Train a machine learning model.

Evaluate a machine learning model.

In part two of the tutorial, you'll deploy your model as a real-time inferencing endpoint to predict the price of

any car based on technical specifications you send it.

A completed version of this tutorial is available as a sample pipeline.

To find it, go to the designer in your workspace. In the New pipeline section, select Sample 1 - Regression:

Automobile Price Prediction(Basic) .

Azure Machine Learning pipelines organize multiple machine learning and data processing steps into a single

resource. Pipelines let you organize, manage, and reuse complex machine learning workflows across projects

and users.

To create an Azure Machine Learning pipeline, you need an Azure Machine Learning workspace. In this section,

you learn how to create both these resources.

In order to use the designer, you first need an Azure Machine Learning workspace. The workspace is the top-

level resource for Azure Machine Learning, it provides a centralized place to work with all the artifacts you

create in Azure Machine Learning.

If you have an Azure Machine Learning workspace with an Enterprise edition, skip to the next section.

1. Sign in to the Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of the Azure portal, select + Create a resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-designer-automobile-price-train-score.md
https://portal.azure.com/

F IEL D DESC RIP T IO N

Workspace name Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription, or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Location Select the location closest to your users and the data
resources to create your workspace.

Workspace edition Select Enterprise. This tutorial requires the use of the
Enterprise edition. The Enterprise edition is in preview
and doesn't currently add any extra costs.

WARNING

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

7. After you're finished configuring the workspace, select Create.

It can take several minutes to create your workspace in the cloud.

 Create the pipeline

Set the default compute target

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

1. Sign in to ml.azure.com, and select the workspace you want to work with.

2. Select Designer .

3. Select Easy-to-use prebuilt modules .

4. At the top of the canvas, select the default pipeline name Pipeline-Created-on. Rename it to

Automobile price prediction. The name doesn't need to be unique.

A pipeline runs on a compute target, which is a compute resource that's attached to your workspace. After you

create a compute target, you can reuse it for future runs.

You can set a Default compute target for the entire pipeline, which will tell every module to use the same

compute target by default. However, you can specify compute targets on a per-module basis.

NOTE

1. Next to the pipeline name, select the Gear icon at the top of the canvas to open the Settings pane.

2. In the Settings pane to the right of the canvas, select Select compute target.

If you already have an available compute target, you can select it to run this pipeline.

The designer can run experiments only on Azure Machine Learning Compute targets. Other compute targets

won't be shown.

3. Enter a name for the compute resource.

https://ml.azure.com?tabs=jre

 Import data

Visualize the data

NOTE

4. Select Save.

It takes approximately five minutes to create a compute resource. After the resource is created, you can reuse it

and skip this wait time for future runs.

The compute resource autoscales to zero nodes when it's idle to save cost. When you use it again after a delay,

you might experience approximately five minutes of wait time while it scales back up.

There are several sample datasets included in the designer for you to experiment with. For this tutorial, use

Automobile pr ice data (Raw) .

1. To the left of the pipeline canvas is a palette of datasets and modules. Select Datasets , and then view the

Samples section to view the available sample datasets.

2. Select the dataset Automobile pr ice data (Raw) , and drag it onto the canvas.

You can visualize the data to understand the dataset that you'll use.

1. Select the Automobile pr ice data (Raw) module.

2. In the module details pane to the right of the canvas, select Outputs + log.

3. Select the graph icon to visualize the data.

Prepare data

Remove a column

4. Select the different columns in the data window to view information about each one.

Each row represents an automobile, and the variables associated with each automobile appear as

columns. There are 205 rows and 26 columns in this dataset.

Datasets typically require some preprocessing before analysis. You might have noticed some missing values

when you inspected the dataset. These missing values must be cleaned so that the model can analyze the data

correctly.

When you train a model, you have to do something about the data that's missing. In this dataset, the

normalized-losses column is missing many values, so you will exclude that column from the model altogether.

TIP

1. In the module palette to the left of the canvas, expand the Data Transformation section and find the

Select Columns in Dataset module.

2. Drag the Select Columns in Dataset module onto the canvas. Drop the module below the dataset

module.

3. Connect the Automobile pr ice data (Raw) dataset to the Select Columns in Dataset module. Drag

from the dataset's output port, which is the small circle at the bottom of the dataset on the canvas, to the

input port of Select Columns in Dataset, which is the small circle at the top of the module.

You create a flow of data through your pipeline when you connect the output port of one module to an input

port of another.

4. Select the Select Columns in Dataset module.

Clean missing data

TIP

5. In the module details pane to the right of the canvas, select Edit column.

6. Expand the Column names drop down next to Include, and select All columns .

7. Select the + to add a new rule.

8. From the drop-down menus, select Exclude and Column names .

9. Enter normalized-losses in the text box.

10. In the lower right, select Save to close the column selector.

11. Select the Select Columns in Dataset module.

12. In the module details pane to the right of the canvas, select the Comment text box and enter Exclude

normalized losses.

Comments will appear on the graph to help you organize your pipeline.

Your dataset still has missing values after you remove the normalized-losses column. You can remove the

remaining missing data by using the Clean Missing Data module.

Cleaning the missing values from input data is a prerequisite for using most of the modules in the designer.

1. In the module palette to the left of the canvas, expand the section Data Transformation, and find the

Clean Missing Data module.

2. Drag the Clean Missing Data module to the pipeline canvas. Connect it to the Select Columns in

Dataset module.

3. Select the Clean Missing Data module.

4. In the module details pane to the right of the canvas, select Edit Column.

5. In the Columns to be cleaned window that appears, expand the drop-down menu next to Include.

Select, All columns

Train a machine learning model

Split the data

6. Select Save

7. In the module details pane to the right of the canvas, select Remove entire row under Cleaning mode.

8. In the module details pane to the right of the canvas, select the Comment box, and enter Remove

missing value rows.

Your pipeline should now look something like this:

Now that you have the modules in place to process the data, you can set up the training modules.

Because you want to predict price, which is a number, you can use a regression algorithm. For this example, you

use a linear regression model.

Splitting data is a common task in machine learning. You will split your data into two separate datasets. One

dataset will train the model and the other will test how well the model performed.

IMPORTANT

1. In the module palette, expand the section Data Transformation and find the Split Data module.

2. Drag the Split Data module to the pipeline canvas.

3. Connect the left port of the Clean Missing Data module to the Split Data module.

Be sure that the left output ports of Clean Missing Data connects to Split Data. The left port contains the the

cleaned data. The right port contains the discarted data.

4. Select the Split Data module.

5. In the module details pane to the right of the canvas, set the Fraction of rows in the first output

dataset to 0.7.

This option splits 70 percent of the data to train the model and 30 percent for testing it. The 70 percent

dataset will be accessible through the left output port. The remaining data will be available through the

right output port.

6. In the module details pane to the right of the canvas, select the Comment box, and enter Split the dataset

Train the model

into training set (0.7) and test set (0.3).

Train the model by giving it a dataset that includes the price. The algorithm constructs a model that explains the

relationship between the features and the price as presented by the training data.

IMPORTANT

IMPORTANT

1. In the module palette, expand Machine Learning Algorithms .

This option displays several categories of modules that you can use to initialize learning algorithms.

2. Select Regression > L inear Regression, and drag it to the pipeline canvas.

3. Connect the output of the L inear Regression module to the left input of the Train Model module.

4. In the module palette, expand the section Module training, and drag the Train Model module to the

canvas.

5. Select the Train Model module, and drag it to the pipeline canvas.

6. Connect the training data output (left port) of the Split Data module to the right input of the Train

Model module.

Be sure that the left output ports of Split Data connects to Train Model. The left port contains the the training

set. The right port contains the test set.

7. Select the Train Model module.

8. In the module details pane to the right of the canvas, select Edit column selector.

9. In the Label column dialog box, expand the drop-down menu and select Column names .

10. In the text box, enter price to specify the value that your model is going to predict.

Make sure you enter the column name exactly. Do not capitalize price.

Your pipeline should look like this:

Add the Score Model module

Add the Evaluate Model module

After you train your model by using 70 percent of the data, you can use it to score the other 30 percent to see

how well your model functions.

1. Enter score model in the search box to find the Score Model module. Drag the module to the pipeline

canvas.

2. Connect the output of the Train Model module to the left input port of Score Model . Connect the test

data output (right port) of the Split Data module to the right input port of Score Model .

Use the Evaluate Model module to evaluate how well your model scored the test dataset.

1. Enter evaluate in the search box to find the Evaluate Model module. Drag the module to the pipeline

canvas.

2. Connect the output of the Score Model module to the left input of Evaluate Model .

The final pipeline should look something like this:

Submit the pipeline
Now that your pipeline is all setup, you can submit a pipeline run to train your machine learning model. You can

submit a valid pipeline run at any point, which can be used to review changes to your pipeline during

development.

NOTE

1. At the top of the canvas, select Submit.

2. In the Set up pipeline run dialog box, select Create new .

Experiments group similar pipeline runs together. If you run a pipeline multiple times, you can select the same

experiment for successive runs.

a. Enter a descriptive name for New experiment Name.

b. Select Submit.

You can view run status and details at the top right of the canvas.

If is the first run, it may take up to 20 minutes for your pipeline to finish running. The default compute

settings have a minimum node size of 0, which means that the designer must allocate resources after

View scored labels

Evaluate models

being idle. Repeated pipeline runs will take less time since the compute resources are already allocated.

Additionally, the designer uses cached results for each module to further improve efficiency.

After the run completes, you can view the results of the pipeline run. First, look at the predictions generated by

the regression model.

1. Select the Score Model module to view its output.

2. In the module details pane to the right of the canvas, select Outputs + logs > graph icon to view

results.

Here you can see the predicted prices and the actual prices from the testing data.

Use the Evaluate Model to see how well the trained model performed on the test dataset.

1. Select the Evaluate Model module to view its output.

2. In the module details pane to the right of the canvas, select Outputs + logs > graph icon to view

results.

The following statistics are shown for your model:

Mean Absolute Error (MAE) : The average of absolute errors. An error is the difference between the

predicted value and the actual value.

Root Mean Squared Error (RMSE) : The square root of the average of squared errors of predictions made

on the test dataset.

Relative Absolute Error : The average of absolute errors relative to the absolute difference between actual

values and the average of all actual values.

Relative Squared Error : The average of squared errors relative to the squared difference between the

actual values and the average of all actual values.

Coefficient of Determination: Also known as the R squared value, this statistical metric indicates how well

a model fits the data.

For each of the error statistics, smaller is better. A smaller value indicates that the predictions are closer to the

actual values. For the coefficient of determination, the closer its value is to one (1.0), the better the predictions.

Clean up resources

IMPORTANT

Delete everything

Delete individual assets

Skip this section if you want to continue on with part 2 of the tutorial, deploying models.

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to

articles.

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any

charges.

1. In the Azure portal, select Resource groups on the left side of the window.

2. In the list, select the resource group that you created.

3. Select Delete resource group.

Deleting the resource group also deletes all resources that you created in the designer.

In the designer where you created your experiment, delete individual assets by selecting them and then

selecting the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This

action is taken to minimize charges. If you want to delete the compute target, take these steps:

Next steps

You can unregister datasets from your workspace by selecting each dataset and selecting Unregister .

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually

delete those assets.

In part two, you'll learn how to deploy your model as a real-time endpoint.

Continue to deploying models

Tutorial: Deploy a machine learning model with the
designer (preview)
3/30/2020 • 4 minutes to read • Edit Online

Prerequisites

Create a real-time inference pipeline

Create a real-time inference pipeline

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

You can deploy the predictive model developed in part one of the tutorial to give others a chance to use it. In part

one, you trained your model. Now, it's time to generate new predictions based on user input. In this part of the

tutorial, you will:

Create a real-time inference pipeline.

Create an inferencing cluster.

Deploy the real-time endpoint.

Test the real-time endpoint.

Complete part one of the tutorial to learn how to train and score a machine learning model in the designer.

To deploy your pipeline, you must first convert the training pipeline into a real-time inference pipeline. This

process removes training modules and adds web service inputs and outputs to handle requests.

1. Above the pipeline canvas, select Create inference pipeline > Real-time inference pipeline.

Your pipeline should now look like this:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-designer-automobile-price-deploy.md

Create an inferencing cluster

NOTE

When you select Create inference pipeline, several things happen:

The trained model is stored as a Dataset module in the module palette. You can find it under My

Datasets .

Training modules like Train Model and Split Data are removed.

The saved trained model is added back into the pipeline.

Web Ser vice Input and Web Ser vice Output modules are added. These modules show where user

data enters the pipeline and where data is returned.

By default, the Web Ser vice Input will expect the same data schema as the training data used to create the

predictive pipeline. In this scenario, price is included in the schema. However, price isn't used as a factor during

prediction.

2. Select Submit, and use the same compute target and experiment that you used in part one.

If is the first run, it may take up to 20 minutes for your pipeline to finish running. The default compute

settings have a minimum node size of 0, which means that the designer must allocate resources after being

idle. Repeated pipeline runs will take less time since the compute resources are already allocated.

Additionally, the designer uses cached results for each module to further improve efficiency.

3. Select Deploy .

In the dialog box that appears, you can select from any existing Azure Kubernetes Service (AKS) clusters to deploy

your model to. If you don't have an AKS cluster, use the following steps to create one.

1. Select Compute in the dialog box that appears to go to the Compute page.

2. On the navigation ribbon, select Inference Clusters > + New .

Deploy the real-time endpoint

NOTE

3. In the inference cluster pane, configure a new Kubernetes Service.

4. Enter aks-compute for the Compute name.

5. Select a nearby region that's available for the Region.

6. Select Create.

It takes approximately 15 minutes to create a new AKS service. You can check the provisioning state on the

Inference Clusters page.

After your AKS service has finished provisioning, return to the real-time inferencing pipeline to complete

deployment.

1. Select Deploy above the canvas.

2. Select Deploy new real-time endpoint.

3. Select the AKS cluster you created.

4. Select Deploy .

Test the real-time endpoint

A success notification above the canvas appears after deployment finishes. It might take a few minutes.

After deployment finishes, you can test your real-time endpoint by going to the Endpoints page.

1. On the Endpoints page, select the endpoint you deployed.

2. Select Test.

3. You can manually input testing data or use the autofilled sample data, and select Test.

The portal submits a test request to the endpoint and shows the results. Although a price value is generated

for the input data, it isn't used to generate the prediction value.

Clean up resources

IMPORTANT

Delete everything

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any charges.

1. In the Azure portal, select Resource groups on the left side of the window.

Delete individual assets

2. In the list, select the resource group that you created.

3. Select Delete resource group.

Deleting the resource group also deletes all resources that you created in the designer.

In the designer where you created your experiment, delete individual assets by selecting them and then selecting

the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This

action is taken to minimize charges. If you want to delete the compute target, take these steps:

You can unregister datasets from your workspace by selecting each dataset and selecting Unregister .

Next steps

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually

delete those assets.

In this tutorial, you learned the key steps in how to create, deploy, and consume a machine learning model in the

designer. To learn more about how you can use the designer to solve other types of problems, see our other

sample pipelines.

Designer samples

Tutorial: Create a classification model with
automated ML in Azure Machine Learning
3/27/2020 • 10 minutes to read • Edit Online

Prerequisites

Create a workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this tutorial, you learn how to create a basic classification model without writing a single line of code using

Azure Machine Learning's automated machine learning interface. This classification model predicts if a client will

subscribe to a fixed term deposit with a financial institution.

With automated machine learning, you can automate away time intensive tasks. Automated machine learning

rapidly iterates over many combinations of algorithms and hyperparameters to help you find the best model

based on a success metric of your choosing.

In this tutorial, you learn how to do the following tasks:

Create an Azure Machine Learning workspace.

Run an automated machine learning experiment.

View experiment details.

Deploy the model.

An Azure subscription. If you don't have an Azure subscription, create a free account.

Download the bankmarketing_train.csv data file. The y column indicates if a customer subscribed to a

fixed term deposit, which is later identified as the target column for predictions in this tutorial.

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,

and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed

object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.

1. Sign in to the Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of the Azure portal, select + Create a resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-first-experiment-automated-ml.md
https://aka.ms/AMLFree
https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv
https://portal.azure.com/

F IEL D DESC RIP T IO N

Workspace name Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription, or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Location Select the location closest to your users and the data
resources to create your workspace.

Workspace edition Select Enterprise. This tutorial requires the use of the
Enterprise edition. The Enterprise edition is in preview and
doesn't currently add any extra costs.

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

7. After you're finished configuring the workspace, select Create.

IMPORTANT

Create and run the experiment

WARNING
It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right place.

You complete the following experiment set-up and run steps via Azure Machine learning at https://ml.azure.com, a

consolidated web interface that includes machine learning tools to perform data science scenarios for data

science practitioners of all skill levels. This interface is not supported on Internet Explorer browsers.

1. Sign in to Azure Machine Learning.

2. Select your subscription and the workspace you created.

3. Select Get star ted .

4. In the left pane, select Automated ML under the Author section.

Since this is your first automated ML experiment, you'll see an empty list and links to documentation.

5. Select New automated ML run.

6. Create a new dataset by selecting From local files from the +Create dataset drop-down.

a. On the Basic info form, give your dataset a name and provide an optional description. The

automated ML interface currently only supports TabularDatasets, so the dataset type should default

https://ml.azure.com
https://ml.azure.com

F IEL D DESC RIP T IO N VA L UE F O R T UTO RIA L

File format Defines the layout and type of
data stored in a file.

Delimited

Delimiter One or more characters for
specifying the boundary between
separate, independent regions in
plain text or other data streams.

Comma

Encoding Identifies what bit to character
schema table to use to read your
dataset.

UTF-8

Column headers Indicates how the headers of the
dataset, if any, will be treated.

All files have same headers

Skip rows Indicates how many, if any, rows
are skipped in the dataset.

None

to Tabular.

b. Select Next on the bottom left

c. On the Datastore and file selection form, select the default datastore that was automatically set

up during your workspace creation, workspaceblobstore (Azure Blob Storage) . This is where

you'll upload your data file to make it available to your workspace.

d. Select Browse.

e. Choose the bankmarketing_train.csv file on your local computer. This is the file you downloaded

as a prerequisite.

f. Give your dataset a unique name and provide an optional description.

g. Select Next on the bottom left, to upload it to the default container that was automatically set up

during your workspace creation.

When the upload is complete, the Settings and preview form is pre-populated based on the file type.

h. Verify that the Settings and preview form is populated as follows and select Next.

i. The Schema form allows for further configuration of your data for this experiment. For this

example, select the toggle switch for the day_of_week feature, so as to not include it for this

experiment. Select Next.

https://automlsamplenotebookdata.blob.core.windows.net/automl-sample-notebook-data/bankmarketing_train.csv

j. On the Confirm details form, verify the information matches what was previously populated on

the Basic info and Settings and preview forms.

k. Select Create to complete the creation of your dataset.

l. Select your dataset once it appears in the list.

m. Review the Data preview to ensure you didn't include day_of_week then, select OK.

n. Select Next.

7. Populate the Configure Run form as follows:

F IEL D DESC RIP T IO N VA L UE F O R T UTO RIA L

Compute name A unique name that identifies
your compute context.

automl-compute

Virtual machine size Select the virtual machine size for
your compute.

Standard_DS12_V2

Min / Max nodes (in Advanced
Settings)

To profile data, you must specify 1
or more nodes.

Min nodes: 1
Max nodes: 6

a. Enter this experiment name: my-1st-automl-experiment

b. Select y as the target column, what you want to predict. This column indicates whether the client

subscribed to a term deposit or not.

c. Select Create a new compute and configure your compute target. A compute target is a local or

cloud-based resource environment used to run your training script or host your service

deployment. For this experiment, we use a cloud-based compute.

a. Select Create to get the compute target.

This takes a couple minutes to complete.

b. After creation, select your new compute target from the drop-down list.

IMPORTANT

Explore models

d. Select Next.

8. On the Task type and settings form, select Classification as the machine learning task type.

NOTE

A DDIT IO N A L C O N F IGURAT IO N S DESC RIP T IO N VA L UE F O R T UTO RIA L

Primary metric Evaluation metric that the
machine learning algorithm will be
measured by.

AUC_weighted

Automatic featurization Enables preprocessing. This
includes automatic data cleansing,
preparing, and transformation to
generate synthetic features.

Enable

Blocked algorithms Algorithms you want to exclude
from the training job

None

Exit criterion If a criteria is met, the training job
is stopped.

Training job time (hours): 1
Metric score threshold: None

Validation Choose a cross-validation type
and number of tests.

Validation type:
 k-fold cross-validation

Number of validations: 2

Concurrency The maximum number of parallel
iterations executed per iteration

Max concurrent iterations: 5

a. Select View additional configuration settings and populate the fields as follows. These settings

are to better control the training job. Otherwise, defaults are applied based on experiment selection

and data.

In this tutorial, you won't set a metric score or max cores per iterations threshold. Nor will you block

algorithms from being tested.

Select Save.

9. Select Finish to run the experiment. The Run Detail screen opens with the Run status at the top as the

experiment preparation begins.

Preparation takes 10-15 minutes to prepare the experiment run. Once running, it takes 2-3 minutes more for each

iteration.

Select Refresh periodically to see the status of the run as the experiment progresses.

In production, you'd likely walk away for a bit. But for this tutorial, we suggest you start exploring the tested algorithms on

the Models tab as they complete while the others are still running.

Navigate to the Models tab to see the algorithms (models) tested. By default, the models are ordered by metric

score as they complete. For this tutorial, the model that scores the highest based on the chosen AUC_weighted

Deploy the best model

metric is at the top of the list.

While you wait for all of the experiment models to finish, select the Algorithm name of a completed model to

explore its performance details.

The following navigates through the Model details and the Visualizations tabs to view the selected model's

properties, metrics, and performance charts.

The automated machine learning interface allows you to deploy the best model as a web service in a few steps.

Deployment is the integration of the model so it can predict on new data and identify potential areas of

opportunity.

For this experiment, deployment to a web service means that the financial institution now has an iterative and

scalable web solution for identifying potential fixed term deposit customers.

Once the run is complete, navigate back to the Run Detail page and select the Models tab.

In this experiment context, VotingEnsemble is considered the best model, based on the AUC_weighted metric.

We deploy this model, but be advised, deployment takes about 20 minutes to complete. The deployment process

entails several steps including registering the model, generating resources, and configuring them for the web

service.

F IEL D VA L UE

Deployment name my-automl-deploy

1. Select the Deploy best model button in the bottom-left corner.

2. Populate the Deploy a model pane as follows:

Clean up resources

Delete the deployment instance

Delete the resource group

IMPORTANT

Deployment description My first automated machine learning experiment
deployment

Compute type Select Azure Compute Instance (ACI)

Enable authentication Disable.

Use custom deployments Disable. Allows for the default driver file (scoring script)
and environment file to be autogenerated.

F IEL D VA L UE

For this example, we use the defaults provided in the Advanced menu.

3. Select Deploy .

A green success message appears at the top of the Run screen, and in the Recommended model pane, a

status message appears under Deploy status . Select Refresh periodically to check the deployment status.

Now you have an operational web service to generate predictions.

Proceed to the Next Steps to learn more about how to consume your new web service, and test your predictions

using Power BI's built in Azure Machine Learning support.

Deployment files are larger than data and experiment files, so they cost more to store. Delete only the

deployment files to minimize costs to your account, or if you want to keep your workspace and experiment files.

Otherwise, delete the entire resource group, if you don't plan to use any of the files.

Delete just the deployment instance from Azure Machine Learning at https://ml.azure.com/, if you want to keep

the resource group and workspace for other tutorials and exploration.

1. Go to Azure Machine Learning. Navigate to your workspace and on the left under the Assets pane, select

Endpoints .

2. Select the deployment you want to delete and select Delete.

3. Select Proceed.

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

https://ml.azure.com/

 Next steps

NOTE

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

In this automated machine learning tutorial, you used Azure Machine Learning's automated ML interface to create

and deploy a classification model. See these articles for more information and next steps:

Consume a web service

Learn more about automated machine learning.

For more information on classification metrics and charts, see the Understand automated machine learning

results article.+ Learn more about featurization.

Learn more about data profiling.

This Bank Marketing dataset is made available under the Creative Commons (CCO: Public Domain) License. Any rights in

individual contents of the database are licensed under the Database Contents License and available on Kaggle. This dataset

was originally available within the UCI Machine Learning Database.

[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing.

Decision Support Systems, Elsevier, 62:22-31, June 2014.

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.kaggle.com/janiobachmann/bank-marketing-dataset
https://archive.ics.uci.edu/ml/datasets/bank+marketing

Tutorial: Forecast bike sharing demand with
automated machine learning
2/7/2020 • 8 minutes to read • Edit Online

Prerequisites

Get started in Azure Machine Learning studio

Create and load dataset

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this tutorial, you use automated machine learning, or automated ML, in the Azure Machine Learning studio to

create a time series forecasting model to predict rental demand for a bike sharing service.

In this tutorial, you learn how to do the following tasks:

Create and load a dataset.

Configure and run an automated ML experiment.

Explore the experiment results.

Deploy the best model.

An Enterprise edition Azure Machine Learning workspace. If you don't have a workspace, create an Enterprise

edition workspace.

Download the bike-no.csv data file

Automated machine learning in the Azure Machine Learning studio is only available for Enterprise edition

workspaces.

For this tutorial, you create your automated ML experiment run in Azure Machine Learning studio, a consolidated

interface that includes machine learning tools to perform data science scenarios for data science practitioners of all

skill levels. The studio is not supported on Internet Explorer browsers.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

3. Select Get star ted .

4. In the left pane, select Automated ML under the Author section.

5. Select +New automated ML run.

Before you configure your experiment, upload your data file to your workspace in the form of an Azure Machine

Learning dataset. Doing so, allows you to ensure that your data is formatted appropriately for your experiment.

1. On the Select dataset form, select From local files from the +Create dataset drop-down.

a. On the Basic info form, give your dataset a name and provide an optional description. The dataset

type should default to Tabular , since automated ML in Azure Machine Learning studio currently only

supports tabular datasets.

b. Select Next on the bottom left

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-automated-ml-forecast.md
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/bike-no.csv
https://ml.azure.com

Configure experiment run

F IEL D DESC RIP T IO N VA L UE F O R T UTO RIA L

File format Defines the layout and type of
data stored in a file.

Delimited

Delimiter One or more characters for
specifying the boundary between
separate, independent regions in
plain text or other data streams.

Comma

Encoding Identifies what bit to character
schema table to use to read your
dataset.

UTF-8

Column headers Indicates how the headers of the
dataset, if any, will be treated.

Use headers from the first file

Skip rows Indicates how many, if any, rows
are skipped in the dataset.

None

c. On the Datastore and file selection form, select the default datastore that was automatically set up

during your workspace creation, workspaceblobstore (Azure Blob Storage) . This is the storage

location where you'll upload your data file.

d. Select Browse.

e. Choose the bike-no.csv file on your local computer. This is the file you downloaded as a prerequisite.

f. Select Next

When the upload is complete, the Settings and preview form is pre-populated based on the file type.

g. Verify that the Settings and preview form is populated as follows and select Next.

h. The Schema form allows for further configuration of your data for this experiment.

a. For this example, choose to ignore the casual and registered columns. These columns are a

breakdown of the cnt column so, therefore we don't include them.

b. Also for this example, leave the defaults for the Proper ties and Type.

c. Select Next.

i. On the Confirm details form, verify the information matches what was previously populated on the

Basic info and Settings and preview forms.

j. Select Create to complete the creation of your dataset.

k. Select your dataset once it appears in the list.

l. Select Next.

After you load and configure your data, set up your remote compute target and select which column in your data

you want to predict.

1. Populate the Configure run form as follows:

a. Enter an experiment name: automl-bikeshare

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/bike-no.csv

Select task type and settings

F IEL D DESC RIP T IO N VA L UE F O R T UTO RIA L

Compute name A unique name that identifies your
compute context.

bike-compute

Virtual machine size Select the virtual machine size for
your compute.

Standard_DS12_V2

Min / Max nodes (in Advanced
Settings)

To profile data, you must specify 1
or more nodes.

Min nodes: 1
Max nodes: 6

b. Select cnt as the target column, what you want to predict. This column indicates the number of total

bike share rentals.

c. Select Create a new compute and configure your compute target. Automated ML only supports

Azure Machine Learning compute.

a. Select Create to get the compute target.

This takes a couple minutes to complete.

b. After creation, select your new compute target from the drop-down list.

d. Select Next.

Complete the setup for your automated ML experiment by specifying the machine learning task type and

configuration settings.

1. On the Task type and settings form, select Time ser ies forecasting as the machine learning task type.

2. Select date as your Time column and leave Group by column(s) blank.

A DDIT IO N A L C O N F IGURAT IO N S DESC RIP T IO N VA L UE F O R T UTO RIA L

Primary metric Evaluation metric that the machine
learning algorithm will be
measured by.

Normalized root mean squared
error

Automatic featurization Enables preprocessing. This
includes automatic data cleansing,
preparing, and transformation to
generate synthetic features.

Enable

Explain best model (preview) Automatically shows explainability
on the best model created by
automated ML.

Enable

Blocked algorithms Algorithms you want to exclude
from the training job

Extreme Random Trees

a. Select View additional configuration settings and populate the fields as follows. These settings

are to better control the training job. Otherwise, defaults are applied based on experiment selection

and data.

Run experiment

IMPORTANT

Explore models

Additional forecasting settings These settings help improve the
accuracy of your model

Forecast horizon: length of time
into the future you want to predict
Forecast target lags: how far
back you want to construct the
lags of a the target variable
Target rolling window: specifies
the size of the rolling window over
which features, such as the max,
min and sum, will be generated.

Forecast horizon: 14
Forecast target lags: None
Target rolling window size: None

Exit criterion If a criteria is met, the training job
is stopped.

Training job time (hours): 3
Metric score threshold: None

Validation Choose a cross-validation type and
number of tests.

Validation type:
 k-fold cross-validation

Number of validations: 5

Concurrency The maximum number of parallel
iterations executed per iteration

Max concurrent iterations: 6

A DDIT IO N A L C O N F IGURAT IO N S DESC RIP T IO N VA L UE F O R T UTO RIA L

Select Save.

To run your experiment, select Finish . The Run details screen opens with the Run status at the top next to the

run number. This status updates as the experiment progresses.

Preparation takes 10-15 minutes to prepare the experiment run. Once running, it takes 2-3 minutes more for each

iteration.

In production, you'd likely walk away for a bit as this process takes time. While you wait, we suggest you start exploring the

tested algorithms on the Models tab as they complete.

Navigate to the Models tab to see the algorithms (models) tested. By default, the models are ordered by metric

score as they complete. For this tutorial, the model that scores the highest based on the chosen Normalized root

mean squared error metric is at the top of the list.

While you wait for all of the experiment models to finish, select the Algorithm name of a completed model to

explore its performance details.

The following example navigates through the Model details and the Visualizations tabs to view the selected

model's properties, metrics and performance charts.

Deploy the model
Automated machine learning in Azure Machine Learning studio allows you to deploy the best model as a web

service in a few steps. Deployment is the integration of the model so it can predict on new data and identify

potential areas of opportunity.

For this experiment, deployment to a web service means that the bike share company now has an iterative and

scalable web solution for forecasting bike share rental demand.

Once the run is complete, navigate back to the Run detail page and select the Models tab.

In this experiment context, StackEnsemble is considered the best model, based on the Normalized root mean

squared error metric. We deploy this model, but be advised, deployment takes about 20 minutes to complete. The

deployment process entails several steps including registering the model, generating resources, and configuring

them for the web service.

F IEL D VA L UE

Deployment name bikeshare-deploy

Deployment description bike share demand deployment

Compute type Select Azure Compute Instance (ACI)

Enable authentication Disable.

Use custom deployment assets Disable. Disabling allows for the default driver file (scoring
script) and environment file to be autogenerated.

1. Select the Deploy best model button in the bottom-left corner.

2. Populate the Deploy a model pane as follows:

Clean up resources

Delete the deployment instance

Delete the resource group

IMPORTANT

For this example, we use the defaults provided in the Advanced menu.

3. Select Deploy .

A green success message appears at the top of the Run screen stated that the deployment was started

successfully. The progress of the deployment can be found

in the Recommended model pane under Deploy status .

Once deployment succeeds, you have an operational web service to generate predictions.

Proceed to the Next steps to learn more about how to consume your new web service, and test your predictions

using Power BI's built in Azure Machine Learning support.

Deployment files are larger than data and experiment files, so they cost more to store. Delete only the deployment

files to minimize costs to your account, or if you want to keep your workspace and experiment files. Otherwise,

delete the entire resource group, if you don't plan to use any of the files.

Delete just the deployment instance from the Azure Machine Learning studio, if you want to keep the resource

group and workspace for other tutorials and exploration.

1. Go to the Azure Machine Learning studio. Navigate to your workspace and on the left under the Assets

pane, select Endpoints .

2. Select the deployment you want to delete and select Delete.

3. Select Proceed.

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

https://ml.azure.com/

 Next steps

NOTE

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

In this tutorial, you used automated ML in the Azure Machine Learning studio to create and deploy a time series

forecasting model that predicts bike share rental demand.

See this article for steps on how to create a Power BI supported schema to facilitate consumption of your newly

deployed web service:

Consume a web service

This bike share dataset has been modified for this tutorial. This dataset was made available as part of a Kaggle competition

and was originally available via Capital Bikeshare. It can also be found within the UCI Machine Learning Database.

Source: Fanaee-T, Hadi, and Gama, Joao, Event labeling combining ensemble detectors and background knowledge, Progress

in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://www.kaggle.com/c/bike-sharing-demand/data
https://www.capitalbikeshare.com/system-data
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Tutorial: Create a labeling project for multi-class image
classification
4/7/2020 • 9 minutes to read • Edit Online

Prerequisites

Create a workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This tutorial shows you how to manage the process of labeling (also referred to as tagging) images to be used as data for

building machine learning models. Data labeling in Azure Machine Learning is in public preview.

If you want to train a machine learning model to classify images, you need hundreds or even thousands of images that are

correctly labeled. Azure Machine Learning helps you manage the progress of your private team of domain experts as they label

your data.

In this tutorial, you'll use images of cats and dogs. Since each image is either a cat or a dog, this is a multi-class labeling project.

You'll learn how to:

Create an Azure storage account and upload images to the account.

Create an Azure Machine Learning workspace.

Create a multi-class image labeling project.

Label your data. Either you or your labelers can perform this task.

Complete the project by reviewing and exporting the data.

An Azure subscription. If you don't have an Azure subscription, create a free account.

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train, and deploy

machine learning models. It ties your Azure subscription and resource group to an easily consumed object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.

1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-labeling.md
https://aka.ms/AMLFree
https://portal.azure.com/

F IEL D DESC RIP T IO N

Workspace name Enter a unique name that identifies your workspace. In this
example, we use docs-ws. Names must be unique across the
resource group. Use a name that's easy to recall and to
differentiate from workspaces created by others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription or enter a
name to create a new resource group. A resource group holds
related resources for an Azure solution. In this example, we use
docs-aml.

Location Select the location closest to your users and the data resources to
create your workspace.

Workspace edition Select Basic as the workspace type for this tutorial. The workspace
type (Basic & Enterprise) determines the features to which you’ll
have access and pricing. Everything in this tutorial can be
performed with either a Basic or Enterprise workspace.

WARNING

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

7. After you are finished configuring the workspace, select Review + Create.

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

Start a labeling project

Create a datastore

Add labelers to workspace

Create a labeling project

8. To view the new workspace, select Go to resource.

Next you will manage the data labeling project in Azure Machine Learning studio, a consolidated interface that includes machine

learning tools to perform data science scenarios for data science practitioners of all skill levels. The studio is not supported on

Internet Explorer browsers.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

Azure Machine Learning datastores are used to store connection information, like your subscription ID and token authorization.

Here you use a datastore to connect to the storage account that contains the images for this tutorial.

F IEL D DESC RIP T IO N

Datastore name Give the datastore a name. Here we use labeling_tutorial.

Datastore type Select the type of storage. Here we use Azure Blob Storage, the
preferred storage for images.

Account selection method Select Enter manually .

URL https://azureopendatastorage.blob.core.windows.net/openimagescontainer

Authentication type Select SAS token.

Account key ?sv=2019-02-02&ss=bfqt&srt=sco&sp=rl&se=2025-03-25T04:51:17Z&st=2020-03-
24T20:51:17Z&spr=https&sig=7D7SdkQidGT6pURQ9R4SUzWGxZ%2BHlNPCstoSRRVg8OY%3D

1. On the left side of your workspace, select Datastores .

2. Select + New datastore.

3. Fill out the form with these settings:

4. Select Create to create the datastore.

Set up your workspace to include all the people who will label data for any of your projects. Later you'll add these labelers to

your specific labeling project.

1. On the left side, select Data labeling.

2. At the top of the page, select Labelers .

3. Select Add labeler to add the email address of a labeler.

4. Continue to add more labelers until you're done.

Now that you have your list of labelers and access to the data you want to have labeled, create your labeling project.

1. At the top of the page, select Projects .

2. Select + Add project.

https://ml.azure.com

Project details

Select or create a dataset

Label classes

Labeling instructions

F IEL D DESC RIP T IO N

Project name Give your project a name. Here we'll use tutorial-cats-n-dogs.

Labeling task type Select Image Classification Multi-class .

1. Use the following input for the Project details form:

Select Next to continue creating the project.

1. On the Select or create a dataset form, select the second choice, Create a dataset, then select the link From

datastore.

2. Use the following input for the Create dataset from datastore form:

a. On the Basic info form, add a name, here we'll use images-for-tutor ial . Add a description if you wish. Then select

Next.

b. On the Datastore selection form, use the dropdown to select your Previously created datastore, for example

tutorial_ images (Azure Blob Storage)

c. Next, still on the Datastore selection form, select Browse and then select MultiClass - DogsCats . Select Save to

use /MultiClass - DogsCats as the path.

d. Select Next to confirm details and then Create to create the dataset.

e. Select the circle next to the dataset name in the list, for example images-for-tutor ial .

3. Select Next to continue creating the project.

1. On the Label classes form, type a label name, then select +Add label to type the next label. For this project, the labels

are Cat, Dog, and Uncer tain .

2. Select Next when have added all the labels.

1. On the Labeling instructions form, you can provide a link to a website that provides detailed instructions for your

labelers. We'll leave it blank for this tutorial.

2. You can also add a short description of the task directly on the form. Type Labeling tutor ial - Cats & Dogs.

3. Select Next.

4. On the ML assisted labeling form, leave the checkbox unchecked. ML assisted labeling requires more data than you'll

be using in this tutorial.

Add labelers to your project

Start labeling

Notify labelers

5. Select Create project.

This page doesn't automatically refresh. After a pause, manually refresh the page until the project's status changes to Created.

Add some or all of your labelers to this project.

1. Select the project name to open the project.

2. At the top of the page, select Teams .

3. Select the labeling_tutorial Default Team link.

4. Now use Assign labelers to add the labelers you want to participate in this project.

5. Select from the list of labelers you created earlier. Once you've selected all the labelers you wish to use, select Assign

labelers to add them to your default project team.

You have now set up your Azure resources, and configured a data labeling project. It's time to add labels to your data.

If you have lots of images to label, hopefully you also have lots of labelers to complete the task. You'll now want to send them

instructions so they can access the data and start labeling.

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.

2. Select the project name link.

3. At the top of the page, select Details . You see a summary of your project.

4. Copy the Labeling por tal URL link to send to your labelers.

5. Now select Team at the top to find your labeling team.

6. Select the team name link.

7. At the top of the page, select Email team to start your email. Paste in the labeling portal URL you just copied.

Each time a labeler goes to the portal URL, they'll be presented with more images to label, until the queue is empty.

https://ml.azure.com

Tag the images

Complete the project

Review labeled data

In this part of the tutorial, you'll switch roles from the project administrator to that of a labeler. Use the URL you sent to the team.

This URL brings you to the labeling portal for your project. If you had added instructions, you'd see them here when you arrive

on the page.

TIP

1. At the top of the page, select Tasks to start labeling.

2. Select a thumbnail image on the right to display the number of images you wish to label in one go. You must label all

these images before you can move on. Only switch layouts when you have a fresh page of unlabeled data. Switching

layouts clears the page's in-progress tagging work.

3. Select one or more images, then select a tag to apply to the selection. The tag appears below the image. Continue to select

and tag all images on the page. To select all the displayed images simultaneously, select Select all . Select at least one

image to apply a tag.

You can select the first nine tags by using the number keys on your keyboard.

4. Once all the images on the page are tagged, select Submit to submit these labels.

5. After you submit tags for the data at hand, Azure refreshes the page with a new set of images from the work queue.

Now you'll switch roles back to the project administrator for the labeling project.

As a manager, you may want to review the work of your labeler.

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.

https://ml.azure.com

Export labeled data

Clean up resources

IMPORTANT

2. Select the project name link.

3. The Dashboard shows you the progress of your project.

4. At the top of the page, select Data.

5. On the left side, select Labeled data to see your tagged images.

6. When you disagree with a label, select the image and then select Reject at the bottom of the page. The tags will be

removed and the image is put back in the queue of unlabeled images.

You can export the label data for Machine Learning experimentation at any time. Users often export multiple times and train

different models, rather than wait for all the images to be labeled.

Image labels can be exported in COCO format or as an Azure Machine Learning dataset. The dataset format makes it easy to use

for training in Azure Machine Learning.

1. In Machine Learning studio, select Data labeling on the left-hand side to find your project.

2. Select the project name link.

3. Select Expor t and choose Expor t as Azure ML Dataset .

The status of the export appears just below the Expor t button.

4. Once the labels are successfully exported, select Datasets on the left side to view the results.

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

http://cocodataset.org/#format-data
https://ml.azure.com
file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png

Next steps

4. Enter the resource group name. Then select Delete.

In this tutorial, you labeled images. Now use your labeled data:

Train a machine learning image recognition model.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/labeled-datasets/labeled-datasets.ipynb

Tutorial: Get started creating your first ML
experiment with the Python SDK
4/13/2020 • 4 minutes to read • Edit Online

Create a workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you complete the end-to-end steps to get started with the Azure Machine Learning Python SDK

running in Jupyter notebooks. This tutorial is par t one of a two-par t tutor ial ser ies , and covers Python

environment setup and configuration, as well as creating a workspace to manage your experiments and

machine learning models. Par t two builds on this to train multiple machine learning models and introduce the

model management process using both Azure Machine Learning studio and the SDK.

In this tutorial, you:

Create an Azure Machine Learning Workspace to use in the next tutorial.

Clone the tutorials notebook to your folder in the workspace.

Create a cloud-based compute instance with Azure Machine Learning Python SDK installed and pre-

configured.

If you don’t have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today.

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,

and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed

object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.

1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-1st-experiment-sdk-setup.md
https://aka.ms/AMLFree
https://portal.azure.com/

F IEL D DESC RIP T IO N

Workspace name Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Location Select the location closest to your users and the data
resources to create your workspace.

Workspace edition Select Basic as the workspace type for this tutorial. The
workspace type (Basic & Enterprise) determines the
features to which you’ll have access and pricing.
Everything in this tutorial can be performed with either a
Basic or Enterprise workspace.

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

7. After you are finished configuring the workspace, select Review + Create.

IMPORTANT

Run notebook in your workspace

Clone a notebook folder

WARNING
It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right

place.

This tutorial uses the cloud notebook server in your workspace for an install-free and pre-configured experience.

Use your own environment if you prefer to have control over your environment, packages and dependencies.

Follow along with this video or use the detailed steps below to clone and run the tutorial from your workspace.

You complete the following experiment set-up and run steps in Azure Machine Learning studio, a consolidated

interface that includes machine learning tools to perform data science scenarios for data science practitioners of

all skill levels.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

3. Select Notebooks on the left.

4. Open the Samples folder.

5. Open the Python folder.

6. Open the folder with a version number on it. This number represents the current release for the Python

SDK.

7. Select the "..." at the right of the tutor ials folder and then select Clone.

https://www.microsoft.com/en-us/videoplayer/embed/RE4mTUr
https://ml.azure.com/

 Open the cl oned notebook

8. A list of folders displays showing each user who accesses the workspace. Select your folder to clone the

tutorials folder there.

1. Under User Files open your folder and then open the cloned tutor ials folder.

IMPORTANT
You can view notebooks in the samples folder but you cannot run a notebook from there. In order to run a

notebook, make sure you open the cloned version of the notebook in the User Files section.

2. Select the tutor ial-1st-experiment-sdk-train.ipynb file in your tutor ials/create-first-ml-

experiment folder.

3. On the top bar, select a compute instance to use to run the notebook. These VMs are pre-configured with

everything you need to run Azure Machine Learning.

4. If no VMs are found, select + Add to create the compute instance VM.

a. When you create a VM, provide a name. The name must be between 2 to 16 characters. Valid

characters are letters, digits, and the - character, and must also be unique across your Azure

subscription.

b. Select the Virtual Machine size from the available choices.

c. Then select Create. It can take approximately 5 minutes to set up your VM.

5. Once the VM is available it will be displayed in the top toolbar. You can now run the notebook either by

using Run all in the toolbar, or by using Shift+Enter in the code cells of the notebook.

If you have custom widgets or prefer using Jupyter/JupyterLab select the Jupyter drop down on the far right,

then select Jupyter or JupyterLab. The new browser window will be opened.

Next steps

IMPORTANT

In this tutorial, you completed these tasks:

Created an Azure Machine Learning workspace.

Created and configured a cloud notebook server in your workspace.

In par t two of the tutorial you run the code in tutorial-1st-experiment-sdk-train.ipynb to train a machine

learning model.

Tutorial: Train your first model

If you do not plan on following part 2 of this tutorial or any other tutorials, you should stop the cloud notebook server

VM when you are not using it to reduce cost.

Tutorial: Train your first ML model
4/1/2020 • 7 minutes to read • Edit Online

Prerequisites

Open the notebook

WARNING

Connect workspace and create experiment

IMPORTANT

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This tutorial is par t two of a two-par t tutor ial ser ies . In the previous tutorial, you created a workspace and

chose a development environment. In this tutorial, you learn the foundational design patterns in Azure Machine

Learning, and train a simple scikit-learn model based on the diabetes data set. After completing this tutorial, you

will have the practical knowledge of the SDK to scale up to developing more-complex experiments and workflows.

In this tutorial, you learn the following tasks:

Connect your workspace and create an experiment

Load data and train scikit-learn models

View training results in the studio

Retrieve the best model

The only prerequisite is to run part one of this tutorial, Setup environment and workspace.

In this part of the tutorial, you run the code in the sample Jupyter notebook tutorials/create-first-ml-

experiment/tutorial-1st-experiment-sdk-train.ipynb opened at the end of part one. This article walks through the

same code that is in the notebook.

1. Sign in to Azure Machine Learning studio.

2. Open the tutor ial-1st-experiment-sdk-train.ipynb in your folder as shown in part one.

Do not create a new notebook in the Jupyter interface! The notebook tutorials/create-first-ml-experiment/tutorial-1st-

experiment-sdk-train.ipynb is inclusive of all code and data needed for this tutorial.

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a notebook,

click the code cell and hit Shift+Enter . Or, run the entire notebook by choosing Run all from the top toolbar.

Import the Workspace class, and load your subscription information from the file config.json using the function

from_config(). This looks for the JSON file in the current directory by default, but you can also specify a path

parameter to point to the file using from_config(path="your/file/path") . In a cloud notebook server, the file is

automatically in the root directory.

If the following code asks for additional authentication, simply paste the link in a browser and enter the

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-1st-experiment-sdk-train.md
https://ml.azure.com/

from azureml.core import Workspace
ws = Workspace.from_config()

from azureml.core import Experiment
experiment = Experiment(workspace=ws, name="diabetes-experiment")

Load data and prepare for training

from azureml.opendatasets import Diabetes
from sklearn.model_selection import train_test_split

x_df = Diabetes.get_tabular_dataset().to_pandas_dataframe().dropna()
y_df = x_df.pop("Y")

X_train, X_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.2, random_state=66)

Train a model

authentication token.

Now create an experiment in your workspace. An experiment is another foundational cloud resource that

represents a collection of trials (individual model runs). In this tutorial you use the experiment to create runs and

track your model training in the Azure Machine Learning studio. Parameters include your workspace reference,

and a string name for the experiment.

For this tutorial, you use the diabetes data set, which uses features like age, gender, and BMI to predict diabetes

disease progression. Load the data from the Azure Open Datasets class, and split it into training and test sets using

train_test_split() . This function segregates the data so the model has unseen data to use for testing following

training.

Training a simple scikit-learn model can easily be done locally for small-scale training, but when training many

iterations with dozens of different feature permutations and hyperparameter settings, it is easy to lose track of

what models you've trained and how you trained them. The following design pattern shows how to leverage the

SDK to easily keep track of your training in the cloud.

Build a script that trains ridge models in a loop through different hyperparameter alpha values.

https://azure.microsoft.com/services/open-datasets/

from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.externals import joblib
import math

alphas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

for alpha in alphas:
 run = experiment.start_logging()
 run.log("alpha_value", alpha)

 model = Ridge(alpha=alpha)
 model.fit(X=X_train, y=y_train)
 y_pred = model.predict(X=X_test)
 rmse = math.sqrt(mean_squared_error(y_true=y_test, y_pred=y_pred))
 run.log("rmse", rmse)

 model_name = "model_alpha_" + str(alpha) + ".pkl"
 filename = "outputs/" + model_name

 joblib.dump(value=model, filename=filename)
 run.upload_file(name=model_name, path_or_stream=filename)
 run.complete()

experiment

N A M E W O RKSPA C E REP O RT PA GE DO C S PA GE

diabetes-experiment your-workspace-name Link to Azure Machine
Learning studio

Link to Documentation

View training results in studio

The above code accomplishes the following:

1. For each alpha hyperparameter value in the alphas array, a new run is created within the experiment. The

alpha value is logged to differentiate between each run.

2. In each run, a Ridge model is instantiated, trained, and used to run predictions. The root-mean-squared-error is

calculated for the actual versus predicted values, and then logged to the run. At this point the run has metadata

attached for both the alpha value and the rmse accuracy.

3. Next, the model for each run is serialized and uploaded to the run. This allows you to download the model file

from the run in the studio.

4. At the end of each iteration the run is completed by calling run.complete() .

After the training has completed, call the experiment variable to fetch a link to the experiment in the studio.

Following the L ink to Azure Machine Learning studio takes you to the main experiment page. Here you see

all the individual runs in the experiment. Any custom-logged values (alpha_value and rmse , in this case) become

fields for each run, and also become available for the charts and tiles at the top of the experiment page. To add a

logged metric to a chart or tile, hover over it, click the edit button, and find your custom-logged metric.

When training models at scale over hundreds and thousands of separate runs, this page makes it easy to see

every model you trained, specifically how they were trained, and how your unique metrics have changed over

time.

Get the best model

Select a run number link in the RUN NUMBER column to see the page for an individual run. The default tab Details

shows you more-detailed information on each run. Navigate to the Outputs + logs tab, and you see the .pkl

file for the model that was uploaded to the run during each training iteration. Here you can download the model

file, rather than having to retrain it manually.

In addition to being able to download model files from the experiment in the studio, you can also download them

programmatically. The following code iterates through each run in the experiment, and accesses both the logged

run metrics and the run details (which contains the run_id). This keeps track of the best run, in this case the run

with the lowest root-mean-squared-error.

minimum_rmse_runid = None
minimum_rmse = None

for run in experiment.get_runs():
 run_metrics = run.get_metrics()
 run_details = run.get_details()
 # each logged metric becomes a key in this returned dict
 run_rmse = run_metrics["rmse"]
 run_id = run_details["runId"]

 if minimum_rmse is None:
 minimum_rmse = run_rmse
 minimum_rmse_runid = run_id
 else:
 if run_rmse < minimum_rmse:
 minimum_rmse = run_rmse
 minimum_rmse_runid = run_id

print("Best run_id: " + minimum_rmse_runid)
print("Best run_id rmse: " + str(minimum_rmse))

Best run_id: 864f5ce7-6729-405d-b457-83250da99c80
Best run_id rmse: 57.234760283951765

from azureml.core import Run
best_run = Run(experiment=experiment, run_id=minimum_rmse_runid)
print(best_run.get_file_names())

['model_alpha_0.1.pkl']

best_run.download_file(name="model_alpha_0.1.pkl")

Clean up resources

Stop the compute instance

Delete everything

Use the best run ID to fetch the individual run using the Run constructor along with the experiment object. Then

call get_file_names() to see all the files available for download from this run. In this case, you only uploaded one

file for each run during training.

Call download() on the run object, specifying the model file name to download. By default this function

downloads to the current directory.

Do not complete this section if you plan on running other Azure Machine Learning tutorials.

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.

1. In your workspace, select Compute.

2. From the list, select the VM.

3. Select Stop.

4. When you're ready to use the server again, select Star t .

IMPORTANT

Next steps

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select

Delete.

In this tutorial, you did the following tasks:

Connected your workspace and created an experiment

Loaded data and trained scikit-learn models

Viewed training results in the studio and retrieved models

Deploy your model with Azure Machine Learning. Learn how to develop automated machine learning

experiments.

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png

Tutorial: Train image classification models with
MNIST data and scikit-learn
4/24/2020 • 13 minutes to read • Edit Online

NOTE

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you train a machine learning model on remote compute resources. You'll use the training and

deployment workflow for Azure Machine Learning in a Python Jupyter notebook. You can then use the

notebook as a template to train your own machine learning model with your own data. This tutorial is par t one

of a two-par t tutor ial ser ies .

This tutorial trains a simple logistic regression by using the MNIST dataset and scikit-learn with Azure Machine

Learning. MNIST is a popular dataset consisting of 70,000 grayscale images. Each image is a handwritten digit

of 28 x 28 pixels, representing a number from zero to nine. The goal is to create a multi-class classifier to

identify the digit a given image represents.

Learn how to take the following actions:

Set up your development environment.

Access and examine the data.

Train a simple logistic regression model on a remote cluster.

Review training results and register the best model.

You learn how to select a model and deploy it in part two of this tutorial.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today.

Code in this article was tested with Azure Machine Learning SDK version 1.0.83.

Complete the Tutorial: Get started creating your first Azure ML experiment to:

Create a workspace

Clone the tutorials notebook to your folder in the workspace.

Create a cloud-based compute instance.

In your cloned tutorials/image-classification-mnist-data folder, open the img-classification-part1-

training.ipynb notebook.

The tutorial and accompanying utils .py file is also available on GitHub if you wish to use it on your own local

environment. Run pip install azureml-sdk[notebooks] azureml-opendatasets matplotlib to install dependencies

for this tutorial.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-models-with-aml.md
http://yann.lecun.com/exdb/mnist/
https://scikit-learn.org
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

IMPORTANT

Set up your development environment

Import packages

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

import azureml.core
from azureml.core import Workspace

check core SDK version number
print("Azure ML SDK Version: ", azureml.core.VERSION)

Connect to a workspace

load workspace configuration from the config.json file in the current folder.
ws = Workspace.from_config()
print(ws.name, ws.location, ws.resource_group, sep='\t')

Create an experiment

from azureml.core import Experiment
experiment_name = 'sklearn-mnist'

exp = Experiment(workspace=ws, name=experiment_name)

Create or attach an existing compute target

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a

notebook, click the code cell and hit Shift+Enter . Or, run the entire notebook by choosing Run all from the top toolbar.

All the setup for your development work can be accomplished in a Python notebook. Setup includes the

following actions:

Import Python packages.

Connect to a workspace, so that your local computer can communicate with remote resources.

Create an experiment to track all your runs.

Create a remote compute target to use for training.

Import Python packages you need in this session. Also display the Azure Machine Learning SDK version:

Create a workspace object from the existing workspace. Workspace.from_config() reads the file config.json

and loads the details into an object named ws :

Create an experiment to track the runs in your workspace. A workspace can have multiple experiments:

By using Azure Machine Learning Compute, a managed service, data scientists can train machine learning

models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial, you

create Azure Machine Learning Compute as your training environment. You will submit Python code to run on

this VM later in the tutorial.

The code below creates the compute clusters for you if they don't already exist in your workspace.

from azureml.core.compute import AmlCompute
from azureml.core.compute import ComputeTarget
import os

choose a name for your cluster
compute_name = os.environ.get("AML_COMPUTE_CLUSTER_NAME", "cpucluster")
compute_min_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MIN_NODES", 0)
compute_max_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MAX_NODES", 4)

This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("AML_COMPUTE_CLUSTER_SKU", "STANDARD_D2_V2")

if compute_name in ws.compute_targets:
 compute_target = ws.compute_targets[compute_name]
 if compute_target and type(compute_target) is AmlCompute:
 print('found compute target. just use it. ' + compute_name)
else:
 print('creating a new compute target...')
 provisioning_config = AmlCompute.provisioning_configuration(vm_size=vm_size,
 min_nodes=compute_min_nodes,
 max_nodes=compute_max_nodes)

 # create the cluster
 compute_target = ComputeTarget.create(
 ws, compute_name, provisioning_config)

 # can poll for a minimum number of nodes and for a specific timeout.
 # if no min node count is provided it will use the scale settings for the cluster
 compute_target.wait_for_completion(
 show_output=True, min_node_count=None, timeout_in_minutes=20)

 # For a more detailed view of current AmlCompute status, use get_status()
 print(compute_target.get_status().serialize())

Explore data

Download the MNIST dataset

Creation of the compute target takes about five minutes. If the compute resource is already in the

workspace, the code uses it and skips the creation process.

You now have the necessary packages and compute resources to train a model in the cloud.

Before you train a model, you need to understand the data that you use to train it. In this section you learn how

to:

Download the MNIST dataset.

Display some sample images.

Use Azure Open Datasets to get the raw MNIST data files. Azure Open Datasets are curated public datasets that

you can use to add scenario-specific features to machine learning solutions for more accurate models. Each

dataset has a corresponding class, MNIST in this case, to retrieve the data in different ways.

This code retrieves the data as a FileDataset object, which is a subclass of Dataset . A FileDataset references

single or multiple files of any format in your datastores or public urls. The class provides you with the ability to

download or mount the files to your compute by creating a reference to the data source location. Additionally,

you register the Dataset to your workspace for easy retrieval during training.

Follow the how-to to learn more about Datasets and their usage in the SDK.

https://docs.microsoft.com/azure/open-datasets/overview-what-are-open-datasets

from azureml.core import Dataset
from azureml.opendatasets import MNIST

data_folder = os.path.join(os.getcwd(), 'data')
os.makedirs(data_folder, exist_ok=True)

mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)

mnist_file_dataset = mnist_file_dataset.register(workspace=ws,
 name='mnist_opendataset',
 description='training and test dataset',
 create_new_version=True)

Display some sample images

make sure utils.py is in the same directory as this code
from utils import load_data
import glob

note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the model converge faster.
X_train = load_data(glob.glob(os.path.join(data_folder,"**/train-images-idx3-ubyte.gz"), recursive=True)
[0], False) / 255.0
X_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-images-idx3-ubyte.gz"), recursive=True)[0],
False) / 255.0
y_train = load_data(glob.glob(os.path.join(data_folder,"**/train-labels-idx1-ubyte.gz"), recursive=True)
[0], True).reshape(-1)
y_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-labels-idx1-ubyte.gz"), recursive=True)[0],
True).reshape(-1)

now let's show some randomly chosen images from the traininng set.
count = 0
sample_size = 30
plt.figure(figsize=(16, 6))
for i in np.random.permutation(X_train.shape[0])[:sample_size]:
 count = count + 1
 plt.subplot(1, sample_size, count)
 plt.axhline('')
 plt.axvline('')
 plt.text(x=10, y=-10, s=y_train[i], fontsize=18)
 plt.imshow(X_train[i].reshape(28, 28), cmap=plt.cm.Greys)
plt.show()

Train on a remote cluster

Load the compressed files into numpy arrays. Then use matplotlib to plot 30 random images from the dataset

with their labels above them. This step requires a load_data function that's included in an util.py file. This file

is included in the sample folder. Make sure it's placed in the same folder as this notebook. The load_data

function simply parses the compressed files into numpy arrays.

A random sample of images displays:

Now you have an idea of what these images look like and the expected prediction outcome.

For this task, you submit the job to run on the remote training cluster you set up earlier. To submit a job you:

Create a directory

Create a directory

import os
script_folder = os.path.join(os.getcwd(), "sklearn-mnist")
os.makedirs(script_folder, exist_ok=True)

Create a training script

Create a training script

Create an estimator object

Submit the job

Create a directory to deliver the necessary code from your computer to the remote resource.

To submit the job to the cluster, first create a training script. Run the following code to create the training script

called train.py in the directory you just created.

%%writefile $script_folder/train.py

import argparse
import os
import numpy as np
import glob

from sklearn.linear_model import LogisticRegression
import joblib

from azureml.core import Run
from utils import load_data

let user feed in 2 parameters, the dataset to mount or download, and the regularization rate of the
logistic regression model
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--regularization', type=float, dest='reg', default=0.01, help='regularization rate')
args = parser.parse_args()

data_folder = args.data_folder
print('Data folder:', data_folder)

load train and test set into numpy arrays
note we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can converge
faster.
X_train = load_data(glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'), recursive=True)
[0], False) / 255.0
X_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-images-idx3-ubyte.gz'), recursive=True)[0],
False) / 255.0
y_train = load_data(glob.glob(os.path.join(data_folder, '**/train-labels-idx1-ubyte.gz'), recursive=True)
[0], True).reshape(-1)
y_test = load_data(glob.glob(os.path.join(data_folder, '**/t10k-labels-idx1-ubyte.gz'), recursive=True)[0],
True).reshape(-1)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep = '\n')

get hold of the current run
run = Run.get_context()

print('Train a logistic regression model with regularization rate of', args.reg)
clf = LogisticRegression(C=1.0/args.reg, solver="liblinear", multi_class="auto", random_state=42)
clf.fit(X_train, y_train)

print('Predict the test set')
y_hat = clf.predict(X_test)

calculate accuracy on the prediction
acc = np.average(y_hat == y_test)
print('Accuracy is', acc)

run.log('regularization rate', np.float(args.reg))
run.log('accuracy', np.float(acc))

os.makedirs('outputs', exist_ok=True)
note file saved in the outputs folder is automatically uploaded into experiment record
joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

Notice how the script gets data and saves models:

The training script reads an argument to find the directory that contains the data. When you submit the

job later, you point to the datastore for this argument:
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data directory mounting
point')

The training script saves your model into a directory named outputs . Anything written in this directory

Create an estimator

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies

to install required packages
env = Environment('tutorial-env')
cd = CondaDependencies.create(pip_packages=['azureml-dataprep[pandas,fuse]>=1.1.14', 'azureml-defaults'],
conda_packages = ['scikit-learn==0.22.1'])

env.python.conda_dependencies = cd

Register environment to re-use later
env.register(workspace = ws)

import shutil
shutil.copy('utils.py', script_folder)

is automatically uploaded into your workspace. You access your model from this directory later in the

tutorial. joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

The training script requires the file utils.py to load the dataset correctly. The following code copies

utils.py into script_folder so that the file can be accessed along with the training script on the

remote resource.

An estimator object is used to submit the run. Azure Machine Learning has pre-configured estimators for

common machine learning frameworks, as well as generic Estimator. Create an estimator by specifying

The name of the estimator object, est .

The directory that contains your scripts. All the files in this directory are uploaded into the cluster nodes for

execution.

The compute target. In this case, you use the Azure Machine Learning compute cluster you created.

The training script name, train.py .

An environment that contains the libraries needed to run the script.

Parameters required from the training script.

In this tutorial, this target is AmlCompute. All files in the script folder are uploaded into the cluster nodes for

run. The data_folder is set to use the dataset. "First, create the environment that contains: the scikit-learn

library, azureml-dataprep required for accessing the dataset, and azureml-defaults which contains the

dependencies for logging metrics. The azureml-defaults also contains the dependencies required for deploying

the model as a web service later in the part 2 of the tutorial.

Once the environment is defined, register it with the Workspace to re-use it in part 2 of the tutorial.

Then create the estimator with the following code.

from azureml.train.estimator import Estimator

script_params = {
 # to mount files referenced by mnist dataset
 '--data-folder': mnist_file_dataset.as_named_input('mnist_opendataset').as_mount(),
 '--regularization': 0.5
}

est = Estimator(source_directory=script_folder,
 script_params=script_params,
 compute_target=compute_target,
 environment_definition=env,
 entry_script='train.py')

Submit the job to the cluster

run = exp.submit(config=est)
run

Monitor a remote run

Jupyter widget

from azureml.widgets import RunDetails
RunDetails(run).show()

Run the experiment by submitting the estimator object:

Because the call is asynchronous, it returns a Preparing or Running state as soon as the job is started.

In total, the first run takes about 10 minutes . But for subsequent runs, as long as the script dependencies

don't change, the same image is reused. So the container startup time is much faster.

What happens while you wait:

Image creation: A Docker image is created that matches the Python environment specified by the

estimator. The image is uploaded to the workspace. Image creation and uploading takes about five

minutes .

This stage happens once for each Python environment because the container is cached for subsequent

runs. During image creation, logs are streamed to the run history. You can monitor the image creation

progress by using these logs.

Scaling: If the remote cluster requires more nodes to do the run than currently available, additional

nodes are added automatically. Scaling typically takes about five minutes.

Running: In this stage, the necessary scripts and files are sent to the compute target. Then datastores

are mounted or copied. And then the entr y_scr ipt is run. While the job is running, stdout and the

./logs directory are streamed to the run history. You can monitor the run's progress by using these logs.

Post-processing: The ./outputs directory of the run is copied over to the run history in your

workspace, so you can access these results.

You can check the progress of a running job in several ways. This tutorial uses a Jupyter widget and a

wait_for_completion method.

Watch the progress of the run with a Jupyter widget. Like the run submission, the widget is asynchronous and

provides live updates every 10 to 15 seconds until the job finishes:

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

Get log results upon completion

run.wait_for_completion(show_output=False) # specify True for a verbose log

Display run results

print(run.get_metrics())

Register model

print(run.get_file_names())

register model
model = run.register_model(model_name='sklearn_mnist',
 model_path='outputs/sklearn_mnist_model.pkl')
print(model.name, model.id, model.version, sep='\t')

The widget will look like the following at the end of training:

If you need to cancel a run, you can follow these instructions.

Model training and monitoring happen in the background. Wait until the model has finished training before you

run more code. Use wait_for_completion to show when the model training is finished:

You now have a model trained on a remote cluster. Retrieve the accuracy of the model:

The output shows the remote model has accuracy of 0.9204:

{'regularization rate': 0.8, 'accuracy': 0.9204}

In the next tutorial, you explore this model in more detail.

The last step in the training script wrote the file outputs/sklearn_mnist_model.pkl in a directory named outputs

in the VM of the cluster where the job is run. outputs is a special directory in that all content in this directory is

automatically uploaded to your workspace. This content appears in the run record in the experiment under your

workspace. So the model file is now also available in your workspace.

You can see files associated with that run:

Register the model in the workspace, so that you or other collaborators can later query, examine, and deploy

this model:

https://aka.ms/aml-docs-cancel-run

Clean up resources

IMPORTANT

Optionally, delete the Azure Machine Learning Compute cluster
compute_target.delete()

Next steps

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

You can also delete just the Azure Machine Learning Compute cluster. However, autoscale is turned on, and the

cluster minimum is zero. So this particular resource won't incur additional compute charges when not in use:

In this Azure Machine Learning tutorial, you used Python for the following tasks:

Set up your development environment.

Access and examine the data.

Train multiple models on a remote cluster using the popular scikit-learn machine learning library

Review training details and register the best model.

You're ready to deploy this registered model by using the instructions in the next part of the tutorial series:

Tutorial 2 - Deploy models

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png

Tutorial: Deploy an image classification model in
Azure Container Instances
4/24/2020 • 7 minutes to read • Edit Online

NOTE

Prerequisites

IMPORTANT

Set up the environment

Import packages

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This tutorial is par t two of a two-par t tutor ial ser ies . In the previous tutorial, you trained machine learning

models and then registered a model in your workspace on the cloud. Now you're ready to deploy the model as a

web service. A web service is an image, in this case a Docker image. It encapsulates the scoring logic and the

model itself.

In this part of the tutorial, you use Azure Machine Learning for the following tasks:

Set up your testing environment.

Retrieve the model from your workspace.

Deploy the model to Container Instances.

Test the deployed model.

Container Instances is a great solution for testing and understanding the workflow. For scalable production

deployments, consider using Azure Kubernetes Service. For more information, see how to deploy and where.

Code in this article was tested with Azure Machine Learning SDK version 1.0.83.

To run the notebook, first complete the model training in Tutorial (part 1): Train an image classification model.

Then open the img-classification-part2-deploy.ipynb notebook in your cloned tutorials/image-classification-

mnist-data folder.

This tutorial is also available on GitHub if you wish to use it on your own local environment. Make sure you have

installed matplotlib and scikit-learn in your environment.

The rest of this article contains the same content as you see in the notebook.

Switch to the Jupyter notebook now if you want to read along as you run the code. To run a single code cell in a notebook,

click the code cell and hit Shift+Enter . Or, run the entire notebook by choosing Run all from the top toolbar.

Start by setting up a testing environment.

Import the Python packages needed for this tutorial.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-deploy-models-with-aml.md
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

import azureml.core

Display the core SDK version number
print("Azure ML SDK Version: ", azureml.core.VERSION)

Deploy as web service

Create scoring script

%%writefile score.py
import json
import numpy as np
import os
import pickle
import joblib

def init():
 global model
 # AZUREML_MODEL_DIR is an environment variable created during deployment.
 # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
 # For multiple models, it points to the folder containing all deployed models (./azureml-models)
 model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_mnist_model.pkl')
 model = joblib.load(model_path)

def run(raw_data):
 data = np.array(json.loads(raw_data)['data'])
 # make prediction
 y_hat = model.predict(data)
 # you can return any data type as long as it is JSON-serializable
 return y_hat.tolist()

Create configuration file

Deploy the model as a web service hosted in ACI.

To build the correct environment for ACI, provide the following:

A scoring script to show how to use the model

A configuration file to build the ACI

The model you trained before

Create the scoring script, called score.py, used by the web service call to show how to use the model.

You must include two required functions into the scoring script:

The init() function, which typically loads the model into a global object. This function is run only once

when the Docker container is started.

The run(input_data) function uses the model to predict a value based on the input data. Inputs and

outputs to the run typically use JSON for serialization and de-serialization, but other formats are

supported.

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for your ACI

container. While it depends on your model, the default of 1 core and 1 gigabyte of RAM is usually sufficient for

many models. If you feel you need more later, you would have to recreate the image and redeploy the service.

from azureml.core.webservice import AciWebservice

aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
 memory_gb=1,
 tags={"data": "MNIST", "method" : "sklearn"},
 description='Predict MNIST with sklearn')

Deploy in ACI

%%time
from azureml.core.webservice import Webservice
from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment
from azureml.core import Workspace
from azureml.core.model import Model

ws = Workspace.from_config()
model = Model(ws, 'sklearn_mnist')

myenv = Environment.get(workspace=ws, name="tutorial-env", version="1")
inference_config = InferenceConfig(entry_script="score.py", environment=tutorial-env)

service = Model.deploy(workspace=ws,
 name='sklearn-mnist-svc3',
 models=[model],
 inference_config=inference_config,
 deployment_config=aciconfig)

service.wait_for_deployment(show_output=True)

print(service.scoring_uri)

Test the model
Download test data

Estimated time to complete: about 2-5 minutes

Configure the image and deploy. The following code goes through these steps:

1. Create environment object containing dependencies needed by the model using the environment (

tutorial-env) saved during training.

2. Create inference configuration necessary to deploy the model as a web service using:

3. Deploy the model to the ACI container.

4. Get the web service HTTP endpoint.

The scoring file (score.py)

environment object created in previous step

Get the scoring web service's HTTP endpoint, which accepts REST client calls. This endpoint can be shared with

anyone who wants to test the web service or integrate it into an application.

Download the test data to the ./data/ directory

import os
from azureml.core import Dataset
from azureml.opendatasets import MNIST

data_folder = os.path.join(os.getcwd(), 'data')
os.makedirs(data_folder, exist_ok=True)

mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)

Load test data

from utils import load_data
import os
import glob

data_folder = os.path.join(os.getcwd(), 'data')
note we also shrink the intensity values (X) from 0-255 to 0-1. This helps the neural network converge
faster
X_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-images-idx3-ubyte.gz"), recursive=True)[0],
False) / 255.0
y_test = load_data(glob.glob(os.path.join(data_folder,"**/t10k-labels-idx1-ubyte.gz"), recursive=True)[0],
True).reshape(-1)

Predict test data

import json
test = json.dumps({"data": X_test.tolist()})
test = bytes(test, encoding='utf8')
y_hat = service.run(input_data=test)

Examine the confusion matrix

from sklearn.metrics import confusion_matrix

conf_mx = confusion_matrix(y_test, y_hat)
print(conf_mx)
print('Overall accuracy:', np.average(y_hat == y_test))

Load the test data from the ./data/ directory created during the training tutorial.

Feed the test dataset to the model to get predictions.

The following code goes through these steps:

1. Send the data as a JSON array to the web service hosted in ACI.

2. Use the SDK's run API to invoke the service. You can also make raw calls using any HTTP tool such as curl.

Generate a confusion matrix to see how many samples from the test set are classified correctly. Notice the mis-

classified value for the incorrect predictions.

The output shows the confusion matrix:

[[960 0 1 2 1 5 6 3 1 1]
 [0 1112 3 1 0 1 5 1 12 0]
 [9 8 920 20 10 4 10 11 37 3]
 [4 0 17 921 2 21 4 12 20 9]
 [1 2 5 3 915 0 10 2 6 38]
 [10 2 0 41 10 770 17 7 28 7]
 [9 3 7 2 6 20 907 1 3 0]
 [2 7 22 5 8 1 1 950 5 27]
 [10 15 5 21 15 27 7 11 851 12]
 [7 8 2 13 32 13 0 24 12 898]]
Overall accuracy: 0.9204

normalize the diagonal cells so that they don't overpower the rest of the cells when visualized
row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums
np.fill_diagonal(norm_conf_mx, 0)

fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
cax = ax.matshow(norm_conf_mx, cmap=plt.cm.bone)
ticks = np.arange(0, 10, 1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(ticks)
ax.set_yticklabels(ticks)
fig.colorbar(cax)
plt.ylabel('true labels', fontsize=14)
plt.xlabel('predicted values', fontsize=14)
plt.savefig('conf.png')
plt.show()

Show predictions

Use matplotlib to display the confusion matrix as a graph. In this graph, the X axis represents the actual values,

and the Y axis represents the predicted values. The color in each grid represents the error rate. The lighter the

color, the higher the error rate is. For example, many 5's are mis-classified as 3's. So you see a bright grid at (5,3).

Test the deployed model with a random sample of 30 images from the test data.

1. Print the returned predictions and plot them along with the input images. Red font and inverse image (white

on black) is used to highlight the misclassified samples.

Since the model accuracy is high, you might have to run the following code a few times before you can see a

misclassified sample.

import json

find 30 random samples from test set
n = 30
sample_indices = np.random.permutation(X_test.shape[0])[0:n]

test_samples = json.dumps({"data": X_test[sample_indices].tolist()})
test_samples = bytes(test_samples, encoding='utf8')

predict using the deployed model
result = service.run(input_data=test_samples)

compare actual value vs. the predicted values:
i = 0
plt.figure(figsize = (20, 1))

for s in sample_indices:
 plt.subplot(1, n, i + 1)
 plt.axhline('')
 plt.axvline('')

 # use different color for misclassified sample
 font_color = 'red' if y_test[s] != result[i] else 'black'
 clr_map = plt.cm.gray if y_test[s] != result[i] else plt.cm.Greys

 plt.text(x=10, y=-10, s=result[i], fontsize=18, color=font_color)
 plt.imshow(X_test[s].reshape(28, 28), cmap=clr_map)

 i = i + 1
plt.show()

import requests

send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1)
input_data = "{\"data\": [" + str(list(X_test[random_index])) + "]}"

headers = {'Content-Type': 'application/json'}

for AKS deployment you'd need to the service key in the header as well
api_key = service.get_key()
headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ api_key)}

resp = requests.post(service.scoring_uri, input_data, headers=headers)

print("POST to url", service.scoring_uri)
#print("input data:", input_data)
print("label:", y_test[random_index])
print("prediction:", resp.text)

Clean up resources

service.delete()

You can also send raw HTTP request to test the web service.

To keep the resource group and workspace for other tutorials and exploration, you can delete only the Container

Instances deployment by using this API call:

IMPORTANT

Next steps

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

Learn about all of the deployment options for Azure Machine Learning.

Learn how to create clients for the web service.

Make predictions on large quantities of data asynchronously.

Monitor your Azure Machine Learning models with Application Insights.

Try out the automatic algorithm selection tutorial.

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png

Tutorial: Use automated machine learning to predict
taxi fares
2/10/2020 • 14 minutes to read • Edit Online

Prerequisites

Download and prepare data

from azureml.opendatasets import NycTlcGreen
import pandas as pd
from datetime import datetime
from dateutil.relativedelta import relativedelta

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you use automated machine learning in Azure Machine Learning to create a regression model to

predict NYC taxi fare prices. This process accepts training data and configuration settings, and automatically

iterates through combinations of different feature normalization/standardization methods, models, and

hyperparameter settings to arrive at the best model.

In this tutorial you learn the following tasks:

Download, transform, and clean data using Azure Open Datasets

Train an automated machine learning regression model

Calculate model accuracy

If you don’t have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today.

Complete the setup tutorial if you don't already have an Azure Machine Learning workspace or notebook

virtual machine.

After you complete the setup tutorial, open the tutorials/regression-automl-nyc-taxi-data/regression-

automated-ml.ipynb notebook using the same notebook server.

This tutorial is also available on GitHub if you wish to run it in your own local environment. Run

pip install azureml-sdk[automl] azureml-opendatasets azureml-widgets to get the required packages.

Import the necessary packages. The Open Datasets package contains a class representing each data source (

NycTlcGreen for example) to easily filter date parameters before downloading.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-auto-train-models.md
https://aka.ms/AMLFree
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

green_taxi_df = pd.DataFrame([])
start = datetime.strptime("1/1/2015","%m/%d/%Y")
end = datetime.strptime("1/31/2015","%m/%d/%Y")

for sample_month in range(12):
 temp_df_green = NycTlcGreen(start + relativedelta(months=sample_month), end +
relativedelta(months=sample_month)) \
 .to_pandas_dataframe()
 green_taxi_df = green_taxi_df.append(temp_df_green.sample(2000))

green_taxi_df.head(10)

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

1
3
1
9
6
9

2 2
0
1
5
-
0
1
-
1
1
0
5
:
3
4
:
4
4

2
0
1
5
-
0
1
-
1
1
0
5
:
4
5
:
0
3

3 4
.
8
4

N
o
n
e

N
o
n
e

-
7
3
.
8
8

4
0
.
8
4

-
7
3
.
9
4

... 2 1
5
.
0
0

0
.
5
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
6
.
3
0

1
.
0
0

Begin by creating a dataframe to hold the taxi data. When working in a non-Spark environment, Open Datasets

only allows downloading one month of data at a time with certain classes to avoid MemoryError with large

datasets.

To download taxi data, iteratively fetch one month at a time, and before appending it to green_taxi_df randomly

sample 2,000 records from each month to avoid bloating the dataframe. Then preview the data.

1
1
2
9
8
1
7

2 2
0
1
5
-
0
1
-
2
0
1
6
:
2
6
:
2
9

2
0
1
5
-
0
1
-
2
0
1
6
:
3
0
:
2
6

1 0
.
6
9

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
8
1

-
7
3
.
9
6

... 2 4
.
5
0

1
.
0
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
3
0

1
.
0
0

1
2
7
8
6
2
0

2 2
0
1
5
-
0
1
-
0
1
0
5
:
5
8
:
1
0

2
0
1
5
-
0
1
-
0
1
0
6
:
0
0
:
5
5

1 0
.
4
5

N
o
n
e

N
o
n
e

-
7
3
.
9
2

4
0
.
7
6

-
7
3
.
9
1

... 2 4
.
0
0

0
.
0
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

4
.
8
0

1
.
0
0

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

3
4
8
4
3
0

2 2
0
1
5
-
0
1
-
1
7
0
2
:
2
0
:
5
0

2
0
1
5
-
0
1
-
1
7
0
2
:
4
1
:
3
8

1 0
.
0
0

N
o
n
e

N
o
n
e

-
7
3
.
8
1

4
0
.
7
0

-
7
3
.
8
2

... 2 1
2
.
5
0

0
.
5
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
3
.
8
0

1
.
0
0

1
2
6
9
6
2
7

1 2
0
1
5
-
0
1
-
0
1
0
5
:
0
4
:
1
0

2
0
1
5
-
0
1
-
0
1
0
5
:
0
6
:
2
3

1 0
.
5
0

N
o
n
e

N
o
n
e

-
7
3
.
9
2

4
0
.
7
6

-
7
3
.
9
2

... 2 4
.
0
0

0
.
5
0

0
.
5
0

0 0
.
0
0

0
.
0
0

n
a
n

5
.
0
0

1
.
0
0

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

8
1
1
7
5
5

1 2
0
1
5
-
0
1
-
0
4
1
9
:
5
7
:
5
1

2
0
1
5
-
0
1
-
0
4
2
0
:
0
5
:
4
5

2 1
.
1
0

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
7
2

-
7
3
.
9
5

... 2 6
.
5
0

0
.
5
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

7
.
8
0

1
.
0
0

7
3
7
2
8
1

1 2
0
1
5
-
0
1
-
0
3
1
2
:
2
7
:
3
1

2
0
1
5
-
0
1
-
0
3
1
2
:
3
3
:
5
2

1 0
.
9
0

N
o
n
e

N
o
n
e

-
7
3
.
8
8

4
0
.
7
6

-
7
3
.
8
7

... 2 6
.
0
0

0
.
0
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
8
0

1
.
0
0

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

1
1
3
9
5
1

1 2
0
1
5
-
0
1
-
0
9
2
3
:
2
5
:
5
1

2
0
1
5
-
0
1
-
0
9
2
3
:
3
9
:
5
2

1 3
.
3
0

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
7
2

-
7
3
.
9
1

... 2 1
2
.
5
0

0
.
5
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
3
.
8
0

1
.
0
0

1
5
0
4
3
6

2 2
0
1
5
-
0
1
-
1
1
1
7
:
1
5
:
1
4

2
0
1
5
-
0
1
-
1
1
1
7
:
2
2
:
5
7

1 1
.
1
9

N
o
n
e

N
o
n
e

-
7
3
.
9
4

4
0
.
7
1

-
7
3
.
9
5

... 1 7
.
0
0

0
.
0
0

0
.
5
0

0
.
3

1
.
7
5

0
.
0
0

n
a
n

9
.
5
5

1
.
0
0

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

4
3
2
1
3
6

2 2
0
1
5
-
0
1
-
2
2
2
3
:
1
6
:
3
3

2
0
1
5
-
0
1
-
2
2
2
3
:
2
0
:
1
3

1 0
.
6
5

N
o
n
e

N
o
n
e

-
7
3
.
9
4

4
0
.
7
1

-
7
3
.
9
4

... 2 5
.
0
0

0
.
5
0

0
.
5
0

0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
3
0

1
.
0
0

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E

. .

.

P
A
Y
M
E
N
T
T
Y
P
E

F
A
R
E
A
M
O
U
N
T

E
X
T
R
A

M
T
A
T
A
X

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

def build_time_features(vector):
 pickup_datetime = vector[0]
 month_num = pickup_datetime.month
 day_of_month = pickup_datetime.day
 day_of_week = pickup_datetime.weekday()
 hour_of_day = pickup_datetime.hour

 return pd.Series((month_num, day_of_month, day_of_week, hour_of_day))

green_taxi_df[["month_num", "day_of_month","day_of_week", "hour_of_day"]] =
green_taxi_df[["lpepPickupDatetime"]].apply(build_time_features, axis=1)
green_taxi_df.head(10)

10 rows × 23 columns

Now that the initial data is loaded, define a function to create various time-based features from the pickup

datetime field. This will create new fields for the month number, day of month, day of week, and hour of day, and

will allow the model to factor in time-based seasonality. Use the apply() function on the dataframe to iteratively

apply the build_time_features() function to each row in the taxi data.

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E . .

.

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

M
O
N
T
H
_
N
U
M

D
A
Y
_
O
F
_
M
O
N
T
H

D
A
Y
_
O
F
_
W
E
E
K

H
O
U
R
_
O
F
_
D
A
Y

1
3
1
9
6
9

2 2
0
1
5
-
0
1
-
1
1
0
5
:
3
4
:
4
4

2
0
1
5
-
0
1
-
1
1
0
5
:
4
5
:
0
3

3 4
.
8
4

N
o
n
e

N
o
n
e

-
7
3
.
8
8

4
0
.
8
4

-
7
3
.
9
4

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
6
.
3
0

1
.
0
0

1 1
1

6 5

1
1
2
9
8
1
7

2 2
0
1
5
-
0
1
-
2
0
1
6
:
2
6
:
2
9

2
0
1
5
-
0
1
-
2
0
1
6
:
3
0
:
2
6

1 0
.
6
9

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
8
1

-
7
3
.
9
6

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
3
0

1
.
0
0

1 2
0

1 1
6

1
2
7
8
6
2
0

2 2
0
1
5
-
0
1
-
0
1
0
5
:
5
8
:
1
0

2
0
1
5
-
0
1
-
0
1
0
6
:
0
0
:
5
5

1 0
.
4
5

N
o
n
e

N
o
n
e

-
7
3
.
9
2

4
0
.
7
6

-
7
3
.
9
1

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

4
.
8
0

1
.
0
0

1 1 3 5

3
4
8
4
3
0

2 2
0
1
5
-
0
1
-
1
7
0
2
:
2
0
:
5
0

2
0
1
5
-
0
1
-
1
7
0
2
:
4
1
:
3
8

1 0
.
0
0

N
o
n
e

N
o
n
e

-
7
3
.
8
1

4
0
.
7
0

-
7
3
.
8
2

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
3
.
8
0

1
.
0
0

1 1
7

5 2

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E . .

.

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

M
O
N
T
H
_
N
U
M

D
A
Y
_
O
F
_
M
O
N
T
H

D
A
Y
_
O
F
_
W
E
E
K

H
O
U
R
_
O
F
_
D
A
Y

1
2
6
9
6
2
7

1 2
0
1
5
-
0
1
-
0
1
0
5
:
0
4
:
1
0

2
0
1
5
-
0
1
-
0
1
0
5
:
0
6
:
2
3

1 0
.
5
0

N
o
n
e

N
o
n
e

-
7
3
.
9
2

4
0
.
7
6

-
7
3
.
9
2

... 0 0
.
0
0

0
.
0
0

n
a
n

5
.
0
0

1
.
0
0

1 1 3 5

8
1
1
7
5
5

1 2
0
1
5
-
0
1
-
0
4
1
9
:
5
7
:
5
1

2
0
1
5
-
0
1
-
0
4
2
0
:
0
5
:
4
5

2 1
.
1
0

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
7
2

-
7
3
.
9
5

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

7
.
8
0

1
.
0
0

1 4 6 1
9

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E . .

.

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

M
O
N
T
H
_
N
U
M

D
A
Y
_
O
F
_
M
O
N
T
H

D
A
Y
_
O
F
_
W
E
E
K

H
O
U
R
_
O
F
_
D
A
Y

7
3
7
2
8
1

1 2
0
1
5
-
0
1
-
0
3
1
2
:
2
7
:
3
1

2
0
1
5
-
0
1
-
0
3
1
2
:
3
3
:
5
2

1 0
.
9
0

N
o
n
e

N
o
n
e

-
7
3
.
8
8

4
0
.
7
6

-
7
3
.
8
7

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
8
0

1
.
0
0

1 3 5 1
2

1
1
3
9
5
1

1 2
0
1
5
-
0
1
-
0
9
2
3
:
2
5
:
5
1

2
0
1
5
-
0
1
-
0
9
2
3
:
3
9
:
5
2

1 3
.
3
0

N
o
n
e

N
o
n
e

-
7
3
.
9
6

4
0
.
7
2

-
7
3
.
9
1

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

1
3
.
8
0

1
.
0
0

1 9 4 2
3

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E . .

.

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

M
O
N
T
H
_
N
U
M

D
A
Y
_
O
F
_
M
O
N
T
H

D
A
Y
_
O
F
_
W
E
E
K

H
O
U
R
_
O
F
_
D
A
Y

1
5
0
4
3
6

2 2
0
1
5
-
0
1
-
1
1
1
7
:
1
5
:
1
4

2
0
1
5
-
0
1
-
1
1
1
7
:
2
2
:
5
7

1 1
.
1
9

N
o
n
e

N
o
n
e

-
7
3
.
9
4

4
0
.
7
1

-
7
3
.
9
5

... 0
.
3

1
.
7
5

0
.
0
0

n
a
n

9
.
5
5

1
.
0
0

1 1
1

6 1
7

4
3
2
1
3
6

2 2
0
1
5
-
0
1
-
2
2
2
3
:
1
6
:
3
3

2
0
1
5
-
0
1
-
2
2
2
3
:
2
0
:
1
3

1 0
.
6
5

N
o
n
e

N
o
n
e

-
7
3
.
9
4

4
0
.
7
1

-
7
3
.
9
4

... 0
.
3

0
.
0
0

0
.
0
0

n
a
n

6
.
3
0

1
.
0
0

1 2
2

3 2
3

V
E
N
D
O
R
I
D

L
P
E
P
P
I
C
K
U
P
D
A
T
E
T
I
M
E

L
P
E
P
D
R
O
P
O
F
F
D
A
T
E
T
I
M
E

P
A
S
S
E
N
G
E
R
C
O
U
N
T

T
R
I
P
D
I
S
T
A
N
C
E

P
U
L
O
C
A
T
I
O
N
I
D

D
O
L
O
C
A
T
I
O
N
I
D

P
I
C
K
U
P
L
O
N
G
I
T
U
D
E

P
I
C
K
U
P
L
A
T
I
T
U
D
E

D
R
O
P
O
F
F
L
O
N
G
I
T
U
D
E . .

.

I
M
P
R
O
V
E
M
E
N
T
S
U
R
C
H
A
R
G
E

T
I
P
A
M
O
U
N
T

T
O
L
L
S
A
M
O
U
N
T

E
H
A
I
L
F
E
E

T
O
T
A
L
A
M
O
U
N
T

T
R
I
P
T
Y
P
E

M
O
N
T
H
_
N
U
M

D
A
Y
_
O
F
_
M
O
N
T
H

D
A
Y
_
O
F
_
W
E
E
K

H
O
U
R
_
O
F
_
D
A
Y

10 rows × 27 columns

Remove some of the columns that you won't need for training or additional feature building.

columns_to_remove = ["lpepPickupDatetime", "lpepDropoffDatetime", "puLocationId", "doLocationId", "extra",
"mtaTax",
 "improvementSurcharge", "tollsAmount", "ehailFee", "tripType", "rateCodeID",
 "storeAndFwdFlag", "paymentType", "fareAmount", "tipAmount"
]
for col in columns_to_remove:
 green_taxi_df.pop(col)

green_taxi_df.head(5)

Cleanse data

green_taxi_df.describe()

VEN
DO RI
D

PA SS
EN GE
RC O
UN T

T RIP
DIST
A N C
E

P IC K
UP LO
N GIT
UDE

P IC K
UP L A
T IT U
DE

DRO
P O F F
LO N
GIT U
DE

DRO
P O F F
L AT I
T UDE

TOTA
L A M
O UN
T

M O N
T H _N
UM

DAY _
O F _
M O N
T H

DAY _
O F _
W EEK

H O U
R_O F
_DAY

C O UN
T

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

4800
0.00

M EA N

1.78 1.37 2.87 -
73.8
3

40.6
9

-
73.8
4

40.7
0

14.7
5

6.50 15.1
3

3.27 13.5
2

ST D
0.41 1.04 2.93 2.76 1.52 2.61 1.44 12.0

8
3.45 8.45 1.95 6.83

M IN

1.00 0.00 0.00 -
74.6
6

0.00 -
74.6
6

0.00 -
300.
00

1.00 1.00 0.00 0.00

25%

2.00 1.00 1.06 -
73.9
6

40.7
0

-
73.9
7

40.7
0

7.80 3.75 8.00 2.00 9.00

50%

2.00 1.00 1.90 -
73.9
4

40.7
5

-
73.9
4

40.7
5

11.3
0

6.50 15.0
0

3.00 15.0
0

75%

2.00 1.00 3.60 -
73.9
2

40.8
0

-
73.9
1

40.7
9

17.8
0

9.25 22.0
0

5.00 19.0
0

M A X
2.00 9.00 97.5

7
0.00 41.9

3
0.00 41.9

4
450.
00

12.0
0

30.0
0

6.00 23.0
0

Run the describe() function on the new dataframe to see summary statistics for each field.

From the summary statistics, you see that there are several fields that have outliers or values that will reduce

model accuracy. First filter the lat/long fields to be within the bounds of the Manhattan area. This will filter out

longer taxi trips or trips that are outliers in respect to their relationship with other features.

Additionally filter the tripDistance field to be greater than zero but less than 31 miles (the haversine distance

between the two lat/long pairs). This eliminates long outlier trips that have inconsistent trip cost.

final_df = green_taxi_df.query("pickupLatitude>=40.53 and pickupLatitude<=40.88")
final_df = final_df.query("pickupLongitude>=-74.09 and pickupLongitude<=-73.72")
final_df = final_df.query("tripDistance>=0.25 and tripDistance<31")
final_df = final_df.query("passengerCount>0 and totalAmount>0")

columns_to_remove_for_training = ["pickupLongitude", "pickupLatitude", "dropoffLongitude",
"dropoffLatitude"]
for col in columns_to_remove_for_training:
 final_df.pop(col)

final_df.describe()

Configure workspace

from azureml.core.workspace import Workspace
ws = Workspace.from_config()

Split the data into train and test sets

from sklearn.model_selection import train_test_split

y_df = final_df.pop("totalAmount")
x_df = final_df

x_train, x_test, y_train, y_test = train_test_split(x_df, y_df, test_size=0.2, random_state=223)

Automatically train a model

Lastly, the totalAmount field has negative values for the taxi fares, which don't make sense in the context of our

model, and the passengerCount field has bad data with the minimum values being zero.

Filter out these anomalies using query functions, and then remove the last few columns unnecessary for training.

Call describe() again on the data to ensure cleansing worked as expected. You now have a prepared and

cleansed set of taxi, holiday, and weather data to use for machine learning model training.

Create a workspace object from the existing workspace. A Workspace is a class that accepts your Azure

subscription and resource information. It also creates a cloud resource to monitor and track your model runs.

Workspace.from_config() reads the file config.json and loads the authentication details into an object named

ws . ws is used throughout the rest of the code in this tutorial.

Split the data into training and test sets by using the train_test_split function in the scikit-learn library. This

function segregates the data into the x (features) data set for model training and the y (values to predict) data

set for testing.

The test_size parameter determines the percentage of data to allocate to testing. The random_state parameter

sets a seed to the random generator, so that your train-test splits are deterministic.

The purpose of this step is to have data points to test the finished model that haven't been used to train the

model, in order to measure true accuracy.

In other words, a well-trained model should be able to accurately make predictions from data it hasn't already

seen. You now have data prepared for auto-training a machine learning model.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py

Define training settings

P RO P ERT Y VA L UE IN T H IS T UTO RIA L DESC RIP T IO N

iteration_timeout_minutes 2 Time limit in minutes for each iteration.
Reduce this value to decrease total
runtime.

experiment_timeout_minutes 20 Maximum amount of time in minutes
that all iterations combined can take
before the experiment terminates.

enable_early_stopping True Flag to enable early termination if the
score is not improving in the short
term.

primar y_metric spearman_correlation Metric that you want to optimize. The
best-fit model will be chosen based on
this metric.

featurization auto By using auto, the experiment can
preprocess the input data (handling
missing data, converting text to
numeric, etc.)

verbosity logging.INFO Controls the level of logging.

n_cross_validations 5 Number of cross-validation splits to
perform when validation data is not
specified.

import logging

automl_settings = {
 "iteration_timeout_minutes": 2,
 "experiment_timeout_minutes": 20,
 "enable_early_stopping": True,
 "primary_metric": 'spearman_correlation',
 "featurization": 'auto',
 "verbosity": logging.INFO,
 "n_cross_validations": 5
}

To automatically train a model, take the following steps:

1. Define settings for the experiment run. Attach your training data to the configuration, and modify settings that

control the training process.

2. Submit the experiment for model tuning. After submitting the experiment, the process iterates through

different machine learning algorithms and hyperparameter settings, adhering to your defined constraints. It

chooses the best-fit model by optimizing an accuracy metric.

Define the experiment parameter and model settings for training. View the full list of settings. Submitting the

experiment with these default settings will take approximately 5-20 min, but if you want a shorter run time,

reduce the experiment_timeout_minutes parameter.

Use your defined training settings as a **kwargs parameter to an AutoMLConfig object. Additionally, specify your

training data and the type of model, which is regression in this case.

from azureml.train.automl import AutoMLConfig

automl_config = AutoMLConfig(task='regression',
 debug_log='automated_ml_errors.log',
 X=x_train.values,
 y=y_train.values.flatten(),
 **automl_settings)

NOTE

Train the automatic regression model

from azureml.core.experiment import Experiment
experiment = Experiment(ws, "taxi-experiment")
local_run = experiment.submit(automl_config, show_output=True)

Automated machine learning pre-processing steps (feature normalization, handling missing data, converting text to

numeric, etc.) become part of the underlying model. When using the model for predictions, the same pre-processing steps

applied during training are applied to your input data automatically.

Create an experiment object in your workspace. An experiment acts as a container for your individual runs. Pass

the defined automl_config object to the experiment, and set the output to True to view progress during the run.

After starting the experiment, the output shown updates live as the experiment runs. For each iteration, you see

the model type, the run duration, and the training accuracy. The field BEST tracks the best running training score

based on your metric type.

Running on local machine
Parent Run ID: AutoML_1766cdf7-56cf-4b28-a340-c4aeee15b12b
Current status: DatasetFeaturization. Beginning to featurize the dataset.
Current status: DatasetEvaluation. Gathering dataset statistics.
Current status: FeaturesGeneration. Generating features for the dataset.
Current status: DatasetFeaturizationCompleted. Completed featurizing the dataset.
Current status: DatasetCrossValidationSplit. Generating individually featurized CV splits.
Current status: ModelSelection. Beginning model selection.

**
ITERATION: The iteration being evaluated.
PIPELINE: A summary description of the pipeline being evaluated.
DURATION: Time taken for the current iteration.
METRIC: The result of computing score on the fitted pipeline.
BEST: The best observed score thus far.
**

 ITERATION PIPELINE DURATION METRIC BEST
 0 StandardScalerWrapper RandomForest 0:00:16 0.8746 0.8746
 1 MinMaxScaler RandomForest 0:00:15 0.9468 0.9468
 2 StandardScalerWrapper ExtremeRandomTrees 0:00:09 0.9303 0.9468
 3 StandardScalerWrapper LightGBM 0:00:10 0.9424 0.9468
 4 RobustScaler DecisionTree 0:00:09 0.9449 0.9468
 5 StandardScalerWrapper LassoLars 0:00:09 0.9440 0.9468
 6 StandardScalerWrapper LightGBM 0:00:10 0.9282 0.9468
 7 StandardScalerWrapper RandomForest 0:00:12 0.8946 0.9468
 8 StandardScalerWrapper LassoLars 0:00:16 0.9439 0.9468
 9 MinMaxScaler ExtremeRandomTrees 0:00:35 0.9199 0.9468
 10 RobustScaler ExtremeRandomTrees 0:00:19 0.9411 0.9468
 11 StandardScalerWrapper ExtremeRandomTrees 0:00:13 0.9077 0.9468
 12 StandardScalerWrapper LassoLars 0:00:15 0.9433 0.9468
 13 MinMaxScaler ExtremeRandomTrees 0:00:14 0.9186 0.9468
 14 RobustScaler RandomForest 0:00:10 0.8810 0.9468
 15 StandardScalerWrapper LassoLars 0:00:55 0.9433 0.9468
 16 StandardScalerWrapper ExtremeRandomTrees 0:00:13 0.9026 0.9468
 17 StandardScalerWrapper RandomForest 0:00:13 0.9140 0.9468
 18 VotingEnsemble 0:00:23 0.9471 0.9471
 19 StackEnsemble 0:00:27 0.9463 0.9471

Explore the results

from azureml.widgets import RunDetails
RunDetails(local_run).show()

Explore the results of automatic training with a Jupyter widget. The widget allows you to see a graph and table of

all individual run iterations, along with training accuracy metrics and metadata. Additionally, you can filter on

different accuracy metrics than your primary metric with the dropdown selector.

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

Retrieve the best model

best_run, fitted_model = local_run.get_output()
print(best_run)
print(fitted_model)

Test the best model accuracy

y_predict = fitted_model.predict(x_test.values)
print(y_predict[:10])

Select the best model from your iterations. The get_output function returns the best run and the fitted model for

the last fit invocation. By using the overloads on get_output , you can retrieve the best run and fitted model for

any logged metric or a particular iteration.

Use the best model to run predictions on the test data set to predict taxi fares. The function predict uses the

best model and predicts the values of y, tr ip cost , from the x_test data set. Print the first 10 predicted cost

values from y_predict .

Calculate the root mean squared error of the results. Convert the y_test dataframe to a list to compare to the

predicted values. The function mean_squared_error takes two arrays of values and calculates the average squared

error between them. Taking the square root of the result gives an error in the same units as the y variable, cost. It

indicates roughly how far the taxi fare predictions are from the actual fares.

from sklearn.metrics import mean_squared_error
from math import sqrt

y_actual = y_test.values.flatten().tolist()
rmse = sqrt(mean_squared_error(y_actual, y_predict))
rmse

sum_actuals = sum_errors = 0

for actual_val, predict_val in zip(y_actual, y_predict):
 abs_error = actual_val - predict_val
 if abs_error < 0:
 abs_error = abs_error * -1

 sum_errors = sum_errors + abs_error
 sum_actuals = sum_actuals + actual_val

mean_abs_percent_error = sum_errors / sum_actuals
print("Model MAPE:")
print(mean_abs_percent_error)
print()
print("Model Accuracy:")
print(1 - mean_abs_percent_error)

Model MAPE:
0.14353867606052823

Model Accuracy:
0.8564613239394718

Clean up resources

Stop the compute instance

Delete everything

Run the following code to calculate mean absolute percent error (MAPE) by using the full y_actual and

y_predict data sets. This metric calculates an absolute difference between each predicted and actual value and

sums all the differences. Then it expresses that sum as a percent of the total of the actual values.

From the two prediction accuracy metrics, you see that the model is fairly good at predicting taxi fares from the

data set's features, typically within +- $4.00, and approximately 15% error.

The traditional machine learning model development process is highly resource-intensive, and requires

significant domain knowledge and time investment to run and compare the results of dozens of models. Using

automated machine learning is a great way to rapidly test many different models for your scenario.

Do not complete this section if you plan on running other Azure Machine Learning tutorials.

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.

1. In your workspace, select Compute.

2. From the list, select the VM.

3. Select Stop.

4. When you're ready to use the server again, select Star t .

If you don't plan to use the resources you created, delete them, so you don't incur any charges.

Next steps

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select

Delete.

In this automated machine learning tutorial, you did the following tasks:

Configured a workspace and prepared data for an experiment.

Trained by using an automated regression model locally with custom parameters.

Explored and reviewed training results.

Deploy your model with Azure Machine Learning.

Tutorial: Build an Azure Machine Learning pipeline
for batch scoring
3/17/2020 • 11 minutes to read • Edit Online

Prerequisites

Configure workspace and create a datastore

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to build a pipeline in Azure Machine Learning to run a batch scoring job. Machine learning pipelines

optimize your workflow with speed, portability, and reuse, so you can focus on machine learning instead of

infrastructure and automation. After you build and publish a pipeline, you configure a REST endpoint that you can

use to trigger the pipeline from any HTTP library on any platform.

The example uses a pretrained Inception-V3 convolutional neural network model implemented in Tensorflow to

classify unlabeled images. Learn more about machine learning pipelines.

In this tutorial, you complete the following tasks:

Configure workspace

Download and store sample data

Create dataset objects to fetch and output data

Download, prepare, and register the model in your workspace

Provision compute targets and create a scoring script

Use the ParallelRunStep class for async batch scoring

Build, run, and publish a pipeline

Enable a REST endpoint for the pipeline

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today.

If you don't already have an Azure Machine Learning workspace or notebook virtual machine, complete Part 1

of the setup tutorial.

When you finish the setup tutorial, use the same notebook server to open the tutorials/machine-learning-

pipelines-advanced/tutorial-pipeline-batch-scoring-classification.ipynb notebook.

If you want to run the setup tutorial in your own local environment, you can access the tutorial on GitHub. Run

pip install azureml-sdk[notebooks] azureml-pipeline-core azureml-contrib-pipeline-steps pandas requests to get

the required packages.

Create a workspace object from the existing Azure Machine Learning workspace.

A workspace is a class that accepts your Azure subscription and resource information. The workspace also

creates a cloud resource you can use to monitor and track your model runs.

Workspace.from_config() reads the config.json file and then loads the authentication details into an object

named ws . The ws object is used in the code throughout this tutorial.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-pipeline-batch-scoring-classification.md
https://arxiv.org/abs/1512.00567
https://aka.ms/AMLFree
https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py

from azureml.core import Workspace
ws = Workspace.from_config()

Create a datastore for sample images

from azureml.core.datastore import Datastore

batchscore_blob = Datastore.register_azure_blob_container(ws,
 datastore_name="images_datastore",
 container_name="sampledata",
 account_name="pipelinedata",
 overwrite=True)

def_data_store = ws.get_default_datastore()

Create dataset objects

IMPORTANT

from azureml.core.dataset import Dataset
from azureml.pipeline.core import PipelineData

input_images = Dataset.File.from_files((batchscore_blob, "batchscoring/images/"))
label_ds = Dataset.File.from_files((batchscore_blob, "batchscoring/labels/*.txt"))
output_dir = PipelineData(name="scores",
 datastore=def_data_store,
 output_path_on_compute="batchscoring/results")

input_images = input_images.register(workspace = ws, name = "input_images")
label_ds = label_ds.register(workspace = ws, name = "label_ds")

On the pipelinedata account, get the ImageNet evaluation public data sample from the sampledata public blob

container. Call register_azure_blob_container() to make the data available to the workspace under the name

images_datastore . Then, set the workspace default datastore as the output datastore. Use the output datastore to

score output in the pipeline.

When building pipelines, Dataset objects are used for reading data from workspace datastores, and PipelineData

objects are used for transferring intermediate data between pipeline steps.

The batch scoring example in this tutorial uses only one pipeline step. In use cases that have multiple steps, the typical flow

will include these steps:

1. Use Dataset objects as inputs to fetch raw data, perform some transformation, and then output a PipelineData

object.

2. Use the PipelineData output object in the preceding step as an input object. Repeat it for subsequent steps.

In this scenario, you create Dataset objects that correspond to the datastore directories for both the input images

and the classification labels (y-test values). You also create a PipelineData object for the batch scoring output data.

Next, register the datasets to the workspace.

Download and register the model

import os
import tarfile
import urllib.request

if not os.path.isdir("models"):
 os.mkdir("models")

response = urllib.request.urlretrieve("http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz",
"model.tar.gz")
tar = tarfile.open("model.tar.gz", "r:gz")
tar.extractall("models")

from azureml.core.model import Model

model = Model.register(model_path="models/inception_v3.ckpt",
 model_name="inception",
 tags={"pretrained": "inception"},
 description="Imagenet trained tensorflow inception",
 workspace=ws)

Create and attach the remote compute target

from azureml.core.compute import AmlCompute, ComputeTarget
from azureml.exceptions import ComputeTargetException
compute_name = "gpu-cluster"

checks to see if compute target already exists in workspace, else create it
try:
 compute_target = ComputeTarget(workspace=ws, name=compute_name)
except ComputeTargetException:
 config = AmlCompute.provisioning_configuration(vm_size="STANDARD_NC6",
 vm_priority="lowpriority",
 min_nodes=0,
 max_nodes=1)

 compute_target = ComputeTarget.create(workspace=ws, name=compute_name, provisioning_configuration=config)
 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Write a scoring script

Download the pretrained Tensorflow model to use it for batch scoring in a pipeline. First, create a local directory

where you store the model. Then, download and extract the model.

Next, register the model to your workspace, so you can easily retrieve the model in the pipeline process. In the

register() static function, the model_name parameter is the key you use to locate your model throughout the

SDK.

Machine learning pipelines can't be run locally, so you run them on cloud resources or remote compute targets. A

remote compute target is a reusable virtual compute environment where you run experiments and machine

learning workflows.

Run the following code to create a GPU-enabled AmlCompute target, and then attach it to your workspace. For

more information about compute targets, see the conceptual article.

To do the scoring, create a batch scoring script called batch_scoring.py , and then write it to the current directory.

The script takes input images, applies the classification model, and then outputs the predictions to a results file.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/concept-compute-target

%%writefile batch_scoring.py

import os
import argparse
import datetime
import time
import tensorflow as tf
from math import ceil
import numpy as np
import shutil
from tensorflow.contrib.slim.python.slim.nets import inception_v3

from azureml.core import Run
from azureml.core.model import Model
from azureml.core.dataset import Dataset

slim = tf.contrib.slim

image_size = 299
num_channel = 3

def get_class_label_dict():
 label = []
 proto_as_ascii_lines = tf.gfile.GFile("labels.txt").readlines()
 for l in proto_as_ascii_lines:
 label.append(l.rstrip())
 return label

def init():
 global g_tf_sess, probabilities, label_dict, input_images

 parser = argparse.ArgumentParser(description="Start a tensorflow model serving")
 parser.add_argument('--model_name', dest="model_name", required=True)
 parser.add_argument('--labels_name', dest="labels_name", required=True)
 args, _ = parser.parse_known_args()

 workspace = Run.get_context(allow_offline=False).experiment.workspace
 label_ds = Dataset.get_by_name(workspace=workspace, name=args.labels_name)
 label_ds.download(target_path='.', overwrite=True)

 label_dict = get_class_label_dict()
 classes_num = len(label_dict)

 with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
 input_images = tf.placeholder(tf.float32, [1, image_size, image_size, num_channel])
 logits, _ = inception_v3.inception_v3(input_images,
 num_classes=classes_num,
 is_training=False)
 probabilities = tf.argmax(logits, 1)

 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 g_tf_sess = tf.Session(config=config)
 g_tf_sess.run(tf.global_variables_initializer())

The batch_scoring.py script takes the following parameters, which get passed from the ParallelRunStep you

create later :

--model_name : The name of the model being used.

--labels_name : The name of the Dataset that holds the labels.txt file.

The pipeline infrastructure uses the ArgumentParser class to pass parameters into pipeline steps. For example, in

the following code, the first argument --model_name is given the property identifier model_name . In the init()

function, Model.get_model_path(args.model_name) is used to access this property.

 g_tf_sess.run(tf.global_variables_initializer())
 g_tf_sess.run(tf.local_variables_initializer())

 model_path = Model.get_model_path(args.model_name)
 saver = tf.train.Saver()
 saver.restore(g_tf_sess, model_path)

def file_to_tensor(file_path):
 image_string = tf.read_file(file_path)
 image = tf.image.decode_image(image_string, channels=3)

 image.set_shape([None, None, None])
 image = tf.image.resize_images(image, [image_size, image_size])
 image = tf.divide(tf.subtract(image, [0]), [255])
 image.set_shape([image_size, image_size, num_channel])
 return image

def run(mini_batch):
 result_list = []
 for file_path in mini_batch:
 test_image = file_to_tensor(file_path)
 out = g_tf_sess.run(test_image)
 result = g_tf_sess.run(probabilities, feed_dict={input_images: [out]})
 result_list.append(os.path.basename(file_path) + ": " + label_dict[result[0]])
 return result_list

TIP

Build the pipeline

from azureml.core import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_GPU_IMAGE

cd = CondaDependencies.create(pip_packages=["tensorflow-gpu==1.13.1", "azureml-defaults"])
env = Environment(name="parallelenv")
env.python.conda_dependencies = cd
env.docker.base_image = DEFAULT_GPU_IMAGE

Create the configuration to wrap the script

The pipeline in this tutorial has only one step, and it writes the output to a file. For multi-step pipelines, you also use

ArgumentParser to define a directory to write output data for input to subsequent steps. For an example of passing data

between multiple pipeline steps by using the ArgumentParser design pattern, see the notebook.

Before you run the pipeline, create an object that defines the Python environment and creates the dependencies

that your batch_scoring.py script requires. The main dependency required is Tensorflow, but you also install

azureml-defaults for background processes. Create a RunConfiguration object by using the dependencies. Also,

specify Docker and Docker-GPU support.

Create the pipeline step using the script, environment configuration, and parameters. Specify the compute target

you already attached to your workspace.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/nyc-taxi-data-regression-model-building/nyc-taxi-data-regression-model-building.ipynb

from azureml.contrib.pipeline.steps import ParallelRunConfig

parallel_run_config = ParallelRunConfig(
 environment=env,
 entry_script="batch_scoring.py",
 source_directory=".",
 output_action="append_row",
 mini_batch_size="20",
 error_threshold=1,
 compute_target=compute_target,
 process_count_per_node=2,
 node_count=1
)

Create the pipeline step

from azureml.contrib.pipeline.steps import ParallelRunStep

batch_score_step = ParallelRunStep(
 name="parallel-step-test",
 inputs=[input_images.as_named_input("input_images")],
 output=output_dir,
 models=[model],
 arguments=["--model_name", "inception",
 "--labels_name", "label_ds"],
 parallel_run_config=parallel_run_config,
 allow_reuse=False
)

Submit the pipeline

A pipeline step is an object that encapsulates everything you need to run a pipeline, including:

Environment and dependency settings

The compute resource to run the pipeline on

Input and output data, and any custom parameters

Reference to a script or SDK logic to run during the step

Multiple classes inherit from the parent class PipelineStep . You can choose classes to use specific frameworks or

stacks to build a step. In this example, you use the ParallelRunStep class to define your step logic by using a

custom Python script. If an argument to your script is either an input to the step or an output of the step, the

argument must be defined both in the arguments array and in either the input or the output parameter,

respectively.

In scenarios where there is more than one step, an object reference in the outputs array becomes available as an

input for a subsequent pipeline step.

For a list of all the classes you can use for different step types, see the steps package.

Now, run the pipeline. First, create a Pipeline object by using your workspace reference and the pipeline step you

created. The steps parameter is an array of steps. In this case, there's only one step for batch scoring. To build

pipelines that have multiple steps, place the steps in order in this array.

Next, use the Experiment.submit() function to submit the pipeline for execution. You also specify the custom

parameter param_batch_size . The wait_for_completion function outputs logs during the pipeline build process.

You can use the logs to see current progress.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py

IMPORTANT

from azureml.core import Experiment
from azureml.pipeline.core import Pipeline

pipeline = Pipeline(workspace=ws, steps=[batch_score_step])
pipeline_run = Experiment(ws, 'batch_scoring').submit(pipeline)
pipeline_run.wait_for_completion(show_output=True)

Download and review output

import pandas as pd

batch_run = next(pipeline_run.get_children())
batch_output = batch_run.get_output_data("scores")
batch_output.download(local_path="inception_results")

for root, dirs, files in os.walk("inception_results"):
 for file in files:
 if file.endswith("parallel_run_step.txt"):
 result_file = os.path.join(root, file)

df = pd.read_csv(result_file, delimiter=":", header=None)
df.columns = ["Filename", "Prediction"]
print("Prediction has ", df.shape[0], " rows")
df.head(10)

Publish and run from a REST endpoint

published_pipeline = pipeline_run.publish_pipeline(
 name="Inception_v3_scoring", description="Batch scoring using Inception v3 model", version="1.0")

published_pipeline

The first pipeline run takes roughly 15 minutes. All dependencies must be downloaded, a Docker image is created, and the

Python environment is provisioned and created. Running the pipeline again takes significantly less time because those

resources are reused instead of created. However, total run time for the pipeline depends on the workload of your scripts

and the processes that are running in each pipeline step.

Run the following code to download the output file that's created from the batch_scoring.py script. Then, explore

the scoring results.

Run the following code to publish the pipeline to your workspace. In your workspace in Azure Machine Learning

studio, you can see metadata for the pipeline, including run history and durations. You can also run the pipeline

manually from the studio.

Publishing the pipeline enables a REST endpoint that you can use to run the pipeline from any HTTP library on any

platform.

To run the pipeline from the REST endpoint, you need an OAuth2 Bearer-type authentication header. The following

example uses interactive authentication (for illustration purposes), but for most production scenarios that require

automated or headless authentication, use service principal authentication as described in this article.

Service principal authentication involves creating an App Registration in Azure Active Directory. First, you generate

a client secret, and then you grant your service principal role access to your machine learning workspace. Use the

ServicePrincipalAuthentication class to manage your authentication flow.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.serviceprincipalauthentication?view=azure-ml-py

from azureml.core.authentication import InteractiveLoginAuthentication

interactive_auth = InteractiveLoginAuthentication()
auth_header = interactive_auth.get_authentication_header()

import requests

rest_endpoint = published_pipeline.endpoint
response = requests.post(rest_endpoint,
 headers=auth_header,
 json={"ExperimentName": "batch_scoring",
 "ParameterAssignments": {"param_batch_size": 50}})
run_id = response.json()["Id"]

from azureml.pipeline.core.run import PipelineRun
from azureml.widgets import RunDetails

published_pipeline_run = PipelineRun(ws.experiments["batch_scoring"], run_id)
RunDetails(published_pipeline_run).show()

Clean up resources

Stop the compute instance

Delete everything

Both InteractiveLoginAuthentication and ServicePrincipalAuthentication inherit from AbstractAuthentication . In

both cases, use the get_authentication_header() function in the same way to fetch the header :

Get the REST URL from the endpoint property of the published pipeline object. You can also find the REST URL in

your workspace in Azure Machine Learning studio.

Build an HTTP POST request to the endpoint. Specify your authentication header in the request. Add a JSON

payload object that has the experiment name and the batch size parameter. As noted earlier in the tutorial,

param_batch_size is passed through to your batch_scoring.py script because you defined it as a

PipelineParameter object in the step configuration.

Make the request to trigger the run. Include code to access the Id key from the response dictionary to get the

value of the run ID.

Use the run ID to monitor the status of the new run. The new run takes another 10-15 min to finish.

The new run will look similar to the pipeline you ran earlier in the tutorial. You can choose not to view the full

output.

Don't complete this section if you plan to run other Azure Machine Learning tutorials.

If you used a compute instance or Notebook VM, stop the VM when you are not using it to reduce cost.

1. In your workspace, select Compute.

2. From the list, select the VM.

3. Select Stop.

4. When you're ready to use the server again, select Star t .

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, in the left menu, select Resource groups .

https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.interactiveloginauthentication?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.abstractauthentication?view=azure-ml-py#get-authentication-header--

Next steps

2. In the list of resource groups, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then, select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties, and then

select Delete.

In this machine learning pipelines tutorial, you did the following tasks:

Built a pipeline with environment dependencies to run on a remote GPU compute resource.

Created a scoring script to run batch predictions by using a pretrained Tensorflow model.

Published a pipeline and enabled it to be run from a REST endpoint.

For more examples of how to build pipelines by using the machine learning SDK, see the notebook repository.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines

Tutorial: Convert ML experimental code to
production code
4/1/2020 • 10 minutes to read • Edit Online

Prerequisites

Remove all nonessential code

A machine learning project requires experimentation where hypotheses are tested with agile tools like Jupyter

Notebook using real datasets. Once the model is ready for production, the model code should be placed in a

production code repository. In some cases, the model code must be converted to Python scripts to be placed in the

production code repository. This tutorial covers a recommended approach on how to export experimentation code

to Python scripts.

In this tutorial, you learn how to:

Clean nonessential code

Refactor Jupyter Notebook code into functions

Create Python scripts for related tasks

Create unit tests

Generate the MLOpsPython template and use the experimentation/Diabetes Ridge Regression Training.ipynb

and experimentation/Diabetes Ridge Regression Scoring.ipynb notebooks. These notebooks are used as an

example of converting from experimentation to production. You can find these notebooks at

https://github.com/microsoft/MLOpsPython/tree/master/experimentation.

Install nbconvert . Follow only the installation instructions under section Installing nbconver t on the

Installation page.

Some code written during experimentation is only intended for exploratory purposes. Therefore, the first step to

convert experimental code into production code is to remove this nonessential code. Removing nonessential code

will also make the code more maintainable. In this section, you'll remove code from the

experimentation/Diabetes Ridge Regression Training.ipynb notebook. The statements printing the shape of X and

y and the cell calling features.describe are just for data exploration and can be removed. After removing

nonessential code, experimentation/Diabetes Ridge Regression Training.ipynb should look like the following code

without markdown:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-convert-ml-experiment-to-production.md
https://github.com/microsoft/MLOpsPython/generate
https://github.com/microsoft/MLOpsPython/tree/master/experimentation
https://nbconvert.readthedocs.io/en/latest/install.html

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import joblib
import pandas as pd

sample_data = load_diabetes()

df = pd.DataFrame(
 data=sample_data.data,
 columns=sample_data.feature_names)
df['Y'] = sample_data.target

X = df.drop('Y', axis=1).values
y = df['Y'].values

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)
data = {"train": {"X": X_train, "y": y_train},
 "test": {"X": X_test, "y": y_test}}

args = {
 "alpha": 0.5
}

reg_model = Ridge(**args)
reg.fit(data["train"]["X"], data["train"]["y"])

preds = reg_model.predict(data["test"]["X"])
mse = mean_squared_error(preds, y_test)
metrics = {"mse": mse}
print(metrics)

model_name = "sklearn_regression_model.pkl"
joblib.dump(value=reg, filename=model_name)

Refactor code into functions

Refactor Diabetes Ridge Regression Training notebook into functions

Second, the Jupyter code needs to be refactored into functions. Refactoring code into functions makes unit testing

easier and makes the code more maintainable. In this section, you'll refactor :

The Diabetes Ridge Regression Training notebook(experimentation/Diabetes Ridge Regression Training.ipynb)

The Diabetes Ridge Regression Scoring notebook(experimentation/Diabetes Ridge Regression Scoring.ipynb)

In experimentation/Diabetes Ridge Regression Training.ipynb , complete the following steps:

1. Create a function called split_data to split the data frame into test and train data. The function should take

the dataframe df as a parameter, and return a dictionary containing the keys train and test .

Move the code under the Split Data into Training and Validation Sets heading into the split_data function

and modify it to return the data object.

2. Create a function called train_model , which takes the parameters data and args and returns a trained

model.

Move the code under the heading Training Model on Training Set into the train_model function and modify

it to return the reg_model object. Remove the args dictionary, the values will come from the args

parameter.

Split the dataframe into test and train data
def split_data(df):
 X = df.drop('Y', axis=1).values
 y = df['Y'].values

 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)
 data = {"train": {"X": X_train, "y": y_train},
 "test": {"X": X_test, "y": y_test}}
 return data

Train the model, return the model
def train_model(data, args):
 reg_model = Ridge(**args)
 reg_model.fit(data["train"]["X"], data["train"]["y"])
 return reg_model

Evaluate the metrics for the model
def get_model_metrics(reg_model, data):
 preds = reg_model.predict(data["test"]["X"])
 mse = mean_squared_error(preds, data["test"]["y"])
 metrics = {"mse": mse}
 return metrics

3. Create a function called get_model_metrics , which takes parameters reg_model and data , and evaluates the

model then returns a dictionary of metrics for the trained model.

Move the code under the Validate Model on Validation Set heading into the get_model_metrics function and

modify it to return the metrics object.

The three functions should be as follows:

Still in experimentation/Diabetes Ridge Regression Training.ipynb , complete the following steps:

Split Data into Training and Validation Sets
data = split_data(df)

Train Model on Training Set
args = {
 "alpha": 0.5
}
reg = train_model(data, args)

Validate Model on Validation Set
metrics = get_model_metrics(reg, data)

1. Create a new function called main , which takes no parameters and returns nothing.

2. Move the code under the "Load Data" heading into the main function.

3. Add invocations for the newly written functions into the main function:

4. Move the code under the "Save Model" heading into the main function.

The main function should look like the following code:

def main():
 # Load Data
 sample_data = load_diabetes()

 df = pd.DataFrame(
 data=sample_data.data,
 columns=sample_data.feature_names)
 df['Y'] = sample_data.target

 # Split Data into Training and Validation Sets
 data = split_data(df)

 # Train Model on Training Set
 args = {
 "alpha": 0.5
 }
 reg = train_model(data, args)

 # Validate Model on Validation Set
 metrics = get_model_metrics(reg, data)

 # Save Model
 model_name = "sklearn_regression_model.pkl"

 joblib.dump(value=reg, filename=model_name)

main()

At this stage, there should be no code remaining in the notebook that isn't in a function, other than import

statements in the first cell.

Add a statement that calls the main function.

After refactoring, experimentation/Diabetes Ridge Regression Training.ipynb should look like the following code

without the markdown:

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import pandas as pd
import joblib

Split the dataframe into test and train data
def split_data(df):
 X = df.drop('Y', axis=1).values
 y = df['Y'].values

 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)
 data = {"train": {"X": X_train, "y": y_train},
 "test": {"X": X_test, "y": y_test}}
 return data

Train the model, return the model
def train_model(data, args):
 reg_model = Ridge(**args)
 reg_model.fit(data["train"]["X"], data["train"]["y"])
 return reg_model

Evaluate the metrics for the model
def get_model_metrics(reg_model, data):
 preds = reg_model.predict(data["test"]["X"])
 mse = mean_squared_error(preds, data["test"]["y"])
 metrics = {"mse": mse}
 return metrics

def main():
 # Load Data
 sample_data = load_diabetes()

 df = pd.DataFrame(
 data=sample_data.data,
 columns=sample_data.feature_names)
 df['Y'] = sample_data.target

 # Split Data into Training and Validation Sets
 data = split_data(df)

 # Train Model on Training Set
 args = {
 "alpha": 0.5
 }
 reg = train_model(data, args)

 # Validate Model on Validation Set
 metrics = get_model_metrics(reg, data)

 # Save Model
 model_name = "sklearn_regression_model.pkl"

 joblib.dump(value=reg, filename=model_name)

main()

Refactor Diabetes Ridge Regression Scoring notebook into functions
In experimentation/Diabetes Ridge Regression Scoring.ipynb , complete the following steps:

def init():
 model_path = Model.get_model_path(
 model_name="sklearn_regression_model.pkl")
 model = joblib.load(model_path)

init()

raw_data = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
request_header = {}
prediction = run(raw_data, request_header)
print("Test result: ", prediction)

1. Create a new function called init , which takes no parameters and return nothing.

2. Copy the code under the "Load Model" heading into the init function.

The init function should look like the following code:

Once the init function has been created, replace all the code under the heading "Load Model" with a single call to

init as follows:

In experimentation/Diabetes Ridge Regression Scoring.ipynb , complete the following steps:

{"result": result.tolist()}

def run(raw_data, request_headers):
 data = json.loads(raw_data)["data"]
 data = numpy.array(data)
 result = model.predict(data)

 return {"result": result.tolist()}

1. Create a new function called run , which takes raw_data and request_headers as parameters and returns a

dictionary of results as follows:

2. Copy the code under the "Prepare Data" and "Score Data" headings into the run function.

The run function should look like the following code (Remember to remove the statements that set the

variables raw_data and request_headers , which will be used later when the run function is called):

Once the run function has been created, replace all the code under the "Prepare Data" and "Score Data" headings

with the following code:

The previous code sets variables raw_data and request_header , calls the run function with raw_data and

request_header , and prints the predictions.

After refactoring, experimentation/Diabetes Ridge Regression Scoring.ipynb should look like the following code

without the markdown:

import json
import numpy
from azureml.core.model import Model
import joblib

def init():
 model_path = Model.get_model_path(
 model_name="sklearn_regression_model.pkl")
 model = joblib.load(model_path)

def run(raw_data, request_headers):
 data = json.loads(raw_data)["data"]
 data = numpy.array(data)
 result = model.predict(data)

 return {"result": result.tolist()}

init()
test_row = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
request_header = {}
prediction = run(test_row, {})
print("Test result: ", prediction)

Combine related functions in Python files

Create Python file for the Diabetes Ridge Regression Training notebook

jupyter nbconvert -- to script "Diabetes Ridge Regression Training.ipynb" –output train

if __name__ == '__main__':
 main()

Third, related functions need to be merged into Python files to better help code reuse. In this section, you'll be

creating Python files for the following notebooks:

The Diabetes Ridge Regression Training notebook(experimentation/Diabetes Ridge Regression Training.ipynb)

The Diabetes Ridge Regression Scoring notebook(experimentation/Diabetes Ridge Regression Scoring.ipynb)

Convert your notebook to an executable script by running the following statement in a command prompt, which

uses the nbconvert package and the path of experimentation/Diabetes Ridge Regression Training.ipynb :

Once the notebook has been converted to train.py , remove any unwanted comments. Replace the call to main()

at the end of the file with a conditional invocation like the following code:

Your train.py file should look like the following code:

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import pandas as pd
import joblib

Split the dataframe into test and train data
def split_data(df):
 X = df.drop('Y', axis=1).values
 y = df['Y'].values

 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)
 data = {"train": {"X": X_train, "y": y_train},
 "test": {"X": X_test, "y": y_test}}
 return data

Train the model, return the model
def train_model(data, args):
 reg_model = Ridge(**args)
 reg_model.fit(data["train"]["X"], data["train"]["y"])
 return reg_model

Evaluate the metrics for the model
def get_model_metrics(reg_model, data):
 preds = reg_model.predict(data["test"]["X"])
 mse = mean_squared_error(preds, data["test"]["y"])
 metrics = {"mse": mse}
 return metrics

def main():
 # Load Data
 sample_data = load_diabetes()

 df = pd.DataFrame(
 data=sample_data.data,
 columns=sample_data.feature_names)
 df['Y'] = sample_data.target

 # Split Data into Training and Validation Sets
 data = split_data(df)

 # Train Model on Training Set
 args = {
 "alpha": 0.5
 }
 reg = train_model(data, args)

 # Validate Model on Validation Set
 metrics = get_model_metrics(reg, data)

 # Save Model
 model_name = "sklearn_regression_model.pkl"

 joblib.dump(value=reg, filename=model_name)

if __name__ == '__main__':
 main()

train.py can now be invoked from a terminal by running python train.py . The functions from train.py can also

be called from other files.

Create Python file for the Diabetes Ridge Regression Scoring notebook

jupyter nbconvert -- to script "Diabetes Ridge Regression Scoring.ipynb" –output score

import json
import numpy
from azureml.core.model import Model
import joblib

def init():
 model_path = Model.get_model_path(
 model_name="sklearn_regression_model.pkl")
 model = joblib.load(model_path)

def run(raw_data, request_headers):
 data = json.loads(raw_data)["data"]
 data = numpy.array(data)
 result = model.predict(data)

 return {"result": result.tolist()}

init()
test_row = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
request_header = {}
prediction = run(test_row, request_header)
print("Test result: ", prediction)

global model

def init():
 global model

 # load the model from file into a global object
 model_path = Model.get_model_path(
 model_name="sklearn_regression_model.pkl")
 model = joblib.load(model_path)

Create unit tests for each Python file

The train_aml.py file found in the diabetes_regression/training directory in the MLOpsPython repository calls

the functions defined in train.py in the context of an Azure Machine Learning experiment run. The functions can

also be called in unit tests, covered later in this guide.

Covert your notebook to an executable script by running the following statement in a command prompt that which

uses the nbconvert package and the path of experimentation/Diabetes Ridge Regression Scoring.ipynb :

Once the notebook has been converted to score.py , remove any unwanted comments. Your score.py file should

look like the following code:

The model variable needs to be global so that it's visible throughout the script. Add the following statement at the

beginning of the init function:

After adding the previous statement, the init function should look like the following code:

Fourth, create unit tests for your Python functions. Unit tests protect code against functional regressions and make

it easier to maintain. In this section, you'll be creating unit tests for the functions in train.py .

train.py contains multiple functions, but we'll only create a single unit test for the train_model function using the

import numpy as np
from code.training.train import train_model

def test_train_model():
 # Arrange
 X_train = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1)
 y_train = np.array([10, 9, 8, 8, 6, 5])
 data = {"train": {"X": X_train, "y": y_train}}

 # Act
 reg_model = train_model(data, {"alpha": 1.2})

 # Assert
 preds = reg_model.predict([[1], [2]])
 np.testing.assert_almost_equal(preds, [9.93939393939394, 9.03030303030303])

Next steps

Pytest framework in this tutorial. Pytest isn't the only Python unit testing framework, but it's one of the most

commonly used. For more information, visit Pytest.

A unit test usually contains three main actions:

Arrange object - creating and setting up necessary objects

Act on an object

Assert what is expected

The unit test will call train_model with some hard-coded data and arguments, and validate that train_model acted

as expected by using the resulting trained model to make a prediction and comparing that prediction to an

expected value.

Now that you understand how to convert from an experiment to production code, see the following links for more

information and next steps:

MLOpsPython: Build a CI/CD pipeline to train, evaluate and deploy your own model using Azure Pipelines and

Azure Machine Learning

Monitor Azure ML experiment runs and metrics

Monitor and collect data from ML web service endpoints

https://pytest.org
https://github.com/microsoft/MLOpsPython/blob/master/docs/custom_model.md
https://docs.microsoft.com/azure/machine-learning/how-to-track-experiments
https://docs.microsoft.com/azure/machine-learning/how-to-enable-app-insights

Tutorial: Use R to create a machine learning model
4/10/2020 • 14 minutes to read • Edit Online

Create a workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this tutorial you'll use the Azure Machine Learning R SDK to create a logistic regression model that predicts the

likelihood of a fatality in a car accident. You'll see how the Azure Machine Learning cloud resources work with R to

provide a scalable environment for training and deploying a model.

In this tutorial, you perform the following tasks:

Create an Azure Machine Learning workspace

Clone a notebook folder with the files necessary to run this tutorial into your workspace

Open RStudio from your workspace

Load data and prepare for training

Upload data to a datastore so it is available for remote training

Create a compute resource to train the model remotely

Train a caret model to predict probability of fatality

Deploy a prediction endpoint

Test the model from R

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning today.

An Azure Machine Learning workspace is a foundational resource in the cloud that you use to experiment, train,

and deploy machine learning models. It ties your Azure subscription and resource group to an easily consumed

object in the service.

You create a workspace via the Azure portal, a web-based console for managing your Azure resources.

1. Sign in to Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-1st-r-experiment.md
https://aka.ms/AMLFree
https://portal.azure.com/

F IEL D DESC RIP T IO N

Workspace name Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription or
enter a name to create a new resource group. A resource
group holds related resources for an Azure solution. In
this example, we use docs-aml.

Location Select the location closest to your users and the data
resources to create your workspace.

Workspace edition Select Basic as the workspace type for this tutorial. The
workspace type (Basic & Enterprise) determines the
features to which you’ll have access and pricing.
Everything in this tutorial can be performed with either a
Basic or Enterprise workspace.

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

7. After you are finished configuring the workspace, select Review + Create.

IMPORTANT

Clone a notebook folder

WARNING
It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

8. To view the new workspace, select Go to resource.

Take note of your workspace and subscription. You'll need these to ensure you create your experiment in the right place.

This example uses the cloud notebook server in your workspace for an install-free and pre-configured experience.

Use your own environment if you prefer to have control over your environment, packages and dependencies.

You complete the following experiment set-up and run steps in Azure Machine Learning studio, a consolidated

interface that includes machine learning tools to perform data science scenarios for data science practitioners of

all skill levels.

1. Sign in to Azure Machine Learning studio.

2. Select your subscription and the workspace you created.

3. Select Notebooks on the left.

4. Open the Samples folder.

5. Open the R folder.

6. Open the folder with a version number on it. This number represents the current release for the R SDK.

7. Select the "..." at the right of the vignettes folder and then select Clone.

https://azure.github.io/azureml-sdk-for-r/articles/installation.html
https://ml.azure.com/

 O pen RStudio

IMPORTANT

Set up your development environment

8. A list of folders displays showing each user who accesses the workspace. Select your folder to clone the

vignettes folder there.

Use RStudio on a compute instance or Notebook VM to run this tutorial.

1. Select Compute on the left.

2. Add a compute resource if one does not already exist.

3. Once the compute is running, use the RStudio link to open RStudio.

4. In RStudio, your vignettes folder is a few levels down from Users in the Files section on the lower right.

Under vignettes, select the train-and-deploy-to-aci folder to find the files needed in this tutorial.

The rest of this article contains the same content as you see in the train-and-deploy-to-aci.Rmd file. If you are experienced

with RMarkdown, feel free to use the code from that file. Or you can copy/paste the code snippets from there, or from this

article into an R script or the command line.

The setup for your development work in this tutorial includes the following actions:

Install required packages

Install required packages

library(azuremlsdk)

Load your workspace

ws <- load_workspace_from_config()

Create an experiment

experiment_name <- "accident-logreg"
exp <- experiment(ws, experiment_name)

Create a compute target

Connect to a workspace, so that your compute instance can communicate with remote resources

Create an experiment to track your runs

Create a remote compute target to use for training

install the latest version from CRAN
install.packages("azuremlsdk")
azuremlsdk::install_azureml(envname = 'r-reticulate')

or install the development version from GitHub
remotes::install_github('https://github.com/Azure/azureml-sdk-for-r')
azuremlsdk::install_azureml(envname = 'r-reticulate')

Install the latest version from CRAN.

Or install the development version from GitHub.

Now go ahead and import the azuremlsdk package.

The training and scoring scripts (accidents.R and accident_predict.R) have some additional dependencies. If you

plan on running those scripts locally, make sure you have those required packages as well.

Instantiate a workspace object from your existing workspace. The following code will load the workspace details

from the config.json file. You can also retrieve a workspace using get_workspace() .

An Azure ML experiment tracks a grouping of runs, typically from the same training script. Create an experiment

to track the runs for training the caret model on the accidents data.

By using Azure Machine Learning Compute (AmlCompute), a managed service, data scientists can train machine

learning models on clusters of Azure virtual machines. Examples include VMs with GPU support. In this tutorial,

you create a single-node AmlCompute cluster as your training environment. The code below creates the compute

cluster for you if it doesn't already exist in your workspace.

You may need to wait a few minutes for your compute cluster to be provisioned if it doesn't already exist.

https://azure.github.io/azureml-sdk-for-r/reference/get_workspace.html

cluster_name <- "rcluster"
compute_target <- get_compute(ws, cluster_name = cluster_name)
if (is.null(compute_target)) {
 vm_size <- "STANDARD_D2_V2"
 compute_target <- create_aml_compute(workspace = ws,
 cluster_name = cluster_name,
 vm_size = vm_size,
 max_nodes = 1)
}

wait_for_provisioning_completion(compute_target)

Prepare data for training

nassCDS <- read.csv("nassCDS.csv",
 colClasses=c("factor","numeric","factor",
 "factor","factor","numeric",
 "factor","numeric","numeric",
 "numeric","character","character",
 "numeric","numeric","character"))
accidents <-
na.omit(nassCDS[,c("dead","dvcat","seatbelt","frontal","sex","ageOFocc","yearVeh","airbag","occRole")])
accidents$frontal <- factor(accidents$frontal, labels=c("notfrontal","frontal"))
accidents$occRole <- factor(accidents$occRole)
accidents$dvcat <- ordered(accidents$dvcat,
 levels=c("1-9km/h","10-24","25-39","40-54","55+"))

saveRDS(accidents, file="accidents.Rd")

Upload data to the datastore

ds <- get_default_datastore(ws)

target_path <- "accidentdata"
upload_files_to_datastore(ds,
 list("./accidents.Rd"),
 target_path = target_path,
 overwrite = TRUE)

Train a model

This tutorial uses data from the US National Highway Traffic Safety Administration (with thanks to Mary C. Meyer

and Tremika Finney). This dataset includes data from over 25,000 car crashes in the US, with variables you can use

to predict the likelihood of a fatality. First, import the data into R and transform it into a new dataframe accidents

for analysis, and export it to an Rdata file.

Upload data to the cloud so that it can be access by your remote training environment. Each Azure Machine

Learning workspace comes with a default datastore that stores the connection information to the Azure blob

container that is provisioned in the storage account attached to the workspace. The following code will upload the

accidents data you created above to that datastore.

For this tutorial, fit a logistic regression model on your uploaded data using your remote compute cluster. To

submit a job, you need to:

Prepare the training script

Create an estimator

Submit the job

https://cdan.nhtsa.gov/tsftables/tsfar.htm
https://www.stat.colostate.edu/%7Emeyer/airbags.htm

Prepare the training script

Create an estimator

est <- estimator(source_directory = ".",
 entry_script = "accidents.R",
 script_params = list("--data_folder" = ds$path(target_path)),
 compute_target = compute_target
)

Submit the job on the remote cluster

A training script called accidents.R has been provided for you in the same directory as this tutorial. Notice the

following details inside the training scr ipt that have been done to leverage Azure Machine Learning for

training:

The training script takes an argument -d to find the directory that contains the training data. When you define

and submit your job later, you point to the datastore for this argument. Azure ML will mount the storage folder

to the remote cluster for the training job.

The training script logs the final accuracy as a metric to the run record in Azure ML using log_metric_to_run() .

The Azure ML SDK provides a set of logging APIs for logging various metrics during training runs. These

metrics are recorded and persisted in the experiment run record. The metrics can then be accessed at any time

or viewed in the run details page in studio. See the reference for the full set of logging methods log_*() .

The training script saves your model into a directory named outputs . The ./outputs folder receives special

treatment by Azure ML. During training, files written to ./outputs are automatically uploaded to your run

record by Azure ML and persisted as artifacts. By saving the trained model to ./outputs , you'll be able to

access and retrieve your model file even after the run is over and you no longer have access to your remote

training environment.

An Azure ML estimator encapsulates the run configuration information needed for executing a training script on

the compute target. Azure ML runs are run as containerized jobs on the specified compute target. By default, the

Docker image built for your training job will include R, the Azure ML SDK, and a set of commonly used R packages.

See the full list of default packages included here.

To create the estimator, define:

The directory that contains your scripts needed for training (source_directory). All the files in this directory are

uploaded to the cluster node(s) for execution. The directory must contain your training script and any

additional scripts required.

The training script that will be executed (entry_script).

The compute target (compute_target), in this case the AmlCompute cluster you created earlier.

The parameters required from the training script (script_params). Azure ML will run your training script as a

command-line script with Rscript . In this tutorial you specify one argument to the script, the data directory

mounting point, which you can access with ds$path(target_path) .

Any environment dependencies required for training. The default Docker image built for training already

contains the three packages (caret , e1071 , and optparse) needed in the training script. So you don't need to

specify additional information. If you are using R packages that are not included by default, use the estimator's

cran_packages parameter to add additional CRAN packages. See the estimator() reference for the full set of

configurable options.

Finally submit the job to run on your cluster. submit_experiment() returns a Run object that you then use to

interface with the run. In total, the first run takes about 10 minutes . But for later runs, the same Docker image is

reused as long as the script dependencies don't change. In this case, the image is cached and the container startup

time is much faster.

https://ml.azure.com
https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-training-experimentation
https://azure.github.io/azureml-sdk-for-r/reference/estimator.html

run <- submit_experiment(exp, est)

view_run_details(run)

wait_for_run_completion(run, show_output = TRUE)

Retrieve training results

Get the logged metrics

metrics <- get_run_metrics(run)
metrics

Get the trained model

download_files_from_run(run, prefix="outputs/")
accident_model <- readRDS("outputs/model.rds")
summary(accident_model)

You can view the run's details in RStudio Viewer. Clicking the "Web View" link provided will bring you to Azure

Machine Learning studio, where you can monitor the run in the UI.

Model training happens in the background. Wait until the model has finished training before you run more code.

You -- and colleagues with access to the workspace -- can submit multiple experiments in parallel, and Azure ML

will take of scheduling the tasks on the compute cluster. You can even configure the cluster to automatically scale

up to multiple nodes, and scale back when there are no more compute tasks in the queue. This configuration is a

cost-effective way for teams to share compute resources.

Once your model has finished training, you can access the artifacts of your job that were persisted to the run

record, including any metrics logged and the final trained model.

In the training script accidents.R , you logged a metric from your model: the accuracy of the predictions in the

training data. You can see metrics in the studio, or extract them to the local session as an R list as follows:

If you've run multiple experiments (say, using differing variables, algorithms, or hyperparamers), you can use the

metrics from each run to compare and choose the model you'll use in production.

You can retrieve the trained model and look at the results in your local R session. The following code will

download the contents of the ./outputs directory, which includes the model file.

You see some factors that contribute to an increase in the estimated probability of death:

higher impact speed

male driver

older occupant

passenger

You see lower probabilities of death with:

presence of airbags

presence seatbelts

frontal collision

https://ml.azure.com

newdata <- data.frame(# valid values shown below
 dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
 seatbelt="none", # "none" "belted"
 frontal="frontal", # "notfrontal" "frontal"
 sex="f", # "f" "m"
 ageOFocc=16, # age in years, 16-97
 yearVeh=2002, # year of vehicle, 1955-2003
 airbag="none", # "none" "airbag"
 occRole="pass" # "driver" "pass"
)

predicted probability of death for these variables, as a percentage
as.numeric(predict(accident_model,newdata, type="response")*100)

Deploy as a web service

Register the model

model <- register_model(ws,
 model_path = "outputs/model.rds",
 model_name = "accidents_model",
 description = "Predict probablity of auto accident")

Define the inference dependencies

r_env <- r_environment(name = "basic_env")

The vehicle year of manufacture does not have a significant effect.

You can use this model to make new predictions:

With your model, you can predict the danger of death from a collision. Use Azure ML to deploy your model as a

prediction service. In this tutorial, you will deploy the web service in Azure Container Instances (ACI).

First, register the model you downloaded to your workspace with register_model() . A registered model can be

any collection of files, but in this case the R model object is sufficient. Azure ML will use the registered model for

deployment.

To create a web service for your model, you first need to create a scoring script (entry_script), an R script that

will take as input variable values (in JSON format) and output a prediction from your model. For this tutorial, use

the provided scoring file accident_predict.R . The scoring script must contain an init() method that loads your

model and returns a function that uses the model to make a prediction based on the input data. See the

documentation for more details.

Next, define an Azure ML environment for your script's package dependencies. With an environment, you specify

R packages (from CRAN or elsewhere) that are needed for your script to run. You can also provide the values of

environment variables that your script can reference to modify its behavior. By default, Azure ML will build the

same default Docker image used with the estimator for training. Since the tutorial has no special requirements,

create an environment with no special attributes.

If you want to use your own Docker image for deployment instead, specify the custom_docker_image parameter.

See the r_environment() reference for the full set of configurable options for defining an environment.

Now you have everything you need to create an inference config for encapsulating your scoring script and

environment dependencies.

https://docs.microsoft.com/azure/container-instances/
https://azure.github.io/azureml-sdk-for-r/reference/register_model.html
https://azure.github.io/azureml-sdk-for-r/reference/inference_config.html#details
https://azure.github.io/azureml-sdk-for-r/reference/r_environment.html

inference_config <- inference_config(
 entry_script = "accident_predict.R",
 environment = r_env)

Deploy to ACI

aci_config <- aci_webservice_deployment_config(cpu_cores = 1, memory_gb = 0.5)

aci_service <- deploy_model(ws,
 'accident-pred',
 list(model),
 inference_config,
 aci_config)

wait_for_deployment(aci_service, show_output = TRUE)

Test the deployed service

library(jsonlite)

newdata <- data.frame(# valid values shown below
 dvcat="10-24", # "1-9km/h" "10-24" "25-39" "40-54" "55+"
 seatbelt="none", # "none" "belted"
 frontal="frontal", # "notfrontal" "frontal"
 sex="f", # "f" "m"
 ageOFocc=22, # age in years, 16-97
 yearVeh=2002, # year of vehicle, 1955-2003
 airbag="none", # "none" "airbag"
 occRole="pass" # "driver" "pass"
)

prob <- invoke_webservice(aci_service, toJSON(newdata))
prob

aci_service$scoring_uri

Clean up resources

In this tutorial, you will deploy your service to ACI. This code provisions a single container to respond to inbound

requests, which is suitable for testing and light loads. See aci_webservice_deployment_config() for additional

configurable options. (For production-scale deployments, you can also deploy to Azure Kubernetes Service.)

Now you deploy your model as a web service. Deployment can take several minutes .

Now that your model is deployed as a service, you can test the service from R using invoke_webservice() . Provide

a new set of data to predict from, convert it to JSON, and send it to the service.

You can also get the web service's HTTP endpoint, which accepts REST client calls. You can share this endpoint with

anyone who wants to test the web service or integrate it into an application.

Delete the resources once you no longer need them. Don't delete any resource you plan to still use.

Delete the web service:

https://azure.github.io/azureml-sdk-for-r/reference/aci_webservice_deployment_config.html
https://azure.github.io/azureml-sdk-for-r/articles/deploy-to-aks/deploy-to-aks.html
https://azure.github.io/azureml-sdk-for-r/reference/invoke_webservice.html

delete_webservice(aci_service)

delete_model(model)

delete_compute(compute)

Delete everything

IMPORTANT

Next steps

Delete the registered model:

Delete the compute cluster :

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

You can also keep the resource group but delete a single workspace. Display the workspace properties and select

Delete.

Now that you've completed your first Azure Machine Learning experiment in R, learn more about the Azure

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://azure.github.io/azureml-sdk-for-r/index.html

Machine Learning SDK for R.

Learn more about Azure Machine Learning with R from the examples in the other vignettes folders.

Tutorial: Train and deploy a model from the CLI
4/17/2020 • 14 minutes to read • Edit Online

Prerequisites

Download the example project

git clone https://github.com/microsoft/MLOps.git

Training files

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this tutorial, you use the machine learning extension for the Azure CLI to train, register, and deploy a model.

The Python training scripts in this tutorial use scikit-learn to train a basic model. The focus of this tutorial is not on

the scripts or the model, but the process of using the CLI to work with Azure Machine Learning.

Learn how to take the following actions:

Install the machine learning extension

Create an Azure Machine Learning workspace

Create the compute resource used to train the model

Define and register the dataset used to train the model

Start a training run

Register and download a model

Deploy the model as a web service

Score data using the web service

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning today.

To use the CLI commands in this document from your local environment, you need the Azure CLI.

If you use the Azure Cloud Shell, the CLI is accessed through the browser and lives in the cloud.

For this tutorial, download the https://github.com/microsoft/MLOps project. The files in the

examples/cli-train-deploy directory are used by the steps in this tutorial.

To get a local copy of the files, either download a .zip archive, or use the following Git command to clone the

repository:

The examples/cli-train-deploy directory from the project contains the following files, which are used when

training a model:

.azureml\mnist.runconfig : A run configuration file. This file defines the runtime environment needed to train

the model. In this example, it also mounts the data used to train the model into the training environment.

scripts\train.py : The training script. This file trains the model.

scripts\utils.py : A helper file used by the training script.

.azureml\conda_dependencies.yml : Defines the software dependencies needed to run the training script.

dataset.json : The dataset definition. Used to register the MNIST dataset in the Azure Machine Learning

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-deploy-model-cli.md
https://scikit-learn.org/
https://aka.ms/AMLFree
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com//features/cloud-shell/
https://github.com/microsoft/MLOps
https://github.com/microsoft/MLOps/archive/master.zip

Deployment files

Connect to your Azure subscription

az login

TIP

Install the machine learning extension

az extension add -n azure-cli-ml

az extension update -n azure-cli-ml

Create a resource group

workspace.

The repository contains the following files, which are used to deploy the trained model as a web service:

aciDeploymentConfig.yml : A deployment configuration file. This file defines the hosting environment needed

for the model.

inferenceConfig.json : An inference configuration file. This file defines the software environment used by

the service to score data with the model.

score.py : A python script that accepts incoming data, scores it using the model, and then returns a response.

scoring-env.yml : The conda dependencies needed to run the model and score.py script.

testdata.json : A data file that can be used to test the deployed web service.

There are several ways that you can authenticate to your Azure subscription from the CLI. The most basic is to

interactively authenticate using a browser. To authenticate interactively, open a command line or terminal and use

the following command:

If the CLI can open your default browser, it will do so and load a sign-in page. Otherwise, you need to open a

browser and follow the instructions on the command line. The instructions involve browsing to

https://aka.ms/devicelogin and entering an authorization code.

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with

isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the same one

that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure portal by visiting the

overview page for your workspace. You can also use the SDK to get the subscription ID from the workspace object. For

example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify the

subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

To install the machine learning extension, use the following command:

If you get a message that the extension is already installed, use the following command to update to the latest

version:

A resource group is a basic container of resources on the Azure platform. When working with the Azure Machine

https://aka.ms/devicelogin
https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest

TIP

az group create --name <resource-group-name> --location <location>

{
 "id": "/subscriptions/<subscription-GUID>/resourceGroups/<resourcegroupname>",
 "location": "<location>",
 "managedBy": null,
 "name": "<resource-group-name>",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "tags": null,
 "type": null
}

Create a workspace

az ml workspace create -w <workspace-name> -g <resource-group-name>

Learning, the resource group will contain your Azure Machine Learning workspace. It will also contain other Azure

services used by the workspace. For example, if you train your model using a cloud-based compute resource, that

resource is created in the resource group.

To create a new resource group, use the following command. Replace <resource-group-name> with the name to

use for this resource group. Replace <location> with the Azure region to use for this resource group:

You should select a region where the Azure Machine Learning is available. For information, see Products available by region.

The response from this command is similar to the following JSON:

For more information on working with resource groups, see az group.

To create a new workspace, use the following command. Replace <workspace-name> with the name you want to use

for this workspace. Replace <resource-group-name> with the name of the resource group:

The output of this command is similar to the following JSON:

https://azure.microsoft.com/global-infrastructure/services/?products=machine-learning-service
https://docs.microsoft.com//cli/azure/group?view=azure-cli-latest

{
 "applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/<application-insight-name>",
 "containerRegistry": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.containerregistry/registries/<acr-name>",
 "creationTime": "2019-08-30T20:24:19.6984254+00:00",
 "description": "",
 "friendlyName": "<workspace-name>",
 "id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
 "identityPrincipalId": "<GUID>",
 "identityTenantId": "<GUID>",
 "identityType": "SystemAssigned",
 "keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
 "location": "<location>",
 "name": "<workspace-name>",
 "resourceGroup": "<resource-group-name>",
 "storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
 "type": "Microsoft.MachineLearningServices/workspaces",
 "workspaceid": "<GUID>"
}

Connect local project to workspace

cd ~/MLOps/examples/cli-train-deploy
az ml folder attach -w <workspace-name> -g <resource-group-name>

{
 "Experiment name": "model-training",
 "Project path": "/home/user/MLOps/examples/cli-train-deploy",
 "Resource group": "<resource-group-name>",
 "Subscription id": "<subscription-id>",
 "Workspace name": "<workspace-name>"
}

Create the compute target for training

az ml computetarget create amlcompute -n cpu-cluster --max-nodes 4 --vm-size Standard_D2_V2

From a terminal or command prompt, use the following commands change directories to the cli-train-deploy

directory, then connect to your workspace:

The output of this command is similar to the following JSON:

This command creates a .azureml/config.json file, which contains information needed to connect to your

workspace. The rest of the az ml commands used in this tutorial will use this file, so you don't have to add the

workspace and resource group to all commands.

This example uses an Azure Machine Learning Compute cluster to train the model. To create a new compute

cluster, use the following command:

The output of this command is similar to the following JSON:

{
 "location": "<location>",
 "name": "cpu-cluster",
 "provisioningErrors": null,
 "provisioningState": "Succeeded"
}

IMPORTANT

Define the dataset

az ml dataset register -f dataset.json --skip-validation

{
 "definition": [
 "GetFiles"
],
 "registration": {
 "description": "mnist dataset",
 "id": "a13a4034-02d1-40bd-8107-b5d591a464b7",
 "name": "mnist-dataset",
 "tags": {
 "sample-tag": "mnist"
 },
 "version": 1,
 "workspace": "Workspace.create(name='myworkspace', subscription_id='mysubscriptionid',
resource_group='myresourcegroup')"
 },
 "source": [
 "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz",
 "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz",
 "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz",
 "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"
]
}

IMPORTANT

This command creates a new compute target named cpu-cluster , with a maximum of four nodes. The VM size

selected provides a VM with a GPU resource. For information on the VM size, see [VM types and sizes].

The name of the compute target (cpu-cluster in this case), is important; it is referenced by the

.azureml/mnist.runconfig file used in the next section.

To train a model, you can provide the training data using a dataset. To create a dataset from the CLI, you must

provide a dataset definition file. The dataset.json file provided in the repo creates a new dataset using the MNIST

data. The dataset it creates is named mnist-dataset .

To register the dataset using the dataset.json file, use the following command:

The output of this command is similar to the following JSON:

Copy the value of the id entry, as it is used in the next section.

To see a more comprehensive template for a dataset, use the following command:

az ml dataset register --show-template

Reference the dataset

The arguments to the script file.
arguments:
- --data-folder
- DatasetConsumptionConfig:mnist

.....

The configuration details for data.
data:
 mnist:
Data Location
 dataLocation:
the Dataset used for this run.
 dataset:
Id of the dataset.
 id: a13a4034-02d1-40bd-8107-b5d591a464b7
the DataPath used for this run.
 datapath:
Whether to create new folder.
 createOutputDirectories: false
The mode to handle
 mechanism: mount
Point where the data is download or mount or upload.
 environmentVariableName: mnist
relative path where the data is download or mount or upload.
 pathOnCompute:
Whether to overwrite the data if existing.
 overwrite: false

TIP

To make the dataset available in the training environment, you must reference it from the runconfig file. The

.azureml/mnist.runconfig file contains the following YAML entries:

Change the value of the id entry to match the value returned when you registered the dataset. This value is used

to load the data into the compute target during training.

This YAML results in the following actions during training:

Mounts the dataset (based on the ID of the dataset) in the training environment, and stores the path to the

mount point in the mnist environment variable.

Passes the location of the data (mount point) inside the training environment to the script using the

--data-folder argument.

The runconfig file also contains information used to configure the environment used by the training run. If you

inspect this file, you'll see that it references the cpu-compute compute target you created earlier. It also lists the

number of nodes to use when training ("nodeCount": "4"), and contains a "condaDependencies" section that lists

the Python packages needed to run the training script.

While it is possible to manually create a runconfig file, the one in this example was created using the

generate-runconfig.py file included in the repository. This file gets a reference to the registered dataset, creates a run

config programatically, and then persists it to file.

For more information on run configuration files, see Set up and use compute targets for model training. For a

Submit the training run

az ml run submit-script -c mnist -e myexperiment --source-directory scripts -t runoutput.json

Predict the test set
Accuracy is 0.9185

Register the model

az ml model register -n mymodel -f runoutput.json --asset-path "outputs/sklearn_mnist_model.pkl" -t
registeredmodel.json

complete JSON reference, see the runconfigschema.json.

To start a training run on the cpu-cluster compute target, use the following command:

This command specifies a name for the experiment (myexperiment). The experiment stores information about this

run in the workspace.

The -c mnist parameter specifies the .azureml/mnist.runconfig file.

The -t parameter stores a reference to this run in a JSON file, and will be used in the next steps to register and

download the model.

As the training run processes, it streams information from the training session on the remote compute resource.

Part of the information is similar to the following text:

This text is logged from the training script and displays the accuracy of the model. Other models will have different

performance metrics.

If you inspect the training script, you'll notice that it also uses the alpha value when it stores the trained model to

outputs/sklearn_mnist_model.pkl .

The model was saved to the ./outputs directory on the compute target where it was trained. In this case, the

Azure Machine Learning Compute instance in the Azure cloud. The training process automatically uploads the

contents of the ./outputs directory from the compute target where training occurs to your Azure Machine

Learning workspace. It's stored as part of the experiment (myexperiment in this example).

To register the model directly from the stored version in your experiment, use the following command:

This command registers the outputs/sklearn_mnist_model.pkl file created by the training run as a new model

registration named mymodel . The --assets-path references a path in an experiment. In this case, the experiment

and run information are loaded from the runoutput.json file created by the training command. The

-t registeredmodel.json creates a JSON file that references the new registered model created by this command,

and is used by other CLI commands that work with registered models.

The output of this command is similar to the following JSON:

https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json

{
 "createdTime": "2019-09-19T15:25:32.411572+00:00",
 "description": "",
 "experimentName": "myexperiment",
 "framework": "Custom",
 "frameworkVersion": null,
 "id": "mymodel:1",
 "name": "mymodel",
 "properties": "",
 "runId": "myexperiment_1568906070_5874522d",
 "tags": "",
 "version": 1
}

Model versioning

az ml model download -i "mymodel:1" -t .
az ml model register -n mymodel -p "sklearn_mnist_model.pkl"

Deploy the model

az ml model deploy -n myservice -m "mymodel:1" --ic inferenceConfig.json --dc aciDeploymentConfig.yml

NOTE

Note the version number returned for the model. The version is incremented each time you register a new model

with this name. For example, you can download the model and register it from a local file by using the following

commands:

The first command downloads the registered model to the current directory. The file name is

sklearn_mnist_model.pkl , which is the file referenced when you registered the model. The second command

registers the local model (-p "sklearn_mnist_model.pkl") with the same name as the previous registration (

mymodel). This time, the JSON data returned lists the version as 2.

To deploy a model, use the following command:

You may receive a warning about "Failed to check LocalWebservice existence" or "Failed to create Docker client". You can

safely ignore this, as you are not deploying a local web service.

This command deploys a new service named myservice , using version 1 of the model that you registered

previously.

The inferenceConfig.yml file provides information on how to use the model for inference. For example, it

references the entry script (score.py) and software dependencies.

For more information on the structure of this file, see the Inference configuration schema. For more information

on entry scripts, see Deploy models with the Azure Machine Learning.

The aciDeploymentConfig.yml describes the deployment environment used to host the service. The deployment

configuration is specific to the compute type that you use for the deployment. In this case, an Azure Container

Instance is used. For more information, see the Deployment configuration schema.

It will take several minutes before the deployment process completes.

TIP

ACI service creation operation finished, operation "Succeeded"
{
 "computeType": "ACI",
 {...ommitted for space...}
 "runtimeType": null,
 "scoringUri": "http://6c061467-4e44-4f05-9db5-9f9a22ef7a5d.eastus2.azurecontainer.io/score",
 "state": "Healthy",
 "tags": "",
 "updatedAt": "2019-09-19T18:22:32.227401+00:00"
}

The scoring URI

az ml service show -n myservice

Send data to the service

az ml service run -n myservice -d @testdata.json

TIP

az ml service run -n myservice -d `@testdata.json

Clean up resources

IMPORTANT

In this example, Azure Container Instances is used. Deployments to ACI automatically create the needed ACI resource. If you

were to instead deploy to Azure Kubernetes Service, you must create an AKS cluster ahead of time and specify it as part of

the az ml model deploy command. For an example of deploying to AKS, see Deploy a model to an Azure Kubernetes

Service cluster.

After several minutes, information similar to the following JSON is returned:

The scoringUri returned from the deployment is the REST endpoint for a model deployed as a web service. You

can also get this URI by using the following command:

This command returns the same JSON document, including the scoringUri .

The REST endpoint can be used to send data to the service. For information on creating a client application that

sends data to the service, see Consume an Azure Machine Learning model deployed as a web service

While you can create a client application to call the endpoint, the machine learning CLI provides a utility that can

act as a test client. Use the following command to send data in the testdata.json file to the service:

If you use PowerShell, use the following command instead:

The response from the command is similar to [3] .

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to articles.

Delete deployed service

az ml service delete -n myservice

Delete the training compute

az ml computetarget delete -n cpu-cluster

Delete everything

az group delete -g <resource-group-name> -y

Next steps

If you plan on continuing to use the Azure Machine Learning workspace, but want to get rid of the deployed

service to reduce costs, use the following command:

This command returns a JSON document that contains the name of the deleted service. It may take several

minutes before the service is deleted.

If you plan on continuing to use the Azure Machine Learning workspace, but want to get rid of the cpu-cluster

compute target created for training, use the following command:

This command returns a JSON document that contains the ID of the deleted compute target. It may take several

minutes before the compute target has been deleted.

If you don't plan to use the resources you created, delete them so you don't incur additional charges.

To delete the resource group, and all the Azure resources created in this document, use the following command.

Replace <resource-group-name> with the name of the resource group you created earlier :

In this Azure Machine Learning tutorial, you used the machine learning CLI for the following tasks:

Install the machine learning extension

Create an Azure Machine Learning workspace

Create the compute resource used to train the model

Define and register the dataset used to train the model

Start a training run

Register and download a model

Deploy the model as a web service

Score data using the web service

For more information on using the CLI, see Use the CLI extension for Azure Machine Learning.

Set up Azure Machine Learning Visual Studio Code
extension
4/13/2020 • 3 minutes to read • Edit Online

Prerequisites

Install the extension

Learn how to install and run scripts using the Azure Machine Learning Visual Studio Code extension.

In this tutorial, you learn the following tasks:

Install the Azure Machine Learning Visual Studio Code extension

Sign into your Azure account from Visual Studio Code

Use the Azure Machine Learning extension to run a sample script

Azure subscription. If you don't have one, sign up to try the free or paid version of Azure Machine Learning.

Visual Studio Code. If you don't have it, install it.

Python 3

1. Open Visual Studio Code.

2. Select Extensions icon from the Activity Bar to open the Extensions view.

3. In the Extensions view, search for "Azure Machine Learning".

4. Select Install .

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-setup-vscode-extension.md
https://aka.ms/AMLFree
https://code.visualstudio.com/docs/setup/setup-overview
https://www.python.org/downloads/

NOTE

Sign in to your Azure Account

Run a machine learning model training script in Azure

Alternatively, you can install the Azure Machine Learning extension via the Visual Studio Marketplace by downloading the

installer directly.

The rest of the steps in this tutorial have been tested with version 0.6 .8 of the extension.

In order to provision resources and run workloads on Azure, you have to sign in with your Azure account

credentials. To assist with account management, Azure Machine Learning automatically installs the Azure Account

extension. Visit the following site to learn more about the Azure Account extension.

1. Open the command palette by selecting View > Command Palette from the menu bar.

2. Enter the command "Azure: Sign In" into the command palette to start the sign in process.

Now that you have signed into Azure with your account credentials, Use the steps in this section to learn how to

use the extension to train a machine learning model.

1. Download and unzip the VS Code Tools for AI repository anywhere on your computer.

2. Open the mnist-vscode-docs-sample directory in Visual Studio Code.

3. Select the Azure icon in the Activity Bar.

4. Select the Run Experiment icon at the top of the Azure Machine Learning View.

5. When the command palette expands, follow the prompts.

a. Select your Azure subscription.

b. From the list of environments, select Conda dependencies file.

c. Press Enter to browse the Conda dependencies file. This file contains the dependencies required to run

your script. In this case, the dependencies file is the env.yml file inside the mnist-vscode-docs-sample

directory.

d. Press Enter to browse the training script file. This is the file that contains code to a machine learning

model that categorize images of handwritten digits. In this case, the script to train the model is the

train.py file inside the mnist-vscode-docs-sample directory.

https://aka.ms/vscodetoolsforai
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azure-account
https://github.com/microsoft/vscode-tools-for-ai/archive/master.zip

Track the progress of the training script

{
 "workspace": "WS04131142",
 "resourceGroup": "WS04131142-rg1",
 "location": "South Central US",
 "experiment": "WS04131142-exp1",
 "compute": {
 "name": "WS04131142-com1",
 "vmSize": "Standard_D1_v2, Cores: 1; RAM: 3.5GB;"
 },
 "runConfiguration": {
 "filename": "WS04131142-com1-rc1",
 "environment": {
 "name": "WS04131142-env1",
 "conda_dependencies": [
 "python=3.6.2",
 "tensorflow=1.15.0",
 "pip"
],
 "pip_dependencies": [
 "azureml-defaults"
],
 "environment_variables": {}
 }
 }
}

Azure ML: Submit Experiment

6. At this point, a configuration file similar to the one below appears in the text editor. The configuration

contains the information required to run the training job like the file that contains the code to train the

model and any Python dependencies specified in the previous step.

7. Once you're satisfied with your configuration, submit your experiment by opening the command palette

and entering the following command:

This sends the train.py and configuration file to your Azure Machine Learning workspace. The training

job is then started on a compute resource in Azure.

Running your script can take several minutes. To track its progress:

1. Select the Azure icon from the activity bar.

2. Expand your subscription node.

3. Expand your currently running experiment's node. This is located inside the

{workspace}/Experiments/{experiment} node where the values for your workspace and experiment are the

same as the properties defined in the configuration file.

4. All of the runs for the experiment are listed, as well as their status. To get the most recent status, click the

refresh icon at the top of the Azure Machine Learning View.

Download the trained model

Next steps

When the experiment run is complete, the output is a trained model. To download the outputs locally:

1. Right-click the most recent run and select Download Outputs .

2. Select a location where to save the outputs to.

3. A folder with the name of your run is downloaded locally. Navigate to it.

4. The model files are inside the outputs/outputs/model directory.

Tutorial: Train and deploy an image classification TensorFlow model using the Azure Machine Learning Visual

Studio Code Extension.

Train and deploy an image classification TensorFlow
model using the Azure Machine Learning Visual
Studio Code Extension
4/13/2020 • 9 minutes to read • Edit Online

Prerequisites

Understand the code

Create a workspace

Learn how to train and deploy an image classification model to recognize hand-written numbers using TensorFlow

and the Azure Machine Learning Visual Studio Code Extension.

In this tutorial, you learn the following tasks:

Understand the code

Create a workspace

Create an experiment

Configure Computer Targets

Run a configuration file

Train a model

Register a model

Deploy a model

Azure subscription. If you don't have one, sign up to try the free or paid version of Azure Machine Learning.

Install Visual Studio Code, a lightweight, cross-platform code editor.

Azure Machine Learning Studio Visual Studio Code extension. For install instructions see the Setup Azure

Machine Learning Visual Studio Code extension tutorial

The code for this tutorial uses TensorFlow to train an image classification machine learning model that categorizes

handwritten digits from 0-9. It does so by creating a neural network that takes the pixel values of 28 px x 28 px

image as input and outputs a list of 10 probabilities, one for each of the digits being classified. Below is a sample of

what the data looks like.

Get the code for this tutorial by downloading and unzipping the VS Code Tools for AI repository anywhere on your

computer.

The first thing you have to do to build an application in Azure Machine Learning is to create a workspace. A

workspace contains the resources to train models as well as the trained models themselves. For more information,

see what is a workspace.

1. On the Visual Studio Code activity bar, select the Azure icon to open the Azure Machine Learning view.

2. Right-click your Azure subscription and select Create Workspace.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/tutorial-train-deploy-image-classification-model-vscode.md
https://aka.ms/AMLFree
https://code.visualstudio.com/docs/setup/setup-overview
https://github.com/microsoft/vscode-tools-for-ai/archive/master.zip

Create an experiment

3. By default a name is generated containing the date and time of creation. In the text input box, change the

name to "TeamWorkspace" and press Enter .

4. Select Create a new resource group.

5. Name your resource group "TeamWorkspace-rg" and press Enter .

6. Choose a location for your workspace. It's recommended to choose a location that is closest to the location

you plan to deploy your model. For example, "West US 2".

7. When prompted to select the type of workspace, select Basic to create a basic workspace. For more

information on different workspace offerings, see Azure Machine Learning overview.

At this point, a request to Azure is made to create a new workspace in your account. After a few minutes, the new

workspace appears in your subscription node.

One or more experiments can be created in your workspace to track and analyze individual model training runs.

Runs can be done in the Azure cloud or on your local machine.

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace node.

4. Right-click the Experiments node.

5. Select Create Experiment from the context menu.

 Configure Compute Targets

6. Name your experiment "MNIST" and press Enter to create the new experiment.

Like workspaces, a request is sent to Azure to create an experiment with the provided configurations. After a few

minutes, the new experiment appears in the Experiments node of your workspace.

A compute target is the computing resource or environment where you run scripts and deploy trained models. For

more information, see the Azure Machine Learning compute targets documentation.

To create a compute target:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace node.

4. Under the workspace node, right-click the Compute node and choose Create Compute.

5. Select Azure Machine Learning Compute (AmlCompute) . Azure Machine Learning Compute is a

managed-compute infrastructure that allows the user to easily create a single or multi-node compute that

can be used with other users in your workspace.

6. Choose a VM size. Select Standard_F2s_v2 from the list of options. The size of your VM has an impact on

the amount of time it takes to train your models. For more information on VM sizes, see sizes for Linux

virtual machines in Azure.

7. Name your compute "TeamWkspc-com" and press Enter to create your compute.

https://docs.microsoft.com/azure/virtual-machines/linux/sizes

Create a run configuration

{
 "location": "westus2",
 "tags": {},
 "properties": {
 "computeType": "AmlCompute",
 "description": "",
 "properties": {
 "vmSize": "Standard_F2s_v2",
 "vmPriority": "dedicated",
 "scaleSettings": {
 "maxNodeCount": 4,
 "minNodeCount": 0,
 "nodeIdleTimeBeforeScaleDown": 120
 },
 "userAccountCredentials": {
 "adminUserName": "",
 "adminUserPassword": "",
 "adminUserSshPublicKey": ""
 },
 "subnetName": "",
 "vnetName": "",
 "vnetResourceGroupName": "",
 "remoteLoginPortPublicAccess": ""
 }
 }
}

Azure ML: Save and Continue

A file appears in VS Code with content similar to the one below:

8. When satisfied with the configuration, open the command palette by selecting View > Command Palette.

9. Enter the following command into the command palette to save your run configuration file.

After a few minutes, the new compute target appears in the Compute node of your workspace.

When you submit a training run to a compute target, you also submit the configuration needed to run the training

job. For example, the script that contains the training code and the Python dependencies needed to run it.

To create a run configuration:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace > Compute node.

4. Under the compute node, right-click the TeamWkspc-com compute node and choose Create Run

Configuration.

5. Name your run configuration "MNIST-rc" and press Enter to create your run configuration.

6. Then, select Create new Azure ML Environment. Environments define the dependencies required to run

your scripts.

7. Name your environment "MNIST-env" and press Enter .

8. Select Conda dependencies file from the list.

9. Press Enter to browse the Conda dependencies file. In this case, the dependencies file is the env.yml file

inside the vscode-tools-for-ai/mnist-vscode-docs-sample directory.

A file appears in VS Code with content similar to the one below:

{
 "name": "MNIST-env",
 "version": "1",
 "python": {
 "interpreterPath": "python",
 "userManagedDependencies": false,
 "condaDependencies": {
 "name": "vs-code-azure-ml-tutorial",
 "channels": [
 "defaults"
],
 "dependencies": [
 "python=3.6.2",
 "tensorflow=1.15.0",
 "pip",
 {
 "pip": [
 "azureml-defaults"
]
 }
]
 },
 "baseCondaEnvironment": null
 },
 "environmentVariables": {},
 "docker": {
 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
 "baseDockerfile": null,
 "baseImageRegistry": {
 "address": null,
 "username": null,
 "password": null
 },
 "enabled": false,
 "arguments": []
 },
 "spark": {
 "repositories": [],
 "packages": [],
 "precachePackages": true
 },
 "inferencingStackVersion": null
}

Azure ML: Save and Continue

10. Once you're satisfied with your configuration, save it by opening the command palette and entering the

following command:

11. Press Enter to browse the script file to run on the compute. In this case, the script to train the model is the

train.py file inside the vscode-tools-for-ai/mnist-vscode-docs-sample directory.

A file called MNIST-rc.runconfig appears in VS Code with content similar to the one below:

{
 "script": "train.py",
 "framework": "Python",
 "communicator": "None",
 "target": "TeamWkspc-com",
 "environment": {
 "name": "MNIST-env",
 "version": "1",
 "python": {
 "interpreterPath": "python",
 "userManagedDependencies": false,
 "condaDependencies": {
 "name": "vs-code-azure-ml-tutorial",
 "channels": [
 "defaults"
],
 "dependencies": [
 "python=3.6.2",
 "tensorflow=1.15.0",
 "pip",
 {
 "pip": [
 "azureml-defaults"
]
 }
]
 },
 "baseCondaEnvironment": null
 },
 "environmentVariables": {},
 "docker": {
 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
 "baseDockerfile": null,
 "baseImageRegistry": {
 "address": null,
 "username": null,
 "password": null
 },
 "enabled": false,
 "arguments": []
 },
 "spark": {
 "repositories": [],
 "packages": [],
 "precachePackages": true
 },
 "inferencingStackVersion": null
 },
 "history": {
 "outputCollection": true,
 "snapshotProject": false,
 "directoriesToWatch": [
 "logs"
]
 }
}

Azure ML: Save and Continue

12. Once you're satisfied with your configuration, save it by opening the command palette and entering the

following command:

The MNIST-rc run configuration is added under the TeamWkspc-com compute node and the MNIST-env

environment configuration is added under the Environments node.

 Train the model
During the training process, a TensorFlow model is created by processing the training data and learning patterns

embedded within it for each of the respective digits being classified.

To run an Azure Machine Learning experiment:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace > Experiments node.

4. Right-click the MNIST experiment.

5. Select Run Experiment.

6. From the list of compute target options, select the TeamWkspc-com compute target.

7. Then, select the MNIST-rc run configuration.

8. At this point, a request is sent to Azure to run your experiment on the selected compute target in your

workspace. This process takes several minutes. The amount of time to run the training job is impacted by

several factors like the compute type and training data size. To track the progress of your experiment, right-

click the current run node and select View Run in Azure por tal .

9. When the dialog requesting to open an external website appears, select Open.

When the model is done training, the status label next to the run node updates to "Completed".

Register the model
Now that you've trained your model, you can register it in your workspace.

To register your model:

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace > Experiments > MNIST node.

4. Get the model outputs generated from training the model. Right-click the Run 1 run node and select

Download outputs .

5. Choose the directory to save the downloaded outputs to. By default, the outputs are placed in the directory

currently opened in Visual Studio Code.

6. Right-click the Models node and choose Register Model .

7. Name your model "MNIST-TensorFlow-model" and press Enter .

8. A TensorFlow model is made up of several files. Select Model folder as the model path format from the list

of options.

9. Select the azureml_outputs/Run_1/outputs/outputs/model directory.

A file containing your model configurations appears in Visual Studio Code with similar content to the one

below:

 Deploy the model

{
 "modelName": "MNIST-TensorFlow-model",
 "tags": {
 "": ""
 },
 "modelPath": "c:\\Dev\\vscode-tools-for-ai\\mnist-vscode-docs-
sample\\azureml_outputs\\Run_1\\outputs\\outputs\\model",
 "description": ""
}

Azure ML: Save and Continue

10. Once you're satisfied with your configuration, save it by opening the command palette and entering the

following command:

After a few minutes, the model appears under the Models node.

In Visual Studio Code, you can deploy your model as a web service to:

Azure Container Instances (ACI).

Azure Kubernetes Service (AKS).

You don't need to create an ACI container to test in advance, because ACI containers are created as needed.

However, you do need to configure AKS clusters in advance. For more information on deployment options, see

deploy models with Azure Machine Learning .

To deploy a web service as an ACI :

1. On the Visual Studio Code activity bar, select the Azure icon. The Azure Machine Learning view appears.

2. Expand your subscription node.

3. Expand the TeamWorkspace > Models node.

4. Right-click the MNIST-TensorFlow-model and select Deploy Ser vice from Registered Model .

5. Select Azure Container Instances .

6. Name your service "mnist-tensorflow-svc" and press Enter .

7. Choose the script to run in the container by pressing Enter in the input box and browsing for the score.py

Next steps

{
 "name": "mnist-tensorflow-svc",
 "imageConfig": {
 "runtime": "python",
 "executionScript": "score.py",
 "dockerFile": null,
 "condaFile": "env.yml",
 "dependencies": [],
 "schemaFile": null,
 "enableGpu": false,
 "description": ""
 },
 "deploymentConfig": {
 "cpu_cores": 1,
 "memory_gb": 10,
 "tags": {
 "": ""
 },
 "description": ""
 },
 "deploymentType": "ACI",
 "modelIds": [
 "MNIST-TensorFlow-model:1"
]
}

Azure ML: Save and Continue

file in the mnist-vscode-docs-sample directory.

8. Provide the dependencies needed to run the script by pressing Enter in the input box and browsing for the

env.yml file in the mnist-vscode-docs-sample directory.

A file containing your model configurations appears in Visual Studio Code with similar content to the one

below:

9. Once you're satisfied with your configuration, save it by opening the command palette and entering the

following command:

At this point, a request is sent to Azure to deploy your web service. This process takes several minutes. Once

deployed, the new service appears under the Endpoints node.

For a walkthrough of how to train with Azure Machine Learning outside of Visual Studio Code, see Tutorial: Train

models with Azure Machine Learning.

For a walkthrough of how to edit, run, and debug code locally, see the Python hello-world tutorial.

https://code.visualstudio.com/docs/Python/Python-tutorial

Explore Azure Machine Learning with Jupyter
notebooks
3/6/2020 • 2 minutes to read • Edit Online

NOTE

Get samples on Azure Machine Learning compute instance

Get samples on your notebook server

Get samples on DSVM

The example Azure Machine Learning Notebooks repository includes the latest Azure Machine Learning Python

SDK samples. These Juypter notebooks are designed to help you explore the SDK and serve as models for your

own machine learning projects.

This article shows you how to access the repository from the following environments:

Azure Machine Learning compute instance

Bring your own notebook server

Data Science Virtual Machine

Once you've cloned the repository, you'll find tutorial notebooks in the tutorials folder and feature-specific notebooks in

the how-to-use-azureml folder.

The easiest way to get started with the samples is to complete the Tutorial: Setup environment and workspace.

Once completed, you'll have a dedicated notebook server pre-loaded with the SDK and the sample repository. No

downloads or installation necessary.

If you'd like to bring your own notebook server for local development, follow these steps:

git clone https://github.com/Azure/MachineLearningNotebooks.git

jupyter notebook

1. Use the instructions at Azure Machine Learning SDK to install the Azure Machine Learning SDK for Python

2. Create an Azure Machine Learning workspace.

3. Write a configuration file file (aml_config/config.json).

4. Clone the GitHub repository.

5. Start the notebook server from your cloned directory.

These instructions install the base SDK packages necessary for the quickstart and tutorial notebooks. Other

sample notebooks may require you to install extra components. For more information, see Install the Azure

Machine Learning SDK for Python.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/samples-notebooks.md
https://github.com/azure/machinelearningnotebooks
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://aka.ms/aml-notebooks
https://docs.microsoft.com/python/api/overview/azure/ml/install

Next steps

The Data Science Virtual Machine (DSVM) is a customized VM image built specifically for doing data science. If

you create a DSVM, the SDK and notebook server are installed and configured for you. However, you'll still need

to create a workspace and clone the sample repository.

git clone https://github.com/Azure/MachineLearningNotebooks.git

jupyter notebook

1. Create an Azure Machine Learning workspace.

2. Clone the GitHub repository.

3. Add a workspace configuration file to the cloned directory using either of these methods:

In the Azure portal, select Download config.json from the Over view section of your workspace.

Create a new workspace using code in the configuration.ipynb notebook in your cloned directory.

4. Start the notebook server from your cloned directory.

Explore the sample notebooks to discover what Azure Machine Learning can do, or try these tutorials:

Train and deploy an image classification model with MNIST

Prepare data and use automated machine learning to train a regression model with the NYC taxi data set

https://aka.ms/aml-notebooks
https://ms.portal.azure.com
https://github.com/Azure/MachineLearningNotebooks/blob/master/configuration.ipynb
https://aka.ms/aml-notebooks

Sample datasets in Azure Machine Learning designer
(preview)
4/10/2020 • 4 minutes to read • Edit Online

Datasets

DATA SET N A M E DATA SET DESC RIP T IO N

Adult Census Income Binary Classification dataset A subset of the 1994 Census database, using working adults
over the age of 16 with an adjusted income index of > 100.
Usage: Classify people using demographics to predict
whether a person earns over 50K a year.
Related Research: Kohavi, R., Becker, B., (1996). UCI Machine
Learning Repository. Irvine, CA: University of California, School
of Information and Computer Science

Automobile price data (Raw) Information about automobiles by make and model, including
the price, features such as the number of cylinders and MPG,
as well as an insurance risk score.
The risk score is initially associated with auto price. It is then
adjusted for actual risk in a process known to actuaries as
symboling. A value of +3 indicates that the auto is risky, and a
value of -3 that it is probably safe.
Usage: Predict the risk score by features, using regression or
multivariate classification.
Related Research: Schlimmer, J.C. (1987). UCI Machine
Learning Repository. Irvine, CA: University of California, School
of Information and Computer Science.

CRM Appetency Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_small_train_appetency.labels).

CRM Churn Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_small_train_churn.labels).

CRM Dataset Shared This data comes from the KDD Cup 2009 customer
relationship prediction challenge (orange_small_train.data.zip).
The dataset contains 50K customers from the French Telecom
company Orange. Each customer has 230 anonymized
features, 190 of which are numeric and 40 are categorical. The
features are very sparse.

CRM Upselling Labels Shared Labels from the KDD Cup 2009 customer relationship
prediction challenge (orange_large_train_upselling.labels

When you create a new pipeline in Azure Machine Learning designer (preview), a number of sample datasets are

included by default. These sample datasets are used by the sample pipelines in the designer homepage.

The sample datasets are available under Datasets-Samples category. You can find this in the module palette to

the left of the canvas in the designer. You can use any of these datasets in your own pipeline by dragging it to the

canvas.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/sample-designer-datasets.md
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
http://www.sigkdd.org/site/2009/files/orange_small_train_appetency.labels
http://www.sigkdd.org/site/2009/files/orange_small_train_churn.labels
http://www.sigkdd.org/site/2009/files/orange_small_train.data.zip
http://www.sigkdd.org/site/2009/files/orange_large_train_upselling.labels

Flight Delays Data Passenger flight on-time performance data taken from the
TranStats data collection of the U.S. Department of
Transportation (On-Time).
The dataset covers the time period April-October 2013. Before
uploading to the designer, the dataset was processed as
follows:
- The dataset was filtered to cover only the 70 busiest airports
in the continental US
- Canceled flights were labeled as delayed by more than 15
minutes
- Diverted flights were filtered out
- The following columns were selected: Year, Month,
DayofMonth, DayOfWeek, Carrier, OriginAirportID,
DestAirportID, CRSDepTime, DepDelay, DepDel15,
CRSArrTime, ArrDelay, ArrDel15, Canceled

German Credit Card UCI dataset The UCI Statlog (German Credit Card) dataset
(Statlog+German+Credit+Data), using the german.data file.
The dataset classifies people, described by a set of attributes,
as low or high credit risks. Each example represents a person.
There are 20 features, both numerical and categorical, and a
binary label (the credit risk value). High credit risk entries have
label = 2, low credit risk entries have label = 1. The cost of
misclassifying a low risk example as high is 1, whereas the cost
of misclassifying a high risk example as low is 5.

IMDB Movie Titles The dataset contains information about movies that were
rated in Twitter tweets: IMDB movie ID, movie name, genre,
and production year. There are 17K movies in the dataset. The
dataset was introduced in the paper "S. Dooms, T. De
Pessemier and L. Martens. MovieTweetings: a Movie Rating
Dataset Collected From Twitter. Workshop on Crowdsourcing
and Human Computation for Recommender Systems,
CrowdRec at RecSys 2013."

Movie Ratings The dataset is an extended version of the Movie Tweetings
dataset. The dataset has 170K ratings for movies, extracted
from well-structured tweets on Twitter. Each instance
represents a tweet and is a tuple: user ID, IMDB movie ID,
rating, timestamp, number of favorites for this tweet, and
number of retweets of this tweet. The dataset was made
available by A. Said, S. Dooms, B. Loni and D. Tikk for
Recommender Systems Challenge 2014.

DATA SET N A M E DATA SET DESC RIP T IO N

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

Weather Dataset Hourly land-based weather observations from NOAA (merged
data from 201304 to 201310).
The weather data covers observations made from airport
weather stations, covering the time period April-October
2013. Before uploading to the designer, the dataset was
processed as follows:
- Weather station IDs were mapped to corresponding airport
IDs
- Weather stations not associated with the 70 busiest airports
were filtered out
- The Date column was split into separate Year, Month, and
Day columns
- The following columns were selected: AirportID, Year, Month,
Day, Time, TimeZone, SkyCondition, Visibility, WeatherType,
DryBulbFarenheit, DryBulbCelsius, WetBulbFarenheit,
WetBulbCelsius, DewPointFarenheit, DewPointCelsius,
RelativeHumidity, WindSpeed, WindDirection,
ValueForWindCharacter, StationPressure, PressureTendency,
PressureChange, SeaLevelPressure, RecordType, HourlyPrecip,
Altimeter

Wikipedia SP 500 Dataset Data is derived from Wikipedia (https://www.wikipedia.org/)
based on articles of each S&P 500 company, stored as XML
data.
Before uploading to the designer, the dataset was processed
as follows:
- Extract text content for each specific company
- Remove wiki formatting
- Remove non-alphanumeric characters
- Convert all text to lowercase
- Known company categories were added
Note that for some companies an article could not be found,
so the number of records is less than 500.

DATA SET N A M E DATA SET DESC RIP T IO N

Next steps
Learn the basics of predictive analytics and machine learning with Tutorial: Predict automobile price with the

designer

Learn how to modify existing designer samples to adapt them to your needs.

https://az754797.vo.msecnd.net/data/WeatherDataset.csv
https://www.wikipedia.org/

Designer sample pipelines
3/30/2020 • 4 minutes to read • Edit Online

Prerequisites

How to use sample pipelines

Open a sample pipeline

Submit a pipeline run

Review the results

Regression samples

Use the built-in examples in Azure Machine Learning designer to quickly get started building your own machine

learning pipelines. The Azure Machine Learning designer GitHub repository contains detailed documentation to

help you understand some common machine learning scenarios.

An Azure subscription. If you don't have an Azure subscription, create a free account.

An Azure Machine Learning workspace with the Enterprise SKU.

The designer saves a copy of the sample pipelines to your studio workspace. You can edit the pipeline to adapt it to

your needs and save it as your own. Use them as a starting point to jumpstart your projects.

1. Sign in to ml.azure.com, and select the workspace you want to work with.

2. Select Designer .

3. Select a sample pipeline under the New pipeline section.

Select Show more samples for a complete list of samples.

To run a pipeline, you first have to set default compute target to run the pipeline on.

1. In the Settings pane to the right of the canvas, select Select compute target.

2. In the dialog that appears, select an existing compute target or create a new one. Select Save.

3. Select Submit at the top of the canvas to submit a pipeline run.

Depending on the sample pipeline and compute settings, runs may take some time to complete. The default

compute settings have a minimum node size of 0, which means that the designer must allocate resources after

being idle. Repeated pipeline runs will take less time since the compute resources are already allocated.

Additionally, the designer uses cached results for each module to further improve efficiency.

After the pipeline finishes running, you can review the pipeline and view the output for each module to learn more.

Use the following steps to view module outputs:

1. Select a module in the canvas.

2. In the module details pane to the right of the canvas, select Outputs + logs . Select the graph icon to

see the results of each module.

Use the samples as starting points for some of the most common machine learning scenarios.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/samples-designer.md
https://github.com/Azure/MachineLearningDesigner
https://aka.ms/AMLFree
https://ml.azure.com?tabs=jre

SA M P L E T IT L E DESC RIP T IO N

Sample 1: Regression - Automobile Price Prediction (Basic) Predict car prices using linear regression.

Sample 2: Regression - Automobile Price Prediction
(Advanced)

Predict car prices using decision forest and boosted decision
tree regressors. Compare models to find the best algorithm.

Classification samples

SA M P L E T IT L E DESC RIP T IO N

Sample 3: Binary Classification with Feature Selection -
Income Prediction

Predict income as high or low, using a two-class boosted
decision tree. Use Pearson correlation to select features.

Sample 4: Binary Classification with custom Python script -
Credit Risk Prediction

Classify credit applications as high or low risk. Use the Execute
Python Script module to weight your data.

Sample 5: Binary Classification - Customer Relationship
Prediction

Predict customer churn using two-class boosted decision
trees. Use SMOTE to sample biased data.

Sample 7: Text Classification - Wikipedia SP 500 Dataset Classify company types from Wikipedia articles with multiclass
logistic regression.

Sample 12: Multiclass Classification - Letter Recognition Create an ensemble of binary classifiers to classify written
letters.

Recommender samples

SA M P L E T IT L E DESC RIP T IO N

Sample 10: Recommendation - Movie Rating Tweets Build a movie recommender engine from movie titles and
rating.

Utility samples

SA M P L E T IT L E DESC RIP T IO N

Sample 6: Use custom R script - Flight Delay Prediction

Sample 8: Cross Validation for Binary Classification - Adult
Income Prediction

Use cross validation to build a binary classifier for adult
income.

Learn more about the built-in regression samples.

Learn more about the built-in classification samples. You can learn more about the samples without

documentation links by opening the samples and viewing the module comments instead.

Learn more about the built-in recommender samples. You can learn more about the samples without

documentation links by opening the samples and viewing the module comments instead.

Learn more about the samples that demonstrate machine learning utilities and features. You can learn more about

the samples without documentation links by opening the samples and viewing the module comments instead.

https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-regression-automobile-price-basic.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-regression-automobile-price-compare-algorithms.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-predict-income.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-credit-risk-cost-sensitive.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-churn.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-text-classification.md
https://github.com/Azure/MachineLearningDesigner/blob/master/articles/samples/how-to-designer-sample-classification-flight-delay.md

Sample 9: Permutation Feature Importance Use permutation feature importance to compute importance
scores for the test dataset.

Sample 11: Tune Parameters for Binary Classification - Adult
Income Prediction

Use Tune Model Hyperparameters to find optimal
hyperparameters to build a binary classifier.

SA M P L E T IT L E DESC RIP T IO N

Clean up resources

IMPORTANT

Delete everything

Delete individual assets

You can use the resources that you created as prerequisites for other Azure Machine Learning tutorials and how-to articles.

If you don't plan to use anything that you created, delete the entire resource group so you don't incur any charges.

1. In the Azure portal, select Resource groups on the left side of the window.

2. In the list, select the resource group that you created.

3. Select Delete resource group.

Deleting the resource group also deletes all resources that you created in the designer.

In the designer where you created your experiment, delete individual assets by selecting them and then selecting

the Delete button.

The compute target that you created here automatically autoscales to zero nodes when it's not being used. This

action is taken to minimize charges. If you want to delete the compute target, take these steps:

Next steps

You can unregister datasets from your workspace by selecting each dataset and selecting Unregister .

To delete a dataset, go to the storage account by using the Azure portal or Azure Storage Explorer and manually

delete those assets.

Learn how to build and deploy machine learning models with Tutorial: Predict automobile price with the designer

What is an Azure Machine Learning workspace?
2/20/2020 • 4 minutes to read • Edit Online

Taxonomy

The workspace is the top-level resource for Azure Machine Learning, providing a centralized place to work with

all the artifacts you create when you use Azure Machine Learning. The workspace keeps a history of all training

runs, including logs, metrics, output, and a snapshot of your scripts. You use this information to determine which

training run produces the best model.

Once you have a model you like, you register it with the workspace. You then use the registered model and

scoring scripts to deploy to Azure Container Instances, Azure Kubernetes Service, or to a field-programmable

gate array (FPGA) as a REST-based HTTP endpoint. You can also deploy the model to an Azure IoT Edge device as

a module.

Pricing and features available depend on whether Basic or Enterprise edition is selected for the workspace. You

select the edition when you create the workspace. You can also upgrade from Basic to Enterprise edition.

A taxonomy of the workspace is illustrated in the following diagram:

The diagram shows the following components of a workspace:

A workspace can contain Azure Machine Learning compute instances, cloud resources configured with the

Python environment necessary to run Azure Machine Learning.

User roles enable you to share your workspace with other users, teams or projects.

Compute targets are used to run your experiments.

When you create the workspace, associated resources are also created for you.

Experiments are training runs you use to build your models.

Pipelines are reusable workflows for training and retraining your model.

Datasets aid in management of the data you use for model training and pipeline creation.

Once you have a model you want to deploy, you create a registered model.

Use the registered model and a scoring script to create a deployment endpoint.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-workspace.md
file:///T:/i2pk/machine-learning/media/concept-workspace/azure-machine-learning-taxonomy.png#lightbox

Tools for workspace interaction

Machine learning with a workspace

Workspace management

W O RKSPA C E
M A N A GEM EN T TA SK P O RTA L ST UDIO P Y T H O N SDK / R SDK C L I

Create a workspace ✓ ✓ ✓

Manage workspace
access

✓ ✓

Upgrade to
Enterprise edition

✓ ✓

Create and manage
compute resources

✓ ✓ ✓ ✓

Create a Notebook
VM

✓

WARNING

Create a workspace

You can interact with your workspace in the following ways:

On the web:

In any Python environment with the Azure Machine Learning SDK for Python.

In any R environment with the Azure Machine Learning SDK for R.

On the command line using the Azure Machine Learning CLI extension

Azure Machine Learning studio

Azure Machine Learning designer (preview) - Available only in Enterprise edition workspaces.

Machine learning tasks read and/or write artifacts to your workspace.

Run an experiment to train a model - writes experiment run results to the workspace.

Use automated ML to train a model - writes training results to the workspace.

Register a model in the workspace.

Deploy a model - uses the registered model to create a deployment.

Create and run reusable workflows.

View machine learning artifacts such as experiments, pipelines, models, deployments.

Track and monitor models.

You can also perform the following workspace management tasks:

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a new

tenant, is not supported. Doing so may cause errors.

When you create a workspace, you decide whether to create it with Basic or Enterprise edition. The edition

determines the features available in the workspace. Among other features, Enterprise edition gives you access to

https://ml.azure.com
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/azure/machine-learning/reference-azure-machine-learning-cli

NOTE

Upgrade to Enterprise edition

Associated resources

NOTE

Next steps

Azure Machine Learning designer and the studio version of building automated machine learning experiments.

For more details and pricing information, see Azure Machine Learning pricing.

There are multiple ways to create a workspace:

Use the Azure portal for a point-and-click interface to walk you through each step.

Use the Azure Machine Learning SDK for Python to create a workspace on the fly from Python scripts or

Jupiter notebooks

Use an Azure Resource Manager template or the Azure Machine Learning CLI when you need to automate or

customize the creation with corporate security standards.

If you work in Visual Studio Code, use the VS Code extension.

The workspace name is case-insensitive.

You can upgrade your workspace from Basic to Enterprise edition using Azure portal. You cannot downgrade an

Enterprise edition workspace to a Basic edition workspace.

When you create a new workspace, it automatically creates several Azure resources that are used by the

workspace:

Azure Container Registry: Registers docker containers that you use during training and when you deploy a

model. To minimize costs, ACR is lazy-loaded until deployment images are created.

Azure Storage account: Is used as the default datastore for the workspace. Jupyter notebooks that are used

with your Azure Machine Learning compute instances are stored here as well.

Azure Application Insights: Stores monitoring information about your models.

Azure Key Vault: Stores secrets that are used by compute targets and other sensitive information that's

needed by the workspace.

In addition to creating new versions, you can also use existing Azure services.

To get started with Azure Machine Learning, see:

Azure Machine Learning overview

Create a workspace

Manage a workspace

Tutorial: Get started creating your first ML experiment with the Python SDK

Tutorial: Get started with Azure Machine Learning with the R SDK

Tutorial: Create your first classification model with automated machine learning (Available only in Enterprise

edition workspaces)

Tutorial: Predict automobile price with the designer (Available only in Enterprise edition workspaces)

https://azure.microsoft.com/pricing/details/machine-learning/
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py#workspace
https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/key-vault/

What are Azure Machine Learning environments?
3/20/2020 • 4 minutes to read • Edit Online

Types of environments

Create and manage environments

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Azure Machine Learning environments specify the Python packages, environment variables, and software settings

around your training and scoring scripts. They also specify run times (Python, Spark, or Docker). The environments

are managed and versioned entities within your Machine Learning workspace that enable reproducible, auditable,

and portable machine learning workflows across a variety of compute targets.

You can use an Environment object on your local compute to:

Develop your training script.

Reuse the same environment on Azure Machine Learning Compute for model training at scale.

Deploy your model with that same environment.

The following diagram illustrates how you can use a single Environment object in both your run configuration, for

training, and your inference and deployment configuration, for web service deployments.

Environments can broadly be divided into three categories: curated, user-managed, and system-managed.

Curated environments are provided by Azure Machine Learning and are available in your workspace by default.

They contain collections of Python packages and settings to help you get started with various machine learning

frameworks.

In user-managed environments, you're responsible for setting up your environment and installing every package

that your training script needs on the compute target. Conda doesn't check your environment or install anything

for you. If you're defining your own environment, you must list azureml-defaults with version >= 1.0.45 as a pip

dependency. This package contains the functionality that's needed to host the model as a web service.

You use system-managed environments when you want Conda to manage the Python environment and the script

dependencies for you. The service assumes this type of environment by default, because of its usefulness on

remote compute targets that are not manually configurable.

You can create environments by:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-environments.md
https://conda.io/docs/

Environment building, caching, and reuse

Building environments as Docker images

Image caching and reuse

Defining new Environment objects, either by using a curated environment or by defining your own

dependencies.

Using existing Environment objects from your workspace. This approach allows for consistency and

reproducibility with your dependencies.

Importing from an existing Anaconda environment definition.

Using the Azure Machine Learning CLI

For specific code samples, see the "Create an environment" section of Reuse environments for training and

deployment. Environments are also easily managed through your workspace. They include the following

functionality:

Environments are automatically registered to your workspace when you submit an experiment. They can also be

manually registered.

You can fetch environments from your workspace to use for training or deployment, or to make edits to the

environment definition.

With versioning, you can see changes to your environments over time, which ensures reproducibility.

You can build Docker images automatically from your environments.

For code samples, see the "Manage environments" section of Reuse environments for training and deployment.

The Azure Machine Learning service builds environment definitions into Docker images and conda environments.

It also caches the environments so they can be reused in subsequent training runs and service endpoint

deployments.

Typically, when you first submit a run using an environment, the Azure Machine Learning service invokes an ACR

Build Task on the Azure Container Registry (ACR) associated with the Workspace. The built Docker image is then

cached on the Workspace ACR. At the start of the run execution, the image is retrieved by the compute target.

The image build consists of two steps:

1. Downloading a base image, and executing any Docker steps

2. Building a conda environment according to conda dependencies specified in the environment definition.

The second step is omitted if you specify user-managed dependencies. In this case you're responsible for installing

any Python packages, by including them in your base image, or specifying custom Docker steps within the first

step. You're also responsible for specifying the correct location for the Python executable.

If you use the same environment definition for another run, the Azure Machine Learning service reuses the cached

image from the Workspace ACR.

To view the details of a cached image, use Environment.get_image_details method.

To determine whether to reuse a cached image or build a new one, the service computes a hash value from the

environment definition and compares it to the hashes of existing environments. The hash is based on:

Base image property value

Custom docker steps property value

List of Python packages in Conda definition

List of packages in Spark definition

The hash doesn't depend on environment name or version. Environment definition changes, such as adding or

https://docs.microsoft.com/azure/container-registry/container-registry-tasks-overview
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.pythonsection?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#get-image-details-workspace-
https://en.wikipedia.org/wiki/Hash_table

IMPORTANT

WARNING

Next steps

removing a Python package or changing the package version, causes the hash value to change and triggers an

image rebuild. However, if you simply rename your environment or create a new environment with the exact

properties and packages of an existing one, then the hash value remains the same and the cached image is used.

See the following diagram that shows three environment definitions. Two of them have different name and version,

but identical base image and Python packages. They have the same hash and therefore correspond to the same

cached image. The third environment has different Python packages and versions, and therefore corresponds to a

different cached image.

If you create an environment with an unpinned package dependency, for example numpy , that environment will keep using

the package version installed at the time of environment creation. Also, any future environment with matching definition will

keep using the old version.

To update the package, specify a version number to force image rebuild, for example numpy==1.18.1 . Note that new

dependencies, including nested ones will be installed that might break a previously working scenario.

The Environment.build method will rebuild the cached image, with possible side-effect of updating unpinned packages and

breaking reproducibility for all environment definitions corresponding to that cached image.

Learn how to create and use environments in Azure Machine Learning.

See the Python SDK reference documentation for the environment class.

See the R SDK reference documentation for environments.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#build-workspace--image-build-compute-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-environments

Data ingestion in Azure Machine Learning
3/11/2020 • 2 minutes to read • Edit Online

Use Azure Data Factory

P RO S C O N S

Specifically built to extract, load, and transform data. Currently offers a limited set of Azure Data Factory pipeline
tasks

Allows you to create data-driven workflows for orchestrating
data movement and transformations at scale.

Expensive to construct and maintain. See Azure Data Factory's
pricing page for more information.

Integrated with various Azure tools like Azure Databricks and
Azure Functions

Doesn't natively run scripts, instead relies on separate
compute for script runs

Natively supports data source triggered data ingestion

Data preparation and model training processes are separate.

Embedded data lineage capability for Azure Data Factory
dataflows

Provides a low code experience user interface for non-scripting
approaches

In this article, you learn the pros and cons of the following data ingestion options available with Azure Machine

Learning.

1. Azure Data Factory pipelines

2. Azure Machine Learning Python SDK

Data ingestion is the process in which unstructured data is extracted from one or multiple sources and then

prepared for training machine learning models. It's also time intensive, especially if done manually, and if you have

large amounts of data from multiple sources. Automating this effort frees up resources and ensures your models

use the most recent and applicable data.

Azure Data Factory (ADF) is specifically built to extract, load, and transform data, however the Python SDK let's you

develop a custom code solution for basic data ingestion tasks. If neither are quite what you need, you can also use

ADF and the Python SDK together to create an overall data ingestion workflow that meets your needs.

Azure Data Factory offers native support for data source monitoring and triggers for data ingestion pipelines.

The following table summarizes the pros and cons for using Azure Data Factory for your data ingestion workflows.

These steps and the following diagram illustrate Azure Data Factory's data ingestion workflow.

1. Pull the data from its sources

2. Transform and save the data to an output blob container, which serves as data storage for Azure Machine

Learning

3. With prepared data stored, the Azure Data Factory pipeline invokes a training Machine Learning pipeline that

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-data-ingestion.md
https://docs.microsoft.com/azure/data-factory/introduction
https://azure.microsoft.com/pricing/details/data-factory/data-pipeline/
https://docs.microsoft.com/azure/data-factory/transform-data-using-databricks-notebook
https://docs.microsoft.com/azure/data-factory/control-flow-azure-function-activity
https://docs.microsoft.com/azure/data-factory/quickstart-create-data-factory-portal

 Use the Python SDK

P RO S C O N S

Configure your own Python scripts Does not natively support data source change triggering.
Requires Logic App or Azure Function implementations

Data preparation as part of every model training execution Requires development skills to create a data ingestion script

Supports data preparation scripts on various compute targets,
including Azure Machine Learning compute

Does not provide a user interface for creating the ingestion
mechanism

Next steps

receives the prepared data for model training

Learn how to build a data ingestion pipeline for Machine Learning with Azure Data Factory.

With the Python SDK, you can incorporate data ingestion tasks into an Azure Machine Learning pipeline step.

The following table summarizes the pros and con for using the SDK and an ML pipelines step for data ingestion

tasks.

In the following diagram, the Azure Machine Learning pipeline consists of two steps: data ingestion and model

training. The data ingestion step encompasses tasks that can be accomplished using Python libraries and the

Python SDK, such as extracting data from local/web sources, and basic data transformations, like missing value

imputation. The training step then uses the prepared data as input to your training script to train your machine

learning model.

Learn how to build a data ingestion pipeline for Machine Learning with Azure Data Factory

Learn how to automate and manage the development life cycles of your data ingestion pipelines with Azure

Pipelines.

https://docs.microsoft.com/python/api/overview/azure/ml

Secure data access in Azure Machine Learning
4/24/2020 • 4 minutes to read • Edit Online

Data workflow

Datastores

Azure Machine Learning makes it easy to connect to your data in the cloud. It provides an abstraction layer over the

underlying storage service, so you can securely access and work with your data without having to write code

specific to your storage type. Azure Machine Learning also provides the following data capabilities:

Versioning and tracking of data lineage

Data labeling

Data drift monitoring

Interoperability with Pandas and Spark DataFrames

When you're ready to use the data in your cloud-based storage solution, we recommend the following data

delivery workflow. This workflow assumes you have an Azure storage account and data in a cloud-based storage

service in Azure.

1. Create an Azure Machine Learning datastore to store connection information to your Azure storage.

2. From that datastore, create an Azure Machine Learning dataset to point to a specific file(s) in your

underlying storage.

3. To use that dataset in your machine learning experiment you can either

a. Mount it to your experiment's compute target for model training.

OR

b. Consume it directly in Azure Machine Learning solutions like, automated machine learning

(automated ML) experiment runs, machine learning pipelines, or the Azure Machine Learning

designer.

4. Create dataset monitors for your model output dataset to detect for data drift.

5. If data drift is detected, update your input dataset and retrain your model accordingly.

The following diagram provides a visual demonstration of this recommended workflow.

Azure Machine Learning datastores securely keep the connection information to your Azure storage, so you don't

have to code it in your scripts. Register and create a datastore to easily connect to your storage account, and access

the data in your underlying Azure storage service.

Supported cloud-based storage services in Azure that can be registered as datastores:

Azure Blob Container

Azure File Share

Azure Data Lake

Azure Data Lake Gen2

Azure SQL Database

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-data.md
https://docs.microsoft.com/azure/storage/common/storage-quickstart-create-account?tabs=azure-portal

 Datasets

Work with your data

Data labeling

Azure Database for PostgreSQL

Databricks File System

Azure Database for MySQL

Azure Machine Learning datasets are references that point to the data in your storage service. They aren't copies of

your data, so no extra storage cost is incurred. To interact with your data in storage, create a dataset to package

your data into a consumable object for machine learning tasks. Register the dataset to your workspace to share and

reuse it across different experiments without data ingestion complexities.

Datasets can be created from local files, public urls, Azure Open Datasets, or Azure storage services via datastores.

To create a dataset from an in memory pandas dataframe, write the data to a local file, like a parquet, and create

your dataset from that file.

We support 2 types of datasets:

A TabularDataset represents data in a tabular format by parsing the provided file or list of files. You can load

a TabularDataset into a Pandas or Spark DataFrame for further manipulation and cleansing. For a complete

list of data formats you can create TabularDatasets from, see the TabularDatasetFactory class.

A FileDataset references single or multiple files in your datastores or public URLs. You can download or

mount files referenced by FileDatasets to your compute target.

Additional datasets capabilities can be found in the following documentation:

Version and track dataset lineage.

Monitor your dataset to help with data drift detection.

With datasets, you can accomplish a number of machine learning tasks through seamless integration with Azure

Machine Learning features.

Create a data labeling project.

Train machine learning models:

Access datasets for scoring with batch inference in machine learning pipelines.

Set up a dataset monitor for data drift detection.

automated ML experiments

the designer

notebooks

Azure Machine Learning pipelines

Labeling large amounts of data has often been a headache in machine learning projects. Those with a computer

vision component, such as image classification or object detection, generally require thousands of images and

corresponding labels.

Azure Machine Learning gives you a central location to create, manage, and monitor labeling projects. Labeling

projects help coordinate the data, labels, and team members, allowing you to more efficiently manage the labeling

tasks. Currently supported tasks are image classification, either multi-label or multi-class, and object identification

using bounded boxes.

Create a data labeling project, and output a dataset for use in machine learning experiments.

https://azure.microsoft.com/services/open-datasets/
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py
https://aka.ms/tabulardataset-api-reference
https://docs.microsoft.com/python/api/azureml-core/azureml.data.file_dataset.filedataset?view=azure-ml-py

 Data drift

Next steps

In the context of machine learning, data drift is the change in model input data that leads to model performance

degradation. It is one of the top reasons model accuracy degrades over time, thus monitoring data drift helps

detect model performance issues.

See the Create a dataset monitor article, to learn more about how to detect and alert to data drift on new data in a

dataset.

Create a dataset in Azure Machine Learning studio or with the Python SDK using these steps.

Try out dataset training examples with our sample notebooks.

For data drift examples, see this data drift tutorial.

https://aka.ms/dataset-tutorial
https://aka.ms/datadrift-notebook

Train models with Azure Machine Learning
3/11/2020 • 6 minutes to read • Edit Online

Azure Machine Learning provides several ways to train your models, from code first solutions using the SDK to low

code solutions such as automated machine learning and the visual designer. Use the following list to determine

which training method is right for you:

T RA IN IN G M ET H O D DESC RIP T IO N

Run configuration A generic way to train models is to use a training
script and run configuration. The run configuration
provides the information needed to configure the training
environment used to train your model. You can take a run
configuration, your training script, and a compute target
(the training environment) and run a training job.

Automated machine learning Automated machine learning allows you to train models
without extensive data science or programming
knowledge. For people with a data science and
programming background, it provides a way to save time
and resources by automating algorithm selection and
hyperparameter tuning. You don't have to worry about
defining a run configuration when using automated
machine learning.

Estimators Estimator classes make it easy to train models based
on popular machine learning frameworks . There are
estimator classes for Scikit- learn , PyTorch, TensorFlow,
and Chainer . There is also a generic estimator that can be
used with frameworks that do not already have a
dedicated estimator class. You don't have to worry about
defining a run configuration when using estimators.

Azure Machine Learning SDK for Python: The Python SDK provides several ways to train models, each with

different capabilities.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-train-machine-learning-model.md

Python SDK

Run configuration

Machine learning pipeline Pipelines are not a different training method, but a way of
defining a workflow using modular, reusable steps ,
that can include training as part of the workflow. Machine
learning pipelines support using automated machine
learning, estimators, and run configuration to train models.
Since pipelines are not focused specifically on training, the
reasons for using a pipeline are more varied than the other
training methods. Generally, you might use a pipeline
when:
* You want to schedule unattended processes such as
long running training jobs or data preparation.
* Use multiple steps that are coordinated across
heterogeneous compute resources and storage locations.
* Use the pipeline as a reusable template for specific
scenarios, such as retraining or batch scoring.
* Track and version data sources, inputs, and
outputs for your workflow.
* Your workflow is implemented by different teams
that work on specific steps independently . Steps can
then be joined together in a pipeline to implement the
workflow.

T RA IN IN G M ET H O D DESC RIP T IO N

Azure Machine Learning SDK for Python: The SDK uses the reticulate package to bind to Azure Machine

Learning's Python SDK. This allows you access to core objects and methods implemented in the Python SDK

from any R environment.

Designer : Azure Machine Learning designer (preview) provides an easy entry-point into machine learning

for building proof of concepts, or for users with little coding experience. It allows you to train models using a

drag and drop web-based UI. You can use Python code as part of the design, or train models without writing

any code.

CLI: The machine learning CLI provides commands for common tasks with Azure Machine Learning, and is

often used for scr ipting and automating tasks . For example, once you've created a training script or

pipeline, you might use the CLI to start a training run on a schedule or when the data files used for training

are updated. For training models, it provides commands that submit training jobs. It can submit jobs using

run configurations or pipelines.

Each of these training methods can use different types of compute resources for training. Collectively, these

resources are referred to as compute targets . A compute target can be a local machine or a cloud resource, such

as an Azure Machine Learning Compute, Azure HDInsight, or a remote virtual machine.

The Azure Machine Learning SDK for Python allows you to build and run machine learning workflows with Azure

Machine Learning. You can interact with the service from an interactive Python session, Jupyter Notebooks, Visual

Studio Code, or other IDE.

What is the Azure Machine Learning SDK for Python

Install/update the SDK

Configure a development environment for Azure Machine Learning

A generic training job with Azure Machine Learning can be defined using the RunConfiguration. The run

configuration is then used, along with your training script(s) to train a model on a compute target.

You may start with a run configuration for your local computer, and then switch to one for a cloud-based compute

https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py

Automated Machine Learning

TIP

Estimators

Machine learning pipeline

R SDK

target as needed. When changing the compute target, you only change the run configuration you use. A run also

logs information about the training job, such as the inputs, outputs, and logs.

What is a run configuration?

Tutorial: Train your first ML model

Examples: Jupyter Notebook examples of training models

How to: Set up and use compute targets for model training

Define the iterations, hyperparameter settings, featurization, and other settings. During training, Azure Machine

Learning tries different algorithms and parameters in parallel. Training stops once it hits the exit criteria you

defined. You don't have to worry about defining a run configuration when using estimators.

In addition to the Python SDK, you can also use Automated ML through Azure Machine Learning studio.

What is automated machine learning?

Tutorial: Create your first classification model with automated machine learning

Tutorial: Use automated machine learning to predict taxi fares

Examples: Jupyter Notebook examples for automated machine learning

How to: Configure automated ML experiments in Python

How to: Autotrain a time-series forecast model

How to: Create, explore, and deploy automated machine learning experiments with Azure Machine Learning

studio

Estimators make it easy to train models using popular ML frameworks. If you're using Scikit-learn, PyTorch,

TensorFlow , or Chainer , you should consider using an estimator for training. There is also a generic estimator

that can be used with frameworks that do not already have a dedicated estimator class. You don't have to worry

about defining a run configuration when using estimators.

What are estimators?

Tutorial: Train image classification models with MNIST data and scikit-learn using Azure Machine Learning

Examples: Jupyter Notebook examples of using estimators

How to: Create estimators in training

Machine learning pipelines can use the previously mentioned training methods (run configuration, estimators, and

automated machine learning). Pipelines are more about creating a workflow, so they encompass more than just the

training of models. In a pipeline, you can train a model using automated machine learning, estimators, or run

configurations.

What are ML pipelines in Azure Machine Learning?

Create and run machine learning pipelines with Azure Machine Learning SDK

Tutorial: Use Azure Machine Learning Pipelines for batch scoring

Examples: Jupyter Notebook examples for machine learning pipelines

Examples: Pipeline with automated machine learning

Examples: Pipeline with estimators

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training
https://ml.azure.com
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training-with-deep-learning
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/machine-learning-pipelines
https://aka.ms/pl-automl
https://aka.ms/pl-estimator

Azure Machine Learning designer

CLI

Next steps

The R SDK enables you to use the R language with Azure Machine Learning. The SDK uses the reticulate package to

bind to Azure Machine Learning's Python SDK. This allows you access to core objects and methods implemented in

the Python SDK from any R environment.

For more information, see the following articles:

Tutorial: Create a logistic regression model

Azure Machine Learning SDK for R reference

The designer lets you to train models using a drag and drop interface in your web browser.

What is the designer?

Tutorial : Predict automobile price

Regression: Predict price

Classification: Predict income

Classification: Predict churn, appetency, and up-selling

Classification with custom R script: Predict flight delays

Text Classification: Wikipedia SP 500 Dataset

The machine learning CLI is an extension for the Azure CLI. It provides cross-platform CLI commands for working

with Azure Machine Learning. Typically, you use the CLI to automate tasks, such as training a machine learning

model.

Use the CLI extension for Azure Machine Learning

MLOps on Azure

Learn how to Set up training environments.

https://azure.github.io/azureml-sdk-for-r/index.html
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-designer-sample-regression-automobile-price-basic
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-designer-sample-classification-predict-income
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-designer-sample-classification-churn
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-designer-sample-classification-flight-delay
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-designer-sample-text-classification
https://github.com/microsoft/MLOps

Distributed training with Azure Machine Learning
3/29/2020 • 2 minutes to read • Edit Online

Deep learning and distributed training

Data parallelism

Model parallelism

Next steps

In this article, you learn about distributed training and how Azure Machine Learning supports it for deep learning

models.

In distributed training the workload to train a model is split up and shared among multiple mini processors, called

worker nodes. These worker nodes work in parallel to speed up model training. Distributed training can be used for

traditional ML models, but is better suited for compute and time intensive tasks, like deep learning for training deep

neural networks.

There are two main types of distributed training: data parallelism and model parallelism. For distributed training on

deep learning models, the Azure Machine Learning SDK in Python supports integrations with popular frameworks,

PyTorch and TensorFlow. Both frameworks employ data parallelism for distributed training, and can leverage

horovod for optimizing compute speeds.

Distributed training with PyTorch

Distributed training with TensorFlow

For ML models that don't require distributed training, see train models with Azure Machine Learning for the

different ways to train models using the Python SDK.

Data parallelism is the easiest to implement of the two distributed training approaches, and is sufficient for most

use cases.

In this approach, the data is divided into partitions, where the number of partitions is equal to the total number of

available nodes, in the compute cluster. The model is copied in each of these worker nodes, and each worker

operates on its own subset of the data. Keep in mind that each node has to have the capacity to support the model

that's being trained, that is the model has to entirely fit on each node.

Each node independently computes the errors between its predictions for its training samples and the labeled

outputs. In turn, each node updates its model based on the errors and must communicate all of its changes to the

other nodes to update their corresponding models. This means that the worker nodes need to synchronize the

model parameters, or gradients, at the end of the batch computation to ensure they are training a consistent model.

In model parallelism, also known as network parallelism, the model is segmented into different parts that can run

concurrently in different nodes, and each one will run on the same data. The scalability of this method depends on

the degree of task parallelization of the algorithm, and it is more complex to implement than data parallelism.

In model parallelism, worker nodes only need to synchronize the shared parameters, usually once for each forward

or backward-propagation step. Also, larger models aren't a concern since each node operates on a subsection of

the model on the same training data.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-distributed-training.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://horovod.readthedocs.io/en/latest/summary_include.html

Learn how to set up training environments with the Python SDK.

For a technical example, see the reference architecture scenario.

Train ML models with TensorFlow.

Train ML models with PyTorch.

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

MLOps: Model management, deployment, and
monitoring with Azure Machine Learning
4/14/2020 • 9 minutes to read • Edit Online

What is MLOps?

Create reproducible ML pipelines

Create reusable software environments

In this article, learn about how to use Azure Machine Learning to manage the lifecycle of your models. Azure

Machine Learning uses a Machine Learning Operations (MLOps) approach. MLOps improves the quality and

consistency of your machine learning solutions.

Machine Learning Operations (MLOps) is based on DevOps principles and practices that increase the efficiency of

workflows. For example, continuous integration, delivery, and deployment. MLOps applies these principles to the

machine learning process, with the goal of:

Faster experimentation and development of models

Faster deployment of models into production

Quality assurance

Azure Machine Learning provides the following MLOps capabilities:

Create reproducible ML pipelines . Machine Learning pipelines allow you to define repeatable and

reusable steps for your data preparation, training, and scoring processes.

Create reusable software environments for training and deploying models.

Register, package, and deploy models from anywhere. You can also track associated metadata required

to use the model.

Capture the governance data for the end-to-end ML lifecycle. The logged information can include

who is publishing models, why changes were made, and when models were deployed or used in production.

Notify and aler t on events in the ML lifecycle . For example, experiment completion, model registration,

model deployment, and data drift detection.

Monitor ML applications for operational and ML-related issues . Compare model inputs between

training and inference, explore model-specific metrics, and provide monitoring and alerts on your ML

infrastructure.

Automate the end-to-end ML lifecycle with Azure Machine Learning and Azure Pipelines . Using

pipelines allows you to frequently update models, test new models, and continuously roll out new ML models

alongside your other applications and services.

Use ML pipelines from Azure Machine Learning to stitch together all of the steps involved in your model training

process.

An ML pipeline can contain steps from data preparation to feature extraction to hyperparameter tuning to model

evaluation. For more information, see ML pipelines.

If you use the Designer to create your ML pipelines, you may at any time click the "..." at the top-right of the

Designer page and then select Clone. Cloning your pipeline allows you to iterate your pipeline design without

losing your old versions.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-model-management-and-deployment.md
https://azure.microsoft.com/overview/what-is-devops/

Register, package, and deploy models from anywhere
Register and track ML models

TIP

TIP

Profile models

Package and debug models

Convert and optimize models

Use models

Azure Machine Learning environments allow you to track and reproduce your projects' software dependencies as

they evolve. Environments allow you to ensure that builds are reproducible without manual software

configurations.

Environments describe the pip and Conda dependencies for your projects, and can be used for both training and

deployment of models. For more information, see What are Azure Machine Learning environments.

Model registration allows you to store and version your models in the Azure cloud, in your workspace. The model

registry makes it easy to organize and keep track of your trained models.

A registered model is a logical container for one or more files that make up your model. For example, if you have a model

that is stored in multiple files, you can register them as a single model in your Azure Machine Learning workspace. After

registration, you can then download or deploy the registered model and receive all the files that were registered.

Registered models are identified by name and version. Each time you register a model with the same name as an

existing one, the registry increments the version. Additional metadata tags can be provided during registration.

These tags are then used when searching for a model. Azure Machine Learning supports any model that can be

loaded using Python 3.5.2 or higher.

You can also register models trained outside Azure Machine Learning.

You can't delete a registered model that is being used in an active deployment. For more information, see the

register model section of Deploy models.

Azure Machine Learning can help you understand the CPU and memory requirements of the service that will be

created when you deploy your model. Profiling tests the service that runs your model and returns information

such as the CPU usage, memory usage, and response latency. It also provides a CPU and memory

recommendation based on the resource usage. For more information, see the profiling section of Deploy models.

Before deploying a model into production, it is packaged into a Docker image. In most cases, image creation

happens automatically in the background during deployment. You can manually specify the image.

If you run into problems with the deployment, you can deploy on your local development environment for

troubleshooting and debugging.

For more information, see Deploy models and Troubleshooting deployments.

Converting your model to Open Neural Network Exchange (ONNX) may improve performance. On average,

converting to ONNX can yield a 2x performance increase.

For more information on ONNX with Azure Machine Learning, see the Create and accelerate ML models article.

Trained machine learning models are deployed as web services in the cloud or locally. You can also deploy

https://onnx.ai

Batch scoring

Real-time web services

Controlled rollout

IoT Edge devices

Analytics

Capture the governance data required for capturing the end-to-end
ML lifecycle

models to Azure IoT Edge devices. Deployments use CPU, GPU, or field-programmable gate arrays (FPGA) for

inferencing. You can also use models from Power BI.

When using a model as a web service or IoT Edge device, you provide the following items:

The model(s) that are used to score data submitted to the service/device.

An entry script. This script accepts requests, uses the model(s) to score the data, and return a response.

An Azure Machine Learning environment that describes the pip and Conda dependencies required by the

model(s) and entry script.

Any additional assets such as text, data, etc. that are required by the model(s) and entry script.

You also provide the configuration of the target deployment platform. For example, the VM family type, available

memory, and number of cores when deploying to Azure Kubernetes Service.

When the image is created, components required by Azure Machine Learning are also added. For example, assets

needed to run the web service and interact with IoT Edge.

Batch scoring is supported through ML pipelines. For more information, see Batch predictions on big data.

You can use your models in web ser vices with the following compute targets:

Azure Container Instance

Azure Kubernetes Service

Local development environment

To deploy the model as a web service, you must provide the following items:

The model or ensemble of models.

Dependencies required to use the model. For example, a script that accepts requests and invokes the model,

conda dependencies, etc.

Deployment configuration that describes how and where to deploy the model.

For more information, see Deploy models.

When deploying to Azure Kubernetes Service, you can use controlled rollout to enable the following scenarios:

Create multiple versions of an endpoint for a deployment

Perform A/B testing by routing traffic to different versions of the endpoint.

Switch between endpoint versions by updating the traffic percentage in endpoint configuration.

For more information, see Controlled rollout of ML models.

You can use models with IoT devices through Azure IoT Edge modules . IoT Edge modules are deployed to a

hardware device, which enables inference, or model scoring, on the device.

For more information, see Deploy models.

Microsoft Power BI supports using machine learning models for data analytics. For more information, see Azure

Machine Learning integration in Power BI (preview).

https://docs.microsoft.com/power-bi/service-machine-learning-integration

TIP

Notify, automate, and alert on events in the ML lifecycle

Monitor for operational & ML issues

Retrain your model on new data

Azure ML gives you the capability to track the end-to-end audit trail of all of your ML assets by using metadata.

Azure ML integrates with Git to track information on which repository / branch / commit your code came

from.

Azure ML Datasets help you track, profile, and version data.

Interpretability allows you to explain your models, meet regulatory compliance, and understand how models

arrive at a result for given input.

Azure ML Run history stores a snapshot of the code, data, and computes used to train a model.

The Azure ML Model Registry captures all of the metadata associated with your model (which experiment

trained it, where it is being deployed, if its deployments are healthy).

Integration with Azure Event Grid allows you to act on events in the ML lifecycle. For example, model

registration, deployment, data drift, and training (run) events.

While some information on models and datasets is automatically captured, you can add additional information by using

tags . When looking for registered models and datasets in your workspace, you can use tags as a filter.

Associating a dataset with a registered model is an optional step. For information on referencing a dataset when

registering a model, see the Model class reference.

Azure ML publishes key events to Azure EventGrid, which can be used to notify and automate on events in the

ML lifecycle. For more information, please see this document.

Monitoring enables you to understand what data is being sent to your model, and the predictions that it returns.

This information helps you understand how your model is being used. The collected input data may also be

useful in training future versions of the model.

For more information, see How to enable model data collection.

Often, you'll want to validate your model, update it, or even retrain it from scratch, as you receive new

information. Sometimes, receiving new data is an expected part of the domain. Other times, as discussed in

Detect data drift (preview) on datasets, model performance can degrade in the face of such things as changes to a

particular sensor, natural data changes such as seasonal effects, or features shifting in their relation to other

features.

There is no universal answer to "How do I know if I should retrain?" but Azure ML event and monitoring tools

previously discussed are good starting points for automation. Once you have decided to retrain, you should:

Preprocess your data using a repeatable, automated process

Train your new model

Compare the outputs of your new model to those of your old model

Use predefined criteria to choose whether to replace your old model

A theme of the above steps is that your retraining should be automated, not ad hoc. Azure Machine Learning

pipelines are a good answer for creating workflows relating to data preparation, training, validation, and

deployment. Read Retrain models with Azure Machine Learning designer (preview) to see how pipelines and the

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model(class)?view=azure-ml-py

Automate the ML lifecycle

Next steps

Azure Machine Learning designer fit into a retraining scenario.

You can use GitHub and Azure Pipelines to create a continuous integration process that trains a model. In a

typical scenario, when a Data Scientist checks a change into the Git repo for a project, the Azure Pipeline will start

a training run. The results of the run can then be inspected to see the performance characteristics of the trained

model. You can also create a pipeline that deploys the model as a web service.

The Azure Machine Learning extension makes it easier to work with Azure Pipelines. It provides the following

enhancements to Azure Pipelines:

Enables workspace selection when defining a service connection.

Enables release pipelines to be triggered by trained models created in a training pipeline.

For more information on using Azure Pipelines with Azure Machine Learning, see the following links:

Continuous integration and deployment of ML models with Azure Pipelines

Azure Machine Learning MLOps repository.

Azure Machine Learning MLOpsPython repository.

You can also use Azure Data Factory to create a data ingestion pipeline that prepares data for use with training.

For more information, see Data ingestion pipeline.

Learn more by reading and exploring the following resources:

How & where to deploy models with Azure Machine Learning

Tutorial: Deploy an image classification model in ACI.

End-to-end MLOps examples repo

CI/CD of ML models with Azure Pipelines

Create clients that consume a deployed model

Machine learning at scale

Azure AI reference architectures & best practices rep

https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml
https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning
https://aka.ms/mlops
https://github.com/Microsoft/MLOpspython
https://github.com/microsoft/MLOps
https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning
https://docs.microsoft.com/azure/architecture/data-guide/big-data/machine-learning-at-scale
https://github.com/microsoft/AI

Model interpretability in Azure Machine Learning
4/3/2020 • 6 minutes to read • Edit Online

Overview of model interpretability

Interpretability with Azure Machine Learning

IMPORTANT

How to interpret your model

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Interpretability is critical for data scientists, auditors, and business decision makers alike to ensure compliance with

company policies, industry standards, and government regulations:

Data scientists need the ability to explain their models to executives and stakeholders, so they can

understand the value and accuracy of their findings. They also require interpretability to debug their models

and make informed decisions about how to improve them.

Legal auditors require tools to validate models with respect to regulatory compliance and monitor how

models' decisions are impacting humans.

Business decision makers need peace-of-mind by having the ability to provide transparency for end users.

This allows them to earn and maintain trust.

Enabling the capability of explaining a machine learning model is important during two main phases of model

development:

During the training phase, as model designers and evaluators can use interpretability output of a model to

verify hypotheses and build trust with stakeholders. They also use the insights into the model for

debugging, validating model behavior matches their objectives, and to check for model unfairness or

insignificant features.

During the inferencing phase, as having transparency around deployed models empowers executives to

understand "when deployed" how the model is working and how its decisions are treating and impacting

people in real life.

The interpretability classes are made available through multiple SDK packages: (Learn how to install SDK packages

for Azure Machine Learning)

azureml.interpret , the main package, containing functionalities supported by Microsoft.

azureml.contrib.interpret , preview, and experimental functionalities that you can try.

azureml.train.automl.automlexplainer package for interpreting automated machine learning models.

Use pip install azureml-interpret and pip install azureml-interpret-contrib for general use, and

pip install azureml-interpret-contrib for AutoML use to get the interpretability packages.

Content in the contrib namespace is not fully supported. As the experimental functionalities become mature, they will

gradually be moved to the main namespace. .

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-machine-learning-interpretability.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Supported interpretability techniques

IN T ERP RETA B IL IT Y T EC H N IQ UE DESC RIP T IO N T Y P E

1. SHAP Tree Explainer SHAP's tree explainer, which focuses on
polynomial time fast SHAP value
estimation algorithm specific to trees
and ensembles of trees .

Model-specific

2. SHAP Deep Explainer Based on the explanation from SHAP,
Deep Explainer "is a high-speed
approximation algorithm for SHAP
values in deep learning models that
builds on a connection with DeepLIFT
described in the SHAP NIPS paper.
TensorFlow models and Keras models
using the TensorFlow backend are
supported (there is also preliminary
support for PyTorch)".

Model-specific

3. SHAP Linear Explainer SHAP's Linear explainer computes SHAP
values for a linear model, optionally
accounting for inter-feature
correlations.

Model-specific

4. SHAP Kernel Explainer SHAP's Kernel explainer uses a specially
weighted local linear regression to
estimate SHAP values for any model.

Model-agnostic

Using the classes and methods in the SDK, you can:

Explain model prediction by generating feature importance values for the entire model and/or individual

datapoints.

Achieve model interpretability on real-world datasets at scale, during training and inference.

Use an interactive visualization dashboard to discover patterns in data and explanations at training time

In machine learning, features are the data fields used to predict a target data point. For example, to predict credit

risk, data fields for age, account size, and account age might be used. In this case, age, account size, and account

age are features . Feature importance tells you how each data field affected the model's predictions. For example,

age may be heavily used in the prediction while account size and age do not affect the prediction values

significantly. This process allows data scientists to explain resulting predictions, so that stakeholders have visibility

into what features are most important in the model.

Learn about supported interpretability techniques, supported machine learning models, and supported run

environments here.

azureml-interpret uses the interpretability techniques developed in Interpret-Community, an open source python

package for training interpretable models and helping to explain blackbox AI systems. Interpret-Community serves

as the host for this SDK's supported explainers, and currently supports the following interpretability techniques:

https://github.com/interpretml/interpret-community/
https://github.com/interpretml/interpret-community/
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://github.com/slundberg/shap
https://github.com/slundberg/shap

5. Mimic Explainer (Global Surrogate) Mimic explainer is based on the idea of
training global surrogate models to
mimic blackbox models. A global
surrogate model is an intrinsically
interpretable model that is trained to
approximate the predictions of any
black box model as accurately as
possible. Data scientists can interpret
the surrogate model to draw
conclusions about the black box model.
You can use one of the following
interpretable models as your surrogate
model: LightGBM
(LGBMExplainableModel), Linear
Regression (LinearExplainableModel),
Stochastic Gradient Descent explainable
model (SGDExplainableModel), and
Decision Tree
(DecisionTreeExplainableModel).

Model-agnostic

6. Permutation Feature Importance
Explainer (PFI)

Permutation Feature Importance is a
technique used to explain classification
and regression models that is inspired
by Breiman's Random Forests paper
(see section 10). At a high level, the way
it works is by randomly shuffling data
one feature at a time for the entire
dataset and calculating how much the
performance metric of interest changes.
The larger the change, the more
important that feature is. PFI can
explain the overall behavior of any
underlying model but does not
explain individual predictions.

Model-agnostic

IN T ERP RETA B IL IT Y T EC H N IQ UE DESC RIP T IO N T Y P E

Besides the interpretability techniques described above, we support another SHAP-based explainer, called

TabularExplainer . Depending on the model, TabularExplainer uses one of the supported SHAP explainers:

TreeExplainer for all tree-based models

DeepExplainer for DNN models

LinearExplainer for linear models

KernelExplainer for all other models

TabularExplainer has also made significant feature and performance enhancements over the direct SHAP

Explainers:

Summarization of the initialization dataset. In cases where speed of explanation is most important, we

summarize the initialization dataset and generate a small set of representative samples, which speeds up the

generation of overall and individual feature importance values.

Sampling the evaluation data set. If the user passes in a large set of evaluation samples but does not

actually need all of them to be evaluated, the sampling parameter can be set to true to speed up the calculation

of overall model explanations.

The following diagram shows the current structure of supported explainers.

https://christophm.github.io/interpretable-ml-book/global.html
https://www.stat.berkeley.edu/%7Ebreiman/randomforest2001.pdf
https://github.com/slundberg/shap

Supported machine learning models

Local and remote compute target

The azureml.interpret package of the SDK supports models trained with the following dataset formats:

numpy.array

pandas.DataFrame

iml.datatypes.DenseData

scipy.sparse.csr_matrix

The explanation functions accept both models and pipelines as input. If a model is provided, the model must

implement the prediction function predict or predict_proba that conforms to the Scikit convention. If your

model does not support this, you can wrap your model in a function that generates the same outcome as predict

or predict_proba in Scikit and use that wrapper function with the selected explainer. If a pipeline is provided, the

explanation function assumes that the running pipeline script returns a prediction. Using this wrapping technique,

azureml.interpret can support models trained via PyTorch, TensorFlow, and Keras deep learning frameworks as

well as classic machine learning models.

The azureml.interpret package is designed to work with both local and remote compute targets. If run locally, The

SDK functions will not contact any Azure services.

file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability/interpretability-architecture.png#lightbox

Next steps

You can run explanation remotely on Azure Machine Learning Compute and log the explanation info into the Azure

Machine Learning Run History Service. Once this information is logged, reports and visualizations from the

explanation are readily available on Azure Machine Learning studio for user analysis.

See the how-to for enabling interpretability for models training both locally and on Azure Machine Learning

remote compute resources. See the sample notebooks for additional scenarios.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model

What is Azure Machine Learning designer (preview)?
3/10/2020 • 6 minutes to read • Edit Online

Model training and deployment

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

Azure Machine Learning designer lets you visually connect datasets and modules on an interactive canvas to

create machine learning models. To learn how to get started with the designer, see Tutorial: Predict automobile

price with the designer

The designer uses your Azure Machine Learning workspace to organize shared resources such as:

Pipelines

Datasets

Compute resources

Registered models

Published pipelines

Real-time endpoints

The designer gives you a visual canvas to build, test, and deploy machine learning models. With the designer you

can:

Drag-and-drop datasets and modules onto the canvas.

Connect the modules together to create a pipeline draft.

Submit a pipeline run using the compute resources in your Azure Machine Learning workspace.

Convert your training pipelines to inference pipelines .

Publish your pipelines to a REST pipeline endpoint to submit new pipeline runs with different parameters

and datasets.

Publish a training pipeline to reuse a single pipeline to train multiple models while changing

parameters and datasets.

Publish a batch inference pipeline to make predictions on new data by using a previously trained

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-designer.md

Pipeline

Pipeline draft

Deploy a real-time inference pipeline to a real-time endpoint to make predictions on new data in real

time.

model.

A pipeline consists of datasets and analytical modules, which you connect together. Pipelines have many uses:

you can make a pipeline that trains a single model, or one that trains multiple models. You can create a pipeline

that makes predictions in real time or in batch, or make a pipeline that only cleans data. Pipelines let you reuse

your work and organize your projects.

As you edit a pipeline in the designer, your progress is saved as a pipeline draft. You can edit a pipeline draft at

any point by adding or removing modules, configuring compute targets, creating parameters, and so on.

A valid pipeline has these characteristics:

Datasets can only connect to modules.

Modules can only connect to either datasets or other modules.

All input ports for modules must have some connection to the data flow.

All required parameters for each module must be set.

Pipeline run

Datasets

Module

When you're ready to run your pipeline draft, you submit a pipeline run.

Each time you run a pipeline, the configuration of the pipeline and its results are stored in your workspace as a

pipeline run. You can go back to any pipeline run to inspect it for troubleshooting or auditing purposes. Clone

a pipeline run to create a new pipeline draft for you to edit.

Pipeline runs are grouped into experiments to organize run history. You can set the experiment for every pipeline

run.

A machine learning dataset makes it easy to access and work with your data. A number of sample datasets are

included in the designer for you to experiment with. You can register more datasets as you need them.

A module is an algorithm that you can perform on your data. The designer has a number of modules ranging

from data ingress functions to training, scoring, and validation processes.

A module may have a set of parameters that you can use to configure the module's internal algorithms. When

you select a module on the canvas, the module's parameters are displayed in the Properties pane to the right of

the canvas. You can modify the parameters in that pane to tune your model. You can set the compute resources

for individual modules in the designer.

Compute resources

C O M P UT E TA RGET T RA IN IN G DEP LO Y M EN T

Azure Machine Learning compute ✓

Azure Kubernetes Service ✓

Deploy

Publish

Moving from the visual interface to the designer

C O N C EP T IN T H E DESIGN ER P REVIO USLY IN T H E VISUA L IN T ERFA C E

Pipeline draft Experiment

For some help navigating through the library of machine learning algorithms available, see Algorithm & module

reference overview

Use compute resources from your workspace to run your pipeline and host your deployed models as real-time

endpoints or pipeline endpoints (for batch inference). The supported compute targets are:

Compute targets are attached to your Azure Machine Learning workspace. You manage your compute targets in

your workspace in Azure Machine Learning Studio (classic).

To perform real-time inferencing, you must deploy a pipeline as a real-time endpoint. The real-time endpoint

creates an interface between an external application and your scoring model. A call to a real-time endpoint

returns prediction results to the application in real time. To make a call to a real-time endpoint, you pass the API

key that was created when you deployed the endpoint. The endpoint is based on REST, a popular architecture

choice for web programming projects.

Real-time endpoints must be deployed to an Azure Kubernetes Service cluster.

To learn how to deploy your model, see Tutorial: Deploy a machine learning model with the designer.

You can also publish a pipeline to a pipeline endpoint. Similar to a real-time endpoint, a pipeline endpoint lets

you submit new pipeline runs from external applications using REST calls. However, you cannot send or receive

data in real-time using a pipeline endpoint.

Published pipelines are flexible, they can be used to train or retrain models, perform batch inferencing, process

new data, and much more. You can publish multiple pipelines to a single pipeline endpoint and specify which

pipeline version to run.

A published pipeline runs on the compute resources you define in the pipeline draft for each module.

The designer creates the same PublishedPipeline object as the SDK.

The visual interface (preview) has been updated and is now Azure Machine Learning designer (preview). The

designer has been rearchitected to use a pipeline-based backend that fully integrates with the other features of

Azure Machine Learning.

As a result of these updates, some concepts and terms for the visual interface have been changed or renamed.

See the table below for the most important conceptual changes.

https://ml.azure.com
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.publishedpipeline?view=azure-ml-py

Real-time endpoint Web service

C O N C EP T IN T H E DESIGN ER P REVIO USLY IN T H E VISUA L IN T ERFA C E

Migrating to the designer

Known issues

Next steps

You can convert existing visual interface experiments and web services to pipelines and real-time endpoints in

the designer. Use the following steps to migrate your visual interface assets:

NOTE

1. Sign in to Azure Machine Learning studio.

2. Upgrade your workspace to Enterprise edition.

After upgrading, all of your visual interface experiments will convert to pipeline drafts in the designer.

You don't need to upgrade to the Enterprise edition to convert visual interface web services to real-time endpoints.

3. Go to the designer section of the workspace to view your list of pipeline drafts.

Converted web services can be found by navigating to Endpoints > Real-time endpoints .

4. Select a pipeline draft to open it.

If there was an error during the conversion process, an error message will appear with instructions to

resolve the issue.

Below are known migration issues that need to be addressed manually:

Impor t Data or Expor t Data modules

If you have an Impor t Data or Expor t Data module in the experiment, you need to update the data

source to use a datastores. To learn how to create a datastore, see How to Access Data in Azure storage

services. Your cloud storage account information have been added in the comments of the Impor t Data

or Expor t Data module for your convenience.

Learn the basics of predictive analytics and machine learning with Tutorial: Predict automobile price with the

designer

Learn how to modify existing designer samples to adapt them to your needs.

https://ml.azure.com

What is automated machine learning (AutoML)?
4/22/2020 • 9 minutes to read • Edit Online

When to use AutoML: classify, regression, & forecast

Classification

Regression

Automated machine learning, also referred to as automated ML or AutoML, is the process of automating the time

consuming, iterative tasks of machine learning model development. It allows data scientists, analysts, and

developers to build ML models with high scale, efficiency, and productivity all while sustaining model quality.

Automated ML is based on a breakthrough from our Microsoft Research division.

Traditional machine learning model development is resource-intensive, requiring significant domain knowledge

and time to produce and compare dozens of models. With automated machine learning, you'll accelerate the time

it takes to get production-ready ML models with great ease and efficiency.

Apply automated ML when you want Azure Machine Learning to train and tune a model for you using the target

metric you specify. Automated ML democratizes the machine learning model development process, and

empowers its users, no matter their data science expertise, to identify an end-to-end machine learning pipeline

for any problem.

Data scientists, analysts, and developers across industries can use automated ML to:

Implement ML solutions without extensive programming knowledge

Save time and resources

Leverage data science best practices

Provide agile problem-solving

Classification is a common machine learning task. Classification is a type of supervised learning in which models

learn using training data, and apply those learnings to new data. Azure Machine Learning offers featurizations

specifically for these tasks, such as deep neural network text featurizers for classification. Learn more about

featurization options.

The main goal of classification models is to predict which categories new data will fall into based on learnings

from its training data. Common classification examples include fraud detection, handwriting recognition, and

object detection. Learn more and see an example of classification with automated machine learning.

See examples of classification and automated machine learning in these Python notebooks: Fraud Detection,

Marketing Prediction, and Newsgroup Data Classification

Similar to classification, regression tasks are also a common supervised learning task. Azure Machine Learning

offers featurizations specifically for these tasks.

Different from classification where predicted output values are categorical, regression models predict numerical

output values based on independent predictors. In regression, the objective is to help establish the relationship

among those independent predictor variables by estimating how one variable impacts the others. For example,

automobile price based on features like, gas mileage, safety rating, etc. Learn more and see an example of

regression with automated machine learning.

See examples of regression and automated machine learning for predictions in these Python notebooks: CPU

Performance Prediction,

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-automated-ml.md
https://arxiv.org/abs/1705.05355
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb

Time-series forecasting

How AutoML works

Building forecasts is an integral part of any business, whether it's revenue, inventory, sales, or customer demand.

You can use automated ML to combine techniques and approaches and get a recommended, high-quality time-

series forecast. Learn more with this how-to: automated machine learning for time series forecasting.

An automated time-series experiment is treated as a multivariate regression problem. Past time-series values are

"pivoted" to become additional dimensions for the regressor together with other predictors. This approach, unlike

classical time series methods, has an advantage of naturally incorporating multiple contextual variables and their

relationship to one another during training. Automated ML learns a single, but often internally branched model

for all items in the dataset and prediction horizons. More data is thus available to estimate model parameters and

generalization to unseen series becomes possible.

Advanced forecasting configuration includes:

holiday detection and featurization

time-series and DNN learners (Auto-ARIMA, Prophet, ForecastTCN)

many models support through grouping

rolling-origin cross validation

configurable lags

rolling window aggregate features

See examples of regression and automated machine learning for predictions in these Python notebooks: Sales

Forecasting, Demand Forecasting, and Beverage Production Forecast.

During training, Azure Machine Learning creates a number of pipelines in parallel that try different algorithms

and parameters for you. The service iterates through ML algorithms paired with feature selections, where each

iteration produces a model with a training score. The higher the score, the better the model is considered to "fit"

your data. It will stop once it hits the exit criteria defined in the experiment.

Using Azure Machine Learning, you can design and run your automated ML training experiments with these

steps:

IMPORTANT

1. Identify the ML problem to be solved: classification, forecasting, or regression

2. Choose whether you want to use the Python SDK or the studio web experience: Learn about the

parity between the Python SDK and studio web experience.

For limited or no code experience, try the Azure Machine Learning studio web experience at

https://ml.azure.com

For Python developers, check out the Azure Machine Learning Python SDK

The functionality in this studio, https://ml.azure.com, is accessible from Enterprise workspaces only . Learn

more about editions and upgrading.

3. Specify the source and format of the labeled training data: Numpy arrays or Pandas dataframe

4. Configure the compute target for model training, such as your local computer, Azure Machine

Learning Computes, remote VMs, or Azure Databricks. Learn about automated training on a remote

resource.

5. Configure the automated machine learning parameters that determine how many iterations over

different models, hyperparameter settings, advanced preprocessing/featurization, and what metrics to look

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb
https://ml.azure.com/
https://ml.azure.com

Preprocessing

NOTE

Automatic preprocessing (standard)

SC A L IN G & N O RM A L IZ AT IO N DESC RIP T IO N

StandardScaleWrapper Standardize features by removing the mean and scaling to
unit variance

MinMaxScalar Transforms features by scaling each feature by that column's
minimum and maximum

MaxAbsScaler Scale each feature by its maximum absolute value

RobustScalar This Scaler features by their quantile range

at when determining the best model.

6. Submit the training run.

7. Review the results

The following diagram illustrates this process.

You can also inspect the logged run information, which contains metrics gathered during the run. The training run

produces a Python serialized object (.pkl file) that contains the model and data preprocessing.

While model building is automated, you can also learn how important or relevant features are to the generated

models.

In every automated machine learning experiment, your data is preprocessed using the default methods and

optionally through advanced preprocessing.

Automated machine learning pre-processing steps (feature normalization, handling missing data, converting text to

numeric, etc.) become part of the underlying model. When using the model for predictions, the same pre-processing steps

applied during training are applied to your input data automatically.

In every automated machine learning experiment, your data is automatically scaled or normalized to help

algorithms perform well. During model training, one of the following scaling or normalization techniques will be

applied to each model.

https://www.microsoft.com/videoplayer/embed/RE2Xc9t
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html#sklearn.preprocessing.MaxAbsScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

PCA Linear dimensionality reduction using Singular Value
Decomposition of the data to project it to a lower
dimensional space

TruncatedSVDWrapper This transformer performs linear dimensionality reduction by
means of truncated singular value decomposition (SVD).
Contrary to PCA, this estimator does not center the data
before computing the singular value decomposition, which
means it can work with scipy.sparse matrices efficiently

SparseNormalizer Each sample (that is, each row of the data matrix) with at
least one non-zero component is rescaled independently of
other samples so that its norm (l1 or l2) equals one

SC A L IN G & N O RM A L IZ AT IO N DESC RIP T IO N

Advanced preprocessing & featurization

The studio vs SDK

Experiment settings

T H E P Y T H O N SDK T H E ST UDIO W EB EXP ERIEN C E

Split data into train/validation sets ✓ ✓

Supports ML tasks: classification,
regression, and forecasting

✓ ✓

Optimizes based on primary metric ✓ ✓

Supports AML compute as compute
target

✓ ✓

Configure forecast horizon, target lags
& rolling window

✓ ✓

Set exit criteria ✓ ✓

Set concurrent iterations ✓ ✓

Drop columns ✓ ✓

Additional advanced preprocessing and featurization are also available, such as data guardrails, encoding, and

transforms. Learn more about what featurization is included. Enable this setting with:

Azure Machine Learning studio: Enable Automatic featur ization in the View additional configuration

section with these steps.

Python SDK: Specifying "feauturization": 'auto' / 'off' / 'FeaturizationConfig' for the AutoMLConfig

class.

Learn about the parity and differences between the high-level automated ML capabilities available through the

Python SDK and the studio in Azure Machine Learning.

The following settings allow you to configure your automated ML experiment.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig

Block algorithms ✓ ✓

Cross validation ✓ ✓

Supports training on Azure Databricks
clusters

✓

View engineered feature names ✓

Featurization summary ✓

Featurization for holidays ✓

Log file verbosity levels ✓

T H E P Y T H O N SDK T H E ST UDIO W EB EXP ERIEN C E

Model settings

T H E P Y T H O N SDK T H E ST UDIO W EB EXP ERIEN C E

Best model registration, deployment,
explainability

✓ ✓

Enable voting ensemble & stack
ensemble models

✓ ✓

Show best model based on non-
primary metric

✓

Enable/disable ONNX model
compatibility

✓

Test the model ✓

Run control settings

T H E P Y T H O N SDK T H E ST UDIO W EB EXP ERIEN C E

Run summary table ✓ ✓

Cancel runs & child runs ✓ ✓

Get guardrails ✓ ✓

Pause & resume runs ✓

Ensemble models

These settings can be applied to the best model as a result of your automated ML experiment.

These settings allow you to review and control your experiment runs and its child runs.

Automated machine learning supports ensemble models, which are enabled by default. Ensemble learning

improves machine learning results and predictive performance by combining multiple models as opposed to

AutoML & ONNX

Next steps

using single models. The ensemble iterations appear as the final iterations of your run. Automated machine

learning uses both voting and stacking ensemble methods for combining models:

Voting: predicts based on the weighted average of predicted class probabilities (for classification tasks) or

predicted regression targets (for regression tasks).

Stacking: stacking combines heterogenous models and trains a meta-model based on the output from the

individual models. The current default meta-models are LogisticRegression for classification tasks and

ElasticNet for regression/forecasting tasks.

The Caruana ensemble selection algorithm with sorted ensemble initialization is used to decide which models to

use within the ensemble. At a high level, this algorithm initializes the ensemble with up to five models with the

best individual scores, and verifies that these models are within 5% threshold of the best score to avoid a poor

initial ensemble. Then for each ensemble iteration, a new model is added to the existing ensemble and the

resulting score is calculated. If a new model improved the existing ensemble score, the ensemble is updated to

include the new model.

See the how-to for changing default ensemble settings in automated machine learning.

With Azure Machine Learning, you can use automated ML to build a Python model and have it converted to the

ONNX format. Once the models are in the ONNX format, they can be run on a variety of platforms and devices.

Learn more about accelerating ML models with ONNX.

See how to convert to ONNX format in this Jupyter notebook example. Learn which algorithms are supported in

ONNX.

The ONNX runtime also supports C#, so you can use the model built automatically in your C# apps without any

need for recoding or any of the network latencies that REST endpoints introduce. Learn more about inferencing

ONNX models with the ONNX runtime C# API.

See examples and learn how to build models using automated machine learning:

Follow the Tutorial: Automatically train a regression model with Azure Machine Learning

Configure the settings for automatic training experiment:

In Azure Machine Learning studio, use these steps.

With the Python SDK, use these steps.

Learn how to auto train using time series data, use these steps.

Try out Jupyter Notebook samples for automated machine learning

Automated ML is also available in other Microsoft solutions such as, ML.NET, HDInsight, Power BI and SQL

Server

http://www.niculescu-mizil.org/papers/shotgun.icml04.revised.rev2.pdf
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb
https://github.com/Microsoft/onnxruntime/blob/master/docs/CSharp_API.md
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/
https://docs.microsoft.com/dotnet/machine-learning/automl-overview
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-run-machine-learning-automl
https://docs.microsoft.com/power-bi/service-machine-learning-automated
https://cloudblogs.microsoft.com/sqlserver/2019/01/09/how-to-automate-machine-learning-on-sql-server-2019-big-data-clusters/

Prevent overfitting and imbalanced data with
automated machine learning
4/7/2020 • 6 minutes to read • Edit Online

Identify over-fitting

M O DEL T RA IN A C C URA C Y T EST A C C URA C Y

A 99.9% 95%

B 87% 87%

C 99.9% 45%

Prevent over-fitting

Over-fitting and imbalanced data are common pitfalls when you build machine learning models. By default, Azure

Machine Learning's automated machine learning provides charts and metrics to help you identify these risks, and

implements best practices to help mitigate them.

Over-fitting in machine learning occurs when a model fits the training data too well, and as a result can't accurately

predict on unseen test data. In other words, the model has simply memorized specific patterns and noise in the

training data, but is not flexible enough to make predictions on real data.

Consider the following trained models and their corresponding train and test accuracies.

Considering model A, there is a common misconception that if test accuracy on unseen data is lower than training

accuracy, the model is over-fitted. However, test accuracy should always be less than training accuracy, and the

distinction for over-fit vs. appropriately fit comes down to how much less accurate.

When comparing models A and B, model A is a better model because it has higher test accuracy, and although the

test accuracy is slightly lower at 95%, it is not a significant difference that suggests over-fitting is present. You

wouldn't choose model B simply because the train and test accuracies are closer together.

Model C represents a clear case of over-fitting; the training accuracy is very high but the test accuracy isn't

anywhere near as high. This distinction is subjective, but comes from knowledge of your problem and data, and

what magnitudes of error are acceptable.

In the most egregious cases, an over-fitted model will assume that the feature value combinations seen during

training will always result in the exact same output for the target.

The best way to prevent over-fitting is to follow ML best-practices including:

Using more training data, and eliminating statistical bias

Preventing target leakage

Using fewer features

Regular ization and hyperparameter optimization

Model complexity limitations

Cross-validation

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-manage-ml-pitfalls.md

Best practices you implement

Best practices automated ML implements

NOTE

Identify models with imbalanced data

In the context of automated ML, the first three items above are best-practices you implement. The last three

bolded items are best-practices automated ML implements by default to protect against over-fitting. In

settings other than automated ML, all six best-practices are worth following to avoid over-fitting models.

Using more data is the simplest and best possible way to prevent over-fitting, and as an added bonus typically

increases accuracy. When you use more data, it becomes harder for the model to memorize exact patterns, and it is

forced to reach solutions that are more flexible to accommodate more conditions. It's also important to recognize

statistical bias , to ensure your training data doesn't include isolated patterns that won't exist in live-prediction

data. This scenario can be difficult to solve, because there may not be over-fitting between your train and test sets,

but there may be over-fitting present when compared to live test data.

Target leakage is a similar issue, where you may not see over-fitting between train/test sets, but rather it appears at

prediction-time. Target leakage occurs when your model "cheats" during training by having access to data that it

shouldn't normally have at prediction-time. For example, if your problem is to predict on Monday what a

commodity price will be on Friday, but one of your features accidentally included data from Thursdays, that would

be data the model won't have at prediction-time since it cannot see into the future. Target leakage is an easy

mistake to miss, but is often characterized by abnormally high accuracy for your problem. If you are attempting to

predict stock price and trained a model at 95% accuracy, there is likely target leakage somewhere in your features.

Removing features can also help with over-fitting by preventing the model from having too many fields to use to

memorize specific patterns, thus causing it to be more flexible. It can be difficult to measure quantitatively, but if

you can remove features and retain the same accuracy, you have likely made the model more flexible and have

reduced the risk of over-fitting.

Regularization is the process of minimizing a cost function to penalize complex and over-fitted models. There are

different types of regularization functions, but in general they all penalize model coefficient size, variance, and

complexity. Automated ML uses L1 (Lasso), L2 (Ridge), and ElasticNet (L1 and L2 simultaneously) in different

combinations with different model hyperparameter settings that control over-fitting. In simple terms, automated

ML will vary how much a model is regulated and choose the best result.

Automated ML also implements explicit model complexity limitations to prevent over-fitting. In most cases this

implementation is specifically for decision tree or forest algorithms, where individual tree max-depth is limited, and

the total number of trees used in forest or ensemble techniques are limited.

Cross-validation (CV) is the process of taking many subsets of your full training data and training a model on each

subset. The idea is that a model could get "lucky" and have great accuracy with one subset, but by using many

subsets the model won't achieve this high accuracy every time. When doing CV, you provide a validation holdout

dataset, specify your CV folds (number of subsets) and automated ML will train your model and tune

hyperparameters to minimize error on your validation set. One CV fold could be over-fit, but by using many of

them it reduces the probability that your final model is over-fit. The tradeoff is that CV does result in longer training

times and thus greater cost, because instead of training a model once, you train it once for each n CV subsets.

Cross-validation is not enabled by default; it must be configured in automated ML settings. However, after cross-validation is

configured and a validation data set has been provided, the process is automated for you. See

Imbalanced data is commonly found in data for machine learning classification scenarios, and refers to data that

contains a disproportionate ratio of observations in each class. This imbalance can lead to a falsely perceived

positive effect of a model's accuracy, because the input data has bias towards one class, which results in the trained

C H A RT DESC RIP T IO N

Confusion Matrix Evaluates the correctly classified labels against the actual labels
of the data.

Precision-recall Evaluates the ratio of correct labels against the ratio of found
label instances of the data

ROC Curves Evaluates the ratio of correct labels against the ratio of false-
positive labels.

Handle imbalanced data

Next steps

model to mimic that bias.

As classification algorithms are commonly evaluated by accuracy, checking a model's accuracy score is a good way

to identify if it was impacted by imbalanced data. Did it have really high accuracy or really low accuracy for certain

classes?

In addition, automated ML runs generate the following charts automatically, which can help you understand the

correctness of the classifications of your model, and identify models potentially impacted by imbalanced data.

As part of its goal of simplifying the machine learning workflow, automated ML has built in capabilities to help deal

with imbalanced data such as,

A weight column: automated ML supports a weighted column as input, causing rows in the data to be

weighted up or down, which can make a class more or less "important".

The algorithms used by automated ML can properly handle imbalance of up to 20:1, meaning the most

common class can have 20 times more rows in the data than the least common class.

The following techniques are additional options to handle imbalanced data outside of automated ML.

Resampling to even the class imbalance, either by up-sampling the smaller classes or down-sampling the

larger classes. These methods require expertise to process and analyze.

Use a performance metric that deals better with imbalanced data. For example, the F1 score is a weighted

average of precision and recall. Precision measures a classifier's exactness-- low precision indicates a high

number of false positives--, while recall measures a classifier's completeness-- low recall indicates a high

number of false negatives.

See examples and learn how to build models using automated machine learning:

Follow the Tutorial: Automatically train a regression model with Azure Machine Learning

Configure the settings for automatic training experiment:

In Azure Machine Learning studio, use these steps.

With the Python SDK, use these steps.

What is an Azure Machine Learning compute
instance?
2/14/2020 • 6 minutes to read • Edit Online

Why use a compute instance?

KEY B EN EF IT S

Productivity Data scientists can build and deploy models using integrated
notebooks and the following tools in their web browser:
- Jupyter
- JupyterLab
- RStudio

Managed & secure Reduce your security footprint and add compliance with
enterprise security requirements. Compute instances provide
robust management policies and secure networking
configurations such as:

- Auto-provisioning from Resource Manager templates or
Azure Machine Learning SDK
- Role-based access control (RBAC)
- Virtual network support
- SSH policy to enable/disable SSH access

Preconfigured or ML Save time on setup tasks with pre-configured and up-to-date
ML packages, deep learning frameworks, GPU drivers.

Fully customizable Broad support for Azure VM types including GPUs and
persisted low-level customization such as installing packages
and drivers makes advanced scenarios a breeze.

Tools and environments

An Azure Machine Learning compute instance (preview) is a fully-managed cloud-based workstation for data

scientists.

Compute instances make it easy to get started with Azure Machine Learning development as well as provide

management and enterprise readiness capabilities for IT administrators.

Use a compute instance as your fully configured and managed development environment in the cloud.

Compute instances are typically used as development environments. They can also be used as a compute target

for training and inferencing for development and testing. For large tasks, an Azure Machine Learning compute

cluster with multi-node scaling capabilities is a better compute target choice.

A compute instance is a fully-managed cloud-based workstation optimized for your machine learning

development environment. It provides the following benefits:

Azure Machine Learning compute instance enables you to author, train, and deploy models in a fully integrated

notebook experience in your workspace.

These tools and environments are installed on the compute instance:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-compute-instance.md
https://docs.microsoft.com/azure/role-based-access-control/overview

GEN ERA L TO O L S & EN VIRO N M EN T S DETA IL S

Drivers CUDA

cuDNN

NVIDIA

Blob FUSE

Intel MPI library

Azure CLI

Azure Machine Learning samples

Azure Machine Learning EDAT engine

Docker

Nginx

NCCL 2.0

Protobuf

R TO O L S & EN VIRO N M EN T S DETA IL S

RStudio Server Open Source Edition

R kernel

Azure Machine Learning SDK for R azuremlsdk
SDK samples

P Y T H O N TO O L S & EN VIRO N M EN T S DETA IL S

Anaconda Python

Jupyter and extensions

Jupyterlab and extensions

Visual Studio Code

Azure Machine Learning SDK for Python
from PyPI

azureml-sdk[notebooks,contrib,automl,explain]

azureml-contrib-datadrift

azureml-telemetry

azureml-tensorboard

azureml-contrib-opendatasets

azureml-opendatasets

azureml-contrib-reinforcementlearning

azureml-mlflow

azureml-contrib-interpret

https://azure.github.io/azureml-sdk-for-r/reference/index.html
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Other PyPI packages jupytext

jupyterlab-git

tensorboard

nbconvert

notebook

Pillow

Conda packages cython

numpy

ipykernel

scikit-learn

matplotlib

tqdm

joblib

nodejs

nb_conda_kernels

Deep learning packages PyTorch

TensorFlow

Keras

Horovod

MLFlow

pandas-ml

scrapbook

ONNX packages keras2onnx

onnx

onnxconverter-common

skl2onnx

onnxmltools

Azure Machine Learning Python & R SDK samples

P Y T H O N TO O L S & EN VIRO N M EN T S DETA IL S

Installing packages

Python packages are all installed in the Python 3.6 - AzureML environment.

Compute instances are typically used as development environments. They can also be used as a compute target

for training and inferencing for development and testing. For large tasks, an Azure Machine Learning compute

cluster with multi-node scaling capabilities is a better compute target choice.

You can install packages directly in a Jupyter notebook or Rstudio:

RStudio Use the Packages tab on the bottom right, or the Console tab on the top left.

Python: Add install code and execute in a Jupyter notebook cell.

Or you can access a terminal window in any of these ways:

RStudio: Select the Terminal tab on top left.

Jupyter Lab: Select the Terminal tile under the Other heading in the Launcher tab.

Jupyter : Select New>Terminal on top right in the Files tab.

SSH to the machine. Then install Python packages into the Python 3.6 - AzureML environment. Install R

packages into the R environment.

Accessing files

Managing a compute instance

Notebooks and R scripts are stored in the default storage account of your workspace in Azure file share. These

files are located under your “User files” directory. This storage makes it easy to share notebooks between compute

instances. The storage account also keeps your notebooks safely preserved when you stop or delete a compute

instance.

The Azure file share account of your workspace is mounted as a drive on the compute instance. This drive is the

default working directory for Jupyter, Jupyter Labs, and RStudio.

The files in the file share are accessible from all compute instances in the same workspace. Any changes to these

files on the compute instance will be reliably persisted back to the file share.

You can also clone the latest Azure Machine Learning samples to your folder under the user files directory in the

workspace file share.

Writing small files can be slower on network drives than writing to the VM itself. If you are writing many small

files, try using a directory directly on the compute instance, such as a /tmp directory. Please note these files will

not be accessible from other compute instances in the workspace.

In your workspace in Azure Machine Learning studio, select Compute, then select Compute Instance on the top.

You can perform the following actions:

Create a compute instance. Specify the name, Azure VM type including GPUs (please note VM type can not be

changed after creation), enable/disable SSH access, and configure virtual network settings optionally. You can

also create an instance directly from integrated notebooks, Azure portal, Resource Manager template, or Azure

Machine Learning SDK. The dedicated cores per region quota which applies to compute instance creation is

unified and shared with Azure Machine Learning compute cluster quota.

Refresh the compute instances tab

Start, stop and restart a compute instance

Delete a compute instance

For each compute instance in your workspace you can:

Compute Target

What happened to Notebook VM?

Next steps

Access Jupyter, JupyterLab, RStudio on the compute instance

SSH into compute instance. SSH access is disabled by default but can be enabled at compute instance creation

time. SSH access is through public/private key mechanism. The tab will give you details for SSH connection

such as IP address, username, and port number.

Get details about a specific compute instance such as IP address, and region.

RBAC allows you to control which users in the workspace can create, delete, start, stop, restart a compute instance.

All users in the workspace contributor and owner role can create, delete, start, stop, and restart compute instances

across the workspace. However, only the creator of a specific compute instance is allowed to access Jupyter,

JupyterLab, and RStudio on that compute instance. The creator of the compute instance has the compute instance

dedicated to them, have root access, and can terminal in through Jupyter. Compute instance will have single-user

login of creator user and all actions will use that user ’s identity for RBAC and attribution of experiment runs. SSH

access is controlled through public/private key mechanism.

You can also create an instance

Directly from the integrated notebooks experience

In Azure portal

From Azure Resource Manager template

With Azure Machine Learning SDK

The dedicated cores per region quota, which applies to compute instance creation is unified and shared with Azure

Machine Learning training cluster quota.

Compute instances can be used as a training compute target similar to Azure Machine Learning compute training

clusters. Provision a multi-GPU VM to run distributed training jobs using TensorFlow/PyTorch estimators. You can

also create a run configuration and use it to run your experiment on compute instance. You can use compute

instance as a local inferencing deployment target for testing/debugging scenarios.

Compute instances are replacing the Notebook VM.

Any notebook files stored in the workspace file share and data in workspace data stores will be accessible from a

compute instance. However, any custom packages previously installed on a Notebook VM will need to be re-

installed on the compute instance. Quota limitations which apply to compute clusters creation will apply to

compute instance creation as well.

New Notebook VMs cannot be created. However, you can still access and use Notebook VMs you have created,

with full functionality. Compute instances can be created in same workspace as the existing Notebook VMs.

Tutorial: Train your first ML model shows how to use a compute instance with an integrated notebook.

https://docs.microsoft.com/azure/role-based-access-control/overview

What are compute targets in Azure Machine
Learning?
3/30/2020 • 3 minutes to read • Edit Online

Training compute targets

T RA IN IN G TA RGET S A UTO M AT ED M L M L P IP EL IN ES
A Z URE M A C H IN E L EA RN IN G
DESIGN ER

Local computer yes

Azure Machine Learning
compute cluster

yes &
hyperparameter tuning

yes yes

Remote VM yes &
hyperparameter tuning

yes

Azure Databricks yes (SDK local mode only) yes

Azure Data Lake Analytics yes

Azure HDInsight yes

Azure Batch yes

A compute target is a designated compute resource/environment where you run your training script or host

your service deployment. This location may be your local machine or a cloud-based compute resource. Using

compute targets make it easy for you to later change your compute environment without having to change your

code.

In a typical model development lifecycle, you might:

1. Start by developing and experimenting on a small amount of data. At this stage, we recommend your local

environment (local computer or cloud-based VM) as your compute target.

2. Scale up to larger data, or do distributed training using one of these training compute targets.

3. Once your model is ready, deploy it to a web hosting environment or IoT device with one of these deployment

compute targets.

The compute resources you use for your compute targets are attached to a workspace. Compute resources other

than the local machine are shared by users of the workspace.

Azure Machine Learning has varying support across different compute resources. You can also attach your own

compute resource, although support for various scenarios may vary.

Compute targets can be reused from one training job to the next. For example, once you attach a remote

VM to your workspace, you can reuse it for multiple jobs. For machine learning pipelines, use the appropriate

pipeline step for each compute target.

Learn more about setting up and using a compute target for model training.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-compute-target.md
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py

 Deployment targets

C O M P UT E TA RGET USED F O R GP U SUP P O RT F P GA SUP P O RT DESC RIP T IO N

Local web service Testing/debugging Use for limited
testing and
troubleshooting.
Hardware
acceleration depends
on use of libraries in
the local system.

Azure Machine
Learning compute
instance web service

Testing/debugging Use for limited
testing and
troubleshooting.

Azure Kubernetes
Service (AKS)

Real-time inference Yes (web service
deployment)

Yes Use for high-scale
production
deployments.
Provides fast
response time and
autoscaling of the
deployed service.
Cluster autoscaling
isn't supported
through the Azure
Machine Learning
SDK. To change the
nodes in the AKS
cluster, use the UI for
your AKS cluster in
the Azure portal. AKS
is the only option
available for the
designer.

Azure Container
Instances

Testing or
development

 Use for low-scale
CPU-based
workloads that
require less than 48
GB of RAM.

Azure Machine
Learning compute
clusters

(Preview)
Batch inference

Yes (machine learning
pipeline)

 Run batch scoring on
serverless compute.
Supports normal and
low-priority VMs.

Azure Functions (Preview) Real-time
inference

Azure IoT Edge (Preview) IoT module Deploy and serve ML
models on IoT
devices.

Azure Data Box Edge Via IoT Edge Yes Deploy and serve ML
models on IoT
devices.

The following compute resources can be used to host your model deployment.

https://docs.microsoft.com/en-us/azure/databox-online/data-box-edge-overview

NOTE

Azure Machine Learning compute (managed)

Compute clusters

Unmanaged compute

Next steps

Although compute targets like local, Azure Machine Learning compute instance, and Azure Machine Learning compute

clusters support GPU for training and experimentation, using GPU for inference when deployed as a web ser vice is

supported only on Azure Kubernetes Service.

Using a GPU for inference when scoring with a machine learning pipeline is supported only on Azure Machine

Learning Compute.

Learn where and how to deploy your model to a compute target.

A managed compute resource is created and managed by Azure Machine Learning. This compute is optimized for

machine learning workloads. Azure Machine Learning compute clusters and compute instances are the only

managed computes. Additional managed compute resources may be added in the future.

You can create Azure Machine Learning compute instances (preview) or compute clusters from:

Azure Machine Learning studio

Azure portal

Python SDK ComputeInstance and AmlCompute classes

R SDK

Resource Manager template

You can also create compute clusters using the machine learning extension for the Azure CLI.

When created these compute resources are automatically part of your workspace unlike other kinds of compute

targets.

You can use Azure Machine Learning compute clusters for training and for batch inferencing (preview). With this

compute resource, you have:

Single- or multi-node cluster

Autoscales each time you submit a run

Automatic cluster management and job scheduling

Support for both CPU and GPU resources

An unmanaged compute target is not managed by Azure Machine Learning. You create this type of compute

target outside Azure Machine Learning, then attach it to your workspace. Unmanaged compute resources can

require additional steps for you to maintain or to improve performance for machine learning workloads.

Learn how to:

Set up a compute target to train your model

Deploy your model to a compute target

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.computeinstance(class)?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute(class)?view=azure-ml-py
https://azure.github.io/azureml-sdk-for-r/reference/index.html#section-compute-targets

What are Azure Machine Learning pipelines?
4/7/2020 • 15 minutes to read • Edit Online

Which Azure pipeline technology should I use?

SC EN A RIO
P RIM A RY
P ERSO N A

A Z URE
O F F ERIN G O SS O F F ERIN G

C A N O N IC A L
P IP E ST REN GT H S

Model
orchestration
(Machine
learning)

Data scientist Azure Machine
Learning
Pipelines

Kubeflow
Pipelines

Data -> Model Distribution,
caching, code-
first, reuse

Data
orchestration
(Data prep)

Data engineer Azure Data
Factory pipelines

Apache Airflow Data -> Data Strongly-typed
movement.
Data-centric
activities.

Code & app
orchestration
(CI/CD)

App Developer /
Ops

Azure DevOps
Pipelines

Jenkins Code + Model -
> App/Service

Most open and
flexible activity
support,
approval queues,
phases with
gating

Azure Machine Learning pipelines allow you to create workflows in your machine learning projects. These

workflows have a number of benefits:

Simplicity

Speed

Repeatability

Flexibility

Versioning and tracking

Modularity

Quality assurance

Cost control

These benefits become significant as soon as your machine learning project moves beyond pure exploration

and into iteration. Even simple one-step pipelines can be valuable. Machine learning projects are often in a

complex state, and it can be a relief to make the precise accomplishment of a single workflow a trivial process.

Learn how to create your first pipeline.

The Azure cloud provides several other pipelines, each with a different purpose. The following table lists the

different pipelines and what they are used for :

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-ml-pipelines.md
https://docs.microsoft.com/azure/data-factory/concepts-pipelines-activities
https://azure.microsoft.com/services/devops/pipelines/

What can Azure ML pipelines do?

What are Azure ML pipelines?

Analyzing dependencies

An Azure Machine Learning pipeline is an independently executable workflow of a complete machine learning

task. Subtasks are encapsulated as a series of steps within the pipeline. An Azure Machine Learning pipeline can

be as simple as one that calls a Python script, so may do just about anything. Pipelines should focus on machine

learning tasks such as:

Data preparation including importing, validating and cleaning, munging and transformation, normalization,

and staging

Training configuration including parameterizing arguments, filepaths, and logging / reporting configurations

Training and validating efficiently and repeatedly. Efficiency might come from specifying specific data

subsets, different hardware compute resources, distributed processing, and progress monitoring

Deployment, including versioning, scaling, provisioning, and access control

Independent steps allow multiple data scientists to work on the same pipeline at the same time without over-

taxing compute resources. Separate steps also make it easy to use different compute types/sizes for each step.

After the pipeline is designed, there is often more fine-tuning around the training loop of the pipeline. When

you rerun a pipeline, the run jumps to the steps that need to be rerun, such as an updated training script. Steps

that do not need to be rerun are skipped. The same analysis applies to unchanged scripts used for the

accomplishment of the step. This reuse functionality helps to avoid running costly and time-intensive steps like

data ingestion and transformation if the underlying data hasn't changed.

With Azure Machine Learning, you can use various toolkits and frameworks, such as PyTorch or TensorFlow, for

each step in your pipeline. Azure coordinates the various compute targets you use, so your intermediate data

can be shared with the downstream compute targets.

You can track the metrics for your pipeline experiments directly in Azure portal or your workspace landing page

(preview). After a pipeline has been published, you can configure a REST endpoint, which allows you to rerun

the pipeline from any platform or stack.

In short, all of the complex tasks of the machine learning lifecycle can be helped with pipelines. Other Azure

pipeline technologies have their own strengths. Azure Data Factory pipelines excels at working with data and

Azure Pipelines is the right tool for continuous integration and deployment. But if your focus is machine

learning, Azure Machine Learning pipelines are likely to be the best choice for your workflow needs.

An Azure ML pipeline performs a complete logical workflow with an ordered sequence of steps. Each step is a

discrete processing action. Pipelines run in the context of an Azure Machine Learning Experiment.

In the early stages of an ML project, it's fine to have a single Jupyter notebook or Python script that does all the

work of Azure workspace and resource configuration, data preparation, run configuration, training, and

validation. But just as functions and classes quickly become preferable to a single imperative block of code, ML

workflows quickly become preferable to a monolithic notebook or script.

By modularizing ML tasks, pipelines support the Computer Science imperative that a component should "do

(only) one thing well." Modularity is clearly vital to project success when programming in teams, but even when

working alone, even a small ML project involves separate tasks, each with a good amount of complexity. Tasks

include: workspace configuration and data access, data preparation, model definition and configuration, and

deployment. While the outputs of one or more tasks form the inputs to another, the exact implementation

details of any one task are, at best, irrelevant distractions in the next. At worst, the computational state of one

task can cause a bug in another.

Many programming ecosystems have tools that orchestrate resource, library, or compilation dependencies.

https://docs.microsoft.com/azure/machine-learning/how-to-track-experiments
https://ml.azure.com
https://docs.microsoft.com/azure/data-factory/concepts-pipelines-activities
https://azure.microsoft.com/services/devops/pipelines/
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py

Reusing results

Coordinating the steps involved

Generally, these tools use file timestamps to calculate dependencies. When a file is changed, only it and its

dependents are updated (downloaded, recompiled, or packaged). Azure ML pipelines extend this concept

dramatically. Like traditional build tools, pipelines calculate dependencies between steps and only perform the

necessary recalculations.

The dependency analysis in Azure ML pipelines is more sophisticated than simple timestamps though. Every

step may run in a different hardware and software environment. Data preparation might be a time-consuming

process but not need to run on hardware with powerful GPUs, certain steps might require OS-specific software,

you might want to use distributed training, and so forth. While the cost savings for optimizing resources may

be significant, it can be overwhelming to manually juggle all the different variations in hardware and software

resources. It's even harder to do all that without ever making a mistake in the data you transfer between steps.

Pipelines solve this problem. Azure Machine Learning automatically orchestrates all of the dependencies

between pipeline steps. This orchestration might include spinning up and down Docker images, attaching and

detaching compute resources, and moving data between the steps in a consistent and automatic manner.

Additionally, the output of a step may, if you choose, be reused. If you specify reuse as a possibility and there are

no upstream dependencies triggering recalculation, the pipeline service will use a cached version of the step's

results. Such reuse can dramatically decrease development time. If you have a complex data preparation task,

you probably rerun it more often than is strictly necessary. Pipelines relieve you of that worry: if necessary, the

step will run, if not, it won't.

All of this dependency analysis, orchestration, and activation are handled by Azure Machine Learning when you

instantiate a Pipeline object, pass it to an Experiment , and call submit() .

When you create and run a Pipeline object, the following high-level steps occur :

For each step, the service calculates requirements for :

The service determines the dependencies between steps, resulting in a dynamic execution graph

When each node in the execution graph runs:

Hardware compute resources

OS resources (Docker image(s))

Software resources (Conda / virtualenv dependencies)

Data inputs

The service configures the necessary hardware and software environment (perhaps reusing existing

resources)

The step runs, providing logging and monitoring information to its containing Experiment object

When the step completes, its outputs are prepared as inputs to the next step and/or written to storage

Resources that are no longer needed are finalized and detached

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline(class)?view=azure-ml-py

Building pipelines with the Python SDK

Building pipelines with the designer

In the Azure Machine Learning Python SDK, a pipeline is a Python object defined in the azureml.pipeline.core

module. A Pipeline object contains an ordered sequence of one or more PipelineStep objects. The PipelineStep

class is abstract and the actual steps will be of subclasses such as EstimatorStep, PythonScriptStep, or

DataTransferStep. The ModuleStep class holds a reusable sequence of steps that can be shared among pipelines.

A Pipeline runs as part of an Experiment .

An Azure ML pipeline is associated with an Azure Machine Learning workspace and a pipeline step is associated

with a compute target available within that workspace. For more information, see Create and manage Azure

Machine Learning workspaces in the Azure portal or What are compute targets in Azure Machine Learning?.

In Azure Machine Learning, a compute target is the environment in which an ML phase occurs. The software

environment may be a Remote VM, Azure Machine Learning Compute, Azure Databricks, Azure Batch, and so

on. The hardware environment can also vary greatly, depending on GPU support, memory, storage, and so

forth. You may specify the compute target for each step, which gives you fine-grained control over costs. You

can use more- or less- powerful resources for the specific action, data volume, and performance needs of your

project.

Developers who prefer a visual design surface can use the Azure Machine Learning designer to create pipelines.

You can access this tool from the Designer selection on the homepage of your workspace. The designer allows

you to drag and drop steps onto the design surface. For rapid development, you can use existing modules

across the spectrum of ML tasks; existing modules cover everything from data transformation to algorithm

selection to training to deployment. Or you can create a fully custom pipeline by combining your own steps

defined in Python scripts.

When you visually design pipelines, the inputs and outputs of a step are displayed visibly. You can drag and

drop data connections, allowing you to quickly understand and modify the dataflow of your pipeline.

https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.builder.pipelinestep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimatorstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.pythonscriptstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.modulestep?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace
https://docs.microsoft.com/azure/machine-learning/concept-compute-target

Understanding the execution graph

A simple Python Pipeline

The steps within a pipeline may have dependencies on other steps. The Azure ML pipeline service does the work

of analyzing and orchestrating these dependencies. The nodes in the resulting "execution graph" are processing

steps. Each step may involve creating or reusing a particular combination of hardware and software, reusing

cached results, and so on. The service's orchestration and optimization of this execution graph can significantly

speed up an ML phase and reduce costs.

Because steps run independently, objects to hold the input and output data that flows between steps must be

defined externally. This is the role of DataSetand PipelineData, objects. These data objects are associated with a

Datastore object that encapsulates their storage configuration. The PipelineStep base class is always created

with a name string, a list of inputs , and a list of outputs . Usually, it also has a list of arguments and often it

will have a list of resource_inputs . Subclasses will generally have additional arguments as well (for instance,

PythonScriptStep requires the filename and path of the script to run).

The execution graph is acyclic, but pipelines can be run on a recurring schedule and can run Python scripts that

can write state information to the file system, making it possible to create complex profiles. If you design your

pipeline so that certain steps may run in parallel or asynchronously, Azure Machine Learning transparently

handles the dependency analysis and coordination of fan-out and fan-in. You generally don't have to concern

yourself with the details of the execution graph, but it's available via the Pipeline.graph attribute.

This snippet shows the objects and calls needed to create and run a basic Pipeline :

https://docs.microsoft.com/python/api/azureml-core/azureml.data.data_reference.datareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py#attributes

ws = Workspace.from_config()
blob_store = Datastore(ws, "workspaceblobstore")
compute_target = ws.compute_targets["STANDARD_NC6"]
experiment = Experiment(ws, 'MyExperiment')

input_data = Dataset.File.from_files(
 DataPath(datastore, '20newsgroups/20news.pkl'))

output_data = PipelineData("output_data", datastore=blob_store)

input_named = input_data.as_named_input('input')

steps = [PythonScriptStep(
 script_name="train.py",
 arguments=["--input", input_named.as_download(), "--output", output_data],
 inputs=[input_data],
 outputs=[output_data],
 compute_target=compute_target,
 source_directory="myfolder"
)]

pipeline = Pipeline(workspace=ws, steps=steps)

pipeline_run = experiment.submit(pipeline)
pipeline_run.wait_for_completion()

Best practices when using pipelines

The snippet starts with common Azure Machine Learning objects, a Workspace , a Datastore , a ComputeTarget,

and an Experiment . Then, the code creates the objects to hold input_data and output_data . The array steps

holds a single element, a PythonScriptStep that will use the data objects and run on the compute_target . Then,

the code instantiates the Pipeline object itself, passing in the workspace and steps array. The call to

experiment.submit(pipeline) begins the Azure ML pipeline run. The call to wait_for_completion() blocks until

the pipeline is finished.

To learn more about connecting your pipeline to your data, see the articles Data access in Azure Machine

Learning and Moving data into and between ML pipeline steps (Python).

As you can see, creating an Azure ML pipeline is a little more complex than starting a script. Pipelines require a

few Python objects be configured and created.

Some situations that suggest using a pipeline:

In a team environment: divide ML tasks into multiple independent steps so that developers can work and

evolve their programs independently.

When in or near deployment: nail down the configuration and use scheduled and event-driven

operations to stay on top of changing data.

In the early stages of an ML project or working alone: use pipelines to automate the build. If you've

started worrying about recreating the configuration and computational state before implementing a new

idea, that's a signal that you might consider using a pipeline to automate the workflow.

It's easy to become enthusiastic about reusing cached results, fine-grained control over compute costs, and

process isolation, but pipelines do have costs. Some anti-patterns include:

Using pipelines as the sole means to separate concerns. Python's built-in functions, objects, and modules

go a long way to avoid confusing programmatic state! A pipeline step is much more expensive than a

function call.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.computetarget?view=azure-ml-py

Key advantages

KEY A DVA N TA GE DESC RIP T IO N

Unattended runs Schedule steps to run in parallel or in sequence in a reliable
and unattended manner. Data preparation and modeling can
last days or weeks, and pipelines allow you to focus on other
tasks while the process is running.

Heterogenous compute Use multiple pipelines that are reliably coordinated across
heterogeneous and scalable compute resources and storage
locations. Make efficient use of available compute resources
by running individual pipeline steps on different compute
targets, such as HDInsight, GPU Data Science VMs, and
Databricks.

Reusability Create pipeline templates for specific scenarios, such as
retraining and batch-scoring. Trigger published pipelines
from external systems via simple REST calls.

Tracking and versioning Instead of manually tracking data and result paths as you
iterate, use the pipelines SDK to explicitly name and version
your data sources, inputs, and outputs. You can also manage
scripts and data separately for increased productivity.

Modularity Separating areas of concerns and isolating changes allows
software to evolve at a faster rate with higher quality.

Collaboration Pipelines allow data scientists to collaborate across all areas
of the machine learning design process, while being able to
concurrently work on pipeline steps.

Choosing the proper PipelineStep subclass

Heavy coupling between pipeline steps. If refactoring a dependent step frequently requires modifying the

outputs of a previous step, it's likely that separate steps are currently more of a cost than a benefit.

Another clue that steps are overly coupled is arguments to a step that are not data but flags to control

processing.

Prematurely optimizing compute resources. For instance, there are often several stages to data

preparation and one can often see "Oh, here's a place where I could use an MpiStep for parallel-

programming but here's a place where I could use a PythonScriptStep with a less-powerful compute

target," and so forth. And maybe, in the long run, creating fine-grained steps like that might prove

worthwhile, especially if there's a possibility to use cached results rather than always recalculating. But

pipelines are not intended to be a substitute for Python's native multiprocessing module.

Until a project gets large or nears deployment, your pipelines should be coarser rather than fine-grained. If you

think of your ML project as involving stages and a pipeline as providing a complete workflow to move you

through a particular stage, you're on the right path.

The key advantages of using pipelines for your machine learning workflows are:

The PythonScriptStep is the most flexible subclass of the abstract PipelineStep . Other subclasses, such as

EstimatorStep subclasses and DataTransferStep can accomplish specific tasks with less code. For instance, an

EstimatorStep can be created just by passing in a name for the step, an Estimator , and a compute target. Or,

you can override inputs and outputs, pipeline parameters, and arguments. For more information, see Train

models with Azure Machine Learning using estimator.

Modules

Next steps

The DataTransferStep makes it easy to move data between data sources and sinks. The code to do this transfer

manually is straightforward but repetitive. Instead, you can just create a DataTransferStep with a name,

references to a data source and a data sink, and a compute target. The notebook Azure Machine Learning

Pipeline with DataTransferStep demonstrates this flexibility.

While pipeline steps allow the reuse of the results of a previous run, in many cases the construction of the step

assumes that the scripts and dependent files required must be locally available. If a data scientist wants to build

on top of existing code, the scripts and dependencies often must be cloned from a separate repository.

Modules are similar in usage to pipeline steps, but provide versioning facilitated through the workspace, which

enables collaboration and reusability at scale. Modules are designed to be reused in multiple pipelines and can

evolve to adapt a specific computation to different use-cases. Users can do the following tasks through the

workspace, without using external repositories:

Create new modules, and publish new versions of existing modules

Deprecate existing versions

Mark versions disabled to prevent consumers from using that version

Designate default versions

Retrieve modules by version from the workspace, to ensure teams are using the same code

See the notebook for code examples on how to create, connect, and use modules in Azure Machine Learning

pipelines.

Azure ML pipelines are a powerful facility that begins delivering value in the early development stages. The

value increases as the team and project grows. This article has explained how pipelines are specified with the

Azure Machine Learning Python SDK and orchestrated on Azure. You've seen some basic source code and been

introduced to a few of the PipelineStep classes that are available. You should have a sense of when to use

Azure ML pipelines and how Azure runs them.

Learn how to create your first pipeline.

Learn how to run batch predictions on large data.

See the SDK reference docs for pipeline core and pipeline steps.

Try out example Jupyter notebooks showcasing Azure Machine Learning pipelines. Learn how to run

notebooks to explore this service.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-how-to-use-modulestep.ipynb
https://docs.microsoft.com/python/api/azureml-pipeline-core/?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines

ONNX and Azure Machine Learning: Create and
accelerate ML models
12/27/2019 • 3 minutes to read • Edit Online

Get ONNX models

Learn how using the Open Neural Network Exchange (ONNX) can help optimize the inference of your machine

learning model. Inference, or model scoring, is the phase where the deployed model is used for prediction, most

commonly on production data.

Optimizing machine learning models for inference (or model scoring) is difficult since you need to tune the model

and the inference library to make the most of the hardware capabilities. The problem becomes extremely hard if

you want to get optimal performance on different kinds of platforms (cloud/edge, CPU/GPU, etc.), since each one

has different capabilities and characteristics. The complexity increases if you have models from a variety of

frameworks that need to run on a variety of platforms. It's very time consuming to optimize all the different

combinations of frameworks and hardware. A solution to train once in your preferred framework and run

anywhere on the cloud or edge is needed. This is where ONNX comes in.

Microsoft and a community of partners created ONNX as an open standard for representing machine learning

models. Models from many frameworks including TensorFlow, PyTorch, SciKit-Learn, Keras, Chainer, MXNet, and

MATLAB can be exported or converted to the standard ONNX format. Once the models are in the ONNX format,

they can be run on a variety of platforms and devices.

ONNX Runtime is a high-performance inference engine for deploying ONNX models to production. It's optimized

for both cloud and edge and works on Linux, Windows, and Mac. Written in C++, it also has C, Python, and C#

APIs. ONNX Runtime provides support for all of the ONNX-ML specification and also integrates with accelerators

on different hardware such as TensorRT on NVidia GPUs.

The ONNX Runtime is used in high scale Microsoft services such as Bing, Office, and Cognitive Services.

Performance gains are dependent on a number of factors but these Microsoft services have seen an average 2x

performance gain on CPU. ONNX Runtime is also used as part of Windows ML on hundreds of millions of

devices. You can use the runtime with Azure Machine Learning. By using ONNX Runtime, you can benefit from the

extensive production-grade optimizations, testing, and ongoing improvements.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-onnx.md
https://onnx.ai
https://onnx.ai/supported-tools
https://github.com/Microsoft/onnxruntime
file:///T:/i2pk/machine-learning/media/concept-onnx/onnx.png#lightbox

 Deploy ONNX models in Azure

Install and use ONNX Runtime with Python

pip install onnxruntime # CPU build
pip install onnxruntime-gpu # GPU build

import onnxruntime
session = onnxruntime.InferenceSession("path to model")

session.get_modelmeta()
first_input_name = session.get_inputs()[0].name
first_output_name = session.get_outputs()[0].name

results = session.run(["output1", "output2"], {
 "input1": indata1, "input2": indata2})
results = session.run([], {"input1": indata1, "input2": indata2})

Examples

You can obtain ONNX models in several ways:

Train a new ONNX model in Azure Machine Learning (see examples at the bottom of this article)

Convert existing model from another format to ONNX (see the tutorials)

Get a pre-trained ONNX model from the ONNX Model Zoo (see examples at the bottom of this article)

Generate a customized ONNX model from Azure Custom Vision service

Many models including image classification, object detection, and text processing can be represented as ONNX

models. However some models may not be able to be converted successfully. If you run into this situation, please

file an issue in the GitHub of the respective converter that you used. You can continue using your existing format

model until the issue is addressed.

With Azure Machine Learning, you can deploy, manage, and monitor your ONNX models. Using the standard

deployment workflow and ONNX Runtime, you can create a REST endpoint hosted in the cloud. See example

Jupyter notebooks at the end of this article to try it out for yourself.

Python packages for ONNX Runtime are available on PyPi.org (CPU, GPU). Please read system requirements

before installation.

To install ONNX Runtime for Python, use one of the following commands:

To call ONNX Runtime in your Python script, use:

The documentation accompanying the model usually tells you the inputs and outputs for using the model. You can

also use a visualization tool such as Netron to view the model. ONNX Runtime also lets you query the model

metadata, inputs, and outputs:

To inference your model, use run and pass in the list of outputs you want returned (leave empty if you want all of

them) and a map of the input values. The result is a list of the outputs.

For the complete Python API reference, see the ONNX Runtime reference docs.

See how-to-use-azureml/deployment/onnx for example notebooks that create and deploy ONNX models.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

https://github.com/onnx/tutorials
https://github.com/onnx/models
https://docs.microsoft.com/azure/cognitive-services/Custom-Vision-Service/
https://pypi.org
https://pypi.org/project/onnxruntime
https://pypi.org/project/onnxruntime-gpu
https://github.com/Microsoft/onnxruntime#system-requirements
https://github.com/lutzroeder/Netron
https://aka.ms/onnxruntime-python
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx

More info
Learn more about ONNX or contribute to the project:

ONNX project website

ONNX code on GitHub

Learn more about ONNX Runtime or contribute to the project:

ONNX Runtime GitHub Repo

https://onnx.ai
https://github.com/onnx/onnx
https://github.com/Microsoft/onnxruntime

Enterprise security for Azure Machine Learning
4/24/2020 • 17 minutes to read • Edit Online

NOTE

Authentication

Authentication for web service deployment

A UT H EN T IC AT IO N M ET H O D DESC RIP T IO N
A Z URE C O N TA IN ER
IN STA N C ES A KS

In this article, you'll learn about security features available for Azure Machine Learning.

When you use a cloud service, a best practice is to restrict access to only the users who need it. Start by

understanding the authentication and authorization model used by the service. You might also want to restrict

network access or securely join resources in your on-premises network with the cloud. Data encryption is also

vital, both at rest and while data moves between services. Finally, you need to be able to monitor the service and

produce an audit log of all activity.

The information in this article works with the Azure Machine Learning Python SDK version 1.0.83.1 or higher.

Multi-factor authentication is supported if Azure Active Directory (Azure AD) is configured to use it. Here's the

authentication process:

1. The client signs in to Azure AD and gets an Azure Resource Manager token. Users and service principals are

fully supported.

2. The client presents the token to Azure Resource Manager and to all Azure Machine Learning.

3. The Machine Learning service provides a Machine Learning service token to the user compute target (for

example, Machine Learning Compute). This token is used by the user compute target to call back into the

Machine Learning service after the run is complete. Scope is limited to the workspace.

For more information, see Set up authentication for Azure Machine Learning resources and workflows. This article

provides information and examples on authentication, including using service principals and automated

workflows.

Azure Machine Learning supports two forms of authentication for web services: key and token. Each web service

can enable only one form of authentication at a time.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-enterprise-security.md
file:///T:/i2pk/machine-learning/media/concept-enterprise-security/authentication-expanded.png#lightbox

Key Keys are static and do not
need to be refreshed. Keys
can be regenerated
manually.

Disabled by default Enabled by default

Token Tokens expire after a
specified time period and
need to be refreshed.

Not available Disabled by default

A UT H EN T IC AT IO N M ET H O D DESC RIP T IO N
A Z URE C O N TA IN ER
IN STA N C ES A KS

Authorization

A Z URE M A C H IN E L EA RN IN G
O P ERAT IO N O W N ER C O N T RIB UTO R REA DER

Create workspace ✓ ✓

Share workspace ✓

Upgrade workspace to
Enterprise edition

✓

Create compute target ✓ ✓

Attach compute target ✓ ✓

Attach data stores ✓ ✓

Run experiment ✓ ✓

View runs/metrics ✓ ✓ ✓

Register model ✓ ✓

Create image ✓ ✓

Deploy web service ✓ ✓

View models/images ✓ ✓ ✓

Call web service ✓ ✓ ✓

For code examples, see the web-service authentication section.

You can create multiple workspaces, and each workspace can be shared by multiple people. When you share a

workspace, you can control access to it by assigning these roles to users:

Owner

Contributor

Reader

The following table lists some of the major Azure Machine Learning operations and the roles that can perform

them:

WARNING

Securing compute targets and data

RESO URC E P ERM ISSIO N S

Workspace Contributor

Storage account Storage Blob Data Contributor

Key vault Access to all keys, secrets, certificates

Azure Container Registry Contributor

Resource group that contains the workspace Contributor

Resource group that contains the key vault (if different from
the one that contains the workspace)

Contributor

Network security

If the built-in roles don't meet your needs, you can create custom roles. Custom roles are supported only for

operations on the workspace and Machine Learning Compute. Custom roles can have read, write, or delete

permissions on the workspace and on the compute resource in that workspace. You can make the role available at

a specific workspace level, a specific resource-group level, or a specific subscription level. For more information,

see Manage users and roles in an Azure Machine Learning workspace.

Azure Machine Learning is not currently supported with Azure Active Directory business-to-business collaboration.

Owners and contributors can use all compute targets and data stores that are attached to the workspace.

Each workspace also has an associated system-assigned managed identity that has the same name as the

workspace. The managed identity has the following permissions on attached resources used in the workspace.

For more information on managed identities, see Managed identities for Azure resources.

We don't recommend that admins revoke the access of the managed identity to the resources mentioned in the

preceding table. You can restore access by using the resync keys operation.

Azure Machine Learning creates an additional application (the name starts with aml- or

Microsoft-AzureML-Support-App-) with contributor-level access in your subscription for every workspace region.

For example, if you have one workspace in East US and one in North Europe in the same subscription, you'll see

two of these applications. These applications enable Azure Machine Learning to help you manage compute

resources.

Azure Machine Learning relies on other Azure services for compute resources. Compute resources (compute

targets) are used to train and deploy models. You can create these compute targets in a virtual network. For

example, you can use Azure Data Science Virtual Machine to train a model and then deploy the model to AKS.

For more information, see How to run experiments and inference in a virtual network.

You can also enable Azure Private Link for your workspace. Private Link allows you to restrict communications to

your workspace from an Azure Virtual Network. For more information, see How to configure Private Link.

https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview

TIP

S C E N A R I O

E N T E R P R I S E

E D I T I O N

B A S I C

E D I T I O N

No virtual network or Private Link ✔ ✔

Workspace without Private Link. Other
resources (except Azure Container
Registry) in a virtual network

✔ ✔

Workspace without Private Link. Other
resources with Private Link

✔

Workspace with Private Link. Other
resources (except Azure Container
Registry) in a virtual network

✔ ✔

Workspace and any other resource with
Private Link

✔

Workspace with Private Link. Other
resources without Private Link or virtual
network

✔ ✔

Azure Container Registry in a virtual
network

✔

Customer Managed Keys for workspace ✔

WARNING

Data encryption
Encryption at rest

IMPORTANT

You can combine virtual network and Private Link together to protect communication between your workspace and other

Azure resources. However, some combinations require an Enterprise edition workspace. Use the following table to

understand what scenarios require Enterprise edition:

Azure Machine Learning compute instances preview is not supported in a workspace where Private Link is enabled.

Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled. Instead, you can

use Azure Kubernetes Service in a virtual network. For more information, see Secure Azure ML experimentation and

inference jobs within an Azure Virtual Network.

If your workspace contains sensitive data we recommend setting the hbi_workspace flag while creating your workspace.

The hbi_workspace flag controls the amount of data Microsoft collects for diagnostic purposes and enables

additional encryption in Microsoft managed environments. In addition it enables the following:

Starts encrypting the local scratch disk in your Amlcompute cluster provided you have not created any previous

clusters in that subscription. Else, you need to raise a support ticket to enable encryption of the scratch disk of

your compute clusters

Cleans up your local scratch disk between runs

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--exist-ok-false--show-output-true-

Azure Blob storage

Azure Cosmos DB

Securely passes credentials for your storage account, container registry and SSH account from the execution

layer to your compute clusters using your key vault

Enables IP filtering to ensure the underlying batch pools cannot be called by any external services other than

AzureMachineLearningService

For more information on how encryption at rest works in Azure, see Azure data encryption at rest.

Azure Machine Learning stores snapshots, output, and logs in the Azure Blob storage account that's tied to the

Azure Machine Learning workspace and your subscription. All the data stored in Azure Blob storage is encrypted at

rest with Microsoft-managed keys.

For information on how to use your own keys for data stored in Azure Blob storage, see Azure Storage encryption

with customer-managed keys in Azure Key Vault.

Training data is typically also stored in Azure Blob storage so that it's accessible to training compute targets. This

storage isn't managed by Azure Machine Learning but mounted to compute targets as a remote file system.

If you need to rotate or revoke your key, you can do so at any time. When rotating a key, the storage account will

start using the new key (latest version) to encrypt data at rest. When revoking (disabling) a key, the storage

account takes care of failing requests. It usually takes an hour for the rotation or revocation to be effective.

For information on regenerating the access keys, see Regenerate storage access keys.

Azure Machine Learning stores metrics and metadata in an Azure Cosmos DB instance. This instance is associated

with a Microsoft subscription managed by Azure Machine Learning. All the data stored in Azure Cosmos DB is

encrypted at rest with Microsoft-managed keys.

To use your own (customer-managed) keys to encrypt the Azure Cosmos DB instance, you can create a dedicated

Cosmos DB instance for use with your workspace. We recommend this approach if you want to store your data,

such as run history information, outside of the multi-tenant Cosmos DB instance hosted in our Microsoft

subscription.

To enable provisioning a Cosmos DB instance in your subscription with customer-managed keys, perform the

following actions:

Enable customer-managed key capabilities for Cosmos DB. At this time, you must request access to use this

capability. To do so, please contact cosmosdbpm@microsoft.com.

Register the Azure Machine Learning and Azure Cosmos DB resource providers in your subscription, if not

done already.

Authorize the Machine Learning App (in Identity and Access Management) with contributor permissions on

your subscription.

Use the following parameters when creating the Azure Machine Learning workspace. Both parameters are

https://docs.microsoft.com/azure/security/fundamentals/encryption-atrest
https://docs.microsoft.com/en-us/azure/storage/common/storage-encryption-keys-portal
mailto:cosmosdbpm@microsoft.com

IMPORTANT

Azure Container Registry

Azure Container Instance

mandatory and supported in SDK, CLI, REST APIs, and Resource Manager templates.

NOTE

resource_cmk_uri : This parameter is the full resource URI of the customer managed key in your key

vault, including the version information for the key.

cmk_keyvault : This parameter is the resource ID of the key vault in your subscription. This key vault

needs to be in the same region and subscription that you will use for the Azure Machine Learning

workspace.

This key vault instance can be different than the key vault that is created by Azure Machine Learning when

you provision the workspace. If you want to use the same key vault instance for the workspace, pass the

same key vault while provisioning the workspace by using the key_vault parameter.

This Cosmos DB instance is created in a Microsoft-managed resource group in your subscription. The managed

resource group is named in the format <AML Workspace Resource Group Name><GUID> .

If you need to delete this Cosmos DB instance, you must delete the Azure Machine Learning workspace that uses it.

The default Request Units for this Cosmos DB account is set at 8000 . Changing this value is unsupported.

If you need to rotate or revoke your key, you can do so at any time. When rotating a key, Cosmos DB will start

using the new key (latest version) to encrypt data at rest. When revoking (disabling) a key, Cosmos DB takes care

of failing requests. It usually takes an hour for the rotation or revocation to be effective.

For more information on customer-managed keys with Cosmos DB, see Configure customer-managed keys for

your Azure Cosmos DB account.

All container images in your registry (Azure Container Registry) are encrypted at rest. Azure automatically

encrypts an image before storing it and decrypts it when Azure Machine Learning pulls the image.

To use your own (customer-managed) keys to encrypt your Azure Container Registry, you need to create your own

ACR and attach it while provisioning the workspace or encrypt the default instance that gets created at the time of

workspace provisioning.

For an example of creating a workspace using an existing Azure Container Registry, see the following articles:

Create a workspace for Azure Machine Learning with Azure CLI.

Use an Azure Resource Manager template to create a workspace for Azure Machine Learning

You may encrypt a deployed Azure Container Instance (ACI) resource using customer-managed keys. The

customer-managed key used for ACI can be stored in the Azure Key Vault for your workspace. For information on

generating a key, see Encrypt data with a customer-managed key.

To use the key when deploying a model to Azure Container Instance, create a new deployment configuration using

AciWebservice.deploy_configuration() . Provide the key information using the following parameters:

cmk_vault_base_url : The URL of the key vault that contains the key.

cmk_key_name : The name of the key.

cmk_key_version : The version of the key.

For more information on creating and using a deployment configuration, see the following articles:

https://docs.microsoft.com/en-us/azure/key-vault/about-keys-secrets-and-certificates
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--exist-ok-false--show-output-true-
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-cmk
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-encrypt-data

Azure Kubernetes Service

IMPORTANT

Machine Learning Compute

Azure Databricks

Encryption in transit

Using Azure Key Vault

AciWebservice.deploy_configuration() reference

Where and how to deploy

Deploy a model to Azure Container Instances

For more information on using a customer-managed key with ACI, see Encrypt data with a customer-managed key.

You may encrypt a deployed Azure Kubernetes Service resource using customer-managed keys at any time. For

more information, see Bring your own keys with Azure Kubernetes Service.

This process allows you to encrypt both the Data and the OS Disk of the deployed virtual machines in the

Kubernetes cluster.

This process only works with AKS K8s version 1.17 or higher. Azure Machine Learning added support for AKS 1.17 on Jan 13,

2020.

The OS disk for each compute node stored in Azure Storage is encrypted with Microsoft-managed keys in Azure

Machine Learning storage accounts. This compute target is ephemeral, and clusters are typically scaled down when

no runs are queued. The underlying virtual machine is de-provisioned, and the OS disk is deleted. Azure Disk

Encryption isn't supported for the OS disk.

Each virtual machine also has a local temporary disk for OS operations. If you want, you can use the disk to stage

training data. The disk is encrypted by default for workspaces with the hbi_workspace parameter set to TRUE . This

environment is short-lived only for the duration of your run, and encryption support is limited to system-managed

keys only.

Azure Databricks can be used in Azure Machine Learning pipelines. By default, the Databricks File System (DBFS)

used by Azure Databricks is encrypted using a Microsoft-managed key. To configure Azure Databricks to use

customer-managed keys, see Configure customer-managed keys on default (root) DBFS.

Azure Machine Learning uses TLS to secure internal communication between various Azure Machine Learning

microservices. All Azure Storage access also occurs over a secure channel.

To secure external calls to the scoring endpoint Azure Machine Learning uses TLS. For more information, see Use

TLS to secure a web service through Azure Machine Learning.

Azure Machine Learning uses the Azure Key Vault instance associated with the workspace to store credentials of

various kinds:

The associated storage account connection string

Passwords to Azure Container Repository instances

Connection strings to data stores

SSH passwords and keys to compute targets like Azure HDInsight and VMs are stored in a separate key vault that's

associated with the Microsoft subscription. Azure Machine Learning doesn't store any passwords or keys provided

by users. Instead, it generates, authorizes, and stores its own SSH keys to connect to VMs and HDInsight to run the

experiments.

Each workspace has an associated system-assigned managed identity that has the same name as the workspace.

This managed identity has access to all keys, secrets, and certificates in the key vault.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciwebservice?view=azure-ml-py#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--primary-key-none--secondary-key-none--collect-model-data-none--cmk-vault-base-url-none--cmk-key-name-none--cmk-key-version-none-
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-encrypt-data
https://docs.microsoft.com/en-us/azure/aks/azure-disk-customer-managed-keys
https://docs.microsoft.com/azure/databricks/security/customer-managed-keys-dbfs
https://docs.microsoft.com/azure/machine-learning/how-to-secure-web-service

Data collection and handling
Microsoft collected data

Microsoft-generated data

Monitoring
Metrics

Activity log

Microsoft may collect non-user identifying information like resource names (for example the dataset name, or the

machine learning experiment name), or job environment variables for diagnostic purposes. All such data is stored

using Microsoft-managed keys in storage hosted in Microsoft owned subscriptions and follows Microsoft's

standard Privacy policy and data handling standards.

Microsoft also recommends not storing sensitive information (such as account key secrets) in environment

variables. Environment variables are logged, encrypted, and stored by us. Similarly when naming runid, avoid

including sensitive information such as user names or secret project names. This information may appear in

telemetry logs accessible to Microsoft Support engineers.

You may opt out from diagnostic data being collected by setting the hbi_workspace parameter to TRUE while

provisioning the workspace. This functionality is supported when using the AzureML Python SDK, CLI, REST APIs,

or Azure Resource Manager templates.

When using services such as Automated Machine Learning, Microsoft may generate a transient, pre-processed

data for training multiple models. This data is stored in a datastore in your workspace, which allows you to enforce

access controls and encryption appropriately.

You may also want to encrypt diagnostic information logged from your deployed endpoint into your Azure

Application Insights instance.

You can use Azure Monitor metrics to view and monitor metrics for your Azure Machine Learning workspace. In

the Azure portal, select your workspace and then select Metr ics :

The metrics include information on runs, deployments, and registrations.

For more information, see Metrics in Azure Monitor.

https://privacy.microsoft.com/privacystatement
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py
https://portal.azure.com
file:///T:/i2pk/machine-learning/media/concept-enterprise-security/workspace-metrics-expanded.png#lightbox
https://docs.microsoft.com/azure/azure-monitor/platform/data-platform-metrics

IMPORTANT

Data flow diagrams
Create workspace

You can view the activity log of a workspace to see various operations that are performed on the workspace. The

log includes basic information like the operation name, event initiator, and timestamp.

This screenshot shows the activity log of a workspace:

Scoring request details are stored in Application Insights. Application Insights is created in your subscription when

you create a workspace. Logged information includes fields such as:

HTTPMethod

UserAgent

ComputeType

RequestUrl

StatusCode

RequestId

Duration

Some actions in the Azure Machine Learning workspace don't log information to the activity log. For example, the start of a

training run and the registration of a model aren't logged.

Some of these actions appear in the Activities area of your workspace, but these notifications don't indicate who initiated

the activity.

The following diagram shows the create workspace workflow.

You sign in to Azure AD from one of the supported Azure Machine Learning clients (Azure CLI, Python SDK,

Azure portal) and request the appropriate Azure Resource Manager token.

You call Azure Resource Manager to create the workspace.

Azure Resource Manager contacts the Azure Machine Learning resource provider to provision the workspace.

file:///T:/i2pk/machine-learning/media/concept-enterprise-security/workspace-activity-log-expanded.png#lightbox

Save source code (training scripts)

Training

Additional resources are created in the user's subscription during workspace creation:

Key Vault (to store secrets)

An Azure storage account (including blob and file share)

Azure Container Registry (to store Docker images for inference/scoring and experimentation)

Application Insights (to store telemetry)

The user can also provision other compute targets that are attached to a workspace (like Azure Kubernetes Service

or VMs) as needed.

The following diagram shows the code snapshot workflow.

Associated with an Azure Machine Learning workspace are directories (experiments) that contain the source code

(training scripts). These scripts are stored on your local machine and in the cloud (in the Azure Blob storage for

your subscription). The code snapshots are used for execution or inspection for historical auditing.

The following diagram shows the training workflow.

Azure Machine Learning is called with the snapshot ID for the code snapshot saved in the previous section.

Azure Machine Learning creates a run ID (optional) and a Machine Learning service token, which is later

used by compute targets like Machine Learning Compute/VMs to communicate with the Machine Learning

service.

You can choose either a managed compute target (like Machine Learning Compute) or an unmanaged

compute target (like VMs) to run training jobs. Here are the data flows for both scenarios:

VMs/HDInsight, accessed by SSH credentials in a key vault in the Microsoft subscription. Azure Machine

file:///T:/i2pk/machine-learning/media/concept-enterprise-security/create-workspace-expanded.png#lightbox
file:///T:/i2pk/machine-learning/media/concept-enterprise-security/code-snapshot-expanded.png#lightbox

Querying runs and metrics

Creating web services

Learning runs management code on the compute target that:

1. Prepares the environment. (Docker is an option for VMs and local computers. See the following steps for

Machine Learning Compute to understand how running experiments on Docker containers works.)

2. Downloads the code.

3. Sets up environment variables and configurations.

4. Runs user scripts (the code snapshot mentioned in the previous section).

Machine Learning Compute, accessed through a workspace-managed identity. Because Machine

Learning Compute is a managed compute target (that is, it's managed by Microsoft) it runs under your

Microsoft subscription.

1. Remote Docker construction is kicked off, if needed.

2. Management code is written to the user's Azure Files share.

3. The container is started with an initial command. That is, management code as described in the previous

step.

In the flow diagram below, this step occurs when the training compute target writes the run metrics back to Azure

Machine Learning from storage in the Cosmos DB database. Clients can call Azure Machine Learning. Machine

Learning will in turn pull metrics from the Cosmos DB database and return them back to the client.

The following diagram shows the inference workflow. Inference, or model scoring, is the phase in which the

deployed model is used for prediction, most commonly on production data.

Here are the details:

The user registers a model by using a client like the Azure Machine Learning SDK.

The user creates an image by using a model, a score file, and other model dependencies.

The Docker image is created and stored in Azure Container Registry.

The web service is deployed to the compute target (Container Instances/AKS) using the image created in the

previous step.

Scoring request details are stored in Application Insights, which is in the user's subscription.

Telemetry is also pushed to the Microsoft/Azure subscription.

file:///T:/i2pk/machine-learning/media/concept-enterprise-security/training-and-metrics-expanded.png#lightbox

Next steps
Secure Azure Machine Learning web services with TLS

Consume a Machine Learning model deployed as a web service

How to run batch predictions

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

Azure Machine Learning SDK

Use Azure Machine Learning with Azure Virtual Network

Best practices for building recommendation systems

Build a real-time recommendation API on Azure

file:///T:/i2pk/machine-learning/media/concept-enterprise-security/inferencing-expanded.png#lightbox
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://github.com/Microsoft/Recommenders
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation

Manage access to an Azure Machine Learning
workspace
3/8/2020 • 5 minutes to read • Edit Online

Default roles

RO L E A C C ESS L EVEL

Reader Read-only actions in the workspace. Readers can list and view
assets in a workspace, but can't create or update these assets.

Contributor View, create, edit, or delete (where applicable) assets in a
workspace. For example, contributors can create an
experiment, create or attach a compute cluster, submit a run,
and deploy a web service.

Owner Full access to the workspace, including the ability to view,
create, edit, or delete (where applicable) assets in a workspace.
Additionally, you can change role assignments.

IMPORTANT

Manage workspace access

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to manage access to an Azure Machine Learning workspace. Role-based access

control (RBAC) is used to manage access to Azure resources. Users in your Azure Active Directory are assigned

specific roles, which grant access to resources. Azure provides both built-in roles and the ability to create custom

roles.

An Azure Machine Learning workspace is an Azure resource. Like other Azure resources, when a new Azure

Machine Learning workspace is created, it comes with three default roles. You can add users to the workspace and

assign them to one of these built-in roles.

Role access can be scoped to multiple levels in Azure. For example, someone with owner access to a workspace may not have

owner access to the resource group that contains the workspace. For more information, see How RBAC works.

For more information on specific built-in roles, see Built-in roles for Azure.

If you're an owner of a workspace, you can add and remove roles for the workspace. You can also assign roles to

users. Use the following links to discover how to manage access:

Azure portal UI

PowerShell

Azure CLI

REST API

Azure Resource Manager templates

If you have installed the Azure Machine Learning CLI, you can also use a CLI command to assign roles to users.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-assign-roles.md
https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/role-based-access-control/overview#how-rbac-works
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-powershell
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-rest
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-template

az ml workspace share -w <workspace_name> -g <resource_group_name> --role <role_name> --user
<user_corp_email_address>

az ml workspace share -w my_workspace -g my_resource_group --role Contributor --user jdoe@contoson.com

Create custom role

NOTE

{
 "Name": "Data Scientist",
 "IsCustom": true,
 "Description": "Can run experiment but can't create or delete compute.",
 "Actions": ["*"],
 "NotActions": [
 "Microsoft.MachineLearningServices/workspaces/*/delete",
 "Microsoft.MachineLearningServices/workspaces/computes/*/write",
 "Microsoft.MachineLearningServices/workspaces/computes/*/delete",
 "Microsoft.Authorization/*/write"
],
 "AssignableScopes": [

"/subscriptions/<subscription_id>/resourceGroups/<resource_group_name>/providers/Microsoft.MachineLearningServ
ices/workspaces/<workspace_name>"
]
}

az role definition create --role-definition data_scientist_role.json

The user field is the email address of an existing user in the instance of Azure Active Directory where the

workspace parent subscription lives. Here is an example of how to use this command:

If the built-in roles are insufficient, you can create custom roles. Custom roles might have read, write, delete, and

compute resource permissions in that workspace. You can make the role available at a specific workspace level, a

specific resource group level, or a specific subscription level.

You must be an owner of the resource at that level to create custom roles within that resource.

To create a custom role, first construct a role definition JSON file that specifies the permission and scope for the

role. The following example defines a custom role named "Data Scientist" scoped at a specific workspace level:

data_scientist_role.json :

You can change the AssignableScopes field to set the scope of this custom role at the subscription level, the

resource group level, or a specific workspace level.

This custom role can do everything in the workspace except for the following actions:

It can't create or update a compute resource.

It can't delete a compute resource.

It can't add, delete, or alter role assignments.

It can't delete the workspace.

To deploy this custom role, use the following Azure CLI command:

az ml workspace share -w my_workspace -g my_resource_group --role "Data Scientist" --user jdoe@contoson.com

Frequently asked questions
Q. What are the permissions needed to perform various actions in the Azure Machine Learning service?

A C T IVIT Y
SUB SC RIP T IO N -L EVEL
SC O P E

RESO URC E GRO UP - L EVEL
SC O P E W O RKSPA C E- L EVEL SC O P E

Create new workspace Not required Owner or contributor N/A (becomes Owner or
inherits higher scope role
after creation)

Create new compute cluster Not required Not required Owner, contributor, or
custom role allowing:
workspaces/computes/write

Create new Notebook VM Not required Owner or contributor Not possible

Create new compute
instance

Not required Not required Owner, contributor, or
custom role allowing:
workspaces/computes/write

Data plane activity like
submitting run, accessing
data, deploying model or
publishing pipeline

Not required Not required Owner, contributor, or
custom role allowing:
workspaces/*/write

Note that you also need a
datastore registered to the
workspace to allow MSI to
access data in your storage
account.

Q. How do I list all the custom roles in my subscription?

az role definition list --subscription <sub-id> --custom-role-only true

Q. How do I find the role definition for a role in my subscription?

az role definition list -n <role-name> --subscription <sub-id>

After deployment, this role becomes available in the specified workspace. Now you can add and assign this role in

the Azure portal. Or, you can assign this role to a user by using the az ml workspace share CLI command:

For more information on custom roles, see Custom roles for Azure resources.

For more information on the operations (actions) usable with custom roles, see Resource provider operations.

The following table is a summary of Azure Machine Learning activities and the permissions required to perform

them at the least scope. As an example if an activity can be performed with a workspace scope (Column 4), then all

higher scope with that permission will also work automatically. All paths in this table are relative paths to

Microsoft.MachineLearningServices/ .

In the Azure CLI, run the following command.

In the Azure CLI, run the following command. Note that <role-name> should be in the same format returned by the

command above.

https://docs.microsoft.com/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/azure/role-based-access-control/resource-provider-operations#microsoftmachinelearningservices

Q. How do I update a role definition?

az role definition update --role-definition update_def.json --subscription <sub-id>

NOTE

Q. Can I define a role that prevents updating the workspace Edition?

Q. What permissions are needed to perform quota operations in a workspace?

Next steps

In the Azure CLI, run the following command.

Note that you need to have permissions on the entire scope of your new role definition. For example if this new

role has a scope across three subscriptions, you need to have permissions on all three subscriptions.

Role updates can take 15 minutes to an hour to apply across all role assignments in that scope.

Yes, you can define a role that prevents updating the workspace Edition. Since the workspace update is a PATCH call

on the workspace object, you do this by putting the following action in the "NotActions" array in your JSON

definition:

"Microsoft.MachineLearningServices/workspaces/write"

You need subscription level permissions to perform any quota related operation in the workspace. This means

setting either subscription level quota or workspace level quota for your managed compute resources can only

happen if you have write permissions at the subscription scope.

Enterprise security overview

Securely run experiments and inference/score inside a virtual network

Tutorial: Train models

Resource provider operations

https://docs.microsoft.com/azure/role-based-access-control/resource-provider-operations#microsoftmachinelearningservices

Secure Azure ML experimentation and inference jobs
within an Azure Virtual Network
4/24/2020 • 21 minutes to read • Edit Online

TIP

WARNING

Prerequisites

Use a storage account for your workspace

WARNING

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you'll learn how to secure experimentation/training jobs and inference/scoring jobs in Azure

Machine Learning within an Azure Virtual Network (vnet).

A vir tual network acts as a security boundary, isolating your Azure resources from the public internet. You can

also join an Azure virtual network to your on-premises network. By joining networks, you can securely train your

models and access your deployed models for inference.

Azure Machine Learning relies on other Azure services for compute resources. Compute resources, or compute

targets, are used to train and deploy models. The targets can be created within a virtual network. For example, you

can use Microsoft Data Science Virtual Machine to train a model and then deploy the model to Azure Kubernetes

Service (AKS). For more information about virtual networks, see Azure Virtual Network overview.

This article also provides detailed information about advanced security settings, information that isn't necessary

for basic or experimental use cases. Certain sections of this article provide configuration information for a variety

of scenarios. You don't need to complete the instructions in order or in their entirety.

Unless specifically called out, using resources such as storage accounts or compute targets inside a virtual network will work

with both machine learning pipelines, and non-pipeline workflows such as script runs.

Microsoft does not support using the Azure Machine Learning Studio features such as Automated ML, Datasets,

Datalabeling, Designer, and Notebooks if the underlying storage has virtual network enabled.

An Azure Machine Learning workspace.

General working knowledge of both the Azure Virtual Network service and IP networking.

A pre-existing virtual network and subnet to use with your compute resources.

If you have data scientists that use the Azure Machine Learning designer, they will receive an error when visualizing data

from a storage account inside a virtual network. The following text is the error that they receive:

Error : Unable to profile this dataset. This might be because your data is stored behind a vir tual network or

your data does not suppor t profile.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-enable-virtual-network.md
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-ip-addresses-overview-arm

To use an Azure storage account for the workspace in a virtual network, use the following steps:

1. Create a compute resource (for example, a Machine Learning compute instance or cluster) behind a virtual

network, or attach a compute resource to the workspace (for example, an HDInsight cluster, virtual machine,

or Azure Kubernetes Service cluster). The compute resource can be for experimentation or model

deployment.

For more information, see the Use a Machine Learning compute, Use a virtual machine or HDInsight cluster,

and Use Azure Kubernetes Service sections in this article.

2. In the Azure portal, go to the storage that's attached to your workspace.

3. On the Azure Storage page, select Firewalls and vir tual networks .

4. On the Firewalls and vir tual networks page, do the following actions:

Select Selected networks .

file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/workspace-storage.png#lightbox

IMPORTANT

Use Azure Data Lake Storage Gen 2

IMPORTANT

IMPORTANT

Under Vir tual networks , select the Add existing vir tual network link. This action adds the

virtual network where your compute resides (see step 1).

The storage account must be in the same virtual network and subnet as the compute instances or clusters

used for training or inference.

Select the Allow trusted Microsoft ser vices to access this storage account check box.

When working with the Azure Machine Learning SDK, your development environment must be able to connect to

the Azure Storage Account. When the storage account is inside a virtual network, the firewall must allow access from

the development environment's IP address.

To enable access to the storage account, visit the Firewalls and vir tual networks for the storage account from a

web browser on the development client. Then use the Add your client IP address check box to add the client's IP

address to the ADDRESS RANGE. You can also use the ADDRESS RANGE field to manually enter the IP address of

the development environment. Once the IP address for the client has been added, it can access the storage account

using the SDK.

You can place the both the default storage account for Azure Machine Learning, or non-default storage accounts in a virtual

network.

The default storage account is automatically provisioned when you create a workspace.

For non-default storage accounts, the storage_account parameter in the Workspace.create() function allows you to

specify a custom storage account by Azure resource ID.

Azure Data Lake Storage Gen 2 is a set of capabilities for big data analytics, built on Azure Blob storage. It can be

file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/storage-firewalls-and-virtual-networks-page.png#lightbox
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--exist-ok-false--show-output-true-

 Use a key vault instance with your workspace

used to store data used to train models with Azure Machine Learning.

To use Data Lake Storage Gen 2 inside the virtual network of your Azure Machine Learning workspace, use the

following steps:

1. Create an Azure Data Lake Storage gen 2 account. For more information, see Create an Azure Data Lake

Storage Gen2 storage account.

2. Use the steps 2-4 in the previous section, Use a storage account for your workspace, to put the account in

the virtual network.

When using Azure Machine Learning with Data Lake Storage Gen 2 inside a virtual network, use the following

guidance:

If you use the SDK to create a dataset, and the system running the code is not in the vir tual network ,

use the validate=False parameter. This parameter skips validation, which fails if the system is not in the

same virtual network as the storage account. For more information, see the from_files() method.

When using Azure Machine Learning Compute Instance or compute cluster to train a model using the

dataset, it must be in the same virtual network as the storage account.

The key vault instance that's associated with the workspace is used by Azure Machine Learning to store the

following credentials:

The associated storage account connection string

Passwords to Azure Container Repository instances

Connection strings to data stores

To use Azure Machine Learning experimentation capabilities with Azure Key Vault behind a virtual network, use the

following steps:

1. Go to the key vault that's associated with the workspace.

2. On the Key Vault page, in the left pane, select Firewalls and vir tual networks .

https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-quickstart-create-account
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-
file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/workspace-key-vault.png#lightbox

3. On the Firewalls and vir tual networks page, do the following actions:

Under Allow access from, select Selected networks .

Under Vir tual networks , select Add existing vir tual networks to add the virtual network where

your experimentation compute resides.

Under Allow trusted Microsoft ser vices to bypass this firewall , select Yes .

Use a Machine Learning Compute

TIP

Required ports

To use an Azure Machine Learning compute instance or compute cluster in a virtual network, the following

network requirements must be met:

The virtual network must be in the same subscription and region as the Azure Machine Learning workspace.

The subnet that's specified for the compute instance or cluster must have enough unassigned IP addresses to

accommodate the number of VMs that are targeted. If the subnet doesn't have enough unassigned IP

addresses, a compute cluster will be partially allocated.

Check to see whether your security policies or locks on the virtual network's subscription or resource group

restrict permissions to manage the virtual network. If you plan to secure the virtual network by restricting

traffic, leave some ports open for the compute service. For more information, see the Required ports section.

If you're going to put multiple compute instances or clusters in one virtual network, you might need to request

a quota increase for one or more of your resources.

If the Azure Storage Account(s) for the workspace are also secured in a virtual network, they must be in the

same virtual network as the Azure Machine Learning compute instance or cluster.

The Machine Learning compute instance or cluster automatically allocates additional networking resources in the resource

group that contains the vir tual network . For each compute instance or cluster, the service allocates the following

resources:

One network security group

One public IP address

One load balancer

In the case of clusters these resources are deleted (and recreated) every time the cluster scales down to 0 nodes, however

for an instance the resources are held onto till the instance is completely deleted (stopping does not remove the resources).

These resources are limited by the subscription's resource quotas.

Machine Learning Compute currently uses the Azure Batch service to provision VMs in the specified virtual

network. The subnet must allow inbound communication from the Batch service. You use this communication to

schedule runs on the Machine Learning Compute nodes and to communicate with Azure Storage and other

resources. The Batch service adds network security groups (NSGs) at the level of network interfaces (NICs) that are

file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/key-vault-firewalls-and-virtual-networks-page.png#lightbox
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits

attached to VMs. These NSGs automatically configure inbound and outbound rules to allow the following traffic:

Inbound TCP traffic on ports 29876 and 29877 from a Ser vice Tag of BatchNodeManagement.

(Optional) Inbound TCP traffic on port 22 to permit remote access. Use this port only if you want to connect

by using SSH on the public IP.

Outbound traffic on any port to the virtual network.

Outbound traffic on any port to the internet.

For compute instance inbound TCP traffic on port 44224 from a Ser vice Tag of AzureMachineLearning.

Exercise caution if you modify or add inbound or outbound rules in Batch-configured NSGs. If an NSG blocks

communication to the compute nodes, the compute service sets the state of the compute nodes to unusable.

You don't need to specify NSGs at the subnet level, because the Azure Batch service configures its own NSGs.

However, if the specified subnet has associated NSGs or a firewall, configure the inbound and outbound security

rules as mentioned earlier.

The NSG rule configuration in the Azure portal is shown in the following images:

 Limit outbound connectivity from the virtual network
If you don't want to use the default outbound rules and you do want to limit the outbound access of your virtual

network, use the following steps:

Deny outbound internet connection by using the NSG rules.

For a compute instance or a compute cluster , limit outbound traffic to the following items:

Azure Storage, by using Ser vice Tag of Storage.RegionName. Where {RegionName} is the name of an

Azure region.

Azure Container Registry, by using Ser vice Tag of AzureContainerRegistr y.RegionName . Where

{RegionName} is the name of an Azure region.

Azure Machine Learning, by using Ser vice Tag of AzureMachineLearning

Azure Resource Manager, by using Ser vice Tag of AzureResourceManager

Azure Active Directory, by using Ser vice Tag of AzureActiveDirector y

The NSG rule configuration in the Azure portal is shown in the following image:

file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/limited-outbound-nsg-exp.png#lightbox

NOTE

create a new runconfig object
run_config = RunConfiguration()

configure Docker
run_config.environment.docker.enabled = True
For GPU, use DEFAULT_GPU_IMAGE
run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE
run_config.environment.python.user_managed_dependencies = True

est = Estimator(source_directory='.',
 script_params=script_params,
 compute_target='local',
 entry_script='dummy_train.py',
 user_managed=True)
run = exp.submit(est)

User-defined routes for forced tunneling

If you plan on using default Docker images provided by Microsoft, and enabling user managed dependencies, you must also

use a Ser vice Tag of MicrosoftContainerRegistr y.Region_Name (For example, MicrosoftContainerRegistry.EastUS).

This configuration is needed when you have code similar to the following snippets as part of your training scripts:

RunConfig training

Estimator training

If you're using forced tunneling with the Machine Learning Compute, add user-defined routes (UDRs) to the subnet

that contains the compute resource.

Establish a UDR for each IP address that's used by the Azure Batch service in the region where your

resources exist. These UDRs enable the Batch service to communicate with compute nodes for task

scheduling. Also add the IP address for the Azure Machine Learning service where the resources exist, as

this is required for access to Compute Instances. To get a list of IP addresses of the Batch service and Azure

Machine Learning service, use one of the following methods:

az network list-service-tags -l "East US 2" --query "values[?starts_with(id, 'Batch')] | [?
properties.region=='eastus2']"
az network list-service-tags -l "East US 2" --query "values[?starts_with(id,
'AzureMachineLearning')] | [?properties.region=='eastus2']"

Download the Azure IP Ranges and Service Tags and search the file for

BatchNodeManagement.<region> and AzureMachineLearning.<region> , where <region> is your Azure

region.

Use the Azure CLI to download the information. The following example downloads the IP address

information and filters out the information for the East US 2 region:

Outbound traffic to Azure Storage must not be blocked by your on-premises network appliance. Specifically,

the URLs are in the form <account>.table.core.windows.net , <account>.queue.core.windows.net , and

<account>.blob.core.windows.net .

When you add the UDRs, define the route for each related Batch IP address prefix and set Next hop type to

Internet. The following image shows an example of this UDR in the Azure portal:

https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview
https://www.microsoft.com/download/details.aspx?id=56519
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

Create a compute cluster in a virtual network

For more information, see Create an Azure Batch pool in a virtual network.

To create a Machine Learning Compute cluster, use the following steps:

1. Sign in to Azure Machine Learning studio, and then select your subscription and workspace.

2. Select Compute on the left.

3. Select Training clusters from the center, and then select +.

4. In the New Training Cluster dialog, expand the Advanced settings section.

5. To configure this compute resource to use a virtual network, perform the following actions in the

Configure vir tual network section:

a. In the Resource group drop-down list, select the resource group that contains the virtual network.

b. In the Vir tual network drop-down list, select the virtual network that contains the subnet.

c. In the Subnet drop-down list, select the subnet to use.

https://docs.microsoft.com/en-us/azure/batch/batch-virtual-network
https://ml.azure.com/

You can also create a Machine Learning Compute cluster by using the Azure Machine Learning SDK. The following

code creates a new Machine Learning Compute cluster in the default subnet of a virtual network named

mynetwork :

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

The Azure virtual network name, subnet, and resource group
vnet_name = 'mynetwork'
subnet_name = 'default'
vnet_resourcegroup_name = 'mygroup'

Choose a name for your CPU cluster
cpu_cluster_name = "cpucluster"

Verify that cluster does not exist already
try:
 cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)
 print("Found existing cpucluster")
except ComputeTargetException:
 print("Creating new cpucluster")

 # Specify the configuration for the new cluster
 compute_config = AmlCompute.provisioning_configuration(vm_size="STANDARD_D2_V2",
 min_nodes=0,
 max_nodes=4,
 vnet_resourcegroup_name=vnet_resourcegroup_name,
 vnet_name=vnet_name,
 subnet_name=subnet_name)

 # Create the cluster with the specified name and configuration
 cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)

 # Wait for the cluster to be completed, show the output log
 cpu_cluster.wait_for_completion(show_output=True)

Use Azure Databricks

Use a virtual machine or HDInsight cluster

IMPORTANT

When the creation process finishes, you train your model by using the cluster in an experiment. For more

information, see Select and use a compute target for training.

To use Azure Databricks in a virtual network with your workspace, the following requirements must be met:

The virtual network must be in the same subscription and region as the Azure Machine Learning workspace.

If the Azure Storage Account(s) for the workspace are also secured in a virtual network, they must be in the

same virtual network as the Azure Databricks cluster.

In addition to the databricks-private and databricks-public subnets used by Azure Databricks, the default

subnet created for the virtual network is also required.

For specific information on using Azure Databricks with a virtual network, see Deploy Azure Databricks in your

Azure Virtual Network.

Azure Machine Learning supports only virtual machines that are running Ubuntu.

To use a virtual machine or Azure HDInsight cluster in a virtual network with your workspace, use the following

steps:

1. Create a VM or HDInsight cluster by using the Azure portal or the Azure CLI, and put the cluster in an Azure

virtual network. For more information, see the following articles:

https://docs.azuredatabricks.net/administration-guide/cloud-configurations/azure/vnet-inject.html

Create and manage Azure virtual networks for Linux VMs

Extend HDInsight using an Azure virtual network

2. To allow Azure Machine Learning to communicate with the SSH port on the VM or cluster, configure a

source entry for the network security group. The SSH port is usually port 22. To allow traffic from this

source, do the following actions:

In the Source drop-down list, select Ser vice Tag .

In the Source ser vice tag drop-down list, select AzureMachineLearning.

In the Source por t ranges drop-down list, select * .

In the Destination drop-down list, select Any .

In the Destination por t ranges drop-down list, select 22 .

Under Protocol , select Any .

Under Action, select Allow .

Keep the default outbound rules for the network security group. For more information, see the default

security rules in Security groups.

If you don't want to use the default outbound rules and you do want to limit the outbound access of your

virtual network, see the Limit outbound connectivity from the virtual network section.

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-virtual-network
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network
https://docs.microsoft.com/azure/virtual-network/security-overview#default-security-rules

Use Azure Kubernetes Service (AKS)

IMPORTANT

WARNING

3. Attach the VM or HDInsight cluster to your Azure Machine Learning workspace. For more information, see

Set up compute targets for model training.

To add AKS in a virtual network to your workspace, use the following steps:

Before you begin the following procedure, follow the prerequisites in the Configure advanced networking in Azure

Kubernetes Service (AKS) how-to and plan the IP addressing for your cluster.

The AKS instance and the Azure virtual network must be in the same region. If you secure the Azure Storage Account(s)

used by the workspace in a virtual network, they must be in the same virtual network as the AKS instance.

Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled.

1. Sign in to Azure Machine Learning studio, and then select your subscription and workspace.

2. Select Compute on the left.

3. Select Inference clusters from the center, and then select +.

4. In the New Inference Cluster dialog, select Advanced under Network configuration.

5. To configure this compute resource to use a virtual network, perform the following actions:

a. In the Resource group drop-down list, select the resource group that contains the virtual network.

b. In the Vir tual network drop-down list, select the virtual network that contains the subnet.

c. In the Subnet drop-down list, select the subnet.

d. In the Kubernetes Ser vice address range box, enter the Kubernetes service address range. This

address range uses a Classless Inter-Domain Routing (CIDR) notation IP range to define the IP addresses

that are available for the cluster. It must not overlap with any subnet IP ranges (for example, 10.0.0.0/16).

e. In the Kubernetes DNS ser vice IP address box, enter the Kubernetes DNS service IP address. This IP

address is assigned to the Kubernetes DNS service. It must be within the Kubernetes service address

range (for example, 10.0.0.10).

f. In the Docker br idge address box, enter the Docker bridge address. This IP address is assigned to

Docker Bridge. It must not be in any subnet IP ranges, or the Kubernetes service address range (for

example, 172.17.0.1/16).

https://docs.microsoft.com/azure/aks/configure-advanced-networking#prerequisites
https://ml.azure.com/

IMPORTANT

6. Make sure that the NSG group that controls the virtual network has an inbound security rule enabled for

the scoring endpoint so that it can be called from outside the virtual network.

Keep the default outbound rules for the NSG. For more information, see the default security rules in Security groups.

https://docs.microsoft.com/azure/virtual-network/security-overview#default-security-rules

from azureml.core.compute import ComputeTarget, AksCompute

Create the compute configuration and set virtual network information
config = AksCompute.provisioning_configuration(location="eastus2")
config.vnet_resourcegroup_name = "mygroup"
config.vnet_name = "mynetwork"
config.subnet_name = "default"
config.service_cidr = "10.0.0.0/16"
config.dns_service_ip = "10.0.0.10"
config.docker_bridge_cidr = "172.17.0.1/16"

Create the compute target
aks_target = ComputeTarget.create(workspace=ws,
 name="myaks",
 provisioning_configuration=config)

Use private IPs with Azure Kubernetes Service

IMPORTANT

You can also use the Azure Machine Learning SDK to add Azure Kubernetes Service in a virtual network. If you

already have an AKS cluster in a virtual network, attach it to the workspace as described in How to deploy to AKS.

The following code creates a new AKS instance in the default subnet of a virtual network named mynetwork :

When the creation process is completed, you can run inference, or model scoring, on an AKS cluster behind a

virtual network. For more information, see How to deploy to AKS.

By default, a public IP address is assigned to AKS deployments. When using AKS inside a virtual network, you can

use a private IP address instead. Private IP addresses are only accessible from inside the virtual network or joined

networks.

A private IP address is enabled by configuring AKS to use an internal load balancer.

You cannot enable private IP when creating the Azure Kubernetes Service cluster. It must be enabled as an update to an

existing cluster.

The following code snippet demonstrates how to create a new AKS cluster , and then update it to use a private

IP/internal load balancer :

file:///T:/i2pk/machine-learning/media/how-to-enable-virtual-network/aks-vnet-inbound-nsg-scoring.png#lightbox

import azureml.core
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute import AksCompute, ComputeTarget

Verify that cluster does not exist already
try:
 aks_target = AksCompute(workspace=ws, name=aks_cluster_name)
 print("Found existing aks cluster")

except:
 print("Creating new aks cluster")

 # Subnet to use for AKS
 subnet_name = "default"
 # Create AKS configuration
 prov_config = AksCompute.provisioning_configuration(location = "eastus2")
 # Set info for existing virtual network to create the cluster in
 prov_config.vnet_resourcegroup_name = "myvnetresourcegroup"
 prov_config.vnet_name = "myvnetname"
 prov_config.service_cidr = "10.0.0.0/16"
 prov_config.dns_service_ip = "10.0.0.10"
 prov_config.subnet_name = subnet_name
 prov_config.docker_bridge_cidr = "172.17.0.1/16"

 # Create compute target
 aks_target = ComputeTarget.create(workspace = ws, name = "myaks", provisioning_configuration =
prov_config)
 # Wait for the operation to complete
 aks_target.wait_for_completion(show_output = True)

 # Update AKS configuration to use an internal load balancer
 update_config = AksUpdateConfiguration(None, "InternalLoadBalancer", subnet_name)
 aks_target.update(update_config)
 # Wait for the operation to complete
 aks_target.wait_for_completion(show_output = True)

az rest --method put --uri https://management.azure.com"/subscriptions/<subscription-
id>/resourcegroups/<resource-group>/providers/Microsoft.ContainerService/managedClusters/<aks-resource-id>?
api-version=2018-11-19 --body @body.json

{
 "location": "<region>",
 "properties": {
 "resourceId": "/subscriptions/<subscription-id>/resourcegroups/<resource-
group>/providers/Microsoft.ContainerService/managedClusters/<aks-resource-id>",
 "computeType": "AKS",
 "provisioningState": "Succeeded",
 "properties": {
 "loadBalancerType": "InternalLoadBalancer",
 "agentCount": <agent-count>,
 "agentVmSize": "vm-size",
 "clusterFqdn": "<cluster-fqdn>"
 }
 }
}

Azure CLI

The contents of the body.json file referenced by the command are similar to the following JSON document:

NOTE

Use Azure Container Instances (ACI)

Use Azure Firewall

Use Azure Container Registry

Currently, you cannot configure the load balancer when performing an attach operation on an existing cluster. You must

first attach the cluster, and then perform an update operation to change the load balancer.

For more information on using the internal load balancer with AKS, see Use internal load balancer with Azure

Kubernetes Service.

Azure Container Instances are dynamically created when deploying a model. To enable Azure Machine Learning to

create ACI inside the virtual network, you must enable subnet delegation for the subnet used by the

deployment.

To use ACI in a virtual network to your workspace, use the following steps:

IMPORTANT

1. To enable subnet delegation on your virtual network, use the information in the Add or remove a subnet

delegation article. You can enable delegation when creating a virtual network, or add it to an existing

network.

When enabling delegation, use Microsoft.ContainerInstance/containerGroups as the Delegate subnet to

ser vice value.

2. Deploy the model using AciWebservice.deploy_configuration(), use the vnet_name and subnet_name

parameters. Set these parameters to the virtual network name and subnet where you enabled delegation.

When using Azure Firewall, you must configure a network rule to allow traffic to and from the following addresses:

*.batchai.core.windows.net

ml.azure.com

*.azureml.ms

*.experiments.azureml.net

*.modelmanagement.azureml.net

mlworkspace.azure.ai

*.aether.ms

When adding the rule, set the Protocol to any, and the ports to * .

For more information on configuring a network rule, see Deploy and configure Azure Firewall.

https://docs.microsoft.com/azure/aks/internal-lb
https://docs.microsoft.com/en-us/azure/virtual-network/manage-subnet-delegation
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciwebservice?view=azure-ml-py#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--primary-key-none--secondary-key-none--collect-model-data-none--cmk-vault-base-url-none--cmk-key-name-none--cmk-key-version-none--vnet-name-none--subnet-name-none-
https://docs.microsoft.com/azure/firewall/tutorial-firewall-deploy-portal#configure-a-network-rule

IMPORTANT
Azure Container Registry (ACR) can be put inside a virtual network, however you must meet the following prerequisites:

Your Azure Machine Learning workspace must be Enterprise edition. For information on upgrading, see Upgrade to

Enterprise edition.

Your Azure Container Registry must be Premium version . For more information on upgrading, see Changing SKUs.

Your Azure Container Registry must be in the same virtual network and subnet as the storage account and compute

targets used for training or inference.

Your Azure Machine Learning workspace must contain an Azure Machine Learning compute cluster.

When ACR is behind a virtual network, Azure Machine Learning cannot use it to directly build Docker images.

Instead, the compute cluster is used to build the images.

az ml workspace show -w yourworkspacename -g resourcegroupname --query 'containerRegistry'

from azureml.core import Workspace
Load workspace from an existing config file
ws = Workspace.from_config()
Update the workspace to use an existing compute cluster
ws.update(image_build_compute = 'mycomputecluster')

IMPORTANT

1. To find the name of the Azure Container Registry for your workspace, use one of the following methods:

Azure por tal

From the overview section of your workspace, the Registr y value links to the Azure Container Registry.

Azure CLI

If you have installed the Machine Learning extension for Azure CLI, you can use the az ml workspace show

command to show the workspace information.

This command returns a value similar to

"/subscriptions/{GUID}/resourceGroups/{resourcegroupname}/providers/Microsoft.ContainerRegistry/registries/{ACRname}"

. The last part of the string is the name of the Azure Container Registry for the workspace.

2. To limit access to your virtual network, use the steps in Configure network access for registry. When adding

the virtual network, select the virtual network and subnet for your Azure Machine Learning resources.

3. Use the Azure Machine Learning Python SDK to configure a compute cluster to build docker images. The

following code snippet demonstrates how to do this:

Your storage account, compute cluster, and Azure Container Registry must all be in the same subnet of the virtual

network.

For more information, see the update() method reference.

https://docs.microsoft.com/azure/container-registry/container-registry-skus#changing-skus
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-vnet
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py#update-friendly-name-none--description-none--tags-none--image-build-compute-none--enable-data-actions-none-

Next steps

{
"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
 "keyVaultArmId": {
 "type": "string"
 },
 "workspaceName": {
 "type": "string"
 },
 "containerRegistryArmId": {
 "type": "string"
 },
 "applicationInsightsArmId": {
 "type": "string"
 },
 "storageAccountArmId": {
 "type": "string"
 },
 "location": {
 "type": "string"
 }
},
"resources": [
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "identity": {
 "type": "SystemAssigned"
 },
 "sku": {
 "tier": "enterprise",
 "name": "enterprise"
 },
 "properties": {
 "sharedPrivateLinkResources":
[{"Name":"Acr","Properties":{"PrivateLinkResourceId":"[concat(parameters('containerRegistryArmId'),
'/privateLinkResources/registry')]","GroupId":"registry","RequestMessage":"Approve","Status":"Pending"}
}],
 "keyVault": "[parameters('keyVaultArmId')]",
 "containerRegistry": "[parameters('containerRegistryArmId')]",
 "applicationInsights": "[parameters('applicationInsightsArmId')]",
 "storageAccount": "[parameters('storageAccountArmId')]"
 }
 }
]
}

4. If you are using Private Link for your Azure Machine Learning workspace, and put the Azure Container

Registry for your workspace in a virtual network, you must also apply the following Azure Resource

Manager template. This template enables your workspace to communicate with ACR over the Private Link.

Set up training environments

Where to deploy models

Use TLS to secure a web service through Azure Machine Learning

Configure Azure Private Link for an Azure Machine
Learning workspace (Preview)
4/15/2020 • 13 minutes to read • Edit Online

IMPORTANT

Create a workspace that uses a private endpoint

TIP

In this document, you learn how to use Azure Private Link with your Azure Machine Learning workspace. This

capability is currently in preview, and is available in the US East, US West 2, US South Central regions.

Azure Private Link enables you to connect to your workspace using a private endpoint. The private endpoint is a set

of private IP addresses within your virtual network. You can then limit access to your workspace to only occur over

the private IP addresses. Private Link helps reduce the risk of data exfiltration. To learn more about private

endpoints, see the Azure Private Link article.

Azure Private Link does not effect Azure control plane (management operations) such as deleting the workspace or

managing compute resources. For example, creating, updating, or deleting a compute target. These operations are performed

over the public Internet as normal.

Azure Machine Learning compute instances preview is not supported in a workspace where Private Link is enabled.

Currently, we only support enabling a private endpoint when creating a new Azure Machine Learning workspace.

The following templates are provided for several popular configurations:

Auto-approval controls the automated access to the Private Link enabled resource. For more information, see What is Azure

Private Link service.

Workspace with customer-managed keys and auto-approval for Private Link

Workspace with customer-managed keys and manual approval for Private Link

Workspace with Microsoft-managed keys and auto-approval for Private Link

Workspace with Microsoft-managed keys and manual approval for Private Link

When deploying a template, you must provide the following information:

Workspace name

Azure region to create the resources in

Workspace edition (Basic or Enterprise)

If high confidentiality settings for the workspace should be enabled

If encryption for the workspace with a customer-managed key should be enabled, and associated values for the

key

Virtual Network and Subnet name, template will create new virtual network and subnet

Once a template has been submitted and provisioning completes, the resource group that contains your workspace

will contain three new artifact types related to Private Link:

Private endpoint

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-configure-private-link.md
https://docs.microsoft.com/azure/private-link/private-link-overview
https://docs.microsoft.com/en-us/azure/private-link/private-link-service-overview

Deploy the template using the Azure portal

Deploy the template using Azure PowerShell

New-AzResourceGroup -Name examplegroup -Location "East US"
new-azresourcegroupdeployment -name exampledeployment `
 -resourcegroupname examplegroup -location "East US" `
 -templatefile .\azuredeploy.json -workspaceName "exampleworkspace" -sku "basic"

Deploy the template using the Azure CLI

az group create --name examplegroup --location "East US"
az group deployment create \
 --name exampledeployment \
 --resource-group examplegroup \
 --template-file azuredeploy.json \
 --parameters workspaceName=exampleworkspace location=eastus sku=basic

Using a workspace over a private endpoint

Network interface

Private DNS zone

The workspace also contains an Azure Virtual Network that can communicate with the workspace over the private

endpoint.

1. Follow the steps in Deploy resources from custom template. When you arrive at the Edit template screen,

paste in one of the templates from the end of this document.

2. Select Save to use the template. Provide the following information and agree to the listed terms and

conditions:

Subscription: Select the Azure subscription to use for these resources.

Resource group: Select or create a resource group to contain the services.

Workspace name: The name to use for the Azure Machine Learning workspace that will be created. The

workspace name must be between 3 and 33 characters. It may only contain alphanumeric characters and

'-'.

Location: Select the location where the resources will be created.

For more information, see Deploy resources from custom template.

This example assumes that you have saved one of the templates from the end of this document to a file named

azuredeploy.json in the current directory:

For more information, see Deploy resources with Resource Manager templates and Azure PowerShell and Deploy

private Resource Manager template with SAS token and Azure PowerShell.

This example assumes that you have saved one of the templates from the end of this document to a file named

azuredeploy.json in the current directory:

For more information, see Deploy resources with Resource Manager templates and Azure CLI and Deploy private

Resource Manager template with SAS token and Azure CLI.

Since communication to the workspace is only allowed from the virtual network, any development environments

that use the workspace must be members of the virtual network. For example, a virtual machine in the virtual

network or a machine connected to the virtual network using a VPN gateway.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy-portal#deploy-resources-from-custom-template
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token

IMPORTANT

Using Azure Storage

Using Azure Key Vault

Using Azure Kubernetes Services

WARNING

Azure Container Registry

IMPORTANT

To avoid temporary disruption of connectivity, Microsoft recommends flushing the DNS cache on machines connecting to the

workspace after enabling Private Link.

For information on Azure Virtual Machines, see the Virtual Machines documentation.

For information on VPN gateways, see What is VPN gateway.

To secure the Azure Storage account used by your workspace, put it inside the virtual network.

For information on putting the storage account in the virtual network, see Use a storage account for your

workspace.

To secure the Azure Key Vault used by your workspace, you can either put it inside the virtual network or enable

Private Link for it.

For information on putting the key vault in the virtual network, see Use a key vault instance with your workspace.

For information on enabling Private Link for the key vault, see Integrate Key Vault with Azure Private Link.

To secure the Azure Kubernetes services used by your workspace, put it inside a virtual network. For more

information, see Use Azure Kubernetes Services with your workspace.

Azure Machine Learning does not support using an Azure Kubernetes Service that has private link enabled.

For information on securing Azure Container Registry inside the virtual network, see Use Azure Container Registry.

If you are using Private Link for your Azure Machine Learning workspace, and put the Azure Container Registry for your

workspace in a virtual network, you must also apply the following Azure Resource Manager template. This template enables

your workspace to communicate with ACR over the Private Link.

https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/key-vault/private-link-service

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "keyVaultArmId": {
 "type": "string"
 },
 "workspaceName": {
 "type": "string"
 },
 "containerRegistryArmId": {
 "type": "string"
 },
 "applicationInsightsArmId": {
 "type": "string"
 },
 "storageAccountArmId": {
 "type": "string"
 },
 "location": {
 "type": "string"
 }
 },
 "resources": [
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "identity": {
 "type": "SystemAssigned"
 },
 "sku": {
 "tier": "enterprise",
 "name": "enterprise"
 },
 "properties": {
 "sharedPrivateLinkResources":
 [{"Name":"Acr","Properties":{"PrivateLinkResourceId":"[concat(parameters('containerRegistryArmId'),
'/privateLinkResources/registry')]","GroupId":"registry","RequestMessage":"Approve","Status":"Pending"}}],
 "keyVault": "[parameters('keyVaultArmId')]",
 "containerRegistry": "[parameters('containerRegistryArmId')]",
 "applicationInsights": "[parameters('applicationInsightsArmId')]",
 "storageAccount": "[parameters('storageAccountArmId')]"
 }
 }
]
}

Azure Resource Manager templates
Workspace with customer-managed keys and auto-approval for Private Link

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning workspace."
 }
 },
 "location": {
 "type": "string",

 "allowedValues": [
 "eastus",
 "southcentralus",
 "westus2"
],
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "sku":{
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
 }
 },
 "hbi_workspace":{
 "type": "string",
 "defaultValue": "false",
 "allowedValues": [
 "false",
 "true"
],
 "metadata": {
 "description": "Specifies that the Azure Machine Learning workspace holds highly confidential data."
 }
 },
 "encryption_status":{
 "type": "string",
 "defaultValue": "Disabled",
 "allowedValues": [
 "Enabled",
 "Disabled"
],
 "metadata": {
 "description": "Specifies if the Azure Machine Learning workspace should be encrypted with customer
managed key."
 }
 },
 "cmk_keyvault":{
 "type": "string",
 "metadata": {
 "description": "Specifies the customer managed keyVault id."
 }
 },
 "resource_cmk_uri":{
 "type": "string",
 "metadata": {
 "description": "Specifies if the customer managed keyvault key uri."
 }
 },
 "subnetName": {
 "type": "string"
 },
 "vnetName": {
 "type": "string"
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]",

 "privateDnsGuid": "[guid(resourceGroup().id, deployment().name)]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": []
 }
 },
 {
 "type": "Microsoft.Insights/components",
 "apiVersion": "2018-05-01-preview",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2020-01-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"

 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]",
 "encryption": {
 "status": "[parameters('encryption_status')]",
 "keyVaultProperties": {
 "keyVaultArmId": "[parameters('cmk_keyvault')]",
 "keyIdentifier": "[parameters('resource_cmk_uri')]"
 }
 },
 "hbi_workspace": "[parameters('hbi_workspace')]"
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2019-09-01",
 "name": "[parameters('vnetName')]",
 "location": "[parameters('location')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "10.0.0.0/27"
]
 },
 "virtualNetworkPeerings": [],
 "enableDdosProtection": false,
 "enableVmProtection": false
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks/subnets",
 "apiVersion": "2019-09-01",
 "name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
],
 "properties": {
 "addressPrefix": "10.0.0.0/27",
 "delegations": [],
 "privateEndpointNetworkPolicies": "Disabled",
 "privateLinkServiceNetworkPolicies": "Enabled"
 }
 },
 {
 "apiVersion": "2019-04-01",
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "type": "Microsoft.Network/privateEndpoints",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
],
 "properties": {
 "privateLinkServiceConnections": [
 {
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "properties": {
 "privateLinkServiceId": "[resourceId('Microsoft.MachineLearningServices/workspaces',
parameters('workspaceName'))]",
 "groupIds": [
 "amlworkspace"
]
 }

 }
 }
],
 "manualPrivateLinkServiceConnections": [],
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
 }
 }
 },
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2017-05-10",
 "name": "[concat('PrivateDns-', variables('privateDnsGuid'))]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/privateEndpoints', concat(parameters('workspaceName'), '-
PrivateEndpoint'))]"
],
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "type": "Microsoft.Network/privateDnsZones",
 "apiVersion": "2018-09-01",
 "name": "privatelink.api.azureml.ms",
 "location": "global",
 "tags": {},
 "properties": {}
 },
 {
 "type": "Microsoft.Network/privateDnsZones/virtualNetworkLinks",
 "apiVersion": "2018-09-01",
 "name": "[concat('privatelink.api.azureml.ms', '/',
uniqueString(resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))))]",
 "location": "global",
 "dependsOn": [
 "privatelink.api.azureml.ms"
],
 "properties": {
 "virtualNetwork": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks',
parameters('vnetName'))]"
 },
 "registrationEnabled": false
 }
 },
 {
 "apiVersion": "2017-05-10",
 "name": "[concat('EndpointDnsRecords-', variables('privateDnsGuid'))]",
 "type": "Microsoft.Resources/deployments",
 "dependsOn": [
 "privatelink.api.azureml.ms"
],
 "properties": {
 "mode": "Incremental",
 "templatelink": {
 "contentVersion": "1.0.0.0",
 "uri":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpoint.json"
 },
 "parameters": {
 "privateDnsName": {
 "value": "privatelink.api.azureml.ms"
 },
 "privateEndpointNicResourceId": {
 "value": "

 "value": "
[reference(resourceId('Microsoft.Network/privateEndpoints',concat(parameters('workspaceName'), '-
PrivateEndpoint'))).networkInterfaces[0].id]"
 },
 "nicRecordsTemplateUri": {
 "value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointNic.json"
 },
 "ipConfigRecordsTemplateUri": {
 "value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointIpConfig.json"
 },
 "uniqueId": {
 "value": "[variables('privateDnsGuid')]"
 },
 "existingRecords": {
 "value": {}
 }
 }
 }
 }
]
 }
 },
 "resourceGroup": "[resourceGroup().name]"
 }
]
}

Workspace with customer-managed keys and manual approval for Private Link

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning workspace."
 }
 },
 "location": {
 "type": "string",
 "allowedValues": [
 "eastus",
 "southcentralus",
 "westus2"
],
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "sku":{
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
 }
 },
 "hbi_workspace":{
 "type": "string",

 "type": "string",
 "defaultValue": "false",
 "allowedValues": [
 "false",
 "true"
],
 "metadata": {
 "description": "Specifies that the Azure Machine Learning workspace holds highly confidential data."
 }
 },
 "encryption_status":{
 "type": "string",
 "defaultValue": "Disabled",
 "allowedValues": [
 "Enabled",
 "Disabled"
],
 "metadata": {
 "description": "Specifies if the Azure Machine Learning workspace should be encrypted with customer
managed key."
 }
 },
 "cmk_keyvault":{
 "type": "string",
 "metadata": {
 "description": "Specifies the customer managed keyVault id."
 }
 },
 "resource_cmk_uri":{
 "type": "string",
 "metadata": {
 "description": "Specifies if the customer managed keyvault key uri."
 }
 },
 "subnetName": {
 "type": "string"
 },
 "vnetName": {
 "type": "string"
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },

 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": []
 }
 },
 {
 "type": "Microsoft.Insights/components",
 "apiVersion": "2018-05-01-preview",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2020-01-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]",
 "encryption": {
 "status": "[parameters('encryption_status')]",
 "keyVaultProperties": {
 "keyVaultArmId": "[parameters('cmk_keyvault')]",
 "keyIdentifier": "[parameters('resource_cmk_uri')]"
 }
 },
 "hbi_workspace": "[parameters('hbi_workspace')]"
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2019-09-01",
 "name": "[parameters('vnetName')]",
 "location": "[parameters('location')]",
 "properties": {

 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "10.0.0.0/27"
]
 },
 "virtualNetworkPeerings": [],
 "enableDdosProtection": false,
 "enableVmProtection": false
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks/subnets",
 "apiVersion": "2019-09-01",
 "name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
],
 "properties": {
 "addressPrefix": "10.0.0.0/27",
 "delegations": [],
 "privateEndpointNetworkPolicies": "Disabled",
 "privateLinkServiceNetworkPolicies": "Enabled"
 }
 },
 {
 "apiVersion": "2019-04-01",
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "type": "Microsoft.Network/privateEndpoints",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
],
 "properties": {
 "privateLinkServiceConnections": [],
 "manualPrivateLinkServiceConnections": [
 {
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "properties": {
 "privateLinkServiceId": "[resourceId('Microsoft.MachineLearningServices/workspaces',
parameters('workspaceName'))]",
 "groupIds": [
 "amlworkspace"
]
 }
 }
],
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
 }
 }
 }
]
}

Workspace with Microsoft-managed keys and auto-approval for Private Link

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning workspace."

 "description": "Specifies the name of the Azure Machine Learning workspace."
 }
 },
 "location": {
 "type": "string",
 "allowedValues": [
 "eastus",
 "southcentralus",
 "westus2"
],
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "sku": {
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
 }
 },
 "subnetName": {
 "type": "string"
 },
 "vnetName": {
 "type": "string"
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]",
 "privateDnsGuid": "[guid(resourceGroup().id, deployment().name)]"

 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",

 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": []
 }
 },
 {
 "type": "Microsoft.Insights/components",
 "apiVersion": "2018-05-01-preview",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2019-09-01",
 "name": "[parameters('vnetName')]",
 "location": "[parameters('location')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "10.0.0.0/27"
]
 },
 "virtualNetworkPeerings": [],
 "enableDdosProtection": false,
 "enableVmProtection": false
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks/subnets",
 "apiVersion": "2019-09-01",
 "name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
 "dependsOn": [

 "dependsOn": [
 "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
],
 "properties": {
 "addressPrefix": "10.0.0.0/27",
 "delegations": [],
 "privateEndpointNetworkPolicies": "Disabled",
 "privateLinkServiceNetworkPolicies": "Enabled"
 }
 },
 {
 "apiVersion": "2019-04-01",
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "type": "Microsoft.Network/privateEndpoints",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
],
 "properties": {
 "privateLinkServiceConnections": [
 {
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "properties": {
 "privateLinkServiceId": "[resourceId('Microsoft.MachineLearningServices/workspaces',
parameters('workspaceName'))]",
 "groupIds": [
 "amlworkspace"
]
 }
 }
],
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
 }
 }
 },
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2017-05-10",
 "name": "[concat('PrivateDns-', variables('privateDnsGuid'))]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/privateEndpoints', concat(parameters('workspaceName'), '-
PrivateEndpoint'))]"
],
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "type": "Microsoft.Network/privateDnsZones",
 "apiVersion": "2018-09-01",
 "name": "privatelink.api.azureml.ms",
 "location": "global",
 "tags": {},
 "properties": {}
 },
 {
 "type": "Microsoft.Network/privateDnsZones/virtualNetworkLinks",
 "apiVersion": "2018-09-01",
 "name": "[concat('privatelink.api.azureml.ms', '/',
uniqueString(resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))))]",
 "location": "global",
 "dependsOn": [
 "privatelink.api.azureml.ms"

],
 "properties": {
 "virtualNetwork": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
 },
 "registrationEnabled": false
 }
 },
 {
 "apiVersion": "2017-05-10",
 "name": "[concat('EndpointDnsRecords-', variables('privateDnsGuid'))]",
 "type": "Microsoft.Resources/deployments",
 "dependsOn": [
 "privatelink.api.azureml.ms"
],
 "properties": {
 "mode": "Incremental",
 "templatelink": {
 "contentVersion": "1.0.0.0",
 "uri":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpoint.json"
 },
 "parameters": {
 "privateDnsName": {
 "value": "privatelink.api.azureml.ms"
 },
 "privateEndpointNicResourceId": {
 "value": "
[reference(resourceId('Microsoft.Network/privateEndpoints',concat(parameters('workspaceName'), '-
PrivateEndpoint'))).networkInterfaces[0].id]"
 },
 "nicRecordsTemplateUri": {
 "value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointNic.json"
 },
 "ipConfigRecordsTemplateUri": {
 "value":
"https://network.hosting.portal.azure.net/network/Content/4.13.392.925/DeploymentTemplates/PrivateDnsForPrivat
eEndpointIpConfig.json"
 },
 "uniqueId": {
 "value": "[variables('privateDnsGuid')]"
 },
 "existingRecords": {
 "value": {}
 }
 }
 }
 }
]
 }
 },
 "resourceGroup": "[resourceGroup().name]"
 }
]
}

Workspace with Microsoft-managed keys and manual approval for Private Link

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {

 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning workspace."
 }
 },
 "location": {
 "type": "string",
 "allowedValues": [
 "eastus",
 "southcentralus",
 "westus2"
],
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "sku": {
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
 }
 },
 "subnetName": {
 "type": "string"
 },
 "vnetName": {
 "type": "string"
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",

 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": []
 }
 },
 {
 "type": "Microsoft.Insights/components",
 "apiVersion": "2018-05-01-preview",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2019-09-01",
 "name": "[parameters('vnetName')]",
 "location": "[parameters('location')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "10.0.0.0/27"
]
 },
 "virtualNetworkPeerings": [],
 "enableDdosProtection": false,
 "enableVmProtection": false
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks/subnets",
 "apiVersion": "2019-09-01",
 "name": "[concat(parameters('vnetName'), '/', parameters('subnetName'))]",
 "dependsOn": [

 "[resourceId('Microsoft.Network/virtualNetworks', parameters('vnetName'))]"
],
 "properties": {
 "addressPrefix": "10.0.0.0/27",
 "delegations": [],
 "privateEndpointNetworkPolicies": "Disabled",
 "privateLinkServiceNetworkPolicies": "Enabled"
 }
 },
 {
 "apiVersion": "2019-04-01",
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "type": "Microsoft.Network/privateEndpoints",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.MachineLearningServices/workspaces', parameters('workspaceName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
],
 "properties": {
 "privateLinkServiceConnections": [],
 "manualPrivateLinkServiceConnections": [
 {
 "name": "[concat(parameters('workspaceName'), '-PrivateEndpoint')]",
 "properties": {
 "privateLinkServiceId": "[resourceId('Microsoft.MachineLearningServices/workspaces',
parameters('workspaceName'))]",
 "groupIds": [
 "amlworkspace"
]
 }
 }
],
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnetName'),
parameters('subnetName'))]"
 }
 }
 }
]
}

Next steps
For more information on securing your Azure Machine Learning workspace, see the Enterprise security article.

Use TLS to secure a web service through Azure
Machine Learning
3/25/2020 • 7 minutes to read • Edit Online

TIP

WARNING

IMPORTANT

Get a domain name

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article shows you how to secure a web service that's deployed through Azure Machine Learning.

You use HTTPS to restrict access to web services and secure the data that clients submit. HTTPS helps secure

communications between a client and a web service by encrypting communications between the two. Encryption

uses Transport Layer Security (TLS). TLS is sometimes still referred to as Secure Sockets Layer (SSL), which was

the predecessor of TLS.

The Azure Machine Learning SDK uses the term "SSL" for properties that are related to secure communications. This doesn't

mean that your web service doesn't use TLS. SSL is just a more commonly recognized term.

Specifically, web services deployed through Azure Machine Learning only support TLS version 1.2.

TLS and SSL both rely on digital certificates, which help with encryption and identity verification. For more

information on how digital certificates work, see the Wikipedia topic Public key infrastructure.

If you don't use HTTPS for your web service, data that's sent to and from the service might be visible to others on the

internet.

HTTPS also enables the client to verify the authenticity of the server that it's connecting to. This feature protects clients

against man-in-the-middle attacks.

This is the general process to secure a web service:

1. Get a domain name.

2. Get a digital certificate.

3. Deploy or update the web service with TLS enabled.

4. Update your DNS to point to the web service.

If you're deploying to Azure Kubernetes Service (AKS), you can purchase your own certificate or use a certificate that's

provided by Microsoft. If you use a certificate from Microsoft, you don't need to get a domain name or TLS/SSL certificate.

For more information, see the Enable TLS and deploy section of this article.

There are slight differences when you secure s across deployment targets.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-secure-web-service.md
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

Get a TLS/SSL certificate

TIP

WARNING

Enable TLS and deploy

Deploy on AKS and field-programmable gate array (FPGA)

NOTE

If you don't already own a domain name, purchase one from a domain name registrar. The process and price

differ among registrars. The registrar provides tools to manage the domain name. You use these tools to map a

fully qualified domain name (FQDN) (such as www.contoso.com) to the IP address that hosts your web service.

There are many ways to get an TLS/SSL certificate (digital certificate). The most common is to purchase one from

a certificate authority (CA). Regardless of where you get the certificate, you need the following files:

A cer tificate . The certificate must contain the full certificate chain, and it must be "PEM-encoded."

A key . The key must also be PEM-encoded.

When you request a certificate, you must provide the FQDN of the address that you plan to use for the web

service (for example, www.contoso.com). The address that's stamped into the certificate and the address that the

clients use are compared to verify the identity of the web service. If those addresses don't match, the client gets an

error message.

If the certificate authority can't provide the certificate and key as PEM-encoded files, you can use a utility such as OpenSSL

to change the format.

Use self-signed certificates only for development. Don't use them in production environments. Self-signed certificates can

cause problems in your client applications. For more information, see the documentation for the network libraries that your

client application uses.

To deploy (or redeploy) the service with TLS enabled, set the ssl_enabled parameter to "True" wherever it's

applicable. Set the ssl_certificate parameter to the value of the certificate file. Set the ssl_key to the value of the

key file.

The information in this section also applies when you deploy a secure web service for the designer. If you aren't familiar with

using the Python SDK, see What is the Azure Machine Learning SDK for Python?.

When you deploy to AKS, you can create a new AKS cluster or attach an existing one. For more information on

creating or attaching a cluster, see Deploy a model to an Azure Kubernetes Service cluster.

If you create a new cluster, you use AksCompute.provisioning_configuration() .

If you attach an existing cluster, you use AksCompute.attach_configuration() . Both return a configuration

object that has an enable_ssl method.

The enable_ssl method can use a certificate that's provided by Microsoft or a certificate that you purchase.

When you use a certificate from Microsoft, you must use the leaf_domain_label parameter. This parameter

generates the DNS name for the service. For example, a value of "contoso" creates a domain name of

"contoso<six-random-characters>.<azureregion>.cloudapp.azure.com", where <azureregion> is the

region that contains the service. Optionally, you can use the overwrite_existing_domain parameter to

https://www.openssl.org/
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#provisioning-configuration-agent-count-none--vm-size-none--ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--location-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--service-cidr-none--dns-service-ip-none--docker-bridge-cidr-none--cluster-purpose-none--load-balancer-type-none--load-balancer-subnet-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#attach-configuration-resource-group-none--cluster-name-none--resource-id-none--cluster-purpose-none-

Deploy on Azure Container Instances

from azureml.core.webservice import AciWebservice

aci_config = AciWebservice.deploy_configuration(
 ssl_enabled=True, ssl_cert_pem_file="cert.pem", ssl_key_pem_file="key.pem", ssl_cname="www.contoso.com")

IMPORTANT

from azureml.core.compute import AksCompute
Config used to create a new AKS cluster and enable TLS
provisioning_config = AksCompute.provisioning_configuration()
Leaf domain label generates a name using the formula
"<leaf-domain-label>######.<azure-region>.cloudapp.azure.net"
where "######" is a random series of characters
provisioning_config.enable_ssl(leaf_domain_label = "contoso")

Config used to attach an existing AKS cluster to your workspace and enable TLS
attach_config = AksCompute.attach_configuration(resource_group = resource_group,
 cluster_name = cluster_name)
Leaf domain label generates a name using the formula
"<leaf-domain-label>######.<azure-region>.cloudapp.azure.net"
where "######" is a random series of characters
attach_config.enable_ssl(leaf_domain_label = "contoso")

from azureml.core.compute import AksCompute
Config used to create a new AKS cluster and enable TLS
provisioning_config = AksCompute.provisioning_configuration()
provisioning_config.enable_ssl(ssl_cert_pem_file="cert.pem",
 ssl_key_pem_file="key.pem", ssl_cname="www.contoso.com")
Config used to attach an existing AKS cluster to your workspace and enable SSL
attach_config = AksCompute.attach_configuration(resource_group = resource_group,
 cluster_name = cluster_name)
attach_config.enable_ssl(ssl_cert_pem_file="cert.pem",
 ssl_key_pem_file="key.pem", ssl_cname="www.contoso.com")

overwrite the existing leaf_domain_label.

To deploy (or redeploy) the service with TLS enabled, set the ssl_enabled parameter to "True" wherever it's

applicable. Set the ssl_certificate parameter to the value of the certificate file. Set the ssl_key to the value of

the key file.

When you use a certificate from Microsoft, you don't need to purchase your own certificate or domain name.

The following example demonstrates how to create a configuration that enables an TLS/SSL certificate

from Microsoft:

When you use a certificate that you purchased, you use the ssl_cert_pem_file, ssl_key_pem_file, and

ssl_cname parameters. The following example demonstrates how to use .pem files to create a configuration

that uses a TLS/SSL certificate that you purchased:

For more information about enable_ssl, see AksProvisioningConfiguration.enable_ssl() and

AksAttachConfiguration.enable_ssl().

When you deploy to Azure Container Instances, you provide values for TLS-related parameters, as the following

code snippet shows:

For more information, see AciWebservice.deploy_configuration().

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksprovisioningconfiguration?view=azure-ml-py#enable-ssl-ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--leaf-domain-label-none--overwrite-existing-domain-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksattachconfiguration?view=azure-ml-py#enable-ssl-ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--leaf-domain-label-none--overwrite-existing-domain-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aciwebservice#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--primary-key-none--secondary-key-none--collect-model-data-none--cmk-vault-base-url-none--cmk-key-name-none--cmk-key-version-none-

Update your DNS

Update the TLS/SSL certificate

Update a Microsoft generated certificate

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

Get the existing cluster
aks_target = AksCompute(ws, clustername)

Update the existing certificate by referencing the leaf domain label
ssl_configuration = SslConfiguration(leaf_domain_label="myaks", overwrite_existing_domain=True)
update_config = AksUpdateConfiguration(ssl_configuration)
aks_target.update(update_config)

Next, you must update your DNS to point to the web service.

WARNING

For Container Instances:

Use the tools from your domain name registrar to update the DNS record for your domain name. The

record must point to the IP address of the service.

There can be a delay of minutes or hours before clients can resolve the domain name, depending on the

registrar and the "time to live" (TTL) that's configured for the domain name.

For AKS:

If you used leaf_domain_label to create the service by using a certificate from Microsoft, don't manually update the

DNS value for the cluster. The value should be set automatically.

Update the DNS of the Public IP Address of the AKS cluster on the Configuration tab under Settings in

the left pane. (See the following image.) The Public IP Address is a resource type that's created under the

resource group that contains the AKS agent nodes and other networking resources.

TLS/SSL certificates expire and must be renewed. Typically this happens every year. Use the information in the

following sections to update and renew your certificate for models deployed to Azure Kubernetes Service:

If the certificate was originally generated by Microsoft (when using the leaf_domain_label to create the service),

use one of the following examples to update the certificate:

Use the SDK

file:///T:/i2pk/machine-learning/media/how-to-secure-web-service/aks-public-ip-address-expanded.png

az ml computetarget update aks -g "myresourcegroup" -w "myresourceworkspace" -n "myaks" --ssl-leaf-domain-
label "myaks" --ssl-overwrite-domain True

Update custom certificate

Disable TLS

Use the CLI

For more information, see the following reference docs:

SslConfiguration

AksUpdateConfiguration

If the certificate was originally generated by a certificate authority, use the following steps:

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

Read the certificate file
def get_content(file_name):
 with open(file_name, 'r') as f:
 return f.read()

Get the existing cluster
aks_target = AksCompute(ws, clustername)

Update cluster with custom certificate
ssl_configuration = SslConfiguration(cname="myaks", cert=get_content('cert.pem'),
key=get_content('key.pem'))
update_config = AksUpdateConfiguration(ssl_configuration)
aks_target.update(update_config)

az ml computetarget update aks -g "myresourcegroup" -w "myresourceworkspace" -n "myaks" --ssl-cname
"myaks"--ssl-cert-file "cert.pem" --ssl-key-file "key.pem"

1. Use the documentation provided by the certificate authority to renew the certificate. This process creates

new certificate files.

2. Use either the SDK or CLI to update the service with the new certificate:

Use the SDK

Use the CLI

For more information, see the following reference docs:

SslConfiguration

AksUpdateConfiguration

To disable TLS for a model deployed to Azure Kubernetes Service, create an SslConfiguration with

status="Disabled" , then perform an update:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.sslconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksupdateconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.sslconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.aksupdateconfiguration?view=azure-ml-py

from azureml.core.compute import AksCompute
from azureml.core.compute.aks import AksUpdateConfiguration
from azureml.core.compute.aks import SslConfiguration

Get the existing cluster
aks_target = AksCompute(ws, clustername)

Disable TLS
ssl_configuration = SslConfiguration(status="Disabled")
update_config = AksUpdateConfiguration(ssl_configuration)
aks_target.update(update_config)

Next steps
Learn how to:

Consume a machine learning model deployed as a web service

Securely run experiments and inference inside an Azure virtual network

Use Azure AD identity with your machine learning
web service in Azure Kubernetes Service
2/10/2020 • 4 minutes to read • Edit Online

Prerequisites

Create and install an Azure Identity in your AKS cluster

In this how-to, you learn how to assign an Azure Active Directory (AAD) identity to your deployed machine learning

model in Azure Kubernetes Service. The AAD Pod Identity project allows applications to access cloud resources

securely with AAD by using a Managed Identity and Kubernetes primitives. This allows your web service to securely

access your Azure resources without having to embed credentials or manage tokens directly inside your score.py

script. This article explains the steps to create and install an Azure Identity in your Azure Kubernetes Service cluster

and assign the identity to your deployed web service.

The Azure CLI extension for the Machine Learning service, the Azure Machine Learning SDK for Python, or

the Azure Machine Learning Visual Studio Code extension.

Access to your AKS cluster using the kubectl command. For more information, see Connect to the cluster

An Azure Machine Learning web service deployed to your AKS cluster.

az aks show --name <AKS cluster name> --resource-group <resource group name> --subscription
<subscription id> --query enableRbac

1. To determine if your AKS cluster is RBAC enabled, use the following command:

This command returns a value of true if RBAC is enabled. This value determines the command to use in the

next step.

2. To install AAD Pod Identity in your AKS cluster, use one of the following commands:

kubectl apply -f https://raw.githubusercontent.com/Azure/aad-pod-
identity/master/deploy/infra/deployment-rbac.yaml

kubectl apply -f https://raw.githubusercontent.com/Azure/aad-pod-
identity/master/deploy/infra/deployment.yaml

If your AKS cluster has RBAC enabled use the following command:

If your AKS cluster does not have RBAC enabled, use the following command:

The output of the command is similar to the following text:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-azure-ad-identity.md
https://github.com/Azure/aad-pod-identity
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://github.com/Azure/aad-pod-identity#getting-started

Assign Azure Identity to machine learning web service

kubectl get deployment --selector=isazuremlapp=true --all-namespaces --show-labels

apiVersion: "aadpodidentity.k8s.io/v1"
kind: AzureIdentityBinding
metadata:
 name: demo1-azure-identity-binding
spec:
 AzureIdentity: <a-idname>
 Selector: <label value to match>

 kubectl edit deployment/<name of deployment> -n azureml-<name of workspace>

spec:
 template:
 metadata:
 labels:
 - aadpodidbinding: "<value of Selector in AzureIdentityBinding>"
 ...

customresourcedefinition.apiextensions.k8s.io/azureassignedidentities.aadpodidentity.k8s.io
created
customresourcedefinition.apiextensions.k8s.io/azureidentitybindings.aadpodidentity.k8s.io created
customresourcedefinition.apiextensions.k8s.io/azureidentities.aadpodidentity.k8s.io created
customresourcedefinition.apiextensions.k8s.io/azurepodidentityexceptions.aadpodidentity.k8s.io
created
daemonset.apps/nmi created
deployment.apps/mic created

3. Create an Azure Identity following the steps shown in AAD Pod Identity project page.

4. Install the Azure Identity following the steps shown in AAD Pod Identity project page.

5. Install the Azure Identity Binding following the steps shown in AAD Pod Identity project page.

6. If the Azure Identity created in the previous step is not in the same resource group as your AKS cluster,

follow Set Permissions for MIC following the steps shown in AAD Pod Identity project page.

The following steps use the Azure Identity created in the previous section, and assign it to your AKS web service

through a selector label .

First, identify the name and namespace of your deployment in your AKS cluster that you want to assign the Azure

Identity. You can get this information by running the following command. The namespaces should be your Azure

Machine Learning workspace name and your deployment name should be your endpoint name as shown in the

portal.

Add the Azure Identity selector label to your deployment by editing the deployment spec. The selector value should

be the one that you defined in step 5 of Install the Azure Identity Binding.

Edit the deployment to add the Azure Identity selector label. Go to the following section under

/spec/template/metadata/labels . You should see values such as isazuremlapp: “true” . Add the aad-pod-identity

label like shown below.

To verify that the label was correctly added, run the following command.

https://github.com/Azure/aad-pod-identity#2-create-an-azure-identity
https://github.com/Azure/aad-pod-identity#3-install-the-azure-identity
https://github.com/Azure/aad-pod-identity#5-install-the-azure-identity-binding
https://github.com/Azure/aad-pod-identity#6-set-permissions-for-mic
https://github.com/Azure/aad-pod-identity#5-install-the-azure-identity-binding

 kubectl get deployment <name of deployment> -n azureml-<name of workspace> --show-labels

 kubectl get pods -n azureml-<name of workspace>

Assign the appropriate roles to your Azure Identity

Use Azure Identity with your machine learning web service

Access Key Vault from your web service

from azure.identity import DefaultAzureCredential
from azure.keyvault.secrets import SecretClient

my_vault_name = "yourkeyvaultname"
my_vault_url = "https://{}.vault.azure.net/".format(my_vault_name)
my_secret_name = "sample-secret"

This will use your Azure Managed Identity
credential = DefaultAzureCredential()
secret_client = SecretClient(
 vault_url=my_vault_url,
 credential=credential)
secret = secret_client.get_secret(my_secret_name)

Access Blob from your web service

To see all pod statuses, run the following command.

Once the pods are up and running, the web services for this deployment will now be able to access Azure resources

through your Azure Identity without having to embed the credentials in your code.

Assign your Azure Managed Identity with appropriate roles to access other Azure resources. Ensure that the roles

you are assigning have the correct Data Actions . For example, the Storage Blob Data Reader Role will have read

permissions to your Storage Blob while the generic Reader Role might not.

Deploy a model to your AKS cluster. The score.py script can contain operations pointing to the Azure resources

that your Azure Identity has access to. Ensure that you have installed your required client library dependencies for

the resource that you are trying to access to. Below are a couple examples of how you can use your Azure Identity

to access different Azure resources from your service.

If you have given your Azure Identity read access to a secret inside a Key Vault, your score.py can access it using

the following code.

If you have given your Azure Identity read access to data inside a Storage Blob, your score.py can access it using

the following code.

https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/how-to-manage-ua-identity-portal
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#storage-blob-data-reader
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#reader

from azure.identity import DefaultAzureCredential
from azure.storage.blob import BlobServiceClient

my_storage_account_name = "yourstorageaccountname"
my_storage_account_url = "https://{}.blob.core.windows.net/".format(my_storage_account_name)

This will use your Azure Managed Identity
credential = DefaultAzureCredential()
blob_service_client = BlobServiceClient(
 account_url=my_storage_account_url,
 credential=credential
)
blob_client = blob_service_client.get_blob_client(container="some-container", blob="some_text.txt")
blob_data = blob_client.download_blob()
blob_data.readall()

Next steps
For more information on how to use the Python Azure Identity client library, see the repository on GitHub.

For a detailed guide on deploying models to Azure Kubernetes Service clusters, see the how-to.

https://github.com/Azure/azure-sdk-for-python/tree/master/sdk/identity/azure-identity#azure-identity-client-library-for-python

Regenerate storage account access keys
3/26/2020 • 4 minutes to read • Edit Online

Prerequisites

NOTE

What needs to be updated

IMPORTANT

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to change the access keys for Azure Storage accounts used by Azure Machine Learning. Azure Machine

Learning can use storage accounts to store data or trained models.

For security purposes, you may need to change the access keys for an Azure Storage account. When you

regenerate the access key, Azure Machine Learning must be updated to use the new key. Azure Machine Learning

may be using the storage account for both model storage and as a datastore.

An Azure Machine Learning workspace. For more information, see the Create a workspace article.

The Azure Machine Learning SDK.

The Azure Machine Learning CLI extension.

The code snippets in this document were tested with version 1.0.83 of the Python SDK.

Storage accounts can be used by the Azure Machine Learning workspace (storing logs, models, snapshots, etc.) and

as a datastore. The process to update the workspace is a single Azure CLI command, and can be ran after updating

the storage key. The process of updating datastores is more involved, and requires discovering what datastores are

currently using the storage account and then re-registering them.

Update the workspace using the Azure CLI, and the datastores using Python, at the same time. Updating only one or the

other is not sufficient, and may cause errors until both are updated.

To discover the storage accounts that are used by your datastores, use the following code:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-change-storage-access-key.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

import azureml.core
from azureml.core import Workspace, Datastore

ws = Workspace.from_config()

default_ds = ws.get_default_datastore()
print("Default datstore: " + default_ds.name + ", storage account name: " +
 default_ds.account_name + ", container name: " + default_ds.container_name)

datastores = ws.datastores
for name, ds in datastores.items():
 if ds.datastore_type == "AzureBlob":
 print("Blob store - datastore name: " + name + ", storage account name: " +
 ds.account_name + ", container name: " + ds.container_name)
 if ds.datastore_type == "AzureFile":
 print("File share - datastore name: " + name + ", storage account name: " +
 ds.account_name + ", container name: " + ds.container_name)

Update the access key

IMPORTANT

This code looks for any registered datastores that use Azure Storage and lists the following information:

Datastore name: The name of the datastore that the storage account is registered under.

Storage account name: The name of the Azure Storage account.

Container : The container in the storage account that is used by this registration.

It also indicates whether the datastore is for an Azure Blob or an Azure File share, as there are different methods to

re-register each type of datastore.

If an entry exists for the storage account that you plan on regenerating access keys for, save the datastore name,

storage account name, and container name.

To update Azure Machine Learning to use the new key, use the following steps:

Perform all steps, updating both the workspace using the CLI, and datastores using Python. Updating only one or the other

may cause errors until both are updated.

1. Regenerate the key. For information on regenerating an access key, see Manage storage account access

keys. Save the new key.

2. To update the workspace to use the new key, use the following steps:

az login

a. To sign in to the Azure subscription that contains your workspace by using the following Azure CLI

command:

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage

Next steps

Re-register the blob container
ds_blob = Datastore.register_azure_blob_container(workspace=ws,
 datastore_name='your datastore name',
 container_name='your container name',
 account_name='your storage account name',
 account_key='new storage account key',
 overwrite=True)
Re-register file shares
ds_file = Datastore.register_azure_file_share(workspace=ws,
 datastore_name='your datastore name',
 file_share_name='your container name',
 account_name='your storage account name',
 account_key='new storage account key',
 overwrite=True)

TIP

az ml workspace sync-keys -w myworkspace -g myresourcegroup

TIP

az extension add -n azure-cli-ml

After logging in, you see a list of subscriptions associated with your Azure account. The subscription

information with isDefault: true is the currently activated subscription for Azure CLI commands. This

subscription must be the same one that contains your Azure Machine Learning workspace. You can find the

subscription ID from the Azure portal by visiting the overview page for your workspace. You can also use the

SDK to get the subscription ID from the workspace object. For example,

Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and

specify the subscription name or ID to switch to. For more information about subscription selection, see Use

multiple Azure Subscriptions.

b. To update the workspace to use the new key, use the following command. Replace myworkspace with

your Azure Machine Learning workspace name, and replace myresourcegroup with the name of the

Azure resource group that contains the workspace.

If you get an error message stating that the ml extension isn't installed, use the following command to install

it:

This command automatically syncs the new keys for the Azure storage account used by the

workspace.

3. To re-register datastore(s) that use the storage account, use the values from the What needs to be updated

section and the key from step 1 with the following code:

Since overwrite=True is specified, this code overwrites the existing registration and updates it to use the

new key.

For more information on registering datastores, see the Datastore class reference.

https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py

Set up authentication for Azure Machine Learning
resources and workflows
2/25/2020 • 9 minutes to read • Edit Online

Prerequisites

Interactive authentication

from azureml.core import Workspace
ws = Workspace.from_config()

ws = Workspace(subscription_id="your-sub-id",
 resource_group="your-resource-group-id",
 workspace_name="your-workspace-name"
)

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to set up and configure authentication for various resources and workflows in Azure

Machine Learning. There are multiple ways to authenticate to the service, ranging from simple UI-based auth for

development or testing purposes to full Azure Active Directory service principal authentication. This article also

explains the differences in how web-service authentication works, as well as how to authenticate to the Azure

Machine Learning REST API.

This how-to shows you how to do the following tasks:

Use interactive UI authentication for testing/development

Set up service principal authentication

Authenticating to your workspace

Get OAuth2.0 bearer-type tokens for Azure Machine Learning REST API

Understand web-service authentication

See the concept article for a general overview of security and authentication within Azure Machine Learning.

Create an Azure Machine Learning workspace.

Configure your development environment to install the Azure Machine Learning SDK, or use a Azure Machine

Learning Notebook VM with the SDK already installed.

Most examples in the documentation for this service use interactive authentication in Jupyter notebooks as a

simple method for testing and demonstration. This is a lightweight way to test what you're building. There are two

function calls that will automatically prompt you with a UI-based authentication flow.

Calling the from_config() function will issue the prompt.

The from_config() function looks for a JSON file containing your workspace connection information. You can also

specify the connection details explicitly by using the Workspace constructor, which will also prompt for interactive

authentication. Both calls are equivalent.

If you have access to multiple tenants, you may need to import the class and explicitly define what tenant you are

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-setup-authentication.md

from azureml.core.authentication import InteractiveLoginAuthentication
interactive_auth = InteractiveLoginAuthentication(tenant_id="your-tenant-id")

Set up service principal authentication

az extension add -n azure-cli-ml

NOTE

az ad sp create-for-rbac --sdk-auth --name ml-auth

{
 "clientId": "your-client-id",
 "clientSecret": "your-client-secret",
 "subscriptionId": "your-sub-id",
 "tenantId": "your-tenant-id",
 "activeDirectoryEndpointUrl": "https://login.microsoftonline.com",
 "resourceManagerEndpointUrl": "https://management.azure.com",
 "activeDirectoryGraphResourceId": "https://graph.windows.net",
 "sqlManagementEndpointUrl": "https://management.core.windows.net:5555",
 "galleryEndpointUrl": "https://gallery.azure.com/",
 "managementEndpointUrl": "https://management.core.windows.net"
}

targeting. Calling the constructor for InteractiveLoginAuthentication will also prompt you to login similar to the

calls above.

While useful for testing and learning, interactive authentication will not help you with building automated or

headless workflows. Setting up service principal authentication is the best approach for automated processes that

use the SDK.

This process is necessary for enabling authentication that is decoupled from a specific user login, which allows you

to authenticate to the Azure Machine Learning Python SDK in automated workflows. Service principal

authentication will also allow you to authenticate to the REST API.

To set up service principal authentication, you first create an app registration in Azure Active Directory, and then

grant your app role-based access to your ML workspace. The easiest way to complete this setup is through the

Azure Cloud Shell in the Azure portal. After you login to the portal, click the >_ icon in the top right of the page

near your name to open the shell.

If you haven't used the cloud shell before in your Azure account, you will need to create a storage account resource

for storing any files that are written. In general this storage account will incur a negligible monthly cost.

Additionally, install the machine learning extension if you haven't used it previously with the following command.

You must be an admin on the subscription to perform the following steps.

Next, run the following command to create the service principal. Give it a name, in this case ml-auth.

The output will be a JSON similar to the following. Take note of the clientId , clientSecret , and tenantId fields,

as you will need them for other steps in this article.

Next, run the following command to get the details on the service principal you just created, using the clientId

value from above as the input to the --id parameter.

https://azure.microsoft.com/features/cloud-shell/

az ad sp show --id your-client-id

{
 "accountEnabled": "True",
 "addIns": [],
 "appDisplayName": "ml-auth",
 ...
 ...
 ...
 "objectId": "your-sp-object-id",
 "objectType": "ServicePrincipal"
}

az ml workspace share -w your-workspace-name -g your-resource-group-name --user your-sp-object-id --role owner

Authenticate to your workspace

from azureml.core.authentication import ServicePrincipalAuthentication

sp = ServicePrincipalAuthentication(tenant_id="your-tenant-id", # tenantID
 service_principal_id="your-client-id", # clientId
 service_principal_password="your-client-secret") # clientSecret

import os

sp = ServicePrincipalAuthentication(tenant_id=os.environ['AML_TENANT_ID'],
 service_principal_id=os.environ['AML_PRINCIPAL_ID'],
 service_principal_password=os.environ['AML_PRINCIPAL_PASS'])

The following is a simplified example of the JSON output from the command. Take note of the objectId field, as

you will need its value for the next step.

Next, use the following command to assign your service principal access to your machine learning workspace. You

will need your workspace name, and its resource group name for the -w and -g parameters, respectively. For the

--user parameter, use the objectId value from the previous step. The --role parameter allows you to set the

access role for the service principal, and in general you will use either owner or contr ibutor . Both have write

access to existing resources like compute clusters and datastores, but only owner can provision these resources.

This call does not produce any output, but you now have service principal authentication set up for your

workspace.

Now that you have service principal auth enabled, you can authenticate to your workspace in the SDK without

physically logging in as a user. Use the ServicePrincipalAuthentication class constructor, and use the values you

got from the previous steps as the parameters. The tenant_id parameter maps to tenantId from above,

service_principal_id maps to clientId , and service_principal_password maps to clientSecret .

The sp variable now holds an authentication object that you use directly in the SDK. In general, it is a good idea to

store the ids/secrets used above in environment variables as shown in the following code.

For automated workflows that run in Python and use the SDK primarily, you can use this object as-is in most cases

for your authentication. The following code authenticates to your workspace using the auth object you just created.

from azureml.core import Workspace

ws = Workspace.get(name="ml-example",
 auth=sp,
 subscription_id="your-sub-id")
ws.get_details()

Azure Machine Learning REST API auth

NOTE

Node.js

const adal = require('adal-node').AuthenticationContext;

const authorityHostUrl = 'https://login.microsoftonline.com/';
const tenantId = 'your-tenant-id';
const authorityUrl = authorityHostUrl + tenantId;
const clientId = 'your-client-id';
const clientSecret = 'your-client-secret';
const resource = 'https://management.azure.com/';

const context = new adal(authorityUrl);

context.acquireTokenWithClientCredentials(
 resource,
 clientId,
 clientSecret,
 (err, tokenResponse) => {
 if (err) {
 console.log(`Token generation failed due to ${err}`);
 } else {
 console.dir(tokenResponse, { depth: null, colors: true });
 }
 }
);

The service principal created in the steps above can also be used to authenticate to the Azure Machine Learning

REST API. You use the Azure Active Directory client credentials grant flow, which allow service-to-service calls for

headless authentication in automated workflows. The examples are implemented with the ADAL library in both

Python and Node.js, but you can also use any open-source library that supports OpenID Connect 1.0.

MSAL.js is a newer library than ADAL, but you cannot do service-to-service authentication using client credentials with

MSAL.js, since it is primarily a client-side library intended for interactive/UI authentication tied to a specific user. We

recommend using ADAL as shown below to build automated workflows with the REST API.

Use the following steps to generate an auth token using Node.js. In your environment, run npm install adal-node .

Then, use your tenantId , clientId , and clientSecret from the service principal you created in the steps above

as values for the matching variables in the following script.

The variable tokenResponse is an object that includes the token and associated metadata such as expiration time.

Tokens are valid for 1 hour, and can be refreshed by running the same call again to retrieve a new token. The

following is a sample response.

https://docs.microsoft.com/rest/api/azureml/
https://docs.microsoft.com/azure/active-directory/develop/v1-oauth2-client-creds-grant-flow
https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-libraries

{
 tokenType: 'Bearer',
 expiresIn: 3599,
 expiresOn: 2019-12-17T19:15:56.326Z,
 resource: 'https://management.azure.com/',
 accessToken: "random-oauth-token",
 isMRRT: true,
 _clientId: 'your-client-id',
 _authority: 'https://login.microsoftonline.com/your-tenant-id'
}

Python

from adal import AuthenticationContext

client_id = "your-client-id"
client_secret = "your-client-secret"
resource_url = "https://login.microsoftonline.com"
tenant_id = "your-tenant-id"
authority = "{}/{}".format(resource_url, tenant_id)

auth_context = AuthenticationContext(authority)
token_response = auth_context.acquire_token_with_client_credentials("https://management.azure.com/",
client_id, client_secret)
print(token_response)

{
 'tokenType': 'Bearer',
 'expiresIn': 3599,
 'expiresOn': '2019-12-17 19:47:15.150205',
 'resource': 'https://management.azure.com/',
 'accessToken': 'random-oauth-token',
 'isMRRT': True,
 '_clientId': 'your-client-id',
 '_authority': 'https://login.microsoftonline.com/your-tenant-id'
}

Web-service authentication

Use the accessToken property to fetch the auth token. See the REST API documentation for examples on how to

use the token to make API calls.

Use the following steps to generate an auth token using Python. In your environment, run pip install adal . Then,

use your tenantId , clientId , and clientSecret from the service principal you created in the steps above as

values for the appropriate variables in the following script.

The variable token_response is a dictionary that includes the token and associated metadata such as expiration

time. Tokens are valid for 1 hour, and can be refreshed by running the same call again to retrieve a new token. The

following is a sample response.

Use token_response["accessToken"] to fetch the auth token. See the REST API documentation for examples on how

to use the token to make API calls.

Web-services in Azure Machine Learning use a different authentication pattern than what is described above. The

easiest way to authenticate to deployed web-services is to use key-based authentication, which generates static

bearer-type authentication keys that do not need to be refreshed. If you only need to authenticate to a deployed

web-service, you do not need to set up service principle authentication as shown above.

Web-services deployed on Azure Kubernetes Service have key-based auth enabled by default. Azure Container

https://github.com/microsoft/MLOps/tree/master/examples/AzureML-REST-API
https://github.com/microsoft/MLOps/tree/master/examples/AzureML-REST-API

from azureml.core.webservice import AciWebservice

aci_config = AciWebservice.deploy_configuration(cpu_cores = 1,
 memory_gb = 1,
 auth_enabled=True)

from azureml.core.model import Model, InferenceConfig

inference_config = InferenceConfig(entry_script="score.py",
 environment=myenv)
aci_service = Model.deploy(workspace=ws,
 name="aci_service_sample",
 models=[model],
 inference_config=inference_config,
 deployment_config=aci_config)
aci_service.wait_for_deployment(True)

aci_service.regen_key("Primary")
or
aci_service.regen_key("Secondary")

Token-based web-service authentication

token, refresh_by = service.get_token()
print(token)

Instances deployed services have key-based auth disabled by default, but you can enable it by setting

auth_enabled=True when creating the ACI web-service. The following is an example of creating an ACI deployment

configuration with key-based auth enabled.

Then you can use the custom ACI configuration in deployment using the Model class.

To fetch the auth keys, use aci_service.get_keys() . To regenerate a key, use the regen_key() function and pass

either Pr imar y or Secondar y .

Web-services also support token-based authentication, but only for Azure Kubernetes Service deployments. See

the how-to on consuming web-services for additional information on authenticating.

When you enable token authentication for a web service, users must present an Azure Machine Learning JSON

Web Token to the web service to access it. The token expires after a specified time-frame and needs to be refreshed

to continue making calls.

Token authentication is disabled by default when you deploy to Azure Kubernetes Service.

Token authentication isn't suppor ted when you deploy to Azure Container Instances.

To control token authentication, use the token_auth_enabled parameter when you create or update a deployment.

If token authentication is enabled, you can use the get_token method to retrieve a JSON Web Token (JWT) and

that token's expiration time:

IMPORTANT

Next steps

You'll need to request a new token after the token's refresh_by time. If you need to refresh tokens outside of the Python

SDK, one option is to use the REST API with service-principal authentication to periodically make the service.get_token()

call, as discussed previously.

We strongly recommend that you create your Azure Machine Learning workspace in the same region as your Azure

Kubernetes Service cluster.

To authenticate with a token, the web service will make a call to the region in which your Azure Machine Learning workspace

is created. If your workspace's region is unavailable, you won't be able to fetch a token for your web service, even if your

cluster is in a different region from your workspace. The result is that Azure AD Authentication is unavailable until your

workspace's region is available again.

Also, the greater the distance between your cluster's region and your workspace's region, the longer it will take to fetch a

token.

Train and deploy an image classification model.

Consume an Azure Machine Learning model deployed as a web service.

Monitoring Azure Machine Learning
3/5/2020 • 5 minutes to read • Edit Online

TIP

Azure Monitor

Monitoring data from Azure Machine Learning

Analyzing metric data

This article describes the monitoring data generated by Azure Machine Learning. It also describes how you can use

the Azure Monitor to analyze your data and define alerts.

The information in this document is primarily for administrators, as it describes monitoring for the Azure Machine Learning.

If you are a data scientist or developer, and want to monitor information specific to your model training runs, see the

following documents:

Start, monitor, and cancel training runs

Log metrics for training runs

Track experiments with MLflow

Visualize runs with TensorBoard

Azure Machine Learning logs monitoring data using Azure Monitor, which is a full stack monitoring service in

Azure. Azure Monitor provides a complete set of features to monitor your Azure resources. It can also monitor

resources in other clouds and on-premises.

Start with the article Azure Monitor overview, which provides an overview of the monitoring capabilities. The

following sections build on this information by providing specifics of using Azure Monitor with Azure Machine

Learning.

To understand costs associated with Azure Monitor, see Usage and estimated costs. To understand the time it takes

for your data to appear in Azure Monitor, see Log data ingestion time.

Azure Machine Learning collects the same kinds of monitoring data as other Azure resources, which are described

in Monitoring data from Azure resources. See Azure Machine Learning monitoring data reference for a detailed

reference of the logs and metrics created by Azure Machine Learning.

You can analyze metrics for Azure Machine Learning by opening Metr ics from the Azure Monitor menu. See

Getting started with Azure Metrics Explorer for details on using this tool.

All metrics for Azure Machine Learning are in the namespace Machine Learning Ser vice Workspace .

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/monitor-azure-machine-learning.md
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/azure-monitor/platform/usage-estimated-costs
https://docs.microsoft.com/azure/azure-monitor/platform/data-ingestion-time
https://docs.microsoft.com/azure/azure-monitor/insights/monitor-azure-resource#monitoring-data
https://docs.microsoft.com/azure/azure-monitor/platform/metrics-getting-started

Filtering and splitting

Alerts

A L ERT T Y P E C O N DIT IO N DESC RIP T IO N

Model Deploy Failed Aggregation type: Total, Operator:
Greater than, Threshold value: 0

When one or more model deployments
have failed

Quota Utilization Percentage Aggregation type: Average, Operator:
Greater than, Threshold value: 90

When the quota utilization percentage
is greater than 90%

Unusable Nodes Aggregation type: Total, Operator:
Greater than, Threshold value: 0

When there are one or more unusable
nodes

Configuration

IMPORTANT

For metrics that support dimensions, you can apply filters using a dimension value. For example, filtering Active

Cores for a Cluster Name of cpu-cluster .

You can also split a metric by dimension to visualize how different segments of the metric compare with each

other. For example, splitting out the Pipeline Step Type to see a count of the types of steps used in the pipeline.

For more information of filtering and splitting, see Advanced features of Azure Monitor.

You can access alerts for Azure Machine Learning by opening Aler ts from the Azure Monitor menu. See Create,

view, and manage metric alerts using Azure Monitor for details on creating alerts.

The following table lists common and recommended metric alert rules for Azure Machine Learning:

Metrics for Azure Machine Learning do not need to be configured, they are collected automatically and are

available in the Metrics Explorer for monitoring and alerting.

https://docs.microsoft.com/azure/azure-monitor/platform/metrics-charts
https://docs.microsoft.com/azure/azure-monitor/platform/alerts-metric

C AT EGO RY DESC RIP T IO N

AmlComputeClusterEvent Events from Azure Machine Learning compute clusters.

AmlComputeClusterNodeEvent Events from nodes within an Azure Machine Learning
compute cluster.

AmlComputeJobEvent Events from jobs running on Azure Machine Learning
compute.

NOTE

Analyzing log data

TA B L E DESC RIP T IO N

AmlComputeClusterEvent Events from Azure Machine Learning compute clusters.

AmlComputeClusterNodeEvent Events from nodes within an Azure Machine Learning
compute cluster.

AmlComputeJobEvent Events from jobs running on Azure Machine Learning
compute.

IMPORTANT

You can add a diagnostic setting to configure the following functionality:

Archive log and metrics information to an Azure storage account.

Stream log and metrics information to an Azure Event Hub.

Send log and metrics information to Azure Monitor Log Analytics.

Enabling these settings requires additional Azure services (storage account, event hub, or Log Analytics), which

may increase your cost. To calculate an estimated cost, visit the Azure pricing calculator.

For more information on creating a diagnostic setting, see Create diagnostic setting to collect platform logs and

metrics in Azure.

You can configure the following logs for Azure Machine Learning:

When you enable metrics in a diagnostic setting, dimension information is not currently included as part of the information

sent to a storage account, event hub, or log analytics.

Using Azure Monitor Log Analytics requires you to create a diagnostic configuration and enable Send

information to Log Analytics . For more information, see the Configuration section.

Data in Azure Monitor Logs is stored in tables, with each table having its own set of unique properties. Azure

Machine Learning stores data in the following tables:

When you select Logs from the Azure Machine Learning menu, Log Analytics is opened with the query scope set to the

current workspace. This means that log queries will only include data from that resource. If you want to run a query that

includes data from other databases or data from other Azure services, select Logs from the Azure Monitor menu. See Log

query scope and time range in Azure Monitor Log Analytics for details.

https://azure.microsoft.com/pricing/calculator
https://docs.microsoft.com/azure/azure-monitor/platform/diagnostic-settings
https://docs.microsoft.com/azure/azure-monitor/log-query/scope/

Sample queries

Next steps

For a detailed reference of the logs and metrics, see Azure Machine Learning monitoring data reference.

Following are queries that you can use to help you monitor your Azure Machine Learning resources:

AmlComputeJobEvent
| where TimeGenerated > ago(5d) and EventType == "JobFailed"
| project TimeGenerated , ClusterId , EventType , ExecutionState , ToolType

AmlComputeJobEvent
| where JobName == "automl_a9940991-dedb-4262-9763-2fd08b79d8fb_setup"
| project TimeGenerated , ClusterId , EventType , ExecutionState , ToolType

AmlComputeClusterEvent
| where TimeGenerated > ago(4d) and VmSize == "STANDARD_D1_V2"
| project ClusterName , InitialNodeCount , MaximumNodeCount , QuotaAllocated , QuotaUtilized

AmlComputeClusterNodeEvent
| where TimeGenerated > ago(8d) and NodeAllocationTime > ago(8d)
| distinct NodeId

Get failed jobs in the last five days:

Get records for a specific job name:

Get cluster events in the last five days for clusters where the VM size is Standard_D1_V2:

Get nodes allocated in the last eight days:

For a reference of the logs and metrics, see Azure Machine Learning monitoring data reference.

For information on working with quotas related to Azure Machine Learning, see Manage and request quotas

for Azure resources.

For details on monitoring Azure resources, see Monitoring Azure resources with Azure Monitor.

https://docs.microsoft.com/azure/azure-monitor/insights/monitor-azure-resource

Consume Azure Machine Learning events (Preview)
3/12/2020 • 4 minutes to read • Edit Online

The event model

Azure Machine Learning event types

EVEN T T Y P E DESC RIP T IO N

Microsoft.MachineLearningServices.RunCompleted Raised when a machine learning experiment run is completed

Azure Machine Learning manages the entire lifecycle of machine learning process, including model training, model

deployment, and monitoring. Azure Machine Learning events allow applications to react to events during the machine

learning lifecycle, such as the completion of training runs, the registration and deployment of models, and the detection of

data drift, by using modern serverless architectures.

These events are published through Azure Event Grid. Using Azure portal, Powershell or Azure CLI, customers can easily

subscribe events by specifying one or more event types, and filtering conditions. Customers also have choice to build a

wide range of event handlers such as Azure Functions, Azure Logic Apps, or generic webhooks. Azure Machine Learning,

along with Azure Event Grid, provides a high available, reliable, and fault-tolerant event delivery platform for you to build

event driven applications.

For information on using Azure Machine Learning with Event Grid, see Create Event Driven Machine Learning Workflows

(Preview).

Azure Event Grid reads events from sources, such as Azure Machine Learning and other Azure services. These events are

then sent to event handlers such as Azure Event Hubs, Azure Functions, Logic Apps, and others. The following diagram

shows how Event Grid connects sources and handlers, but is not a comprehensive list of supported integrations.

For more information on event sources and event handlers, see What is Event Grid?.

Azure Machine Learning provides events in the various points of machine learning lifecycle:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-event-grid-integration.md
https://azure.microsoft.com/services/event-grid/
https://docs.microsoft.com/azure/event-grid/event-filtering
https://docs.microsoft.com/azure/event-grid/overview

Microsoft.MachineLearningServices.ModelRegistered Raised when a machine learning model is registered in the
workspace

Microsoft.MachineLearningServices.ModelDeployed Raised when a deployment of inference service with one or more
models is completed

Microsoft.MachineLearningServices.DatasetDriftDetected Raised when a data drift detection job for two datasets is
completed

Microsoft.MachineLearningServices.RunStatusChanged Raised when a run status changed, currently only raised when a
run status is 'failed'

EVEN T T Y P E DESC RIP T IO N

Subscribe to Machine Learning events

Filter by event type

Filter by event subject

EVEN T T Y P E SUB JEC T F O RM AT SA M P L E SUB JEC T

Microsoft.MachineLearningServices.RunCompletedexperiments/{ExperimentId}/runs/{RunId} experiments/b1d7966c-f73a-4c68-b846-
992ace89551f/runs/my_exp1_1554835758_38dbaa94

Microsoft.MachineLearningServices.ModelRegisteredmodels/{modelName}:{modelVersion} models/sklearn_regression_model:3

Microsoft.MachineLearningServices.ModelDeployedendpoints/{serviceId} endpoints/my_sklearn_aks

Microsoft.MachineLearningServices.DatasetDriftDetecteddatadrift/{data.DataDriftId}/run/{data.RunId}datadrift/4e694bf5-712e-4e40-b06a-
d2a2755212d4/run/my_driftrun1_1550564444_fbbcdc0f

Microsoft.MachineLearningServices.RunStatusChangedexperiments/{ExperimentId}/runs/{RunId} experiments/b1d7966c-f73a-4c68-b846-
992ace89551f/runs/my_exp1_1554835758_38dbaa94

Advanced filtering

Consume Machine Learning events

Subscriptions for Azure Machine Learning events are protected by role-based access control (RBAC). Only contributor or

owner of a workspace can create, update, and delete event subscriptions.

Event subscriptions can be filtered based on a variety of conditions. Filters can be applied to event subscriptions either

during the creation of the event subscription or at a later time.

An event subscription can specify one or more Azure Machine Learning event types.

Azure Event Grid supports subject filters based on begins with and ends with matches, so that events with a matching

subject are delivered to the subscriber. Different machine learning events have different subject format.

Azure Event Grid also supports advanced filtering based on published event schema. Azure Machine Learning event

schema details can be found in Azure Event Grid event schema for Azure Machine Learning.

Some sample advanced filterings you can perform include:

--advanced-filter data.ModelTags.key1 StringIn ('value1')

For Microsoft.MachineLearningServices.ModelRegistered event, to filter model's tag value:

To learn more about how to apply filters, see Filter events for Event Grid.

https://docs.microsoft.com/cli/azure/eventgrid/event-subscription?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/eventgrid/event-subscription?view=azure-cli-latest
https://docs.microsoft.com/en-us/azure/event-grid/event-schema-machine-learning
https://docs.microsoft.com/azure/event-grid/how-to-filter-events

Next steps

Applications that handle Machine Learning events should follow a few recommended practices:

As multiple subscriptions can be configured to route events to the same event handler, it is important not to assume

events are from a particular source, but to check the topic of the message to ensure that it comes from the machine

learning workspace you are expecting.

Similarly, check that the eventType is one you are prepared to process, and do not assume that all events you receive

will be the types you expect.

As messages can arrive out of order and after some delay, use the etag fields to understand if your information about

objects is still up-to-date. Also, use the sequencer fields to understand the order of events on any particular object.

Ignore fields you don't understand. This practice will help keep you resilient to new features that might be added in the

future.

Failed or cancelled Azure Machine Learning operations will not trigger an event. For example, if a model deployment

fails Microsoft.MachineLearningServices.ModelDeployed won't be triggered. Consider such failure mode when design

your applications. You can always use Azure Machine Learning SDK, CLI or portal to check the status of an operation

and understand the detailed failure reasons.

Azure Event Grid allows customers to build de-coupled message handlers, which can be triggered by Azure Machine

Learning events. Some notable examples of message handlers are:

Azure Functions

Azure Logic Apps

Azure Event Hubs

Azure Data Factory Pipeline

Generic webhooks, which may be hosted on the Azure platform or elsewhere

Learn more about Event Grid and give Azure Machine Learning events a try:

About Event Grid

Azure Event Grid event schema for Azure Machine Learning

Create event driven workflows with Azure Machine Learning

https://docs.microsoft.com/en-us/azure/event-grid/overview
https://docs.microsoft.com/en-us/azure/event-grid/event-schema-machine-learning

Deep learning vs. machine learning
4/16/2020 • 6 minutes to read • Edit Online

Deep learning, machine learning, and AI

This article helps you compare deep learning vs. machine learning. You'll learn how the two concepts compare and

how they fit into the broader category of artificial intelligence. The article also describes how deep learning can be

applied to real-world scenarios such as fraud detection, voice and facial recognition, sentiment analytics, and time

series forecasting.

Consider the following definitions to understand deep learning vs. machine learning vs. AI:

Deep learning is a subset of machine learning that's based on artificial neural networks. The learning

process is deep because the structure of artificial neural networks consists of multiple input, output, and

hidden layers. Each layer contains units that transform the input data into information that the next layer

can use for a certain predictive task. Thanks to this structure, a machine can learn through its own data

processing.

Machine learning is a subset of artificial intelligence that uses techniques (such as deep learning) that

enable machines to use experience to improve at tasks. The learning process is based on the following

steps:

1. Feed data into an algorithm. (In this step you can provide additional information to the model, for

example, by performing feature extraction.)

2. Use this data to train a model.

3. Test and deploy the model.

4. Consume the deployed model to do an automated predictive task. (In other words, call and use the

deployed model to receive the predictions returned by the model.)

Ar tificial intelligence (AI) is a technique that enables computers to mimic human intelligence. It includes

machine learning.

It's important to understand the relationship among AI, machine learning, and deep learning. Machine learning is a

way to achieve artificial intelligence. By using machine learning and deep learning techniques, you can build

computer systems and applications that do tasks that are commonly associated with human intelligence. These

tasks include image recognition, speech recognition, and language translation.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-deep-learning-vs-machine-learning.md

Techniques of deep learning vs. machine learning

A L L M A C H IN E L EA RN IN G O N LY DEEP L EA RN IN G

Number of data points Can use small amounts of data to make
predictions.

Needs to use large amounts of training
data to make predictions.

Hardware dependencies Can work on low-end machines. It
doesn't need a large amount of
computational power.

Depends on high-end machines. It
inherently does a large number of
matrix multiplication operations. A GPU
can efficiently optimize these
operations.

Featurization process Requires features to be accurately
identified and created by users.

Learns high-level features from data
and creates new features by itself.

Learning approach Divides the learning process into
smaller steps. It then combines the
results from each step into one output.

Moves through the learning process by
resolving the problem on an end-to-
end basis.

Execution time Takes comparatively little time to train,
ranging from a few seconds to a few
hours.

Usually takes a long time to train
because a deep learning algorithm
involves many layers.

Output The output is usually a numerical value,
like a score or a classification.

The output can have multiple formats,
like a text, a score or a sound.

Deep learning use cases

Named-entity recognition

Object detection

Image caption generation

Now that you have the overview of machine learning vs. deep learning, let's compare the two techniques. In

machine learning, the algorithm needs to be told how to make an accurate prediction by consuming more

information (for example, by performing feature extraction). In deep learning, the algorithm can learn how to make

an accurate prediction through its own data processing, thanks to the artificial neural network structure.

The following table compares the two techniques in more detail:

Because of the artificial neural network structure, deep learning excels at identifying patterns in unstructured data

such as images, sound, video, and text. For this reason, deep learning is rapidly transforming many industries,

including healthcare, energy, finance, and transportation. These industries are now rethinking traditional business

processes.

Some of the most common applications for deep learning are described in the following paragraphs.

Named-entity recognition is a deep learning method that takes a piece of text as input and transforms it into a pre-

specified class. This new information could be a postal code, a date, a product ID. The information can then be

stored in a structured schema to build a list of addresses or serve as a benchmark for an identity validation engine.

Deep learning has been applied in many object detection use cases. Object detection comprises two parts: image

classification and then image localization. Image classification identifies the image's objects, such as cars or people.

Image localization provides the specific location of these objects.

Object detection is already used in industries such as gaming, retail, tourism, and self-driving cars.

Machine translation

Text analytics

Artificial neural networks

Feedforward neural network

Recurrent neural network

Convolutional neural networks

Like image recognition, in image captioning, for a given image, the system must generate a caption that describes

the contents of the image. When you can detect and label objects in photographs, the next step is to turn those

labels into descriptive sentences.

Usually, image captioning applications use convolutional neural networks to identify objects in an image and then

use a recurrent neural network to turn the labels into consistent sentences.

Machine translation takes words or sentences from one language and automatically translates them into another

language. Machine translation has been around for a long time, but deep learning achieves impressive results in

two specific areas: automatic translation of text (and translation of speech to text) and automatic translation of

images.

With the appropriate data transformation, a neural network can understand text, audio, and visual signals. Machine

translation can be used to identify snippets of sound in larger audio files and transcribe the spoken word or image

as text.

Text analytics based on deep learning methods involves analyzing large quantities of text data (for example,

medical documents or expenses receipts), recognizing patterns, and creating organized and concise information

out of it.

Companies use deep learning to perform text analysis to detect insider trading and compliance with government

regulations. Another common example is insurance fraud: text analytics has often been used to analyze large

amounts of documents to recognize the chances of an insurance claim being fraud.

Artificial neural networks are formed by layers of connected nodes. Deep learning models use neural networks

that have a large number of layers.

The following sections explore most popular artificial neural network typologies.

The feedforward neural network is the most basic type of artificial neural network. In a feedforward network,

information moves in only one direction from input layer to output layer. Feedforward neural networks transform

an input by putting it through a series of hidden layers. Every layer is made up of a set of neurons, and each layer

is fully connected to all neurons in the layer before. The last fully connected layer (the output layer) represents the

generated predictions.

Recurrent neural networks are a widely used artificial neural network. These networks save the output of a layer

and feed it back to the input layer to help predict the layer's outcome. Recurrent neural networks have great

learning abilities. They're widely used for complex tasks such as time series forecasting, learning handwriting and

recognizing language.

A convolutional neural network is a particularly effective artificial neural network, and it presents a unique

architecture. Layers are organized in three dimensions: width, height, and depth. The neurons in one layer connect

not to all the neurons in the next layer, but only to a small region of the layer's neurons. The final output is reduced

to a single vector of probability scores, organized along the depth dimension.

Convolutional neural networks have been used in areas such as video recognition, image recognition and

recommender systems.

Next steps
The following articles show you how to use deep learning technology in Azure Machine Learning:

Classify handwritten digits by using a TensorFlow model

Classify handwritten digits by using a TensorFlow estimator and Keras

Classify images by using a Pytorch model

Classify handwritten digits by using a Chainer model

Also, use the Machine Learning Algorithm Cheat Sheet to choose algorithms for your model.

https://docs.microsoft.com/azure/machine-learning/?WT.mc_id=docs-article-lazzeri
https://docs.microsoft.com/azure/machine-learning/how-to-train-tensorflow?WT.mc_id=docs-article-lazzeri
https://docs.microsoft.com/azure/machine-learning/how-to-train-keras?WT.mc_id=docs-article-lazzeri
https://docs.microsoft.com/azure/machine-learning/how-to-train-pytorch?WT.mc_id=docs-article-lazzeri
https://docs.microsoft.com/azure/machine-learning/how-to-train-ml-models
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet

Create and manage Azure Machine Learning
workspaces in the Azure portal
4/13/2020 • 4 minutes to read • Edit Online

Create a workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you'll create, view, and delete Azure Machine Learning workspaces in the Azure portal for

Azure Machine Learning. The portal is the easiest way to get started with workspaces but as your needs

change or requirements for automation increase you can also create and delete workspaces using the CLI,

with Python code or via the VS Code extension.

To create a workspace, you need an Azure subscription. If you don't have an Azure subscription, create a free

account before you begin. Try the free or paid version of Azure Machine Learning today.

F IEL D DESC RIP T IO N

1. Sign in to the Azure portal by using the credentials for your Azure subscription.

2. In the upper-left corner of Azure portal, select + Create a resource.

3. Use the search bar to find Machine Learning.

4. Select Machine Learning.

5. In the Machine Learning pane, select Create to begin.

6. Provide the following information to configure your new workspace:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-manage-workspace.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://aka.ms/AMLFree
https://portal.azure.com/

Workspace name Enter a unique name that identifies your workspace. In
this example, we use docs-ws. Names must be unique
across the resource group. Use a name that's easy to
recall and to differentiate from workspaces created by
others. The workspace name is case-insensitive.

Subscription Select the Azure subscription that you want to use.

Resource group Use an existing resource group in your subscription or
enter a name to create a new resource group. A
resource group holds related resources for an Azure
solution. In this example, we use docs-aml.

Location Select the location closest to your users and the data
resources to create your workspace.

Workspace edition Select Basic or Enterprise. This workspace edition
determines the features to which you'll have access
and pricing. Learn more about Basic and Enterprise
edition offerings.

F IEL D DESC RIP T IO N

WARNING

7. When you're finished configuring the workspace, select Review + Create.

8. Review the settings and make any additional changes or corrections. When you're satisfied with the

settings, select Create.

It can take several minutes to create your workspace in the cloud.

When the process is finished, a deployment success message appears.

9. To view the new workspace, select Go to resource.

Download a configuration file

Upgrade to Enterprise edition

IMPORTANT

Find a workspace

1. If you will be creating a compute instance, skip this step.

2. If you plan to use code on your local environment that references this workspace, select Download

config.json from the Over view section of the workspace.

Place the file into the directory structure with your Python scripts or Jupyter Notebooks. It can be in

the same directory, a subdirectory named .azureml, or in a parent directory. When you create a

compute instance, this file is added to the correct directory on the VM for you.

You can upgrade your workspace from Basic edition to Enterprise edition to take advantage of the enhanced

features such as low-code experiences and enhanced security features.

1. Sign in to Azure Machine Learning studio.

2. Select the workspace that you wish to upgrade.

3. Select Learn more at the top right of the page.

4. Select Upgrade in the window that appears.

You cannot downgrade an Enterprise edition workspace to a Basic edition workspace.

1. Sign in to the Azure portal.

2. In the top search field, type Machine Learning.

https://ml.azure.com
file:///T:/i2pk/machine-learning/media/how-to-manage-workspace/upgrade.png#lightbox
https://portal.azure.com/

Delete a workspace

Clean up resources

IMPORTANT

3. Select Machine Learning.

4. Look through the list of workspaces found. You can filter based on subscription, resource groups, and

locations.

5. Select a workspace to display its properties.

In the Azure portal, select Delete at the top of the workspace you wish to delete.

The resources you created can be used as prerequisites to other Azure Machine Learning tutorials and how-to

articles.

If you don't plan to use the resources you created, delete them, so you don't incur any charges:

1. In the Azure portal, select Resource groups on the far left.

https://portal.azure.com/

Troubleshooting
Resource provider errors

Moving the workspace

WARNING

Deleting the Azure Container Registry

WARNING

2. From the list, select the resource group you created.

3. Select Delete resource group.

4. Enter the resource group name. Then select Delete.

When creating an Azure Machine Learning workspace, or a resource used by the workspace, you may

receive an error similar to the following messages:

No registered resource provider found for location {location}

The subscription is not registered to use namespace {resource-provider-namespace}

Most resource providers are automatically registered, but not all. If you receive this message, you need to

register the provider mentioned.

For information on registering resource providers, see Resolve errors for resource provider registration.

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a

new tenant, is not supported. Doing so may cause errors.

The Azure Machine Learning workspace uses Azure Container Registry (ACR) for some operations. It will

automatically create an ACR instance when it first needs one.

Once an Azure Container Registry has been created for a workspace, do not delete it. Doing so will break your Azure

Machine Learning workspace.

file:///T:/i2pk/includes/media/aml-delete-resource-group/delete-resources-expanded.png
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider

Next steps
Follow the full-length tutorial to learn how to use a workspace to build, train, and deploy models with Azure

Machine Learning.

Tutorial: Train models

Create a workspace for Azure Machine Learning with
Azure CLI
4/17/2020 • 8 minutes to read • Edit Online

Prerequisites

Connect the CLI to your Azure subscription

IMPORTANT

az login

TIP

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to create an Azure Machine Learning workspace using the Azure CLI. The Azure CLI

provides commands for managing Azure resources. The machine learning extension to the CLI provides commands

for working with Azure Machine Learning resources.

An Azure subscr iption . If you do not have one, try the free or paid version of Azure Machine Learning.

To use the CLI commands in this document from your local environment, you need the Azure CLI.

If you use the Azure Cloud Shell, the CLI is accessed through the browser and lives in the cloud.

If you are using the Azure Cloud Shell, you can skip this section. The cloud shell automatically authenticates you using the

account you log into your Azure subscription.

There are several ways that you can authenticate to your Azure subscription from the CLI. The most basic is to

interactively authenticate using a browser. To authenticate interactively, open a command line or terminal and use

the following command:

If the CLI can open your default browser, it will do so and load a sign-in page. Otherwise, you need to open a

browser and follow the instructions on the command line. The instructions involve browsing to

https://aka.ms/devicelogin and entering an authorization code.

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with

isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the same one

that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure portal by visiting the

overview page for your workspace. You can also use the SDK to get the subscription ID from the workspace object. For

example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify the

subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

For other methods of authenticating, see Sign in with Azure CLI.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-manage-workspace-cli.md
https://aka.ms/AMLFree
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com//features/cloud-shell/
https://aka.ms/devicelogin
https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-cli-latest

Install the machine learning extension

az extension add -n azure-cli-ml

Create a workspace

IMPORTANT

SERVIC E PA RA M ET ER TO SP EC IF Y A N EX IST IN G IN STA N C E

Azure resource group -g <resource-group-name>

Azure Storage Account --storage-account <service-id>

Azure Application Insights --application-insights <service-id>

Azure Key Vault --keyvault <service-id>

Azure Container Registr y --container-registry <service-id>

Create a resource group

TIP

az group create --name <resource-group-name> --location <location>

To install the machine learning extension, use the following command:

The Azure Machine Learning workspace relies on the following Azure services or entities:

If you do not specify an existing Azure service, one will be created automatically during workspace creation. You must always

specify a resource group.

The Azure Machine Learning workspace must be created inside a resource group. You can use an existing resource

group or create a new one. To create a new resource group, use the following command. Replace

<resource-group-name> with the name to use for this resource group. Replace <location> with the Azure region to

use for this resource group:

You should select a region where Azure Machine Learning is available. For information, see Products available by region.

The response from this command is similar to the following JSON:

https://azure.microsoft.com/global-infrastructure/services/?products=machine-learning-service

{
 "id": "/subscriptions/<subscription-GUID>/resourceGroups/<resourcegroupname>",
 "location": "<location>",
 "managedBy": null,
 "name": "<resource-group-name>",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "tags": null,
 "type": null
}

Automatically create required resources

TIP

az ml workspace create -w <workspace-name> -g <resource-group-name>

NOTE

{
 "applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/<application-insight-name>",
 "containerRegistry": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.containerregistry/registries/<acr-name>",
 "creationTime": "2019-08-30T20:24:19.6984254+00:00",
 "description": "",
 "friendlyName": "<workspace-name>",
 "id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
 "identityPrincipalId": "<GUID>",
 "identityTenantId": "<GUID>",
 "identityType": "SystemAssigned",
 "keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
 "location": "<location>",
 "name": "<workspace-name>",
 "resourceGroup": "<resource-group-name>",
 "storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
 "type": "Microsoft.MachineLearningServices/workspaces",
 "workspaceid": "<GUID>"
}

Use existing resources

For more information on working with resource groups, see az group.

To create a new workspace where the ser vices are automatically created , use the following command:

The commands in this section create a basic edition workspace. To create an enterprise workspace, use the

--sku enterprise switch with the az ml workspace create command. For more information on Azure Machine Learning

editions, see What is Azure Machine Learning.

The workspace name is case-insensitive.

The output of this command is similar to the following JSON:

To create a workspace that uses existing resources, you must provide the ID for the resources. Use the following

https://docs.microsoft.com//cli/azure/group?view=azure-cli-latest

IMPORTANT

commands to get the ID for the services:

You don't have to specify all existing resources. You can specify one or more. For example, you can specify an existing storage

account and the workspace will create the other resources.

IMPORTANT

Azure Storage Account: az storage account show --name <storage-account-name> --query "id"

The response from this command is similar to the following text, and is the ID for your storage account:

"/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.Storage/storageAccounts/<storage-account-name>"

Azure Application Insights :

az extension add -n application-insights

az monitor app-insights component show --app <application-insight-name> -g <resource-group-name>
--query "id"

1. Install the application insights extension:

2. Get the ID of your application insight service:

The response from this command is similar to the following text, and is the ID for your application

insights service:

"/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/microsoft.insights/components/<application-insight-name>"

Azure Key Vault: az keyvault show --name <key-vault-name> --query "ID"

The response from this command is similar to the following text, and is the ID for your key vault:

"/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.KeyVault/vaults/<key-vault-name>"

Azure Container Registr y : az acr show --name <acr-name> -g <resource-group-name> --query "id"

The response from this command is similar to the following text, and is the ID for the container registry:

"/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.ContainerRegistry/registries/<acr-name>"

The container registry must have the the admin account enabled before it can be used with an Azure Machine

Learning workspace.

Once you have the IDs for the resource(s) that you want to use with the workspace, use the base

az workspace create -w <workspace-name> -g <resource-group-name> command and add the parameter(s) and ID(s)

for the existing resources. For example, the following command creates a workspace that uses an existing container

registry:

https://docs.microsoft.com/azure/container-registry/container-registry-authentication#admin-account

az ml workspace create -w <workspace-name> -g <resource-group-name> --container-registry
"/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.ContainerRegistry/registries/<acr-name>"

{
 "applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/<application-insight-name>",
 "containerRegistry": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.containerregistry/registries/<acr-name>",
 "creationTime": "2019-08-30T20:24:19.6984254+00:00",
 "description": "",
 "friendlyName": "<workspace-name>",
 "id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
 "identityPrincipalId": "<GUID>",
 "identityTenantId": "<GUID>",
 "identityType": "SystemAssigned",
 "keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
 "location": "<location>",
 "name": "<workspace-name>",
 "resourceGroup": "<resource-group-name>",
 "storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
 "type": "Microsoft.MachineLearningServices/workspaces",
 "workspaceid": "<GUID>"
}

List workspaces

az ml workspace list

[
 {
 "resourceGroup": "myresourcegroup",
 "subscriptionId": "<subscription-id>",
 "workspaceName": "myml"
 },
 {
 "resourceGroup": "anotherresourcegroup",
 "subscriptionId": "<subscription-id>",
 "workspaceName": "anotherml"
 }
]

Get workspace information

The output of this command is similar to the following JSON:

To list all the workspaces for your Azure subscription, use the following command:

The output of this command is similar to the following JSON:

For more information, see the az ml workspace list documentation.

To get information about a workspace, use the following command:

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-list

az ml workspace show -w <workspace-name> -g <resource-group-name>

{
 "applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/application-insight-name>",
 "creationTime": "2019-08-30T18:55:03.1807976+00:00",
 "description": "",
 "friendlyName": "",
 "id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
 "identityPrincipalId": "<GUID>",
 "identityTenantId": "<GUID>",
 "identityType": "SystemAssigned",
 "keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
 "location": "<location>",
 "name": "<workspace-name>",
 "resourceGroup": "<resource-group-name>",
 "storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
 "tags": {},
 "type": "Microsoft.MachineLearningServices/workspaces",
 "workspaceid": "<GUID>"
}

Update a workspace

az ml workspace update -w <workspace-name> -g <resource-group-name>

{
 "applicationInsights": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.insights/components/application-insight-name>",
 "creationTime": "2019-08-30T18:55:03.1807976+00:00",
 "description": "",
 "friendlyName": "",
 "id": "/subscriptions/<service-GUID>/resourceGroups/<resource-group-
name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>",
 "identityPrincipalId": "<GUID>",
 "identityTenantId": "<GUID>",
 "identityType": "SystemAssigned",
 "keyVault": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.keyvault/vaults/<key-vault-name>",
 "location": "<location>",
 "name": "<workspace-name>",
 "resourceGroup": "<resource-group-name>",
 "storageAccount": "/subscriptions/<service-GUID>/resourcegroups/<resource-group-
name>/providers/microsoft.storage/storageaccounts/<storage-account-name>",
 "tags": {},
 "type": "Microsoft.MachineLearningServices/workspaces",
 "workspaceid": "<GUID>"
}

The output of this command is similar to the following JSON:

For more information, see the az ml workspace show documentation.

To update a workspace, use the following command:

The output of this command is similar to the following JSON:

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-show

Share a workspace with another user

az ml workspace share -w <workspace-name> -g <resource-group-name> --user <user> --role <role>

Sync keys for dependent resources

az ml workspace sync-keys -w <workspace-name> -g <resource-group-name>

Delete a workspace

az ml workspace delete -w <workspace-name> -g <resource-group-name>

IMPORTANT

az group delete -g <resource-group-name>

Troubleshooting
Resource provider errors

For more information, see the az ml workspace update documentation.

To share a workspace with another user on your subscription, use the following command:

For more information on roles-based access control (RBAC) with Azure Machine Learning, see Manage users and

roles.

For more information, see the az ml workspace share documentation.

If you change access keys for one of the resources used by your workspace, use the following command to sync

the new keys with the workspace:

For more information on changing keys, see Regenerate storage access keys.

For more information, see the az ml workspace sync-keys documentation.

To delete a workspace after it is no longer needed, use the following command:

Deleting a workspace does not delete the application insight, storage account, key vault, or container registry used by the

workspace.

You can also delete the resource group, which deletes the workspace and all other Azure resources in the resource

group. To delete the resource group, use the following command:

For more information, see the az ml workspace delete documentation.

When creating an Azure Machine Learning workspace, or a resource used by the workspace, you may receive an

error similar to the following messages:

No registered resource provider found for location {location}

The subscription is not registered to use namespace {resource-provider-namespace}

Most resource providers are automatically registered, but not all. If you receive this message, you need to register

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-update
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-share
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-sync-keys
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-delete

Moving the workspace

WARNING

Deleting the Azure Container Registry

WARNING

Next steps

the provider mentioned.

For information on registering resource providers, see Resolve errors for resource provider registration.

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a new

tenant, is not supported. Doing so may cause errors.

The Azure Machine Learning workspace uses Azure Container Registry (ACR) for some operations. It will

automatically create an ACR instance when it first needs one.

Once an Azure Container Registry has been created for a workspace, do not delete it. Doing so will break your Azure

Machine Learning workspace.

For more information on the Azure CLI extension for machine learning, see the az ml documentation.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml?view=azure-cli-latest

Create, run, and delete Azure ML resources using
REST
2/24/2020 • 10 minutes to read • Edit Online

Prerequisites

Retrieve a service principal authentication token

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

There are several ways to manage your Azure ML resources. You can use the portal, command-line interface, or

Python SDK. Or, you can choose the REST API. The REST API uses HTTP verbs in a standard way to create, retrieve,

update, and delete resources. The REST API works with any language or tool that can make HTTP requests. REST's

straightforward structure often makes it a good choice in scripting environments and for MLOps automation.

In this article, you learn how to:

Retrieve an authorization token

Create a properly-formatted REST request using service principal authentication

Use GET requests to retrieve information about Azure ML's hierarchical resources

Use PUT and POST requests to create and modify resources

Use DELETE requests to clean up resources

Use key-based authorization to score deployed models

An Azure subscr iption for which you have administrative rights. If you don't have such a subscription, try the

free or paid personal subscription

An Azure Machine Learning Workspace

Administrative REST requests use service principal authentication. Follow the steps in Set up authentication for

Azure Machine Learning resources and workflows to create a service principal in your workspace

The curl utility. The cur l program is available in the Windows Subsystem for Linux or any UNIX distribution. In

PowerShell, cur l is an alias for Invoke-WebRequest and curl -d "key=val" -X POST uri becomes

Invoke-WebRequest -Body "key=val" -Method POST -Uri uri .

Administrative REST requests are authenticated with an OAuth2 implicit flow. This authentication flow uses a token

provided by your subscription's service principal. To retrieve this token, you'll need:

Your tenant ID (identifying the organization to which your subscription belongs)

Your client ID (which will be associated with the created token)

Your client secret (which you should safeguard)

You should have these values from the response to the creation of your service principal as discussed in Set up

authentication for Azure Machine Learning resources and workflows. If you're using your company subscription,

you might not have permission to create a service principal. In that case, you should use either a free or paid

personal subscription.

To retrieve a token:

1. Open a terminal window

2. Enter the following code at the command line

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-manage-rest.md
https://portal.azure.com/
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://aka.ms/AMLFree
https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace
https://docs.microsoft.com/azure/machine-learning/how-to-setup-authentication#set-up-service-principal-authentication
https://aka.ms/wslinstall/
https://docs.microsoft.com/azure/machine-learning/how-to-setup-authentication#set-up-service-principal-authentication
https://aka.ms/AMLFree

curl -X POST https://login.microsoftonline.com/{your-tenant-id}/oauth2/token \
-d "grant_type=client_credentials&resource=https%3A%2F%2Fmanagement.azure.com%2F&client_id={your-client-
id}&client_secret={your-client-secret}" \

{
 "token_type": "Bearer",
 "expires_in": "3599",
 "ext_expires_in": "3599",
 "expires_on": "1578523094",
 "not_before": "1578519194",
 "resource": "https://management.azure.com/",
 "access_token": "your-access-token"
}

curl -h "Authentication: Bearer {your-access-token}" ...more args...

Get a list of resource groups associated with your subscription

curl https://management.azure.com/subscriptions/{your-subscription-id}/resourceGroups?api-version=2019-11-01 -
H "Authorization:Bearer {your-access-token}"

3. Substitute your own values for {your-tenant-id} , {your-client-id} , and {your-client-secret} . Throughout

this article, strings surrounded by curly brackets are variables you'll have to replace with your own appropriate

values.

4. Run the command

The response should provide an access token good for one hour:

Make note of the token, as you'll use it to authenticate all subsequent administrative requests. You'll do so by

setting an Authorization header in all requests:

Note that the value starts with the string "Bearer " including a single space before you add the token.

To retrieve the list of resource groups associated with your subscription, run:

Across Azure, many REST APIs are published. Each service provider updates their API on their own cadence, but

does so without breaking existing programs. The service provider uses the api-version argument to ensure

compatibility. The api-version argument varies from service to service. For the Machine Learning Service, for

instance, the current API version is 2019-11-01 . For storage accounts, it's 2019-06-01 . For key vaults, it's

2019-09-01 . All REST calls should set the api-version argument to the expected value. You can rely on the syntax

and semantics of the specified version even as the API continues to evolve. If you send a request to a provider

without the api-version argument, the response will contain a human-readable list of supported values.

The above call will result in a compacted JSON response of the form:

{
 "value": [
 {
 "id": "/subscriptions/12345abc-abbc-1b2b-1234-57ab575a5a5a/resourceGroups/RG1",
 "name": "RG1",
 "type": "Microsoft.Resources/resourceGroups",
 "location": "westus2",
 "properties": {
 "provisioningState": "Succeeded"
 }
 },
 {
 "id": "/subscriptions/12345abc-abbc-1b2b-1234-57ab575a5a5a/resourceGroups/RG2",
 "name": "RG2",
 "type": "Microsoft.Resources/resourceGroups",
 "location": "eastus",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
]
}

Drill down into workspaces and their resources

curl https://management.azure.com/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-
group}/providers/Microsoft.MachineLearningServices/workspaces/?api-version=2019-11-01 \
-H "Authorization:Bearer {your-access-token}"

To retrieve the set of workspaces in a resource group, run the following, substituting {your-subscription-id} ,

{your-resource-group} , and {your-access-token} :

Again you'll receive a JSON list, this time containing a list, each item of which details a workspace:

{
 "id": "/subscriptions/12345abc-abbc-1b2b-1234-
57ab575a5a5a/resourceGroups/DeepLearningResourceGroup/providers/Microsoft.MachineLearningServices/workspaces/m
y-workspace",
 "name": "my-workspace",
 "type": "Microsoft.MachineLearningServices/workspaces",
 "location": "centralus",
 "tags": {},
 "etag": null,
 "properties": {
 "friendlyName": "",
 "description": "",
 "creationTime": "2020-01-03T19:56:09.7588299+00:00",
 "storageAccount": "/subscriptions/12345abc-abbc-1b2b-1234-
57ab575a5a5a/resourcegroups/DeepLearningResourceGroup/providers/microsoft.storage/storageaccounts/myworkspace0
275623111",
 "containerRegistry": null,
 "keyVault": "/subscriptions/12345abc-abbc-1b2b-1234-
57ab575a5a5a/resourcegroups/DeepLearningResourceGroup/providers/microsoft.keyvault/vaults/myworkspace252564932
4",
 "applicationInsights": "/subscriptions/12345abc-abbc-1b2b-1234-
57ab575a5a5a/resourcegroups/DeepLearningResourceGroup/providers/microsoft.insights/components/myworkspace20535
23719",
 "hbiWorkspace": false,
 "workspaceId": "cba12345-abab-abab-abab-ababab123456",
 "subscriptionState": null,
 "subscriptionStatusChangeTimeStampUtc": null,
 "discoveryUrl": "https://centralus.experiments.azureml.net/discovery"
 },
 "identity": {
 "type": "SystemAssigned",
 "principalId": "abcdef1-abab-1234-1234-abababab123456",
 "tenantId": "1fedcba-abab-1234-1234-abababab123456"
 },
 "sku": {
 "name": "Basic",
 "tier": "Basic"
 }
}

{
 "api": "https://centralus.api.azureml.ms",
 "catalog": "https://catalog.cortanaanalytics.com",
 "experimentation": "https://centralus.experiments.azureml.net",
 "gallery": "https://gallery.cortanaintelligence.com/project",
 "history": "https://centralus.experiments.azureml.net",
 "hyperdrive": "https://centralus.experiments.azureml.net",
 "labeling": "https://centralus.experiments.azureml.net",
 "modelmanagement": "https://centralus.modelmanagement.azureml.net",
 "pipelines": "https://centralus.aether.ms",
 "studiocoreservices": "https://centralus.studioservice.azureml.com"
}

To work with resources within a workspace, you'll switch from the general management.azure.com server to a

REST API server specific to the location of the workspace. Note the value of the discoveryUrl key in the above

JSON response. If you GET that URL, you'll receive a response something like:

The value of the api response is the URL of the server that you'll use for additional requests. To list experiments,

for instance, send the following command. Replace regional-api-server with the value of the api response (for

instance, centralus.api.azureml.ms). Also replace your-subscription-id , your-resource-group ,

your-workspace-name , and your-access-token as usual:

curl https://{regional-api-server}/history/v1.0/subscriptions/{your-subscription-id}/resourceGroups/{your-
resource-group}/\
providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-name}/experiments?api-version=2019-11-
01 \
-H "Authorization:Bearer {your-access-token}"

curl https://{regional-api-server}/modelmanagement/v1.0/subscriptions/{your-subscription-
id}/resourceGroups/{your-resource-group}/\
providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-name}/models?api-version=2019-11-01 \
-H "Authorization:Bearer {your-access-token}"

A REA PAT H REF EREN C E

Artifacts artifact/v2.0/ REST API Reference

Data stores datastore/v1.0/ REST API Reference

Hyperparameter tuning hyperdrive/v1.0/ REST API Reference

Models modelmanagement/v1.0/ REST API Reference

Run history execution/v1.0/ and history/v1.0/ REST API Reference

URL C O M P O N EN T EXA M P L E

https://

regional-api-server/ centralus.api.azureml.ms/

operations-path/ history/v1.0/

subscriptions/{your-subscription-id}/ subscriptions/abcde123-abab-abab-1234-0123456789abc/

resourceGroups/{your-resource-group}/ resourceGroups/MyResourceGroup/

providers/operation-provider/ providers/Microsoft.MachineLearningServices/

provider-resource-path/ workspaces/MLWorkspace/MyWorkspace/FirstExperiment/run
s/1/

operations-endpoint/ artifacts/metadata/

Create and modify resources using PUT and POST requests

Similarly, to retrieve registered models in your workspace, send:

Notice that to list experiments the path begins with history/v1.0 while to list models, the path begins with

modelmanagement/v1.0 . The REST API is divided into several operational groups, each with a distinct path. The API

Reference docs at the links below list the operations, parameters, and response codes for the various operations.

You can explore the REST API using the general pattern of:

In addition to resource retrieval with the GET verb, the REST API supports the creation of all the resources

https://docs.microsoft.com/rest/api/azureml/artifacts
https://docs.microsoft.com/rest/api/azureml/datastores
https://docs.microsoft.com/rest/api/azureml/hyperparametertuning
https://docs.microsoft.com/rest/api/azureml/modelsanddeployments/mlmodels
https://docs.microsoft.com/rest/api/azureml/runs

curl https://management.azure.com/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}/\
providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-name}/computes?api-version=2019-11-01 \
-H "Authorization:Bearer {your-access-token}"

curl -X PUT \
 'https://management.azure.com/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-
group}/providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-name}/computes/{your-compute-
name}?api-version=2019-11-01' \
 -H 'Authorization:Bearer {your-access-token}' \
 -H 'Content-Type: application/json' \
 -d '{
 "location": "{your-azure-location}",
 "properties": {
 "computeType": "AmlCompute",
 "properties": {
 "vmSize": "Standard_D1",
 "vmPriority": "Dedicated",
 "scaleSettings": {
 "maxNodeCount": 1,
 "minNodeCount": 0,
 "nodeIdleTimeBeforeScaleDown": "PT30M"
 }
 }
 },
 "userAccountCredentials": {
 "adminUserName": "{adminUserName}",
 "adminUserPassword": "{adminUserPassword}"
 }
}'

NOTE

Create an experimental run

necessary to train, deploy, and monitor ML solutions.

Training and running ML models require compute resources. You can list the compute resources of a workspace

with:

To create or overwrite a named compute resource, you'll use a PUT request. In the following, in addition to the

now-familiar substitutions of your-subscription-id , your-resource-group , your-workspace-name , and

your-access-token , substitute your-compute-name , and values for location , vmSize , vmPriority , scaleSettings ,

adminUserName , and adminUserPassword . As specified in the reference at Machine Learning Compute - Create Or

Update SDK Reference, the following command creates a dedicated, single-node Standard_D1 (a basic CPU

compute resource) that will scale down after 30 minutes:

In Windows terminals you may have to escape the double-quote symbols when sending JSON data. That is, text such as

"location" becomes \"location\" .

A successful request will get a 201 Created response, but note that this response simply means that the

provisioning process has begun. You'll need to poll (or use the portal) to confirm its successful completion.

To start a run within an experiment, you need a zip folder containing your training script and related files, and a run

definition JSON file. The zip folder must have the Python entry file in its root directory. As an example, zip a trivial

Python program such as the following into a folder called train.zip.

https://docs.microsoft.com/rest/api/azureml/workspacesandcomputes/machinelearningcompute/createorupdate

hello.py
Entry file for run
print("Hello, REST!")

{
 "Configuration":{
 "Script":"hello.py",
 "Arguments":[
 "234"
],
 "SourceDirectoryDataStore":null,
 "Framework":"Python",
 "Communicator":"None",
 "Target":"cpu-compute",
 "MaxRunDurationSeconds":1200,
 "NodeCount":1,
 "Environment":{
 "Python":{
 "InterpreterPath":"python",
 "UserManagedDependencies":false,
 "CondaDependencies":{
 "name":"project_environment",
 "dependencies":[
 "python=3.6.2",
 {
 "pip":[
 "azureml-defaults"
]
 }
]
 }
 },
 "Docker":{
 "BaseImage":"mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04"
 }
 },
 "History":{
 "OutputCollection":true
 }
 }
}

curl https://{regional-api-server}/execution/v1.0/subscriptions/{your-subscription-id}/resourceGroups/{your-
resource-group}/providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-
name}/experiments/{your-experiment-name}/startrun?api-version=2019-11-01 \
 -X POST \
 -H "Content-Type: multipart/form-data" \
 -H "Authorization:Bearer {your-access-token}" \
 -F projectZipFile=@train.zip \
 -F runDefinitionFile=@runDefinition.json

Save this next snippet as definition.json. Confirm the "Script" value matches the name of the Python file you just

zipped up. Confirm the "Target" value matches the name of an available compute resource.

Post these files to the server using multipart/form-data content:

A successful POST request will generate a 200 OK status, with a response body containing the identifier of the

created run:

{
 "runId": "my-first-experiment_1579642222877"
}

curl 'https://{regional-api-server}/history/v1.0/subscriptions/{your-subscription-id}/resourceGroups/{your-
resource-group}/providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-
name}/experiments/{your-experiment-names}/runs/{your-run-id}?api-version=2019-11-01' \
 -H 'Authorization:Bearer {your-access-token}'

Delete resources you no longer need

curl
 -X DELETE \
'https://{regional-api-server}/modelmanagement/v1.0/subscriptions/{your-subscription-id}/resourceGroups/{your-
resource-group}/providers/Microsoft.MachineLearningServices/workspaces/{your-workspace-name}/models/{your-
model-id}?api-version=2019-11-01' \
 -H 'Authorization:Bearer {your-access-token}'

Use REST to score a deployed model

curl 'https://{scoring-uri}' \
 -H 'Authorization:Bearer {your-key}' \
 -H 'Content-Type: application/json' \
 -d '{ "data" : [{model-specific-data-structure}] }

Create a workspace using REST

You can monitor a run using the REST-ful pattern that should now be familiar :

Some, but not all, resources support the DELETE verb. Check the API Reference before committing to the REST API

for deletion use-cases. To delete a model, for instance, you can use:

While it's possible to deploy a model so that it authenticates with a service principal, most client-facing

deployments use key-based authentication. You can find the appropriate key in your deployment's page within the

Endpoints tab of Studio. The same location will show your endpoint's scoring URI. Your model's inputs must be

modeled as a JSON array named data :

Every Azure ML workspace has a dependency on four other Azure resources: a container registry with

administration enabled, a key vault, an Application Insights resource, and a storage account. You cannot create a

workspace until these resources exist. Consult the REST API reference for the details of creating each such resource.

To create a workspace, PUT a call similar to the following to management.azure.com . While this call requires you to

set a large number of variables, it's structurally identical to other calls that this article has discussed.

https://docs.microsoft.com/rest/api/azureml/

curl -X PUT \
 'https://management.azure.com/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}\
/providers/Microsoft.MachineLearningServices/workspaces/{your-new-workspace-name}?api-version=2019-11-01' \
 -H 'Authorization: Bearer {your-access-token}' \
 -H 'Content-Type: application/json' \
 -d '{
 "location": "{desired-region}",
 "properties": {
 "friendlyName" : "{your-workspace-friendly-name}",
 "description" : "{your-workspace-description}",
 "containerRegistry" : "/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}/\
providers/Microsoft.ContainerRegistry/registries/{your-registry-name}",
 keyVault" : "/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}\
/providers/Microsoft.Keyvault/vaults/{your-keyvault-name}",
 "applicationInsights" : "subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}/\
providers/Microsoft.insights/components/{your-application-insights-name}",
 "storageAccount" : "/subscriptions/{your-subscription-id}/resourceGroups/{your-resource-group}/\
providers/Microsoft.Storage/storageAccounts/{your-storage-account-name}"
 },
 "identity" : {
 "type" : "systemAssigned"
 }
}'

Troubleshooting
Resource provider errors

Moving the workspace

WARNING

Deleting the Azure Container Registry

WARNING

You should receive a 202 Accepted response and, in the returned headers, a Location URI. You can GET this URI

for information on the deployment, including helpful debugging information if there is a problem with one of your

dependent resources (for instance, if you forgot to enable admin access on your container registry).

When creating an Azure Machine Learning workspace, or a resource used by the workspace, you may receive an

error similar to the following messages:

No registered resource provider found for location {location}

The subscription is not registered to use namespace {resource-provider-namespace}

Most resource providers are automatically registered, but not all. If you receive this message, you need to register

the provider mentioned.

For information on registering resource providers, see Resolve errors for resource provider registration.

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a new

tenant, is not supported. Doing so may cause errors.

The Azure Machine Learning workspace uses Azure Container Registry (ACR) for some operations. It will

automatically create an ACR instance when it first needs one.

Once an Azure Container Registry has been created for a workspace, do not delete it. Doing so will break your Azure

Machine Learning workspace.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider

Next steps
Explore the complete AzureML REST API reference.

Learn how to use Studio & Designer to Predict automobile price with the designer (preview).

Explore Azure Machine Learning with Jupyter notebooks.

https://docs.microsoft.com/rest/api/azureml/
https://docs.microsoft.com/azure/machine-learning/tutorial-designer-automobile-price-train-score
https://docs.microsoft.com/azure//machine-learning/samples-notebooks

4/20/2020 • 9 minutes to read • Edit Online

Use an Azure Resource Manager template to create a
workspace for Azure Machine Learning

Prerequisites

Resource Manager template

{
 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning service workspace."
 }
 },
 "location": {
 "type": "string",
 "allowedValues": [
 "australiaeast",
 "brazilsouth",
 "canadacentral",
 "centralus",
 "eastasia",
 "eastus",
 "eastus2",
 "francecentral",
 "japaneast",
 "koreacentral",
 "northcentralus",
 "northeurope",
 "southeastasia",
 "southcentralus",
 "uksouth",
 "westcentralus",
 "westus",

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn several ways to create an Azure Machine Learning workspace using Azure Resource

Manager templates. A Resource Manager template makes it easy to create resources as a single, coordinated

operation. A template is a JSON document that defines the resources that are needed for a deployment. It may also

specify deployment parameters. Parameters are used to provide input values when using the template.

For more information, see Deploy an application with Azure Resource Manager template.

An Azure subscr iption . If you do not have one, try the free or paid version of Azure Machine Learning.

To use a template from a CLI, you need either Azure PowerShell or the Azure CLI.

The following Resource Manager template can be used to create an Azure Machine Learning workspace and

associated Azure resources:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-create-workspace-template.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-powershell
https://aka.ms/AMLFree
https://docs.microsoft.com/powershell/azure/overview?view=azps-1.2.0
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

 "westus",
 "westus2",
 "westeurope"
],
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "sku":{
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred as 'edition' of the Azure Machine Learning
workspace."
 }
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": [
]
 }
 },
 {
 "type": "Microsoft.Insights/components",

 "type": "Microsoft.Insights/components",
 "apiVersion": "2018-05-01-preview",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"
 }
 }
]
}

This template creates the following Azure services:

Azure Resource Group

Azure Storage Account

Azure Key Vault

Azure Application Insights

Azure Container Registry

Azure Machine Learning workspace

The resource group is the container that holds the services. The various services are required by the Azure

Machine Learning workspace.

The example template has two parameters:

The location where the resource group and services will be created.

The template will use the location you select for most resources. The exception is the Application Insights

service, which is not available in all of the locations that the other services are. If you select a location where

it is not available, the service will be created in the South Central US location.

The workspace name, which is the friendly name of the Azure Machine Learning workspace.

TIP

WARNING

Advanced template

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "workspaceName": {
 "type": "string",
 "metadata": {
 "description": "Specifies the name of the Azure Machine Learning workspace."
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "southcentralus",
 "allowedValues": [
 "eastus",
 "eastus2",
 "southcentralus",
 "southeastasia",
 "westcentralus",
 "westeurope",
 "westus2"
],
 "metadata": {

NOTE
The workspace name is case-insensitive.

The names of the other services are generated randomly.

While the template associated with this document creates a new Azure Container Registry, you can also create a new

workspace without creating a container registry. One will be created when you perform an operation that requires a

container registry. For example, training or deploying a model.

You can also reference an existing container registry or storage account in the Azure Resource Manager template, instead of

creating a new one.

Once an Azure Container Registry has been created for a workspace, do not delete it. Doing so will break your Azure

Machine Learning workspace.

For more information on templates, see the following articles:

Author Azure Resource Manager templates

Deploy an application with Azure Resource Manager templates

Microsoft.MachineLearningServices resource types

The following example template demonstrates how to create a workspace with three settings:

Enable high confidentiality settings for the workspace

Enable encryption for the workspace

Uses an existing Azure Key Vault to retrieve customer-managed keys

For more information, see Encryption at rest.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/template-syntax
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-powershell
https://docs.microsoft.com/azure/templates/microsoft.machinelearningservices/allversions

 "description": "Specifies the location for all resources."
 }
 },
 "sku":{
 "type": "string",
 "defaultValue": "basic",
 "allowedValues": [
 "basic",
 "enterprise"
],
 "metadata": {
 "description": "Specifies the sku, also referred to as 'edition' of the Azure Machine Learning
workspace."
 }
 },
 "high_confidentiality":{
 "type": "string",
 "defaultValue": "false",
 "allowedValues": [
 "false",
 "true"
],
 "metadata": {
 "description": "Specifies that the Azure Machine Learning workspace holds highly confidential data."
 }
 },
 "encryption_status":{
 "type": "string",
 "defaultValue": "Disabled",
 "allowedValues": [
 "Enabled",
 "Disabled"
],
 "metadata": {
 "description": "Specifies if the Azure Machine Learning workspace should be encrypted with the
customer managed key."
 }
 },
 "cmk_keyvault":{
 "type": "string",
 "metadata": {
 "description": "Specifies the customer managed keyvault Resource Manager ID."
 }
 },
 "resource_cmk_uri":{
 "type": "string",
 "metadata": {
 "description": "Specifies the customer managed keyvault key uri."
 }
 }
 },
 "variables": {
 "storageAccountName": "[concat('sa',uniqueString(resourceGroup().id))]",
 "storageAccountType": "Standard_LRS",
 "keyVaultName": "[concat('kv',uniqueString(resourceGroup().id))]",
 "tenantId": "[subscription().tenantId]",
 "applicationInsightsName": "[concat('ai',uniqueString(resourceGroup().id))]",
 "containerRegistryName": "[concat('cr',uniqueString(resourceGroup().id))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2018-07-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "StorageV2",

 "kind": "StorageV2",
 "properties": {
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 },
 "supportsHttpsTrafficOnly": true
 }
 },
 {
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": []
 }
 },
 {
 "type": "Microsoft.Insights/components",
 "apiVersion": "2015-05-01",
 "name": "[variables('applicationInsightsName')]",
 "location": "
[if(or(equals(parameters('location'),'eastus2'),equals(parameters('location'),'westcentralus')),'southcentralu
s',parameters('location'))]",
 "kind": "web",
 "properties": {
 "Application_Type": "web"
 }
 },
 {
 "type": "Microsoft.ContainerRegistry/registries",
 "apiVersion": "2017-10-01",
 "name": "[variables('containerRegistryName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "Standard"
 },
 "properties": {
 "adminUserEnabled": true
 }
 },
 {
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2020-01-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]",
 "[resourceId('Microsoft.ContainerRegistry/registries', variables('containerRegistryName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",

 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[resourceId('Microsoft.KeyVault/vaults',variables('keyVaultName'))]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "containerRegistry": "
[resourceId('Microsoft.ContainerRegistry/registries',variables('containerRegistryName'))]",
 "storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]",
 "encryption": {
 "status": "[parameters('encryption_status')]",
 "keyVaultProperties": {
 "keyVaultArmId": "[parameters('cmk_keyvault')]",
 "keyIdentifier": "[parameters('resource_cmk_uri')]"
 }
 },
 "hbiWorkspace": "[parameters('high_confidentiality')]"
 }
 }
]
}

az keyvault show --name mykeyvault --resource-group myresourcegroup --query "id"

az keyvault key show --vault-name mykeyvault --name mykey --query "key.kid"

IMPORTANT

Use the Azure portal

To get the ID of the Key Vault, and the key URI needed by this template, you can use the Azure CLI. The following

command gets the Key Vault ID:

This command returns a value similar to
"/subscriptions/{subscription-
guid}/resourceGroups/myresourcegroup/providers/Microsoft.KeyVault/vaults/mykeyvault"

.

To get the URI for the customer managed key, use the following command:

This command returns a value similar to "https://mykeyvault.vault.azure.net/keys/mykey/{guid}" .

Once a workspace has been created, you cannot change the settings for confidential data, encryption, key vault ID, or key

identifiers. To change these values, you must create a new workspace using the new values.

1. Follow the steps in Deploy resources from custom template. When you arrive at the Edit template screen,

paste in the template from this document.

2. Select Save to use the template. Provide the following information and agree to the listed terms and

conditions:

Subscription: Select the Azure subscription to use for these resources.

Resource group: Select or create a resource group to contain the services.

Workspace name: The name to use for the Azure Machine Learning workspace that will be created. The

workspace name must be between 3 and 33 characters. It may only contain alphanumeric characters and

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy-portal#deploy-resources-from-custom-template

Use Azure PowerShell

New-AzResourceGroup -Name examplegroup -Location "East US"
new-azresourcegroupdeployment -name exampledeployment `
 -resourcegroupname examplegroup -location "East US" `
 -templatefile .\azuredeploy.json -workspaceName "exampleworkspace" -sku "basic"

Use the Azure CLI

az group create --name examplegroup --location "East US"
az group deployment create \
 --name exampledeployment \
 --resource-group examplegroup \
 --template-file azuredeploy.json \
 --parameters workspaceName=exampleworkspace location=eastus sku=basic

Troubleshooting
Resource provider errors

Azure Key Vault access policy and Azure Resource Manager templates

'-'.

Location: Select the location where the resources will be created.

For more information, see Deploy resources from custom template.

This example assumes that you have saved the template to a file named azuredeploy.json in the current directory:

For more information, see Deploy resources with Resource Manager templates and Azure PowerShell and Deploy

private Resource Manager template with SAS token and Azure PowerShell.

This example assumes that you have saved the template to a file named azuredeploy.json in the current directory:

For more information, see Deploy resources with Resource Manager templates and Azure CLI and Deploy private

Resource Manager template with SAS token and Azure CLI.

When creating an Azure Machine Learning workspace, or a resource used by the workspace, you may receive an

error similar to the following messages:

No registered resource provider found for location {location}

The subscription is not registered to use namespace {resource-provider-namespace}

Most resource providers are automatically registered, but not all. If you receive this message, you need to register

the provider mentioned.

For information on registering resource providers, see Resolve errors for resource provider registration.

When you use an Azure Resource Manager template to create the workspace and associated resources (including

Azure Key Vault), multiple times. For example, using the template multiple times with the same parameters as part

of a continuous integration and deployment pipeline.

Most resource creation operations through templates are idempotent, but Key Vault clears the access policies each

time the template is used. Clearing the access policies breaks access to the Key Vault for any existing workspace

that is using it. For example, Stop/Create functionalities of Azure Notebooks VM may fail.

To avoid this problem, we recommend one of the following approaches:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/secure-template-with-sas-token
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider

az keyvault show --name mykeyvault --resource-group myresourcegroup --query properties.accessPolicies

Do not deploy the template more than once for the same parameters. Or delete the existing resources

before using the template to recreate them.

Examine the Key Vault access policies and then use these policies to set the accessPolicies property of the

template. To view the access policies, use the following Azure CLI command:

For more information on using the accessPolicies section of the template, see the AccessPolicyEntry object

reference.

Check if the Key Vault resource already exists. If it does, do not recreate it through the template. For

example, to use the existing Key Vault instead of creating a new one, make the following changes to the

template:

"keyVaultId":{
 "type": "string",
 "metadata": {
 "description": "Specify the existing Key Vault ID."
 }
}

{
 "type": "Microsoft.KeyVault/vaults",
 "apiVersion": "2018-02-14",
 "name": "[variables('keyVaultName')]",
 "location": "[parameters('location')]",
 "properties": {
 "tenantId": "[variables('tenantId')]",
 "sku": {
 "name": "standard",
 "family": "A"
 },
 "accessPolicies": [
]
 }
},

Add a parameter that accepts the ID of an existing Key Vault resource:

Remove the section that creates a Key Vault resource:

Remove the "[resourceId('Microsoft.KeyVault/vaults', variables('keyVaultName'))]", line from the

dependsOn section of the workspace. Also Change the keyVault entry in the properties section of

the workspace to reference the keyVaultId parameter :

https://docs.microsoft.com/azure/templates/Microsoft.KeyVault/2018-02-14/vaults#AccessPolicyEntry

Next steps

az keyvault show --name mykeyvault --resource-group myresourcegroup --query id

/subscriptions/{subscription-
guid}/resourceGroups/myresourcegroup/providers/Microsoft.KeyVault/vaults/mykeyvault

{
 "type": "Microsoft.MachineLearningServices/workspaces",
 "apiVersion": "2019-11-01",
 "name": "[parameters('workspaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]",
 "[resourceId('Microsoft.Insights/components', variables('applicationInsightsName'))]"
],
 "identity": {
 "type": "systemAssigned"
 },
 "sku": {
 "tier": "[parameters('sku')]",
 "name": "[parameters('sku')]"
 },
 "properties": {
 "friendlyName": "[parameters('workspaceName')]",
 "keyVault": "[parameters('keyVaultId')]",
 "applicationInsights": "
[resourceId('Microsoft.Insights/components',variables('applicationInsightsName'))]",
 "storageAccount": "
[resourceId('Microsoft.Storage/storageAccounts/',variables('storageAccountName'))]"
 }
}

After these changes, you can specify the ID of the existing Key Vault resource when running the template.

The template will then reuse the Key Vault by setting the keyVault property of the workspace to its ID.

To get the ID of the Key Vault, you can reference the output of the original template run or use the Azure CLI.

The following command is an example of using the Azure CLI to get the Key Vault resource ID:

This command returns a value similar to the following text:

Deploy resources with Resource Manager templates and Resource Manager REST API.

Creating and deploying Azure resource groups through Visual Studio.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-rest
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/create-visual-studio-deployment-project

Configure a development environment for Azure
Machine Learning
4/16/2020 • 12 minutes to read • Edit Online

EN VIRO N M EN T P RO S C O N S

Cloud-based Azure Machine Learning
compute instance (preview)

Easiest way to get started. The entire
SDK is already installed in your
workspace VM, and notebook tutorials
are pre-cloned and ready to run.

Lack of control over your development
environment and dependencies.
Additional cost incurred for Linux VM
(VM can be stopped when not in use
to avoid charges). See pricing details.

Local environment Full control of your development
environment and dependencies. Run
with any build tool, environment, or
IDE of your choice.

Takes longer to get started. Necessary
SDK packages must be installed, and an
environment must also be installed if
you don't already have one.

Azure Databricks Ideal for running large-scale intensive
machine learning workflows on the
scalable Apache Spark platform.

Overkill for experimental machine
learning, or smaller-scale experiments
and workflows. Additional cost incurred
for Azure Databricks. See pricing
details.

The Data Science Virtual Machine
(DSVM)

Similar to the cloud-based compute
instance (Python and the SDK are pre-
installed), but with additional popular
data science and machine learning
tools pre-installed. Easy to scale and
combine with other custom tools and
workflows.

A slower getting started experience
compared to the cloud-based compute
instance.

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to configure a development environment to work with Azure Machine Learning.

Azure Machine Learning is platform agnostic. The only hard requirement for your development environment is

Python 3. An isolated environment like Anaconda or Virtualenv is also recommended.

The following table shows each development environment covered in this article, along with pros and cons.

This article also provides additional usage tips for the following tools:

Jupyter Notebooks: If you're already using the Jupyter Notebook, the SDK has some extras that you should

install.

Visual Studio Code: If you use Visual Studio Code, the Azure Machine Learning extension includes extensive

language support for Python as well as features to make working with the Azure Machine Learning much

more convenient and productive.

An Azure Machine Learning workspace. To create the workspace, see Create an Azure Machine Learning

workspace. A workspace is all you need to get started with your own cloud-based notebook server, a DSVM, or

Azure Databricks.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-configure-environment.md
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/pricing/details/databricks/
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-ai

Your own cloud-based compute instance

Data Science Virtual Machine

To install the SDK environment for your local computer, Jupyter Notebook server or Visual Studio Code you also

need:

TIP

Either the Anaconda or Miniconda package manager.

On Linux or macOS, you need the bash shell.

If you're on Linux or macOS and use a shell other than bash (for example, zsh) you might receive errors when you

run some commands. To work around this problem, use the bash command to start a new bash shell and run the

commands there.

On Windows, you need the command prompt or Anaconda prompt (installed by Anaconda and

Miniconda).

The Azure Machine Learning compute instance (preview) is a secure, cloud-based Azure workstation that provides

data scientists with a Jupyter notebook server, JupyterLab, and a fully prepared ML environment.

There is nothing to install or configure for a compute instance. Create one anytime from within your Azure

Machine Learning workspace. Provide just a name and specify an Azure VM type. Try it now with this Tutorial:

Setup environment and workspace.

Learn more about compute instances.

To stop incurring compute charges, stop the compute instance.

The DSVM is a customized virtual machine (VM) image. It's designed for data science work that's pre-configured

with:

Packages such as TensorFlow, PyTorch, Scikit-learn, XGBoost, and the Azure Machine Learning SDK

Popular data science tools such as Spark Standalone and Drill

Azure tools such as the Azure CLI, AzCopy, and Storage Explorer

Integrated development environments (IDEs) such as Visual Studio Code and PyCharm

Jupyter Notebook Server

The Azure Machine Learning SDK works on either the Ubuntu or Windows version of the DSVM. But if you plan to

use the DSVM as a compute target as well, only Ubuntu is supported.

To use the DSVM as a development environment:

1. Create a DSVM in either of the following environments:

The Azure portal:

Create an Ubuntu Data Science Virtual Machine

Create a Windows Data Science Virtual Machine

The Azure CLI:

https://www.anaconda.com/download/
https://conda.io/miniconda.html
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/provision-vm

 Local computer

import azureml.core
print(azureml.core.VERSION)

IMPORTANT
When you use the Azure CLI, you must first sign in to your Azure subscription by using the

az login command.

When you use the commands in this step, you must provide a resource group name, a name for the

VM, a username, and a password.

create a Ubuntu DSVM in your resource group
note you need to be at least a contributor to the resource group in order to execute
this command successfully
If you need to create a new resource group use: "az group create --name YOUR-RESOURCE-
GROUP-NAME --location YOUR-REGION (For example: westus2)"
az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image
microsoft-dsvm:linux-data-science-vm-ubuntu:linuxdsvmubuntu:latest --admin-username YOUR-
USERNAME --admin-password YOUR-PASSWORD --generate-ssh-keys --authentication-type
password

create a Windows Server 2016 DSVM in your resource group
note you need to be at least a contributor to the resource group in order to execute
this command successfully
az vm create --resource-group YOUR-RESOURCE-GROUP-NAME --name YOUR-VM-NAME --image
microsoft-dsvm:dsvm-windows:server-2016:latest --admin-username YOUR-USERNAME --admin-
password YOUR-PASSWORD --authentication-type password

To create an Ubuntu Data Science Virtual Machine, use the following command:

To create a Windows Data Science Virtual Machine, use the following command:

2. The Azure Machine Learning SDK is already installed on the DSVM. To use the Conda environment that

contains the SDK, use one of the following commands:

conda activate py36

conda activate AzureML

For Ubuntu DSVM:

For Windows DSVM:

3. To verify that you can access the SDK and check the version, use the following Python code:

4. To configure the DSVM to use your Azure Machine Learning workspace, see the Create a workspace

configuration file section.

For more information, see Data Science Virtual Machines.

When you're using a local computer (which might also be a remote virtual machine), create an Anaconda

environment and install the SDK. Here's an example:

https://azure.microsoft.com/services/virtual-machines/data-science-virtual-machines/

conda create -n myenv python=3.6.5

conda activate myenv

conda install notebook ipykernel

ipython kernel install --user --name myenv --display-name "Python (myenv)"

pip install azureml-sdk[notebooks,automl]

NOTE

1. Download and install Anaconda (Python 3.7 version) if you don't already have it.

2. Open an Anaconda prompt and create an environment with the following commands:

Run the following command to create the environment.

Then activate the environment.

This example creates an environment using python 3.6.5, but any specific subversions can be chosen. SDK

compatibility may not be guaranteed with certain major versions (3.5+ is recommended), and it's

recommended to try a different version/subversion in your Anaconda environment if you run into errors. It

will take several minutes to create the environment while components and packages are downloaded.

3. Run the following commands in your new environment to enable environment-specific IPython kernels.

This will ensure expected kernel and package import behavior when working with Jupyter Notebooks

within Anaconda environments:

Then run the following command to create the kernel:

4. Use the following commands to install packages:

This command installs the base Azure Machine Learning SDK with notebook and automl extras. The

automl extra is a large install, and can be removed from the brackets if you don't intend to run automated

machine learning experiments. The automl extra also includes the Azure Machine Learning Data Prep SDK

by default as a dependency.

If you get a message that PyYAML can't be uninstalled, use the following command instead:

pip install --upgrade azureml-sdk[notebooks,automl] --ignore-installed PyYAML

Starting with macOS Catalina, zsh (Z shell) is the default login shell and interactive shell. In zsh, use the

following command which escapes brackets with "\" (backslash):

pip install --upgrade azureml-sdk\[notebooks,automl\]

It will take several minutes to install the SDK. For more information on installation options, see the install

guide.

5. Install other packages for your machine learning experimentation.

Use either of the following commands and replace <new package> with the package you want to install.

https://www.anaconda.com/distribution/#download-section
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Jupyter Notebooks

Visual Studio Code

conda install <new package>

pip install <new package>

Installing packages via conda install requires that the package is part of the current channels (new

channels can be added in Anaconda Cloud).

Alternatively, you can install packages via pip .

Jupyter Notebooks are part of the Jupyter Project. They provide an interactive coding experience where you

create documents that mix live code with narrative text and graphics. Jupyter Notebooks are also a great way to

share your results with others, because you can save the output of your code sections in the document. You can

install Jupyter Notebooks on a variety of platforms.

The procedure in the Local computer section installs necessary components for running Jupyter Notebooks in an

Anaconda environment.

To enable these components in your Jupyter Notebook environment:

conda activate myenv

git clone https://github.com/Azure/MachineLearningNotebooks.git

jupyter notebook

import azureml.core
azureml.core.VERSION

import sys
sys.path

1. Open an Anaconda prompt and activate your environment.

2. Clone the GitHub repository for a set of sample notebooks.

3. Launch the Jupyter Notebook server with the following command:

4. To verify that Jupyter Notebook can use the SDK, create a New notebook, select Python 3 as your kernel,

and then run the following command in a notebook cell:

5. If you encounter issues importing modules and receive a ModuleNotFoundError , ensure your Jupyter kernel

is connected to the correct path for your environment by running the following code in a Notebook cell.

6. To configure the Jupyter Notebook to use your Azure Machine Learning workspace, go to the Create a

workspace configuration file section.

Visual Studio Code is a very popular cross platform code editor that supports an extensive set of programming

languages and tools through extensions available in the Visual Studio marketplace. The Azure Machine Learning

extension installs the Python extension for coding in all types of Python environments (virtual, Anaconda, etc.). In

https://jupyter.org/
https://aka.ms/aml-notebooks
https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-ai
https://marketplace.visualstudio.com/items?itemName=ms-python.python

 Azure Databricks

Set up your Databricks cluster

SET T IN G A P P L IES TO VA L UE

Cluster name always yourclustername

Databricks Runtime always Non-ML Runtime 6.5 (scala 2.11, spark
2.4.3)

Python version always 3

Workers always 2 or higher

Worker node VM types
(determines max # of concurrent
iterations)

Automated ML
only

Memory optimized VM preferred

addition, it provides convenience features for working with Azure Machine Learning resources and running Azure

Machine Learning experiments all without leaving Visual Studio Code.

To use Visual Studio Code for development:

#%%
import azureml.core
azureml.core.VERSION

1. Install the Azure Machine Learning extension for Visual Studio Code, see Azure Machine Learning.

For more information, see Use Azure Machine Learning for Visual Studio Code.

2. Learn how to use Visual Studio Code for any type of Python development, see Get started with Python in

VSCode.

To select the SDK Python environment containing the SDK, open VS Code, and then select

Ctrl+Shift+P (Linux and Windows) or Command+Shift+P (Mac).

The Command Palette opens.

Enter Python: Select Interpreter , and then select the appropriate environment

3. To validate that you can use the SDK, create a new Python file (.py) that contains the following code:

 Run this code by clicking the "Run cell" CodeLens or simply press shift-enter.

Azure Databricks is an Apache Spark-based environment in the Azure cloud. It provides a collaborative Notebook-

based environment with CPU or GPU-based compute cluster.

How Azure Databricks works with Azure Machine Learning:

You can train a model using Spark MLlib and deploy the model to ACI/AKS from within Azure Databricks.

You can also use automated machine learning capabilities in a special Azure ML SDK with Azure Databricks.

You can use Azure Databricks as a compute target from an Azure Machine Learning pipeline.

Create a Databricks cluster. Some settings apply only if you install the SDK for automated machine learning on

Databricks. It will take few minutes to create the cluster.

Use these settings:

https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-ai
https://code.visualstudio.com/docs/python/python-tutorial
https://docs.microsoft.com/azure/azure-databricks/quickstart-create-databricks-workspace-portal

Enable Autoscaling Automated ML
only

Uncheck

SET T IN G A P P L IES TO VA L UE

Install the correct SDK into a Databricks library

Wait until the cluster is running before proceeding further.

Once the cluster is running, create a library to attach the appropriate Azure Machine Learning SDK package to

your cluster.

SDK PA C KA GE EXT RA S SO URC E P Y P I N A M E

For Databricks Upload Python Egg or PyPI azureml-sdk[databricks]

For Databricks -with-
automated ML capabilities

Upload Python Egg or PyPI azureml-sdk[automl]

WARNING

1. Right-click the current Workspace folder where you want to store the library. Select Create > L ibrar y .

2. Choose only one option (no other SDK installation are supported)

No other SDK extras can be installed. Choose only one of the preceding options [databricks] or [automl].

Do not select Attach automatically to all clusters .

Select Attach next to your cluster name.

3. Monitor for errors until status changes to Attached, which may take several minutes. If this step fails:

Try restarting your cluster by:

a. In the left pane, select Clusters .

b. In the table, select your cluster name.

c. On the L ibrar ies tab, select Restar t .

Also consider :

In AutoML config, when using Azure Databricks add the following parameters:

Or, if you have an old SDK version, deselect it from cluster's installed libs and move to trash. Install the

new SDK version and restart the cluster. If there is an issue after the restart, detach and reattach your

cluster.

a. max_concurrent_iterations is based on number of worker nodes in your cluster.

b. spark_context=sc is based on the default spark context.

If install was successful, the imported library should look like one of these:

SDK for Databricks without automated machine learning

https://docs.databricks.com/user-guide/libraries.html#create-a-library

Start exploring

SDK for Databricks WITH automated machine learning

Try it out:

While many sample notebooks are available, only these sample notebooks work with Azure

Databricks.

Import these samples directly from your workspace. See below:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks

 Create a workspace configuration file

{
 "subscription_id": "<subscription-id>",
 "resource_group": "<resource-group>",
 "workspace_name": "<workspace-name>"
}

Learn how to create a pipeline with Databricks as the training compute.

The workspace configuration file is a JSON file that tells the SDK how to communicate with your Azure Machine

Learning workspace. The file is named config.json, and it has the following format:

This JSON file must be in the directory structure that contains your Python scripts or Jupyter Notebooks. It can be

in the same directory, a subdirectory named .azureml, or in a parent directory.

To use this file from your code, use ws=Workspace.from_config() . This code loads the information from the file and

connects to your workspace.

You can create the configuration file in three ways:

Use ws.write_config: to write a config.json file. The file contains the configuration information for your

workspace. You can download or copy the config.json to other development environments.

Download the file: In the Azure portal, select Download config.json from the Over view section of

your workspace.

Create the file programmatically : In the following code snippet, you connect to a workspace by

providing the subscription ID, resource group, and workspace name. It then saves the workspace

configuration to the file:

https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://ms.portal.azure.com

Next steps

from azureml.core import Workspace

subscription_id = '<subscription-id>'
resource_group = '<resource-group>'
workspace_name = '<workspace-name>'

try:
 ws = Workspace(subscription_id = subscription_id, resource_group = resource_group, workspace_name
= workspace_name)
 ws.write_config()
 print('Library configuration succeeded')
except:
 print('Workspace not found')

This code writes the configuration file to the .azureml/config.json file.

Train a model on Azure Machine Learning with the MNIST dataset

View the Azure Machine Learning SDK for Python reference

https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Reuse environments for training and deployment by
using Azure Machine Learning
4/17/2020 • 12 minutes to read • Edit Online

Prerequisites

Create an environment

Use a curated environment

from azureml.core import Workspace, Environment

ws = Workspace.from_config()
env = Environment.get(workspace=ws, name="AzureML-Minimal")

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, learn how to create and manage Azure Machine Learning environments. Use the environments to

track and reproduce your projects' software dependencies as they evolve.

Software dependency management is a common task for developers. You want to ensure that builds are

reproducible without extensive manual software configuration. The Azure Machine Learning Environment class

accounts for local development solutions such as pip and Conda, and it provides a solution for both local and

distributed cloud development.

The examples in this article show how to:

Create an environment and specify package dependencies.

Retrieve and update environments.

Use an environment for training.

Use an environment for web service deployment.

For a high-level overview of how environments work in Azure Machine Learning, see What are ML

environments?.

The Azure Machine Learning SDK for Python

An Azure Machine Learning workspace

The following sections explore the multiple ways that you can create an environment for your experiments.

You can select one of the curated environments to start with:

The AzureML-Minimal environment contains a minimal set of packages to enable run tracking and asset

uploading. You can use it as a starting point for your own environment.

The AzureML-Tutorial environment contains common data science packages. These packages include

Scikit-Learn, Pandas, Matplotlib, and a larger set of azureml-sdk packages.

Curated environments are backed by cached Docker images. This backing reduces the run preparation cost.

Use the Environment.get method to select one of the curated environments:

You can list the curated environments and their packages by using the following code:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-environments.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

envs = Environment.list(workspace=ws)

for env in envs:
 if env.startswith("AzureML"):
 print("Name",env)
 print("packages", envs[env].python.conda_dependencies.serialize_to_string())

WARNING

Instantiate an environment object

from azureml.core.environment import Environment
Environment(name="myenv")

Use Conda and pip specification files

From a Conda specification file
myenv = Environment.from_conda_specification(name = "myenv",
 file_path = "path-to-conda-specification-file")

From a pip requirements file
myenv = Environment.from_pip_requirements(name = "myenv"
 file_path = "path-to-pip-requirements-file")

Use existing Conda environments

myenv = Environment.from_existing_conda_environment(name = "myenv",
 conda_environment_name = "mycondaenv")

Create environments automatically

Don't start your own environment name with the AzureML prefix. This prefix is reserved for curated environments.

To manually create an environment, import the Environment class from the SDK. Then use the following code to

instantiate an environment object.

You can also create an environment from a Conda specification or a pip requirements file. Use the

from_conda_specification() method or the from_pip_requirements() method. In the method argument, include

your environment name and the file path of the file that you want.

If you have an existing Conda environment on your local computer, then you can use the service to create an

environment object. By using this strategy, you can reuse your local interactive environment on remote runs.

The following code creates an environment object from the existing Conda environment mycondaenv . It uses the

from_existing_conda_environment() method.

Automatically create an environment by submitting a training run. Submit the run by using the submit()

method. When you submit a training run, the building of the new environment can take several minutes. The

build duration depends on the size of the required dependencies.

If you don't specify an environment in your run configuration before you submit the run, then a default

environment is created for you.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#from-conda-specification-name--file-path-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#from-pip-requirements-name--file-path-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#from-existing-conda-environment-name--conda-environment-name-

from azureml.core import ScriptRunConfig, Experiment, Environment
Create experiment
myexp = Experiment(workspace=ws, name = "environment-example")

Attach training script and compute target to run config
runconfig = ScriptRunConfig(source_directory=".", script="example.py")
runconfig.run_config.target = "local"

Submit the run
run = myexp.submit(config=runconfig)

Show each step of run
run.wait_for_completion(show_output=True)

Add packages to an environment

Conda and pip packages

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies

myenv = Environment(name="myenv")
conda_dep = CondaDependencies()

Installs numpy version 1.17.0 conda package
conda_dep.add_conda_package("numpy==1.17.0")

Installs pillow package
conda_dep.add_pip_package("pillow")

Adds dependencies to PythonSection of myenv
myenv.python.conda_dependencies=conda_dep

IMPORTANT

Private wheel files

Similarly, if you use an Estimator object for training, you can directly submit the estimator instance as a run

without specifying an environment. The Estimator object already encapsulates the environment and the

compute target.

Add packages to an environment by using Conda, pip, or private wheel files. Specify each package dependency

by using the CondaDependency class. Add it to the environment's PythonSection .

If a package is available in a Conda package repository, then we recommend that you use the Conda installation

rather than the pip installation. Conda packages typically come with prebuilt binaries that make installation more

reliable.

The following example adds to the environment. It adds version 1.17.0 of numpy . It also adds the pillow

package, myenv . The example uses the add_conda_package() method and the add_pip_package() method,

respectively.

If you use the same environment definition for another run, the Azure Machine Learning service reuses the cached image

of your environment. If you create an environment with an unpinned package dependency, for example numpy , that

environment will keep using the package version installed at the time of environment creation. Also, any future

environment with matching definition will keep using the old version. For more information, see Environment building,

caching, and reuse.

You can use private pip wheel files by first uploading them to your workspace storage. You upload them by using

https://docs.microsoft.com//python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py#add-conda-package-conda-package-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py#add-pip-package-pip-package-
https://docs.microsoft.com/azure/machine-learning/concept-environments#environment-building-caching-and-reuse

During environment creation the service replaces the URL by secure SAS URL, so your wheel file is kept
private and secure
whl_url = Environment.add_private_pip_wheel(workspace=ws,file_path = "my-custom.whl")
myenv = Environment(name="myenv")
conda_dep = CondaDependencies()
conda_dep.add_pip_package(whl_url)
myenv.python.conda_dependencies=conda_dep

Manage environments

Register environments

myenv.register(workspace=ws)

Get existing environments

View a list of environments

Get an environment by name

restored_environment = Environment.get(workspace=ws,name="myenv",version="1")

Train a run-specific environment

from azureml.core import Run
Run.get_environment()

Update an existing environment

a static add_private_pip_wheel() method. Then you capture the storage URL and pass the URL to the

add_pip_package() method.

Manage environments so that you can update, track, and reuse them across compute targets and with other

users of the workspace.

The environment is automatically registered with your workspace when you submit a run or deploy a web

service. You can also manually register the environment by using the register() method. This operation makes

the environment into an entity that's tracked and versioned in the cloud. The entity can be shared between

workspace users.

The following code registers the myenv environment to the ws workspace.

When you use the environment for the first time in training or deployment, it's registered with the workspace.

Then it's built and deployed on the compute target. The service caches the environments. Reusing a cached

environment takes much less time than using a new service or one that has been updated.

The Environment class offers methods that allow you to retrieve existing environments in your workspace. You

can retrieve environments by name, as a list, or by a specific training run. This information is helpful for

troubleshooting, auditing, and reproducibility.

View the environments in your workspace by using the Environment.list(workspace="workspace_name") class.

Then select an environment to reuse.

You can also get a specific environment by name and version. The following code uses the get() method to

retrieve version 1 of the myenv environment on the ws workspace.

To get the environment that was used for a specific run after the training finishes, use the get_environment()

method in the Run class.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py#add-private-pip-wheel-workspace--file-path--exist-ok-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py#register-workspace-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py#list-workspace-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py#get-workspace--name--version-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#get-environment--

Debug the image build

from azureml.core import Image
build = env.build(workspace=ws)
build.wait_for_completion(show_output=True)

Enable Docker

Creates the environment inside a Docker container.
myenv.docker.enabled = True

Specify custom Docker base image and registry, if you don't want to use the defaults
myenv.docker.base_image="your_base-image"
myenv.docker.base_image_registry="your_registry_location"

Say you change an existing environment, for example, by adding a Python package. A new version of the

environment is then created when you submit a run, deploy a model, or manually register the environment. The

versioning allows you to view the environment's changes over time.

To update a Python package version in an existing environment, specify the version number for that package. If

you don't use the exact version number, then Azure Machine Learning will reuse the existing environment with its

original package versions.

The following example uses the build() method to manually create an environment as a Docker image. It

monitors the output logs from the image build by using wait_for_completion() . The built image then appears in

the workspace's Azure Container Registry instance. This information is helpful for debugging.

The DockerSection of the Azure Machine Learning Environment class allows you to finely customize and control

the guest operating system on which you run your training.

When you enable Docker, the service builds a Docker image. It also creates a Python environment that uses your

specifications within that Docker container. This functionality provides additional isolation and reproducibility for

your training runs.

By default, the newly built Docker image appears in the container registry that's associated with the workspace.

The repository name has the form azureml/azureml_<uuid>. The unique identifier (uuid) part of the name

corresponds to a hash that's computed from the environment configuration. This correspondence allows the

service to determine whether an image for the given environment already exists for reuse.

Additionally, the service automatically uses one of the Ubuntu Linux-based base images. It installs the specified

Python packages. The base image has CPU versions and GPU versions. Azure Machine Learning automatically

detects which version to use.

You can also specify a custom Dockerfile. It's simplest to start from one of Azure Machine Learning base images

using Docker FROM command, and then add your own custom steps. Use this approach if you need to install

non-Python packages as dependencies.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py#build-workspace--image-build-compute-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.image(class)?view=azure-ml-py#wait-for-creation-show-output-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.dockersection?view=azure-ml-py
https://github.com/Azure/AzureML-Containers

Specify docker steps as a string. Alternatively, load the string from a file.
dockerfile = r"""
FROM mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04
RUN echo "Hello from custom container!"
"""

Set base image to None, because the image is defined by dockerfile.
myenv.docker.base_image = None
myenv.docker.base_dockerfile = dockerfile

Use user-managed dependencies

dockerfile = """
FROM mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04
RUN conda install numpy
"""

myenv.docker.base_image = None
myenv.docker.base_dockerfile = dockerfile
myenv.python.user_managed_dependencies=True
myenv.python.interpreter_path = "/opt/miniconda/bin/python"

Use environments for training

In some situations, your custom base image may already contain a Python environment with packages that you

want to use.

By default, Azure Machine Learning service will build a Conda environment with dependencies you specified, and

will execute the run in that environment instead of using any Python libraries that you installed on the base

image.

To use your own installed packages, set the parameter Environment.python.user_managed_dependencies = True .

Ensure that the base image contains a Python interpreter, and has the packages your training script needs.

For example, to run in a base Miniconda environment that has NumPy package installed, first specify a Dockerfile

with a step to install the package. Then set the user-managed dependencies to True .

You can also specify a path to a specific Python interpreter within the image, by setting the

Environment.python.interpreter_path variable.

To submit a training run, you need to combine your environment, compute target, and your training Python

script into a run configuration. This configuration is a wrapper object that's used for submitting runs.

When you submit a training run, the building of a new environment can take several minutes. The duration

depends on the size of the required dependencies. The environments are cached by the service. So as long as the

environment definition remains unchanged, you incur the full setup time only once.

The following local script run example shows where you would use ScriptRunConfig as your wrapper object.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py

from azureml.core import ScriptRunConfig, Experiment
from azureml.core.environment import Environment

exp = Experiment(name="myexp", workspace = ws)
Instantiate environment
myenv = Environment(name="myenv")

Add training script to run config
runconfig = ScriptRunConfig(source_directory=".", script="train.py")

Attach compute target to run config
runconfig.run_config.target = "local"

Attach environment to run config
runconfig.run_config.environment = myenv

Submit run
run = exp.submit(runconfig)

NOTE

Use an estimator for training

from azureml.train.estimator import Estimator

script_params = {
 '--data-folder': ds.as_mount(),
 '--regularization': 0.8
}

sk_est = Estimator(source_directory='./my-sklearn-proj',
 script_params=script_params,
 compute_target=compute_target,
 entry_script='train.py',
 conda_packages=['scikit-learn'])

Submit the run
run = experiment.submit(sk_est)

Use environments for web service deployment

To disable the run history or run snapshots, use the setting under ScriptRunConfig.run_config.history .

If you don't specify the environment in your run configuration, then the service creates a default environment

when you submit your run.

If you use an estimator for training, then you can submit the estimator instance directly. It already encapsulates

the environment and the compute target.

The following code uses an estimator for a single-node training run. It runs on a remote compute for a

scikit-learn model. It assumes that you previously created a compute target object, compute_target , and a

datastore object, ds .

You can use environments when you deploy your model as a web service. This capability enables a reproducible,

connected workflow. In this workflow, you can train, test, and deploy your model by using the same libraries in

both your training compute and your inference compute.

To deploy a web service, combine the environment, inference compute, scoring script, and registered model in

your deployment object, deploy() . For more information, see How and where to deploy models.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-

from azureml.core.model import InferenceConfig, Model
from azureml.core.webservice import AciWebservice, Webservice

Register the model to deploy
model = run.register_model(model_name = "mymodel", model_path = "outputs/model.pkl")

Combine scoring script & environment in Inference configuration
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)

Set deployment configuration
deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1)

Define the model, inference, & deployment configuration and web service name and location to deploy
service = Model.deploy(
 workspace = ws,
 name = "my_web_service",
 models = [model],
 inference_config = inference_config,
 deployment_config = deployment_config)

Example notebooks

Create and manage environments with the CLI

az ml environment scaffold -n myenv -d myenvdir

az ml environment register -d myenvdir

az ml environment list

az ml environment download -n myenv -d downloaddir

In this example, assume that you've completed a training run. Now you want to deploy that model to Azure

Container Instances. When you build the web service, the model and scoring files are mounted on the image, and

the Azure Machine Learning inference stack is added to the image.

This example notebook expands upon concepts and methods demonstrated in this article.

Deploy a model using a custom Docker base image demonstrates how to deploy a model using a custom Docker

base image.

This example notebook demonstrates how to deploy a Spark model as a web service.

The Azure Machine Learning CLI mirrors most of the functionality of the Python SDK. You can use it to create and

manage environments. The commands that we discuss in this section demonstrate basic functionality.

The following command scaffolds the files for a default environment definition in the specified directory. These

files are JSON files. They work like the corresponding class in the SDK. You can use the files to create new

environments that have custom settings.

Run the following command to register an environment from a specified directory.

Run the following command to list all registered environments.

Download a registered environment by using the following command.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training/using-environments
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/spark

Next steps
To use a managed compute target to train a model, see Tutorial: Train a model.

After you have a trained model, learn how and where to deploy models.

View the Environment class SDK reference.

For more information about the concepts and methods described in this article, see the example notebook.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training/using-environments

Enable logging in Azure Machine Learning
3/5/2020 • 2 minutes to read • Edit Online

Training models and compute target logging

from azureml.core import Experiment

exp = Experiment(workspace=ws, name='test_experiment')
run = exp.start_logging()
run.log("test-val", 10)

from azureml.core import Experiment

experiment = Experiment(ws, experiment_name)
run = experiment.submit(config=run_config_object, show_output=True)

run.wait_for_completion(show_output=True)

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

The Azure Machine Learning Python SDK allows you to enable logging using both the default Python logging

package, as well as using SDK-specific functionality both for local logging and logging to your workspace in the

portal. Logs provide developers with real-time information about the application state, and can help with

diagnosing errors or warnings. In this article, you learn different ways of enabling logging in the following areas:

Training models and compute targets

Image creation

Deployed models

Python logging settings

Create an Azure Machine Learning workspace. Use the guide for more information the SDK.

There are multiple ways to enable logging during the model training process, and the examples shown will

illustrate common design patterns. You can easily log run-related data to your workspace in the cloud by using the

start_logging function on the Experiment class.

See the reference documentation for the Run class for additional logging functions.

To enable local logging of application state during training progress, use the show_output parameter. Enabling

verbose logging allows you to see details from the training process as well as information about any remote

resources or compute targets. Use the following code to enable logging upon experiment submission.

You can also use the same parameter in the wait_for_completion function on the resulting run.

The SDK also supports using the default python logging package in certain scenarios for training. The following

example enables a logging level of INFO in an AutoMLConfig object.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-enable-logging.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py

from azureml.train.automl import AutoMLConfig
import logging

automated_ml_config = AutoMLConfig(task='regression',
 verbosity=logging.INFO,
 X=your_training_features,
 y=your_training_labels,
 iterations=30,
 iteration_timeout_minutes=5,
 primary_metric="spearman_correlation")

from azureml.core.compute import ComputeTarget

compute_target = ComputeTarget.attach(
 workspace=ws, name="example", attach_configuration=config)
compute.wait_for_completion(show_output=True)

Logging for deployed models

from azureml.core.webservice import Webservice

load existing web service
service = Webservice(name="service-name", workspace=ws)
logs = service.get_logs()

service.update(enable_app_insights=True)

Python native logging settings

import logging
logging.basicConfig(level=logging.DEBUG)

Next steps

You can also use the show_output parameter when creating a persistent compute target. Specify the parameter in

the wait_for_completion function to enable logging during compute target creation.

To retrieve logs from a previously deployed web service, load the service and use the get_logs() function. The logs

may contain detailed information about any errors that occurred during deployment.

You can also log custom stack traces for your web service by enabling Application Insights, which allows you to

monitor request/response times, failure rates, and exceptions. Call the update() function on an existing web

service to enable Application Insights.

For more information, see Monitor and collect data from ML web service endpoints.

Certain logs in the SDK may contain an error that instructs you to set the logging level to DEBUG. To set the logging

level, add the following code to your script.

Monitor and collect data from ML web service endpoints

Where to save and write files for Azure Machine
Learning experiments
3/10/2020 • 3 minutes to read • Edit Online

Where to save input files

Storage limits of experiment snapshots

While attempting to take snapshot of .
Your total snapshot size exceeds the limit of 300.0 MB

EXP ERIM EN T DESC RIP T IO N STO RA GE L IM IT SO L UT IO N

Less than 2000 files & can't use a datastore Override snapshot size limit with
azureml._restclient.snapshots_client.SNAPSHOT_MAX_SIZE_BYTES
= 'insert_desired_size'

This may take several minutes depending on the number and
size of files.

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn where to save input files, and where to write output files from your experiments to prevent

storage limit errors and experiment latency.

When launching training runs on a compute target, they are isolated from outside environments. The purpose of

this design is to ensure reproducibility and portability of the experiment. If you run the same script twice, on the

same or another compute target, you receive the same results. With this design, you can treat compute targets as

stateless computation resources, each having no affinity to the jobs that are running after they are finished.

Before you can initiate an experiment on a compute target or your local machine, you must ensure that the

necessary files are available to that compute target, such as dependency files and data files your code needs to run.

Azure Machine Learning runs training scripts by copying the entire script folder to the target compute context, and

then takes a snapshot. The storage limit for experiment snapshots is 300 MB and/or 2000 files.

For this reason, we recommend:

Stor ing your files in an Azure Machine Learning datastore. This prevents experiment latency issues,

and has the advantages of accessing data from a remote compute target, which means authentication and

mounting are managed by Azure Machine Learning. Learn more about specifying a datastore as your source

directory, and uploading files to your datastore in the Access data from your datastores article.

If you only need a couple data files and dependency scr ipts and can't use a datastore, place the

files in the same folder directory as your training script. Specify this folder as your source_directory directly

in your training script, or in the code that calls your training script.

For experiments, Azure Machine Learning automatically makes an experiment snapshot of your code based on the

directory you suggest when you configure the run. This has a total limit of 300 MB and/or 2000 files. If you exceed

this limit, you'll see the following error :

To resolve this error, store your experiment files on a datastore. If you can't use a datastore, the below table offers

possible alternate solutions.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-save-write-experiment-files.md
https://docs.microsoft.com/python/api/azureml-core/azureml.data?view=azure-ml-py

Must use specific script directory Make a .amlignore file to exclude files from your experiment

snapshot that are not part of the source code. Add the
filenames to the .amlignore file and place it in the same

directory as your training script. The .amlignore file uses the

same syntax and patterns as a .gitignore file.

Pipeline Use a different subdirectory for each step

Jupyter notebooks Create a .amlignore file or move your notebook into a new,

empty, subdirectory and run your code again.

EXP ERIM EN T DESC RIP T IO N STO RA GE L IM IT SO L UT IO N

Where to write files

IMPORTANT

Next steps

Due to the isolation of training experiments, the changes to files that happen during runs are not necessarily

persisted outside of your environment. If your script modifies the files local to compute, the changes are not

persisted for your next experiment run, and they're not propagated back to the client machine automatically.

Therefore, the changes made during the first experiment run don't and shouldn't affect those in the second.

When writing changes, we recommend writing files to an Azure Machine Learning datastore. See Access data from

your datastores.

If you don't require a datastore, write files to the ./outputs and/or ./logs folder.

Two folders, outputs and logs, receive special treatment by Azure Machine Learning. During training, when you write files to

./outputs and ./logs folders, the files will automatically upload to your run history, so that you have access to them once

your run is finished.

For output such as status messages or scoring results, write files to the ./outputs folder, so they are

persisted as artifacts in run history. Be mindful of the number and size of files written to this folder, as

latency may occur when the contents are uploaded to run history. If latency is a concern, writing files to a

datastore is recommended.

To save written file as logs in run histor y, write files to ./logs folder. The logs are uploaded in real

time, so this method is suitable for streaming live updates from a remote run.

Learn more about accessing data from your datastores.

Learn more about How to Set Up Training Targets.

https://git-scm.com/docs/gitignore

Debug interactively on an Azure Machine Learning
Compute Instance with VS Code Remote
2/12/2020 • 2 minutes to read • Edit Online

Prerequisite

NOTE

Get IP and SSH port

In this article, you'll learn how to set up Visual Studio Code Remote on an Azure Machine Learning Compute

Instance so you can interactively debug your code from VS Code.

An Azure Machine Learning Compute Instance is a fully managed cloud-based workstation for data scientists

and provides management and enterprise readiness capabilities for IT administrators.

Visual Studio Code Remote Development allows you to use a container, remote machine, or the Windows

Subsystem for Linux (WSL) as a full-featured development environment.

On Windows platforms, you must install an OpenSSH compatible SSH client if one is not already present.

PuTTY is not supported on Windows since the ssh command must be in the path.

vi ~/.ssh/id_azmlcitest_rsa

notepad C:\Users\<username>\.ssh\id_azmlcitest_rsa

1. Go to the Azure Machine Learning studio at https://ml.azure.com/.

2. Select your workspace.

3. Click the Compute Instances tab.

4. In the Application URI column, click the SSH link of the compute instance you want to use as a remote

compute.

5. In the dialog, take note of the IP Address and SSH port.

6. Save your private key to the ~/.ssh/ directory on your local computer ; for instance, open an editor for a new

file and paste the key in:

L inux:

Windows :

The private key will look somewhat like this:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-set-up-vs-code-remote.md
https://code.visualstudio.com/docs/remote/remote-overview
https://code.visualstudio.com/docs/remote/troubleshooting#_installing-a-supported-ssh-client
https://ml.azure.com/

Add instance as a host

Host azmlci1

 HostName 13.69.56.51

 Port 50000

 User azureuser

 IdentityFile ~/.ssh/id_azmlcitest_rsa

F IEL D DESC RIP T IO N

Host Use whatever shorthand you like for the compute instance

HostName This is the IP address of the compute instance

Port This is the port shown on the SSH dialog above

User This needs to be azureuser

IdentityFile Should point to the file where you saved the private key

Connect VS Code to the instance

-----BEGIN RSA PRIVATE KEY-----

MIIEpAIBAAKCAQEAr99EPm0P4CaTPT2KtBt+kpN3rmsNNE5dS0vmGWxIXq4vAWXD
.....
ewMtLnDgXWYJo0IyQ91ynOdxbFoVOuuGNdDoBykUZPQfeHDONy2Raw==

-----END RSA PRIVATE KEY-----

chmod 600 ~/.ssh/id_azmlcitest_rsa

7. Change permissions on file to make sure only you can read the file.

Open the file ~/.ssh/config (Linux) or C:\Users<username>.ssh\config (Windows) in an editor and add a new entry

similar to this:

Here some details on the fields:

Now, you should be able to ssh to your compute instance using the shorthand you used above, ssh azmlci1 .

1. Install Visual Studio Code.

2. Install the Remote SSH Extension.

3. Click the Remote-SSH icon on the left to show your SSH configurations.

4. Right-click the SSH host configuration you just created.

5. Select Connect to Host in Current Window .

From here on, you are entirely working on the compute instance and you can now edit, debug, use git, use

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh

Next steps

extensions, etc. -- just like you can with your local Visual Studio Code.

Now that you've set up Visual Studio Code Remote, you can use a compute instance as remote compute from

Visual Studio Code to interactively debug your code.

Tutorial: Train your first ML model shows how to use a compute instance with an integrated notebook.

Git integration for Azure Machine Learning
3/5/2020 • 3 minutes to read • Edit Online

Clone Git repositories into your workspace file system

Track code that comes from Git repositories

P RO P ERT Y
GIT C O M M A N D USED TO GET T H E
VA L UE DESC RIP T IO N

azureml.git.repository_uri git ls-remote --get-url The URI that your repository was
cloned from.

mlflow.source.git.repoURL git ls-remote --get-url The URI that your repository was
cloned from.

azureml.git.branch git symbolic-ref --short HEAD The active branch when the run was
submitted.

mlflow.source.git.branch git symbolic-ref --short HEAD The active branch when the run was
submitted.

azureml.git.commit git rev-parse HEAD The commit hash of the code that was
submitted for the run.

Git is a popular version control system that allows you to share and collaborate on your projects.

Azure Machine Learning fully supports Git repositories for tracking work - you can clone repositories directly onto

your shared workspace file system, use Git on your local workstation, or use Git from a CI/CD pipeline.

When submitting a job to Azure Machine Learning, if source files are stored in a local git repository then

information about the repo is tracked as part of the training process.

Since Azure Machine Learning tracks information from a local git repo, it isn't tied to any specific central

repository. Your repository can be cloned from GitHub, GitLab, Bitbucket, Azure DevOps, or any other git-

compatible service.

Azure Machine Learning provides a shared file system for all users in the workspace. To clone a Git repository into

this file share, we recommend that you create a Compute Instance & open a terminal. Once the terminal is opened,

you have access to a full Git client and can clone and work with Git via the Git CLI experience.

We recommend that you clone the repository into your users directory so that others will not make collisions

directly on your working branch.

You can clone any Git repository you can authenticate to (GitHub, Azure Repos, BitBucket, etc.)

For a guide on how to use the Git CLI, read here here.

When you submit a training run from the Python SDK or Machine Learning CLI, the files needed to train the model

are uploaded to your workspace. If the git command is available on your development environment, the upload

process uses it to check if the files are stored in a git repository. If so, then information from your git repository is

also uploaded as part of the training run. This information is stored in the following properties for the training run:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/concept-train-model-git-integration.md
https://git-scm.com/
https://guides.github.com/introduction/git-handbook/

mlflow.source.git.commit git rev-parse HEAD The commit hash of the code that was
submitted for the run.

azureml.git.dirty git status --porcelain . True , if the branch/commit is dirty;

otherwise, false .

P RO P ERT Y
GIT C O M M A N D USED TO GET T H E
VA L UE DESC RIP T IO N

TIP

git --version

View the logged information

Azure portal

This information is sent for runs that use an estimator, machine learning pipeline, or script run.

If your training files are not located in a git repository on your development environment, or the git command is

not available, then no git-related information is tracked.

To check if the git command is available on your development environment, open a shell session, command prompt,

PowerShell or other command line interface and type the following command:

If installed, and in the path, you receive a response similar to git version 2.4.1 . For more information on installing git on

your development environment, see the Git website.

The git information is stored in the properties for a training run. You can view this information using the Azure

portal, Python SDK, and CLI.

1. From the Azure portal, select your workspace.

2. Select Experiments , and then select one of your experiments.

3. Select one of the runs from the RUN NUMBER column.

4. Select Logs , and then expand the logs and azureml entries. Select the link that begins with ###_azure.

https://git-scm.com/
https://portal.azure.com

"properties": {
 "_azureml.ComputeTargetType": "batchai",
 "ContentSnapshotId": "5ca66406-cbac-4d7d-bc95-f5a51dd3e57e",
 "azureml.git.repository_uri": "git@github.com:azure/machinelearningnotebooks",
 "mlflow.source.git.repoURL": "git@github.com:azure/machinelearningnotebooks",
 "azureml.git.branch": "master",
 "mlflow.source.git.branch": "master",
 "azureml.git.commit": "4d2b93784676893f8e346d5f0b9fb894a9cf0742",
 "mlflow.source.git.commit": "4d2b93784676893f8e346d5f0b9fb894a9cf0742",
 "azureml.git.dirty": "True",
 "AzureML.DerivedImageName": "azureml/azureml_9d3568242c6bfef9631879915768deaf",
 "ProcessInfoFile": "azureml-logs/process_info.json",
 "ProcessStatusFile": "azureml-logs/process_status.json"
}

Python SDK

run.properties['azureml.git.commit']

CLI

The logged information contains text similar to the following JSON:

After submitting a training run, a Run object is returned. The properties attribute of this object contains the

logged git information. For example, the following code retrieves the commit hash:

The az ml run CLI command can be used to retrieve the properties from a run. For example, the following

command returns the properties for the last run in the experiment named train-on-amlcompute :

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py

az ml run list -e train-on-amlcompute --last 1 -w myworkspace -g myresourcegroup --query '[].properties'

Next steps

For more information, see the az ml run reference documentation.

Set up and use compute targets for model training

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest

Create a data labeling project and export labels
4/7/2020 • 11 minutes to read • Edit Online

IMPORTANT

Prerequisites

Create a labeling project

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Labeling voluminous data in machine learning projects is often a headache. Projects that have a computer-vision

component, such as image classification or object detection, generally require labels for thousands of images.

Azure Machine Learning gives you a central place to create, manage, and monitor labeling projects (public

preview). Use it to coordinate data, labels, and team members to efficiently manage labeling tasks. Machine

Learning supports image classification, either multi-label or multi-class, and object identification with bounded

boxes.

Machine Learning tracks progress and maintains the queue of incomplete labeling tasks. Labelers don't need an

Azure account to participate. After they are authenticated with your Microsoft account or Azure Active Directory,

they can do as much labeling as their time allows.

You start and stop the project, add and remove labelers and teams, and monitor the labeling progress. You can

export labeled data in COCO format or as an Azure Machine Learning dataset.

Only image classification and object identification labeling projects are currently supported. Additionally, the data images

must be available in an Azure blob datastore. (If you do not have an existing datastore, you may upload images during

project creation.)

In this article, you'll learn how to:

Create a project

Specify the project's data and structure

Manage the teams and people who work on the project

Run and monitor the project

Export the labels

The data that you want to label, either in local files or in Azure blob storage.

The set of labels that you want to apply.

The instructions for labeling.

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin.

A Machine Learning workspace. See Create an Azure Machine Learning workspace.

Labeling projects are administered from Azure Machine Learning. You use the Labeling projects page to manage

your projects and people. A project has one or more teams assigned to it, and a team has one or more people

assigned to it.

If your data is already in Azure Blob storage, you should make it available as a datastore before you create the

labeling project. For an example of using a datastore, see Tutorial: Create your first image classification labeling

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-create-labeling-projects.md
https://ml.azure.com/
https://docs.microsoft.com/azure/active-directory/active-directory-whatis
https://aka.ms/AMLFree

Specify the data to label

Create a dataset from an Azure datastore

project.

To create a project, select Add project. Give the project an appropriate name and select Labeling task type.

Choose Image Classification Multi-class for projects when you want to apply only a single class from a set

of classes to an image.

Choose Image Classification Multi-label for projects when you want to apply one or more labels from a set

of classes to an image. For instance, a photo of a dog might be labeled with both dog and daytime.

Choose Object Identification (Bounding Box) for projects when you want to assign a class and a bounding

box to each object within an image.

Select Next when you're ready to continue.

If you already created a dataset that contains your data, select it from the Select an existing dataset drop-down

list. Or, select Create a dataset to use an existing Azure datastore or to upload local files.

In many cases, it's fine to just upload local files. But Azure Storage Explorer provides a faster and more robust way

to transfer a large amount of data. We recommend Storage Explorer as the default way to move files.

To create a dataset from data that you've already stored in Azure Blob storage:

1. Select Create a dataset > From datastore.

2. Assign a Name to your dataset.

3. Choose File as the Dataset type.

4. Select the datastore.

5. If your data is in a subfolder within your blob storage, choose Browse to select the path.

Append "/**" to the path to include all the files in subfolders of the selected path.

Append "**/." to include all the data in the current container and its subfolders.

https://azure.microsoft.com/features/storage-explorer/

NOTE

Create a dataset from uploaded data

Specify label classes

Describe the labeling task

6. Provide a description for your dataset.

7. Select Next.

8. Confirm the details. Select Back to modify the settings or Create to create the dataset.

The data you choose is loaded into your project. Adding more data to the datastore will not appear in this project once the

project is created.

To directly upload your data:

1. Select Create a dataset > From local files .

2. Assign a Name to your dataset.

3. Choose "File" as the Dataset type.

4. Optional: Select Advanced settings to customize the datastore, container, and path to your data.

5. Select Browse to select the local files to upload.

6. Provide a description of your dataset.

7. Select Next.

8. Confirm the details. Select Back to modify the settings or Create to create the dataset.

The data gets uploaded to the default blob store ("workspaceblobstore") of your Machine Learning workspace.

On the Label classes page, specify the set of classes to categorize your data. Do this carefully, because your

labelers' accuracy and speed will be affected by their ability to choose among the classes. For instance, instead of

spelling out the full genus and species for plants or animals, use a field code or abbreviate the genus.

Enter one label per row. Use the + button to add a new row. If you have more than 3 or 4 labels but fewer than 10,

you may want to prefix the names with numbers ("1: ", "2: ") so the labelers can use the number keys to speed their

work.

It's important to clearly explain the labeling task. On the Labeling instructions page, you can add a link to an

external site for labeling instructions, or provide instructions in the edit box on the page. Keep the instructions task-

oriented and appropriate to the audience. Consider these questions:

What are the labels they'll see, and how will they choose among them? Is there a reference text to refer to?

What should they do if no label seems appropriate?

What should they do if multiple labels seem appropriate?

What confidence threshold should they apply to a label? Do you want their "best guess" if they aren't certain?

What should they do with partially occluded or overlapping objects of interest?

What should they do if an object of interest is clipped by the edge of the image?

What should they do after they submit a label if they think they made a mistake?

For bounding boxes, important questions include:

How is the bounding box defined for this task? Should it be entirely on the interior of the object, or should it be

on the exterior? Should it be cropped as closely as possible, or is some clearance acceptable?

What level of care and consistency do you expect the labelers to apply in defining bounding boxes?

NOTE

Use ML assisted labeling

Clustering

Prelabeling

How to label the object that is partially shown in the image?

How to label the object that partially covered by other object?

Be sure to note that the labelers will be able to select the first 9 labels by using number keys 1-9.

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

The ML assisted labeling page lets you trigger automatic machine learning models to accelerate the labeling

task. At the beginning of your labeling project, the images are shuffled into a random order to reduce potential

bias. However, any biases that are present in the dataset will be reflected in the trained model. For example, if 80%

of your images are of a single class, then approximately 80% of the data used to train the model will be of that

class. This training does not include active learning.

This feature is available for image classification (multi-class or multi-label) tasks.

Select Enable ML assisted labeling and specify a GPU to enable assisted labeling, which consists of two phases:

Clustering

Prelabeling

The exact number of labeled images necessary to start assisted labeling is not a fixed number. This can vary

significantly from one labeling project to another. For some projects, is sometimes possible to see prelabel or

cluster tasks after 300 images have been manually labeled. ML Assisted Labeling uses a technique called Transfer

Learning, which uses a pre-trained model to jump-start the training process. If your dataset's classes are similar to

those in the pre-trained model, pre-labels may be available after only a few hundred manually labeled images. If

your dataset is significantly different from the data used to pre-train the model, it may take much longer.

Since the final labels still rely on input from the labeler, this technology is sometimes called human in the loop

labeling.

After a certain number of labels are submitted, the machine learning model starts to group together similar

images. These similar images are presented to the labelers on the same screen to speed up manual tagging.

Clustering is especially useful when the labeler is viewing a grid of 4, 6, or 9 images.

Once a machine learning model has been trained on your manually labeled data, the model is truncated to its last

fully-connected layer. Unlabeled images are then passed through the truncated model in a process commonly

known as "embedding" or "featurization." This embeds each image in a high-dimensional space defined by this

model layer. Images which are nearest neighbors in the space are used for clustering tasks.

After more image labels are submitted, a classification model is used to predict image tags. The labeler now sees

pages that contain predicted labels already present on each image. The task is then to review these labels and

correct any mis-labeled images before submitting the page.

Once a machine learning model has been trained on your manually labeled data, the model is evaluated on a test

set of manually labeled images to determine its accuracy at a variety of different confidence thresholds. This

evaluation process is used to determine a confidence threshold above which the model is accurate enough to show

pre-labels. The model is then evaluated against unlabeled data. Images with predictions more confident than this

threshold are used for pre-labeling.

NOTE

Initialize the labeling project

Manage teams and people

Run and monitor the project

Add new label class to a project

ML assisted labeling is available only in Enterprise edition workspaces.

After the labeling project is initialized, some aspects of the project are immutable. You can't change the task type or

dataset. You can modify labels and the URL for the task description. Carefully review the settings before you create

the project. After you submit the project, you're returned to the Data Labeling homepage, which will show the

project as Initializing. This page doesn't automatically refresh. So, after a pause, manually refresh the page to see

the project's status as Created.

By default, each labeling project that you create gets a new team with you as a member. But teams can also be

shared between projects. And projects can have more than one team. To create a team, select Add team on the

Teams page.

You manage people on the Labelers page. Add and remove people by email address. Each labeler has to

authenticate through your Microsoft account or Azure Active Directory, if you use it.

After you add a person, you can assign that person to one or more teams: Go to the Teams page, select the team,

and then select Assign people or Remove people.

To send an email to the team, select the team to view the Team details page. On this page, select Email team to

open an email draft with the addresses of everyone on the team.

After you initialize the project, Azure will begin running it. Select the project on the main Data Labeling page to

go to Project details . The Dashboard tab shows the progress of the labeling task.

On the Data tab, you can see your dataset and review labeled data. If you see incorrectly labeled data, select it and

choose Reject, which will remove the labels and put the data back into the unlabeled queue.

Use the Team tab to assign or unassign teams to the project.

To pause or restart the project, select the Pause/Star t button. You can only label data when the project is running.

You can label data directly from the Project details page by selecting Label data.

During the labeling process, you may find that additional labels are needed to classify your images. For example,

you may want to add an "Unknown" or "Other" label to indicate confusing images.

Use these steps to add one or more labels to a project:

1. Select the project on the main Data Labeling page.

2. At the top of the page, select Pause to stop labelers from their activity.

3. Select the Details tab.

4. In the list on the left, select Label classes .

5. At the top of the list, select + Add Labels

Export the labels

6. In the form, add your new label and choose how to proceed. Since you've changed the available labels for an

image, you choose how to treat the already labeled data:

7. Modify your instructions page as necessary for the new label(s).

8. Once you have added all new labels, at the top of the page select Star t to restart the project.

Start over, removing all existing labels. Choose this option if you want to start labeling from the

beginning with the new full set of labels.

Start over, keeping all existing labels. Choose this option to mark all data as unlabeled, but keep the

existing labels as a default tag for images that were previously labeled.

Continue, keeping all existing labels. Choose this option to keep all data already labeled as is, and start

using the new label for data not yet labeled.

You can export the label data for Machine Learning experimentation at any time. Image labels can be exported in

COCO format or as an Azure Machine Learning dataset. Use the Expor t button on the Project details page of

your labeling project.

The COCO file is created in the default blob store of the Azure Machine Learning workspace in a folder within

export/coco. You can access the exported Azure Machine Learning dataset in the Datasets section of Machine

Learning. The dataset details page also provides sample code to access your labels from Python.

http://cocodataset.org/#format-data

Next steps
Tutorial: Create your first image classification labeling project.

Label images for image classification or object detection

Learn more about Azure Machine Learning and Machine Learning Studio (classic)

Tag images in a labeling project
4/7/2020 • 6 minutes to read • Edit Online

Prerequisites

NOTE

Sign in to the project's labeling portal

Understand the labeling task

Common features of the labeling task

After your project administrator creates a labeling project in Azure Machine Learning, you can use the labeling tool

(public preview) to rapidly prepare data for a Machine Learning project. This article describes:

How to access your labeling projects

The labeling tools

How to use the tools for specific labeling tasks

The labeling portal URL for a running data labeling project

A Microsoft account or an Azure Active Directory account for the organization and project

The project administrator can find the labeling portal URL on the Details tab of the Project details page.

Go to the labeling portal URL that's provided by the project administrator. Sign in by using the email account that

the administrator used to add you to the team. For most users, it will be your Microsoft account. If the labeling

project uses Azure Active Directory, that's how you'll sign in.

After you sign in, you'll see the project's overview page.

Go to View detailed instructions . These instructions are specific to your project. They explain the type of data

that you're facing, how you should make your decisions, and other relevant information. After you read this

information, return to the project page and select Star t labeling .

In all image-labeling tasks, you choose an appropriate tag or tags from a set that's specified by the project

administrator. You can select the first nine tags by using the number keys on your keyboard.

In image-classification tasks, you can choose to view multiple images simultaneously. Use the icons above the

image area to select the layout.

To select all the displayed images simultaneously, use Select all . To select individual images, use the circular

selection button in the upper-right corner of the image. You must select at least one image to apply a tag. If you

select multiple images, any tag that you select will be applied to all the selected images.

Here we've chosen a two-by-two layout and are about to apply the tag "Mammal" to the images of the bear and

orca. The image of the shark was already tagged as "Cartilaginous fish," and the iguana hasn't been tagged yet.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-label-images.md
https://docs.microsoft.com/azure/machine-learning/how-to-create-labeling-projects#create-a-labeling-project
https://account.microsoft.com/account

IMPORTANT

Assisted machine learning

Tag images for multi-class classification

Only switch layouts when you have a fresh page of unlabeled data. Switching layouts clears the page's in-progress tagging

work.

Azure enables the Submit button when you've tagged all the images on the page. Select Submit to save your

work.

After you submit tags for the data at hand, Azure refreshes the page with a new set of images from the work

queue.

Machine learning algorithms may be triggered during a multi-class or multi-label classification task. If these

algorithms are enabled in your project, you may see the following:

After some amount of images have been labeled, you may see Tasks clustered at the top of your screen

next to the project name. This means that images are grouped together to present similar images on the

same page. If so, switch to one of the multiple image views to take advantage of the grouping.

At a later point, you may see Tasks prelabeled next to the project name. Images will then appear with a

suggested label that comes from a machine learning classification model. No machine learning model has

100% accuracy. While we only use images for which the model is confident, these images might still be

incorrectly prelabeled. When you see these labels, correct any wrong labels before submitting the page.

Especially early in a labeling project, the machine learning model may only be accurate enough to prelabel a small

subset of images. Once these images are labeled, the labeling project will return to manual labeling to gather more

data for the next round of model training. Over time, the model will become more confident about a higher

proportion of images, resulting in more prelabel tasks later in the project.

If your project is of type "Image Classification Multi-Class," you'll assign a single tag to the entire image. To review

the directions at any time, go to the Instructions page and select View detailed instructions .

Tag images for multi-label classification

If you realize that you made a mistake after you assign a tag to an image, you can fix it. Select the "X" on the label

that's displayed below the image to clear the tag. Or, select the image and choose another class. The newly selected

value will replace the previously applied tag.

If you're working on a project of type "Image Classification Multi-Label," you'll apply one or more tags to an image.

To see the project-specific directions, select Instructions and go to View detailed instructions .

Select the image that you want to label and then select the tag. The tag is applied to all the selected images, and

then the images are deselected. To apply more tags, you must reselect the images. The following animation shows

multi-label tagging:

1. Select all is used to apply the "Ocean" tag.

2. A single image is selected and tagged "Closeup."

3. Three images are selected and tagged "Wide angle."

To correct a mistake, click the "X" to clear an individual tag or select the images and then select the tag, which clears

the tag from all the selected images. This scenario is shown here. Clicking on "Land" will clear that tag from the two

selected images.

Tag images and specify bounding boxes for object detection

Azure will only enable the Submit button after you've applied at least one tag to each image. Select Submit to

save your work.

If your project is of type "Object Identification (Bounding Boxes)," you'll specify one or more bounding boxes in the

image and apply a tag to each box. Images can have multiple bounding boxes, each with a single tag. Use View

detailed instructions to determine if multiple bounding boxes are used in your project.

1. Select a tag for the bounding box that you plan to create.

2. Select the Rectangular box tool or select "R."

3. Click and drag diagonally across your target to create a rough bounding box. To adjust the bounding box, drag

the edges or corners.

Finish up

Next steps

To delete a bounding box, click the X-shaped target that appears next to the bounding box after creation.

You can't change the tag of an existing bounding box. If you make a tag-assignment mistake, you have to delete the

bounding box and create a new one with the correct tag.

By default, you can edit existing bounding boxes. The Lock/unlock regions tool or "L" toggles that

behavior. If regions are locked, you can only change the shape or location of a new bounding box.

Use the Regions manipulation tool or "M" to adjust an existing bounding box. Drag the edges or corners

to adjust the shape. Click in the interior to be able to drag the whole bounding box. If you can't edit a region, you've

probably toggled the Lock/unlock regions tool.

Use the Template-based box tool or "T" to create multiple bounding boxes of the same size. If the image

has no bounding boxes and you activate template-based boxes, the tool will produce 50-by-50-pixel boxes. If you

create a bounding box and then activate template-based boxes, any new bounding boxes will be the size of the last

box that you created. Template-based boxes can be resized after placement. Resizing a template-based box only

resizes that particular box.

To delete all bounding boxes in the current image, select the Delete all regions tool .

After you create the bounding boxes for an image, select Submit to save your work, or your work in progress

won't be saved.

When you submit a page of tagged data, Azure assigns new unlabeled data to you from a work queue. If there's no

more unlabeled data available, you'll get a message noting this along with a link to the portal home page.

When you're done labeling, select your name in the upper-right corner of the labeling portal and then select sign-

out. If you don't sign out, eventually Azure will "time you out" and assign your data to another labeler.

Learn to train image classification models in Azure

https://docs.microsoft.com/azure/machine-learning/tutorial-train-models-with-aml

Create and explore Azure Machine Learning dataset
with labels
1/23/2020 • 2 minutes to read • Edit Online

What are datasets with labels

Prerequisites

Export data labels

COCO

Azure Machine Learning dataset

In this article, you'll learn how to export the data labels from an Azure Machine Learning data labeling project and

load them into popular formats such as, a pandas dataframe for data exploration or a Torchvision dataset for image

transformation.

Azure Machine Learning datasets with labels are TabularDatasets with a label property, we will refer to them as

labeled datasets. These specific types of TabularDatasets are only created as an output of Azure Machine Learning

data labeling projects. Create a data labeling project with these steps. Machine Learning supports data labeling

projects for image classification, either multi-label or multi-class, and object identification together with bounded

boxes.

An Azure subscription. If you don’t have an Azure subscription, create a free account before you begin.

The Azure Machine Learning SDK for Python, or access to Azure Machine Learning studio.

A Machine Learning workspace. See Create an Azure Machine Learning workspace.

Access to an Azure Machine Learning data labeling project. If you don't have a labeling project, create one with

these steps.

Install the azure-contrib-dataset package

When you complete a data labeling project, you can export the label data from a labeling project. Doing so, allows

you to capture both the reference to the data and its labels, and export them in COCO format or as an Azure

Machine Learning dataset. Use the Expor t button on the Project details page of your labeling project.

The COCO file is created in the default blob store of the Azure Machine Learning workspace in a folder within

export/coco.

You can access the exported Azure Machine Learning dataset in the Datasets section of your Azure Machine

Learning studio. The dataset Details page also provides sample code to access your labels from Python.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-labeled-dataset.md
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://ml.azure.com/
https://docs.microsoft.com/python/api/azureml-contrib-dataset/?view=azure-ml-py
http://cocodataset.org/#format-data

Explore labeled datasets

Pandas dataframe

pip install azureml-contrib-dataset

NOTE

Load your labeled datasets into a pandas dataframe or Torchvision dataset to leverage popular open-source

libraries for data exploration, as well as PyTorch provided libraries for image transformation and training.

You can load labeled datasets into a pandas dataframe with the to_pandas_dataframe() method from the

azureml-contrib-dataset class. Install the class with the following shell command:

The azureml.contrib namespace changes frequently, as we work to improve the service. As such, anything in this namespace

should be considered as a preview, and not fully supported by Microsoft.

We offer the following file handling options for file streams when converting to a pandas dataframe.

Download: Download your data files to a local path.

Mount: Mount your data files to a mount point. Mount only works for Linux-based compute, including Azure

Machine Learning notebook VM and Azure Machine Learning Compute.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#to-pandas-dataframe-on-error--null---out-of-range-datetime--null--

import azureml.contrib.dataset
from azureml.contrib.dataset import FileHandlingOption
animal_pd = animal_labels.to_pandas_dataframe(file_handling_option=FileHandlingOption.DOWNLOAD,
target_path='./download/', overwrite_download=True)

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

#read images from downloaded path
img = mpimg.imread(animal_pd.loc[0,'image_url'])
imgplot = plt.imshow(img)

Torchvision datasets

from torchvision.transforms import functional as F

load animal_labels dataset into torchvision dataset
pytorch_dataset = animal_labels.to_torchvision()
img = pytorch_dataset[0][0]
print(type(img))

use methods from torchvision to transform the img into grayscale
pil_image = F.to_pil_image(img)
gray_image = F.to_grayscale(pil_image, num_output_channels=3)

imgplot = plt.imshow(gray_image)

Next steps

You can load labeled datasets into Torchvision dataset with the to_torchvision() method also from the

azureml-contrib-dataset class. To use this method, you need to have PyTorch installed.

See the dataset with labels notebook for complete training sample.

https://docs.microsoft.com/python/api/azureml-contrib-dataset/azureml.contrib.dataset.tabulardataset?view=azure-ml-py#to-torchvision--
https://pytorch.org/
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/labeled-datasets/labeled-datasets.ipynb

Data ingestion with Azure Data Factory
3/3/2020 • 4 minutes to read • Edit Online

T EC H N IQ UE P RO S C O N S

ADF + Azure Functions Low latency, serverless compute
Stateful functions
Reusable functions

Only good for short running processing

ADF + custom component Large-scale parallel computing
Suited for heavy algorithms

Wrapping code into an executable
Complexity of handling dependencies
and IO

ADF + Azure Databricks notebook Apache Spark
Native Python environment

Can be expensive
Creating clusters initially takes time and
adds latency

ADF with Azure functions

In this article, you learn how to build a data ingestion pipeline with Azure Data Factory (ADF). This pipeline is used

to ingest data for use with Azure Machine Learning. Azure Data Factory allows you to easily extract, transform, and

load (ETL) data. Once the data has been transformed and loaded into storage, it can be used to train your machine

learning models.

Simple data transformation can be handled with native ADF activities and instruments such as data flow. When it

comes to more complicated scenarios, the data can be processed with some custom code. For example, Python or

R code.

There are several common techniques of using Azure Data Factory to transform data during ingestion. Each

technique has pros and cons that determine if it is a good fit for a specific use case:

Azure Functions allows you to run small pieces of code (functions) without worrying about application

infrastructure. In this option, the data is processed with custom Python code wrapped into an Azure Function.

The function is invoked with the ADF Azure Function activity. This approach is a good option for lightweight data

transformations.

Pros:

The data is processed on a serverless compute with a relatively low latency

ADF pipeline can invoke a Durable Azure Function that may implement a sophisticated data

transformation flow

The details of the data transformation are abstracted away by the Azure Function that can be reused and

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-data-ingest-adf.md
https://docs.microsoft.com/azure/data-factory/control-flow-execute-data-flow-activity
https://docs.microsoft.com/azure/data-factory/control-flow-azure-function-activity
https://docs.microsoft.com/azure/azure-functions/durable/durable-functions-overview

ADF with Custom Component Activity

ADF with Azure Databricks Python notebook

Cons:

invoked from other places

The Azure Functions must be created before use with ADF

Azure Functions is good only for short running data processing

In this option, the data is processed with custom Python code wrapped into an executable. It is invoked with an

ADF Custom Component activity. This approach is a better fit for large data than the previous technique.

Pros:

Cons:

The data is processed on Azure Batch pool, which provides large-scale parallel and high-performance

computing

Can be used to run heavy algorithms and process significant amounts of data

Azure Batch pool must be created before use with ADF

Over engineering related to wrapping Python code into an executable. Complexity of handling

dependencies and input/output parameters

Azure Databricks is an Apache Spark-based analytics platform in the Microsoft cloud.

In this technique, the data transformation is performed by a Python notebook, running on an Azure Databricks

cluster. This is probably, the most common approach that leverages the full power of an Azure Databricks service. It

is designed for distributed data processing at scale.

Pros:

Cons:

The data is transformed on the most powerful data processing Azure service, which is backed up by

Apache Spark environment

Native support of Python along with data science frameworks and libraries including TensorFlow,

PyTorch, and scikit-learn

There is no need to wrap the Python code into functions or executable modules. The code works as is.

https://docs.microsoft.com/azure/data-factory/transform-data-using-dotnet-custom-activity
https://docs.microsoft.com/azure/batch/batch-technical-overview
https://azure.microsoft.com/services/databricks/
https://docs.microsoft.com/azure/data-factory/transform-data-using-databricks-notebook

Consuming data in Azure Machine Learning pipelines

TIP

Next steps

Azure Databricks infrastructure must be created before use with ADF

Can be expensive depending on Azure Databricks configuration

Spinning up compute clusters from "cold" mode takes some time that brings high latency to the solution

The transformed data from the ADF pipeline is saved to data storage (such as Azure Blob). Azure Machine Learning

can access this data using datastores and datasets.

Each time the ADF pipeline runs, the data is saved to a different location in storage. To pass the location to Azure

Machine Learning, the ADF pipeline calls an Azure Machine Learning pipeline. When calling the ML pipeline, the

data location and run ID are sent as parameters. The ML pipeline can then create a datastore/dataset using the data

location.

Datasets support versioning, so the ML pipeline can register a new version of the dataset that points to the most recent

data from the ADF pipeline.

Once the data is accessible through a datastore or dataset, you can use it to train an ML model. The training

process might be part of the same ML pipeline that is called from ADF. Or it might be a separate process such as

experimentation in a Jupyter notebook.

Since datasets support versioning, and each run from the pipeline creates a new version, it's easy to understand

which version of the data was used to train a model.

Run a Databricks notebook in Azure Data Factory

Access data in Azure storage services

Train models with datasets in Azure Machine Learning

DevOps for a data ingestion pipeline

https://docs.microsoft.com/azure/machine-learning/how-to-access-data#create-and-register-datastores
https://docs.microsoft.com/azure/machine-learning/how-to-create-register-datasets
https://docs.microsoft.com/azure/machine-learning/how-to-version-track-datasets
https://docs.microsoft.com/azure/data-factory/transform-data-using-databricks-notebook
https://docs.microsoft.com/azure/machine-learning/how-to-access-data#create-and-register-datastores
https://docs.microsoft.com/azure/machine-learning/how-to-train-with-datasets
https://docs.microsoft.com/azure/machine-learning/how-to-cicd-data-ingestion

DevOps for a data ingestion pipeline
3/25/2020 • 11 minutes to read • Edit Online

The solution

What we are building

In most scenarios, a data ingestion solution is a composition of scripts, service invocations, and a pipeline

orchestrating all the activities. In this article, you learn how to apply DevOps practices to the development lifecycle

of a common data ingestion pipeline. The pipeline prepares the data for the Machine Learning model training.

Consider the following data ingestion workflow:

In this approach, the training data is stored in an Azure blob storage. An Azure Data Factory pipeline fetches the

data from an input blob container, transforms it and saves the data to the output blob container. This container

serves as a data storage for the Azure Machine Learning service. Having the data prepared, the Data Factory

pipeline invokes a training Machine Learning pipeline to train a model. In this specific example the data

transformation is performed by a Python notebook, running on an Azure Databricks cluster.

As with any software solution, there is a team (for example, Data Engineers) working on it.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-cicd-data-ingestion.md

Source control management

Python Notebook Source Code

Azure Data Factory Source Code

Continuous integration (CI)

They collaborate and share the same Azure resources such as Azure Data Factory, Azure Databricks, Azure Storage

account and such. The collection of these resources is a Development environment. The data engineers contribute

to the same source code base. The Continuous Integration process assembles the code, checks it with the code

quality tests, unit tests and produces artifacts such as tested code and Azure Resource Manager templates. The

Continuous Delivery process deploys the artifacts to the downstream environments. This article demonstrates how

to automate the CI and CD processes with Azure Pipelines.

The team members work in slightly different ways to collaborate on the Python notebook source code and the

Azure Data Factory source code. However, in both cases the code is stored in a source control repository (for

example, Azure DevOps, GitHub, GitLab) and the collaboration is normally based on some branching model (for

example, GitFlow).

The data engineers work with the Python notebook source code either locally in an IDE (for example, Visual Studio

Code) or directly in the Databricks workspace. The latter gives the ability to debug the code on the development

environment. In any case, the code is going to be merged to the repository following a branching policy. It's highly

recommended to store the code in .py files rather than in .ipynb Jupyter notebook format. It improves the code

readability and enables automatic code quality checks in the CI process.

The source code of Azure Data Factory pipelines is a collection of json files generated by a workspace. Normally

the data engineers work with a visual designer in the Azure Data Factory workspace rather than with the source

code files directly. Configure the workspace with a source control repository as it is described in the Azure Data

Factory documentation. With this configuration in place, the data engineers are able to collaborate on the source

code following a preferred branching workflow.

https://azure.microsoft.com/services/devops/pipelines/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://code.visualstudio.com
https://docs.microsoft.com/azure/data-factory/source-control#author-with-azure-repos-git-integration

Python Notebook CI

steps:
- script: |
 flake8 --output-file=$(Build.BinariesDirectory)/lint-testresults.xml --format junit-xml
 workingDirectory: '$(Build.SourcesDirectory)'
 displayName: 'Run flake8 (code style analysis)'

- script: |
 python -m pytest --junitxml=$(Build.BinariesDirectory)/unit-testresults.xml $(Build.SourcesDirectory)
 displayName: 'Run unit tests'

- task: PublishTestResults@2
 condition: succeededOrFailed()
 inputs:
 testResultsFiles: '$(Build.BinariesDirectory)/*-testresults.xml'
 testRunTitle: 'Linting & Unit tests'
 failTaskOnFailedTests: true
 displayName: 'Publish linting and unit test results'

- publish: $(Build.SourcesDirectory)
 artifact: di-notebooks

Azure Data Factory CI

The ultimate goal of the Continuous Integration process is to gather the joint team work from the source code and

prepare it for the deployment to the downstream environments. As with the source code management this process

is different for the Python notebooks and Azure Data Factory pipelines.

The CI process for the Python Notebooks gets the code from the collaboration branch (for example, master or

develop) and performs the following activities:

Code linting

Unit testing

Saving the code as an artifact

The following code snippet demonstrates the implementation of these steps in an Azure DevOps yaml pipeline:

The pipeline uses flake8 to do the Python code linting. It runs the unit tests defined in the source code and

publishes the linting and test results so they're available in the Azure Pipeline execution screen:

If the linting and unit testing is successful, the pipeline will copy the source code to the artifact repository to be

used by the subsequent deployment steps.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "factoryName": {
 "value": "devops-ds-adf"
 },
 "AzureMLService_servicePrincipalKey": {
 "value": ""
 },
 "AzureMLService_properties_typeProperties_subscriptionId": {
 "value": "0fe1c235-5cfa-4152-17d7-5dff45a8d4ba"
 },
 "AzureMLService_properties_typeProperties_resourceGroupName": {
 "value": "devops-ds-rg"
 },
 "AzureMLService_properties_typeProperties_servicePrincipalId": {
 "value": "6e35e589-3b22-4edb-89d0-2ab7fc08d488"
 },
 "AzureMLService_properties_typeProperties_tenant": {
 "value": "72f988bf-86f1-41af-912b-2d7cd611db47"
 }
 }
}

import pandas as pd
import numpy as np

data_file_name = getArgument("data_file_name")
data = pd.read_csv(data_file_name)

labels = np.array(data['target'])
...

CI process for an Azure Data Factory pipeline is a bottleneck in the whole CI/CD story for a data ingestion pipeline.

There's no Continuous Integration. A deployable artifact for Azure Data Factory is a collection of Azure Resource

Manager templates. The only way to produce those templates is to click the publish button in the Azure Data

Factory workspace. There's no automation here. The data engineers merge the source code from their feature

branches into the collaboration branch, for example, master or develop. Then, someone with the granted

permissions clicks the publish button to generate Azure Resource Manager templates from the source code in the

collaboration branch. When the button is clicked, the workspace validates the pipelines (think of it as of linting and

unit testing), generates Azure Resource Manager templates (think of it as of building) and saves the generated

templates to a technical branch adf_publish in the same code repository (think of it as of publishing artifacts).

This branch is created automatically by the Azure Data Factory workspace. This process is described in details in

the Azure Data Factory documentation.

It's important to make sure that the generated Azure Resource Manager templates are environment agnostic. This

means that all values that may differ from between environments are parametrized. The Azure Data Factory is

smart enough to expose the majority of such values as parameters. For example, in the following template the

connection properties to an Azure Machine Learning workspace are exposed as parameters:

However, you may want to expose your custom properties that are not handled by the Azure Data Factory

workspace by default. In the scenario of this article an Azure Data Factory pipeline invokes a Python notebook

processing the data. The notebook accepts a parameter with the name of an input data file.

This name is different for Dev , QA, UAT, and PROD environments. In a complex pipeline with multiple activities,

there can be several custom properties. It's good practice to collect all those values in one place and define them as

pipeline var iables :

https://docs.microsoft.com/azure/data-factory/continuous-integration-deployment

The pipeline activities may refer to the pipeline variables while actually using them:

The Azure Data Factory workspace doesn't expose pipeline variables as Azure Resource Manager templates

parameters by default. The workspace uses the Default Parameterization Template dictating what pipeline

properties should be exposed as Azure Resource Manager template parameters. In order to add pipeline variables

to the list, update the "Microsoft.DataFactory/factories/pipelines" section of the Default Parameterization Template

with the following snippet and place the result json file in the root of the source folder :

https://docs.microsoft.com/azure/data-factory/continuous-integration-deployment#default-parameterization-template
https://docs.microsoft.com/azure/data-factory/continuous-integration-deployment#default-parameterization-template

"Microsoft.DataFactory/factories/pipelines": {
 "properties": {
 "variables": {
 "*": {
 "defaultValue": "="
 }
 }
 }
 }

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "factoryName": {
 "value": "devops-ds-adf"
 },
 ...
 "data-ingestion-pipeline_properties_variables_data_file_name_defaultValue": {
 "value": "driver_prediction_train.csv"
 }
 }
}

Continuous delivery (CD)

Deploy a Python Notebook

Doing so will force the Azure Data Factory workspace to add the variables to the parameters list when the publish

button is clicked:

The values in the json file are default values configured in the pipeline definition. They're expected to be overridden

with the target environment values when the Azure Resource Manager template is deployed.

The Continuous Delivery process takes the artifacts and deploys them to the first target environment. It makes

sure that the solution works by running tests. If successful, it continues to the next environment. The CD Azure

Pipeline consists of multiple stages representing the environments. Each stage contains deployments and jobs that

perform the following steps:

Deploy a Python Notebook to Azure Databricks workspace

Deploy an Azure Data Factory pipeline

Run the pipeline

Check the data ingestion result

The pipeline stages can be configured with approvals and gates that provide additional control on how the

deployment process evolves through the chain of environments.

The following code snippet defines an Azure Pipeline deployment that copies a Python notebook to a Databricks

cluster :

https://docs.microsoft.com/azure/devops/pipelines/process/deployment-jobs?view=azure-devops
https://docs.microsoft.com/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml
https://docs.microsoft.com/azure/devops/pipelines/process/approvals?view=azure-devops&tabs=check-pass
https://docs.microsoft.com/azure/devops/pipelines/release/approvals/gates?view=azure-devops
https://docs.microsoft.com/azure/devops/pipelines/process/deployment-jobs?view=azure-devops

- stage: 'Deploy_to_QA'
 displayName: 'Deploy to QA'
 variables:
 - group: devops-ds-qa-vg
 jobs:
 - deployment: "Deploy_to_Databricks"
 displayName: 'Deploy to Databricks'
 timeoutInMinutes: 0
 environment: qa
 strategy:
 runOnce:
 deploy:
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.x'
 addToPath: true
 architecture: 'x64'
 displayName: 'Use Python3'

 - task: configuredatabricks@0
 inputs:
 url: '$(DATABRICKS_URL)'
 token: '$(DATABRICKS_TOKEN)'
 displayName: 'Configure Databricks CLI'

 - task: deploynotebooks@0
 inputs:
 notebooksFolderPath: '$(Pipeline.Workspace)/di-notebooks'
 workspaceFolder: '/Shared/devops-ds'
 displayName: 'Deploy (copy) data processing notebook to the Databricks cluster'

Deploy an Azure Data Factory pipeline

 - deployment: "Deploy_to_ADF"
 displayName: 'Deploy to ADF'
 timeoutInMinutes: 0
 environment: qa
 strategy:
 runOnce:
 deploy:
 steps:
 - task: AzureResourceGroupDeployment@2
 displayName: 'Deploy ADF resources'
 inputs:
 azureSubscription: $(AZURE_RM_CONNECTION)
 resourceGroupName: $(RESOURCE_GROUP)
 location: $(LOCATION)
 csmFile: '$(Pipeline.Workspace)/adf-pipelines/ARMTemplateForFactory.json'
 csmParametersFile: '$(Pipeline.Workspace)/adf-pipelines/ARMTemplateParametersForFactory.json'
 overrideParameters: -data-ingestion-pipeline_properties_variables_data_file_name_defaultValue
"$(DATA_FILE_NAME)"

The artifacts produced by the CI are automatically copied to the deployment agent and are available in the

$(Pipeline.Workspace) folder. In this case, the deployment task refers to the di-notebooks artifact containing

the Python notebook. This deployment uses the Databricks Azure DevOps extension to copy the notebook files to

the Databricks workspace. The Deploy_to_QA stage contains a reference to devops-ds-qa-vg variable group

defined in the Azure DevOps project. The steps in this stage refer to the variables from this variable group (for

example, $(DATABRICKS_URL), $(DATABRICKS_TOKEN)). The idea is that the next stage (for example,

Deploy_to_UAT) will operate with the same variable names defined in its own UAT-scoped variable group.

A deployable artifact for Azure Data Factory is an Azure Resource Manager template. Therefore, it's going to be

deployed with the Azure Resource Group Deployment task as it is demonstrated in the following snippet:

https://docs.microsoft.com/azure/devops/pipelines/process/deployment-jobs?view=azure-devops
https://marketplace.visualstudio.com/items?itemName=riserrad.azdo-databricks

Run the pipeline and check the data ingestion result

 - job: "Integration_test_job"
 displayName: "Integration test job"
 dependsOn: [Deploy_to_Databricks, Deploy_to_ADF]
 pool:
 vmImage: 'ubuntu-latest'
 timeoutInMinutes: 0
 steps:
 - task: AzurePowerShell@4
 displayName: 'Execute ADF Pipeline'
 inputs:
 azureSubscription: $(AZURE_RM_CONNECTION)
 ScriptPath: '$(Build.SourcesDirectory)/adf/utils/Invoke-ADFPipeline.ps1'
 ScriptArguments: '-ResourceGroupName $(RESOURCE_GROUP) -DataFactoryName $(DATA_FACTORY_NAME) -
PipelineName $(PIPELINE_NAME)'
 azurePowerShellVersion: LatestVersion
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.x'
 addToPath: true
 architecture: 'x64'
 displayName: 'Use Python3'

 - task: configuredatabricks@0
 inputs:
 url: '$(DATABRICKS_URL)'
 token: '$(DATABRICKS_TOKEN)'
 displayName: 'Configure Databricks CLI'

 - task: executenotebook@0
 inputs:
 notebookPath: '/Shared/devops-ds/test-data-ingestion'
 existingClusterId: '$(DATABRICKS_CLUSTER_ID)'
 executionParams: '{"bin_file_name":"$(bin_FILE_NAME)"}'
 displayName: 'Test data ingestion'

 - task: waitexecution@0
 displayName: 'Wait until the testing is done'

Putting pieces together

The value of the data filename parameter comes from the $(DATA_FILE_NAME) variable defined in a QA stage

variable group. Similarly, all parameters defined in ARMTemplateForFactor y.json can be overridden. If they are

not, then the default values are used.

The next step is to make sure that the deployed solution is working. The following job definition runs an Azure

Data Factory pipeline with a PowerShell script and executes a Python notebook on an Azure Databricks cluster. The

notebook checks if the data has been ingested correctly and validates the result data file with $(bin_FILE_NAME)

name.

The final task in the job checks the result of the notebook execution. If it returns an error, it sets the status of

pipeline execution to failed.

The outcome of this article is a CI/CD Azure Pipeline that consists of the following stages:

CI

Deploy To QA

Deploy to Databricks + Deploy to ADF

Integration Test

It contains a number of Deploy stages equal to the number of target environments you have. Each Deploy stage

https://github.com/microsoft/DataOps/tree/master/adf/utils

variables:
- group: devops-ds-vg

stages:
- stage: 'CI'
 displayName: 'CI'
 jobs:
 - job: "CI_Job"
 displayName: "CI Job"
 pool:
 vmImage: 'ubuntu-latest'
 timeoutInMinutes: 0
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.x'
 addToPath: true
 architecture: 'x64'
 displayName: 'Use Python3'
 - script: pip install --upgrade flake8 flake8_formatter_junit_xml
 displayName: 'Install flake8'
 - checkout: self
 - script: |
 flake8 --output-file=$(Build.BinariesDirectory)/lint-testresults.xml --format junit-xml
 workingDirectory: '$(Build.SourcesDirectory)'
 displayName: 'Run flake8 (code style analysis)'
 - script: |
 python -m pytest --junitxml=$(Build.BinariesDirectory)/unit-testresults.xml $(Build.SourcesDirectory)
 displayName: 'Run unit tests'
 - task: PublishTestResults@2
 condition: succeededOrFailed()
 inputs:
 testResultsFiles: '$(Build.BinariesDirectory)/*-testresults.xml'
 testRunTitle: 'Linting & Unit tests'
 failTaskOnFailedTests: true
 displayName: 'Publish linting and unit test results'

 # The CI stage produces two artifacts (notebooks and ADF pipelines).
 # The pipelines Azure Resource Manager templates are stored in a technical branch "adf_publish"
 - publish: $(Build.SourcesDirectory)/$(Build.Repository.Name)/code/dataingestion
 artifact: di-notebooks
 - checkout: git://${{variables['System.TeamProject']}}@adf_publish
 - publish: $(Build.SourcesDirectory)/$(Build.Repository.Name)/devops-ds-adf
 artifact: adf-pipelines

- stage: 'Deploy_to_QA'
 displayName: 'Deploy to QA'
 variables:
 - group: devops-ds-qa-vg
 jobs:
 - deployment: "Deploy_to_Databricks"
 displayName: 'Deploy to Databricks'
 timeoutInMinutes: 0
 environment: qa
 strategy:
 runOnce:
 deploy:
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.x'
 addToPath: true
 architecture: 'x64'

contains two deployments that run in parallel and a job that runs after deployments to test the solution on the

environment.

A sample implementation of the pipeline is assembled in the following yaml snippet:

https://docs.microsoft.com/azure/devops/pipelines/process/deployment-jobs?view=azure-devops
https://docs.microsoft.com/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml

 architecture: 'x64'
 displayName: 'Use Python3'

 - task: configuredatabricks@0
 inputs:
 url: '$(DATABRICKS_URL)'
 token: '$(DATABRICKS_TOKEN)'
 displayName: 'Configure Databricks CLI'

 - task: deploynotebooks@0
 inputs:
 notebooksFolderPath: '$(Pipeline.Workspace)/di-notebooks'
 workspaceFolder: '/Shared/devops-ds'
 displayName: 'Deploy (copy) data processing notebook to the Databricks cluster'
 - deployment: "Deploy_to_ADF"
 displayName: 'Deploy to ADF'
 timeoutInMinutes: 0
 environment: qa
 strategy:
 runOnce:
 deploy:
 steps:
 - task: AzureResourceGroupDeployment@2
 displayName: 'Deploy ADF resources'
 inputs:
 azureSubscription: $(AZURE_RM_CONNECTION)
 resourceGroupName: $(RESOURCE_GROUP)
 location: $(LOCATION)
 csmFile: '$(Pipeline.Workspace)/adf-pipelines/ARMTemplateForFactory.json'
 csmParametersFile: '$(Pipeline.Workspace)/adf-pipelines/ARMTemplateParametersForFactory.json'
 overrideParameters: -data-ingestion-pipeline_properties_variables_data_file_name_defaultValue
"$(DATA_FILE_NAME)"
 - job: "Integration_test_job"
 displayName: "Integration test job"
 dependsOn: [Deploy_to_Databricks, Deploy_to_ADF]
 pool:
 vmImage: 'ubuntu-latest'
 timeoutInMinutes: 0
 steps:
 - task: AzurePowerShell@4
 displayName: 'Execute ADF Pipeline'
 inputs:
 azureSubscription: $(AZURE_RM_CONNECTION)
 ScriptPath: '$(Build.SourcesDirectory)/adf/utils/Invoke-ADFPipeline.ps1'
 ScriptArguments: '-ResourceGroupName $(RESOURCE_GROUP) -DataFactoryName $(DATA_FACTORY_NAME) -
PipelineName $(PIPELINE_NAME)'
 azurePowerShellVersion: LatestVersion
 - task: UsePythonVersion@0
 inputs:
 versionSpec: '3.x'
 addToPath: true
 architecture: 'x64'
 displayName: 'Use Python3'

 - task: configuredatabricks@0
 inputs:
 url: '$(DATABRICKS_URL)'
 token: '$(DATABRICKS_TOKEN)'
 displayName: 'Configure Databricks CLI'

 - task: executenotebook@0
 inputs:
 notebookPath: '/Shared/devops-ds/test-data-ingestion'
 existingClusterId: '$(DATABRICKS_CLUSTER_ID)'
 executionParams: '{"bin_file_name":"$(bin_FILE_NAME)"}'
 displayName: 'Test data ingestion'

 - task: waitexecution@0
 displayName: 'Wait until the testing is done'

Next steps
Source Control in Azure Data Factory

Continuous integration and delivery in Azure Data Factory

DevOps for Azure Databricks

https://docs.microsoft.com/azure/data-factory/source-control
https://docs.microsoft.com/azure/data-factory/continuous-integration-deployment
https://marketplace.visualstudio.com/items?itemName=riserrad.azdo-databricks

Import your data into Azure Machine Learning
designer (preview)
4/1/2020 • 2 minutes to read • Edit Online

Use Azure Machine Learning datasets

Register a dataset

In this article, you learn how to import your own data in the designer to create custom solutions. There are two

ways you can import data into the designer :

Azure Machine Learning datasets - Register datasets in Azure Machine Learning to enable advanced

features that help you manage your data.

Impor t Data module - Use the Import Data module to directly access data from online datasources.

We recommend that you use datasets to import data into the designer. When you register a dataset, you can take

full advantage of advanced data features like versioning and tracking and data monitoring.

You can register existing datasets programatically with the SDK or visually in Azure Machine Learning studio.

You can also register the output for any designer module as a dataset.

1. Select the module that outputs the data you want to register.

2. In the properties pane, select Outputs > Register dataset.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-designer-import-data.md
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/import-data

Use a dataset

NOTE

Import data using the Import Data module

NOTE

Supported sources

Datastore sources

Tabular dataset sources

Data types

Your registered datasets can be found in the module palette, under Datasets > My Datasets . To use a dataset,

drag and drop it onto the pipeline canvas. Then, connect the output port of the dataset to other modules in the

palette.

The designer currently only supports processing tabular datasets. If you want to use file datasets, use the Azure Machine

Learning SDK available for Python and R.

While we recommend that you use datasets to import data, you can also use the Import Data module. The Import

Data module skips registering your dataset in Azure Machine Learning and imports data directly from a datastore

or HTTP URL.

For detailed information on how to use the Import Data module, see the Import Data reference page.

If your dataset has too many columns, you may encounter the following error: "Validation failed due to size limitation". To

avoid this, register the dataset in the Datasets interface.

This section lists the data sources supported by the designer. Data comes into the designer from either a datastore

or from tabular dataset.

For a list of supported datastore sources, see Access data in Azure storage services.

The designer supports tabular datasets created from the following sources:

Delimited files

JSON files

Parquet files

SQL queries

The designer internally recognizes the following data types:

String

Integer

Decimal

https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/import-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/import-data

Data constraints

Next steps

Boolean

Date

The designer uses an internal data type to pass data between modules. You can explicitly convert your data into

data table format using the Convert to Dataset module. Any module that accepts formats other than the internal

format will convert the data silently before passing it to the next module.

Modules in the designer are limited by the size of the compute target. For larger datasets, you should use a larger

Azure Machine Learning compute resource. For more information on Azure Machine Learning compute, see What

are compute targets in Azure Machine Learning?

Learn the basics of the designer with Tutorial: Predict automobile price with the designer.

https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/convert-to-dataset

Connect to Azure storage services
4/21/2020 • 10 minutes to read • Edit Online

Prerequisites

Supported data storage service types

STO RA GE T Y P E
A UT H EN T IC AT IO
N T Y P E

A Z URE M A C H IN E
 L EA RN IN G
ST UDIO

A Z URE M A C H IN E
 L EA RN IN G
P Y T H O N SDK

A Z URE M A C H IN E
 L EA RN IN G C L I

A Z URE M A C H IN E
 L EA RN IN G REST
A P I

Azure Blob Stora
ge

Account key
SAS token

✓ ✓ ✓ ✓

Azure File Share Account key
SAS token

✓ ✓ ✓ ✓

Azure Data
Lake Storage
Gen 1

Service principal ✓ ✓ ✓ ✓

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, learn how to connect to Azure storage services via Azure Machine Learning datastores. Datastores

store connection information, like your subscription ID and token authorization in your Key Vault associated with

the workspace, so you can securely access your storage without having to hard code them in your scripts.

You can create datastores from these Azure storage solutions. For unsupported storage solutions, and to save

data egress cost during machine learning experiments, we recommend that you move your data to supported

Azure storage solutions.

You'll need:

import azureml.core
from azureml.core import Workspace, Datastore

ws = Workspace.from_config()

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning.

An Azure storage account with an Azure blob container or Azure file share.

The Azure Machine Learning SDK for Python, or access to Azure Machine Learning studio.

An Azure Machine Learning workspace.

Either create an Azure Machine Learning workspace or use an existing one via the Python SDK. Import the

Workspace and Datastore class, and load your subscription information from the file config.json using

the function from_config() . This looks for the JSON file in the current directory by default, but you can

also specify a path parameter to point to the file using from_config(path="your/file/path") .

Datastores currently support storing connection information to the storage services listed in the following matrix.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-access-data.md
https://azure.microsoft.com/services/key-vault/
https://aka.ms/AMLFree
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://ml.azure.com/
https://ml.azure.com/
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/rest/api/azureml/
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/azure/data-lake-store/

Azure Data
Lake Storage
Gen 2

Service principal ✓ ✓ ✓ ✓

Azure SQL Datab
ase

SQL
authentication
Service principal

✓ ✓ ✓ ✓

Azure PostgreSQ
L

SQL
authentication

✓ ✓ ✓ ✓

Azure Database f
or MySQL

SQL
authentication

✓* ✓* ✓*

Databricks File Sy
stem

No
authentication

✓** ✓ ** ✓**

STO RA GE T Y P E
A UT H EN T IC AT IO
N T Y P E

A Z URE M A C H IN E
 L EA RN IN G
ST UDIO

A Z URE M A C H IN E
 L EA RN IN G
P Y T H O N SDK

A Z URE M A C H IN E
 L EA RN IN G C L I

A Z URE M A C H IN E
 L EA RN IN G REST
A P I

Storage guidance

*MySQL is only supported for pipeline DataTransferStep.

**Databricks is only supported for pipeline DatabricksStep

We recommend creating a datastore for an Azure Blob container. Both standard and premium storage are

available for blobs. Although premium storage is more expensive, its faster throughput speeds might improve

the speed of your training runs, particularly if you train against a large dataset. For information about the cost of

storage accounts, see the Azure pricing calculator.

Azure Data Lake Storage Gen2 is built on top of Azure Blob storage and designed for enterprise big data

analytics. A fundamental part of Data Lake Storage Gen2 is the addition of a hierarchical namespace to Blob

storage. The hierarchical namespace organizes objects/files into a hierarchy of directories for efficient data

access.

When you create a workspace, an Azure blob container and an Azure file share are automatically registered to the

workspace. They're named workspaceblobstore and workspacefilestore , respectively. workspaceblobstore is used

to store workspace artifacts and your machine learning experiment logs. workspacefilestore is used to store

notebooks and R scripts authorized via compute instance. The workspaceblobstore container is set as the default

datastore.

https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/postgresql/overview
https://docs.microsoft.com/azure/mysql/overview
https://docs.microsoft.com/azure/databricks/data/databricks-file-system
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://azure.microsoft.com/pricing/calculator/?service=machine-learning-service
https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-introduction?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-namespace
https://docs.microsoft.com/azure/machine-learning/concept-compute-instance#accessing-files

IMPORTANT

Create and register datastores

IMPORTANT

Python SDK

Azure Machine Learning designer (preview) will create a datastore named azureml_globaldatasets automatically when

you open a sample in the designer homepage. This datastore only contains sample datasets. Please do not use this

datastore for any confidential data access.

When you register an Azure storage solution as a datastore, you automatically create and register that datastore

to a specific workspace. You can create and register datastores to a workspace by using the Python SDK or Azure

Machine Learning studio.

As part of the initial datastore create and register process, Azure Machine Learning validates that the underlying storage

service exists and that the user provided principal (username, service principal or SAS token) has access to that storage. For

Azure Data Lake Storage Gen 1 and 2 datastores, however, this validation happens later, when data access methods like

from_files() or from_delimited_files() are called.

After datastore creation, this validation is only performed for methods that require access to the underlying storage

container, not each time datastore objects are retrieved. For example, validation happens if you want to download files

from your datastore; but if you just want to change your default datastore, then validation does not happen.

All the register methods are on the Datastore class and have the form register_azure_* .

You can find the information that you need to populate the register() method on the Azure portal. Select

Storage Accounts on the left pane, and choose the storage account that you want to register. The Over view

page provides information such as the account name, container, and file share name.

For authentication items, like account key or SAS token, go to Access keys on the Settings pane.

For service principal items like, tenant ID and client ID, go to your App registrations and select which

https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-parquet-files-path--validate-true--include-path-false--set-column-types-none--partition-format-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py
https://portal.azure.com

IMPORTANT

Blob container

blob_datastore_name='azblobsdk' # Name of the datastore to workspace
container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
account_name=os.getenv("BLOB_ACCOUNTNAME", "<my-account-name>") # Storage account name
account_key=os.getenv("BLOB_ACCOUNT_KEY", "<my-account-key>") # Storage account access key

blob_datastore = Datastore.register_azure_blob_container(workspace=ws,
 datastore_name=blob_datastore_name,
 container_name=container_name,
 account_name=account_name,
 account_key=account_key)

File share

file_datastore_name='azfilesharesdk' # Name of the datastore to workspace
file_share_name=os.getenv("FILE_SHARE_CONTAINER", "<my-fileshare-name>") # Name of Azure file share container
account_name=os.getenv("FILE_SHARE_ACCOUNTNAME", "<my-account-name>") # Storage account name
account_key=os.getenv("FILE_SHARE_ACCOUNT_KEY", "<my-account-key>") # Storage account access key

file_datastore = Datastore.register_azure_file_share(workspace=ws,
 datastore_name=file_datastore_name,
 file_share_name=file_share_name,
 account_name=account_name,
 account_key=account_key)

Azure Data Lake Storage Generation 2

app you want to use. Its corresponding Over view page will contain these items.

If your storage account is in a virtual network, only creation of datastores via the SDK is supported.

The following examples show how to register an Azure blob container, an Azure file share, and Azure Data Lake

Storage Generation 2 as a datastore. For other storage services, please see the reference documentation for the

applicable register_azure_* methods.

To register an Azure blob container as a datastore, use register_azure_blob-container() .

The following code creates and registers the blob_datastore_name datastore to the ws workspace. This datastore

accesses the my-container-name blob container on the my-account-name storage account, by using the provided

account access key.

If your blob container is in virtual network, set skip_validation=True using register_azure_blob-container() .

To register an Azure file share as a datastore, use register_azure_file_share() .

The following code creates and registers the file_datastore_name datastore to the ws workspace. This datastore

accesses the my-fileshare-name file share on the my-account-name storage account, by using the provided

account access key.

If your file share is in virtual network, set skip_validation=True using register_azure_file_share() .

For an Azure Data Lake Storage Generation 2 (ADLS Gen 2) datastore, use register_azure_data_lake_gen2() to

register a credential datastore connected to an Azure DataLake Gen 2 storage with service principal permissions.

In order to utilize your service principal you need to register your application and grant the service principal with

the right data access. Learn more about access control set up for ADLS Gen 2.

The following code creates and registers the adlsgen2_datastore_name datastore to the ws workspace. This

datastore accesses the file system test on the account_name storage account, by using the provided service

https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py#methods
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-blob-container-workspace--datastore-name--container-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false--blob-cache-timeout-none--grant-workspace-access-false--subscription-id-none--resource-group-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-blob-container-workspace--datastore-name--container-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false--blob-cache-timeout-none--grant-workspace-access-false--subscription-id-none--resource-group-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-file-share-workspace--datastore-name--file-share-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#register-azure-file-share-workspace--datastore-name--file-share-name--account-name--sas-token-none--account-key-none--protocol-none--endpoint-none--overwrite-false--create-if-not-exists-false--skip-validation-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore.datastore?view=azure-ml-py#register-azure-data-lake-gen2-workspace--datastore-name--filesystem--account-name--tenant-id--client-id--client-secret--resource-url-none--authority-url-none--protocol-none--endpoint-none--overwrite-false-
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/azure/storage/blobs/data-lake-storage-access-control

adlsgen2_datastore_name = 'adlsgen2datastore'

subscription_id=os.getenv("ADL_SUBSCRIPTION", "<my_subscription_id>") # subscription id of ADLS account
resource_group=os.getenv("ADL_RESOURCE_GROUP", "<my_resource_group>") # resource group of ADLS account

account_name=os.getenv("ADLSGEN2_ACCOUNTNAME", "<my_account_name>") # ADLS Gen2 account name
tenant_id=os.getenv("ADLSGEN2_TENANT", "<my_tenant_id>") # tenant id of service principal
client_id=os.getenv("ADLSGEN2_CLIENTID", "<my_client_id>") # client id of service principal
client_secret=os.getenv("ADLSGEN2_CLIENT_SECRET", "<my_client_secret>") # the secret of service principal

adlsgen2_datastore = Datastore.register_azure_data_lake_gen2(workspace=ws,
 datastore_name=adlsgen2_datastore_name,
 account_name=account_name, # ADLS Gen2 account
name
 filesystem='test', # ADLS Gen2 filesystem
 tenant_id=tenant_id, # tenant id of service
principal
 client_id=client_id, # client id of service
principal
 client_secret=client_secret) # the secret of
service principal

Azure Machine Learning studio

IMPORTANT

principal credentials.

Create a new datastore in a few steps in Azure Machine Learning studio:

If your storage account is in a virtual network, only creation of datastores via the SDK is supported.

1. Sign in to Azure Machine Learning studio.

2. Select Datastores on the left pane under Manage.

3. Select + New datastore.

4. Complete the form for a new datastore. The form intelligently updates itself based on your selections for

Azure storage type and authentication type.

You can find the information that you need to populate the form on the Azure portal. Select Storage Accounts

on the left pane, and choose the storage account that you want to register. The Over view page provides

information such as the account name, container, and file share name.

For authentication items, like account key or SAS token, go to Access keys on the Settings pane.

For service principal items like, tenant ID and client ID, go to your App registrations and select which

app you want to use. Its corresponding Over view page will contain these items.

The following example demonstrates what the form looks like when you create an Azure blob datastore:

https://ml.azure.com/
https://portal.azure.com

Get datastores from your workspace

Get a named datastore from the current workspace
datastore = Datastore.get(ws, datastore_name='your datastore name')

List all datastores registered in the current workspace
datastores = ws.datastores
for name, datastore in datastores.items():
 print(name, datastore.datastore_type)

To get a specific datastore registered in the current workspace, use the get() static method on the Datastore

class:

To get the list of datastores registered with a given workspace, you can use the datastores property on a

workspace object:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.datastore(class)?view=azure-ml-py#get-workspace--datastore-name-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace%28class%29?view=azure-ml-py#datastores

datastore = ws.get_default_datastore()

Upload and download data

Upload

datastore.upload(src_dir='your source directory',
 target_path='your target path',
 overwrite=True,
 show_progress=True)

Download

datastore.download(target_path='your target path',
 prefix='your prefix',
 show_progress=True)

Access your data during training

Accessing source code during training

workspaceblobstore is the default blob storage
run_config.source_directory_data_store = "workspaceblobstore"

To get the workspace's default datastore, use this line:

The upload() and download() methods described in the following examples are specific to, and operate

identically for, the AzureBlobDatastore and AzureFileDatastore classes.

Upload either a directory or individual files to the datastore by using the Python SDK:

The target_path parameter specifies the location in the file share (or blob container) to upload. It defaults to

None , so the data is uploaded to root. If overwrite=True , any existing data at target_path is overwritten.

You can also upload a list of individual files to the datastore via the upload_files() method.

Download data from a datastore to your local file system:

The target_path parameter is the location of the local directory to download the data to. To specify a path to the

folder in the file share (or blob container) to download, provide that path to prefix . If prefix is None , all the

contents of your file share (or blob container) will be downloaded.

To interact with data in your datastores or to package your data into a consumable object for machine learning

tasks, like training, create an Azure Machine Learning dataset. Datasets provide functions that load tabular data

into a pandas or Spark DataFrame. Datasets also provide the ability to download or mount files of any format

from Azure Blob storage, Azure Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL

Database, and Azure Database for PostgreSQL. Learn more about how to train with datasets.

Azure Blob storage has higher throughput speeds than an Azure file share and will scale to large numbers of jobs

started in parallel. For this reason, we recommend configuring your runs to use Blob storage for transferring

source code files.

The following code example specifies in the run configuration which blob datastore to use for source code

transfers.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.azure_storage_datastore.azureblobdatastore?view=azure-ml-py#upload-src-dir--target-path-none--overwrite-false--show-progress-true-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.azure_storage_datastore.azureblobdatastore?view=azure-ml-py#download-target-path--prefix-none--overwrite-false--show-progress-true-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.azure_storage_datastore.azureblobdatastore?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.azure_storage_datastore.azurefiledatastore?view=azure-ml-py

Access data during scoring

M ET H O D DATA STO RE A C C ESS DESC RIP T IO N

Batch prediction ✔ Make predictions on large quantities of
data asynchronously.

Web service Deploy models as a web service.

Azure IoT Edge module Deploy models to IoT Edge devices.

Move data to supported Azure storage solutions

Next steps

Azure Machine Learning provides several ways to use your models for scoring. Some of these methods don't

provide access to datastores. Use the following table to understand which methods allow you to access

datastores during scoring:

For situations where the SDK doesn't provide access to datastores, you might be able to create custom code by

using the relevant Azure SDK to access the data. For example, the Azure Storage SDK for Python is a client library

that you can use to access data stored in blobs or files.

Azure Machine Learning supports accessing data from Azure Blob storage, Azure Files, Azure Data Lake Storage

Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, and Azure Database for PostgreSQL. If you're using

unsupported storage, we recommend that you move your data to supported Azure storage solutions by using

Azure Data Factory and these steps. Moving data to supported storage can help you save data egress costs

during machine learning experiments.

Azure Data Factory provides efficient and resilient data transfer with more than 80 prebuilt connectors at no

additional cost. These connectors include Azure data services, on-premises data sources, Amazon S3 and

Redshift, and Google BigQuery.

Create an Azure machine learning dataset

Train a model

Deploy a model

https://github.com/Azure/azure-storage-python
https://docs.microsoft.com/azure/data-factory/quickstart-create-data-factory-copy-data-tool

Create Azure Machine Learning datasets
4/19/2020 • 11 minutes to read • Edit Online

Prerequisites

NOTE

Compute size guidance

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to create Azure Machine Learning datasets to access data for your local or remote

experiments.

With Azure Machine Learning datasets, you can:

Keep a single copy of data in your storage, referenced by datasets.

Seamlessly access data during model training without worrying about connection strings or data paths.

Share data and collaborate with other users.

' To create and work with datasets, you need:

An Azure subscription. If you don't have one, create a free account before you begin. Try the free or paid

version of Azure Machine Learning.

An Azure Machine Learning workspace.

The Azure Machine Learning SDK for Python installed, which includes the azureml-datasets package.

Some dataset classes have dependencies on the azureml-dataprep package. For Linux users, these classes are supported

only on the following distributions: Red Hat Enterprise Linux, Ubuntu, Fedora, and CentOS.

When creating a dataset review your compute processing power and the size of your data in memory. The size

of your data in storage is not the same as the size of data in a dataframe. For example, data in CSV files can

expand up to 10x in a dataframe, so a 1 GB CSV file can become 10 GB in a dataframe.

The main factor is how large the dataset is in-memory, i.e. as a dataframe. We recommend your compute size

and processing power contain 2x the size of RAM. So if your dataframe is 10GB, you want a compute target with

20+ GB of RAM to ensure that the dataframe can comfortable fit in memory and be processed. If your data is

compressed, it can expand further ; 20 GB of relatively sparse data stored in compressed parquet format can

expand to ~800 GB in memory. Since Parquet files store data in a columnar format, if you only need half of the

columns, then you only need to load ~400 GB in memory.

If you're using Pandas, there's no reason to have more than 1 vCPU since that's all it will use. You can easily

parallelize to many vCPUs on a single Azure Machine Learning compute instance/node via Modin and Dask/Ray,

and scale out to a large cluster if needed, by simply changing import pandas as pd to

import modin.pandas as pd .

If you can't get a big enough virtual for the data, you have two options: use a framework like Spark or Dask to

perform the processing on the data 'out of memory', i.e. the dataframe is loaded into RAM partition by partition

and processed, with the final result being gathered at the end. If this is too slow, Spark or Dask allow you to

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-create-register-datasets.md
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace
https://aka.ms/AMLFree
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-dataprep/?view=azure-ml-py

Dataset types

Create datasets

Use the SDK

NOTE

Create a TabularDataset

scale out to a cluster which can still be used interactively.

There are two dataset types, based on how users consume them in training:

TabularDataset represents data in a tabular format by parsing the provided file or list of files. This

provides you with the ability to materialize the data into a Pandas or Spark DataFrame. You can create a

TabularDataset object from .csv, .tsv, .parquet, .jsonl files, and from SQL query results. For a complete list,

see TabularDatasetFactory class.

The FileDataset class references single or multiple files in your datastores or public URLs. By this method,

you can download or mount the files to your compute as a FileDataset object. The files can be in any

format, which enables a wider range of machine learning scenarios, including deep learning.

To learn more about upcoming API changes, see Dataset API change notice.

By creating a dataset, you create a reference to the data source location, along with a copy of its metadata.

Because the data remains in its existing location, you incur no extra storage cost. You can create both

TabularDataset and FileDataset data sets by using the Python SDK or at https://ml.azure.com.

For the data to be accessible by Azure Machine Learning, datasets must be created from paths in Azure

datastores or public web URLs.

To create datasets from an Azure datastore by using the Python SDK:

1. Verify that you have contributor or owner access to the registered Azure datastore.

2. Create the dataset by referencing paths in the datastore.

You can create a dataset from multiple paths in multiple datastores. There is no hard limit on the number of files or data

size that you can create a dataset from. However, for each data path, a few requests will be sent to the storage service to

check whether it points to a file or a folder. This overhead may lead to degraded performance or failure. A dataset

referencing one folder with 1000 files inside is considered referencing one data path. We'd recommend creating dataset

referencing less than 100 paths in datastores for optimal performance.

Use the from_delimited_files() method on the TabularDatasetFactory class to read files in .csv or .tsv format,

and to create an unregistered TabularDataset. If you're reading from multiple files, results will be aggregated

into one tabular representation.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py
https://aka.ms/tabulardataset-api-reference
https://docs.microsoft.com/python/api/azureml-core/azureml.data.file_dataset.filedataset?view=azure-ml-py
https://aka.ms/tabular-dataset
https://ml.azure.com
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-access-data
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-access-data
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none--support-multi-line-false-

from azureml.core import Workspace, Datastore, Dataset

datastore_name = 'your datastore name'

get existing workspace
workspace = Workspace.from_config()

retrieve an existing datastore in the workspace by name
datastore = Datastore.get(workspace, datastore_name)

create a TabularDataset from 3 paths in datastore
datastore_paths = [(datastore, 'weather/2018/11.csv'),
 (datastore, 'weather/2018/12.csv'),
 (datastore, 'weather/2019/*.csv')]
weather_ds = Dataset.Tabular.from_delimited_files(path=datastore_paths)

IMPORTANT

from azureml.core import Dataset
from azureml.data.dataset_factory import DataType

create a TabularDataset from a delimited file behind a public web url and convert column "Survived" to
boolean
web_path ='https://dprepdata.blob.core.windows.net/demo/Titanic.csv'
titanic_ds = Dataset.Tabular.from_delimited_files(path=web_path, set_column_types={'Survived':
DataType.to_bool()})

preview the first 3 rows of titanic_ds
titanic_ds.take(3).to_pandas_dataframe()

PA SS
EN GE
RID

SURV
IVED

P C L A
SS

N A M
E SEX A GE SIB SP

PA RC
H

T IC K
ET FA RE

C A B I
N

EM B
A RKE
D

0 1 False 3 Brau
nd,
Mr.
Owe
n
Harri
s

male 22.0 1 0 A/5
2117
1

7.25
00

S

By default, when you create a TabularDataset, column data types are inferred automatically. If the inferred types

don't match your expectations, you can specify column types by using the following code. The parameter

infer_column_type is only applicable for datasets created from delimited files.You can also learn more about

supported data types.

If your storage is behind a virtual network or firewall, only creation of a dataset via the SDK is supported. To create your

dataset, be sure to include the parameters validate=False and infer_column_types=False in your

from_delimited_files() method. This bypasses the initial validation check and ensures that you can create your

dataset from these secure files.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.datatype?view=azure-ml-py

1 2 True 1 Cumi
ngs,
Mrs.
John
Bradl
ey
(Flor
ence
Brigg
s
Th...

femal
e

38.0 1 0 PC
1759
9

71.2
833

C85 C

2 3 True 3 Heik
kinen
,
Miss.
Laina

femal
e

26.0 0 0 STON
/O2.
3101
282

7.92
50

S

PA SS
EN GE
RID

SURV
IVED

P C L A
SS

N A M
E SEX A GE SIB SP

PA RC
H

T IC K
ET FA RE

C A B I
N

EM B
A RKE
D

local_path = 'data/prepared.csv'
dataframe.to_csv(local_path)
upload the local file to a datastore on the cloud
azureml-core of version 1.0.72 or higher is required
azureml-dataprep[pandas] of version 1.1.34 or higher is required
from azureml.core import Workspace, Dataset

subscription_id = 'xxxxxxxxxxxxxxxxxxxxx'
resource_group = 'xxxxxx'
workspace_name = 'xxxxxxxxxxxxxxxx'

workspace = Workspace(subscription_id, resource_group, workspace_name)

get the datastore to upload prepared data
datastore = workspace.get_default_datastore()

upload the local file from src_dir to the target_path in datastore
datastore.upload(src_dir='data', target_path='data')
create a dataset referencing the cloud location
dataset = Dataset.Tabular.from_delimited_files(datastore.path('data/prepared.csv'))

from azureml.core import Dataset, Datastore

create tabular dataset from a SQL database in datastore
sql_datastore = Datastore.get(workspace, 'mssql')
sql_ds = Dataset.Tabular.from_sql_query((sql_datastore, 'SELECT * FROM my_table'))

To create a dataset from an in memory pandas dataframe, write the data to a local file, like a csv, and create your

dataset from that file. The following code demonstrates this workflow.

Use the from_sql_query() method on the TabularDatasetFactory class to read from Azure SQL Database:

In TabularDatasets, you can specify a time stamp from a column in the data or from wherever the path pattern

data is stored to enable a time series trait. This specification allows for easy and efficient filtering by time.

Use the with_timestamp_columns() method on the TabularDataset class to specify your time stamp column and

to enable filtering by time. For more information, see Tabular time series-related API demo with NOAA weather

data.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-sql-query-query--validate-true--set-column-types-none--query-timeout-30-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-timestamp-none--partition-timestamp-none--validate-false----kwargs-
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/timeseries-datasets/tabular-timeseries-dataset-filtering.ipynb

create a TabularDataset with time series trait
datastore_paths = [(datastore, 'weather/*/*/*/data.parquet')]

get a coarse timestamp column from the path pattern
dataset = Dataset.Tabular.from_parquet_files(path=datastore_path,
partition_format='weather/{coarse_time:yyy/MM/dd}/data.parquet')

set coarse timestamp to the virtual column created, and fine grain timestamp from a column in the data
dataset = dataset.with_timestamp_columns(fine_grain_timestamp='datetime',
coarse_grain_timestamp='coarse_time')

filter with time-series-trait-specific methods
data_slice = dataset.time_before(datetime(2019, 1, 1))
data_slice = dataset.time_after(datetime(2019, 1, 1))
data_slice = dataset.time_between(datetime(2019, 1, 1), datetime(2019, 2, 1))
data_slice = dataset.time_recent(timedelta(weeks=1, days=1))

Create a FileDataset

create a FileDataset pointing to files in 'animals' folder and its subfolders recursively
datastore_paths = [(datastore, 'animals')]
animal_ds = Dataset.File.from_files(path=datastore_paths)

create a FileDataset from image and label files behind public web urls
web_paths = ['https://azureopendatastorage.blob.core.windows.net/mnist/train-images-idx3-ubyte.gz',
 'https://azureopendatastorage.blob.core.windows.net/mnist/train-labels-idx1-ubyte.gz']
mnist_ds = Dataset.File.from_files(path=web_paths)

On the web

Use the from_files() method on the FileDatasetFactory class to load files in any format and to create an

unregistered FileDataset. If your storage is behind a a virtual network or firewall, set the parameter

validate =False in your from_files() method. This bypasses the initial validation step, and ensures that you

can create your dataset from these secure files.

The following steps and animation show how to create a dataset in Azure Machine Learning studio,

https://ml.azure.com.

To create a dataset in the studio:

https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-
https://ml.azure.com

Register datasets

titanic_ds = titanic_ds.register(workspace=workspace,
 name='titanic_ds',
 description='titanic training data')

NOTE

Create datasets with Azure Open Datasets

Use the SDK

1. Sign in at https://ml.azure.com.

2. Select Datasets in the Assets section of the left pane.

3. Select Create Dataset to choose the source of your dataset. This source can be local files, a datastore, or

public URLs.

4. Select Tabular or File for Dataset type.

5. Select Next to open the Datastore and file selection form. On this form you select where to keep your

dataset after creation, as well as select what data files to use for your dataset.

6. Select Next to populate the Settings and preview and Schema forms; they are intelligently populated

based on file type and you can further configure your dataset prior to creation on these forms.

7. Select Next to review the Confirm details form. Check your selections and create an optional data profile

for your dataset. Learn more about data profiling.

8. Select Create to complete your dataset creation.

To complete the creation process, register your datasets with a workspace. Use the register() method to

register datasets with your workspace in order to share them with others and reuse them across various

experiments:

Datasets created through Azure Machine Learning studio are automatically registered to the workspace.

Azure Open Datasets are curated public datasets that you can use to add scenario-specific features to machine

learning solutions for more accurate models. Datasets include public-domain data for weather, census, holidays,

public safety, and location that help you train machine learning models and enrich predictive solutions. Open

Datasets are in the cloud on Microsoft Azure and are included in both the SDK and the workspace UI.

To create datasets with Azure Open Datasets from the SDK, make sure you've installed the package with

pip install azureml-opendatasets . Each discrete data set is represented by its own class in the SDK, and certain

classes are available as either a TabularDataset , FileDataset , or both. See the reference documentation for a

full list of classes.

You can retrieve certain classes as either a TabularDataset or FileDataset , which allows you to manipulate

and/or download the files directly. Other classes can get a dataset only by using one of get_tabular_dataset()

or get_file_dataset() functions. The following code sample shows a few examples of these types of classes.

https://ml.azure.com
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-automated-ml-for-ml-models
https://docs.microsoft.com/python/api/azureml-core/azureml.data.abstract_dataset.abstractdataset?view=azure-ml-py#register-workspace--name--description-none--tags-none--create-new-version-false-
https://azure.microsoft.com/services/open-datasets/
https://docs.microsoft.com/python/api/azureml-opendatasets/azureml.opendatasets?view=azure-ml-py

from azureml.opendatasets import MNIST

MNIST class can return either TabularDataset or FileDataset
tabular_dataset = MNIST.get_tabular_dataset()
file_dataset = MNIST.get_file_dataset()

from azureml.opendatasets import Diabetes

Diabetes class can return ONLY TabularDataset and must be called from the static function
diabetes_tabular = Diabetes.get_tabular_dataset()

Use the UI

When you register a dataset created from Open Datasets, no data is immediately downloaded, but the data will

be accessed later when requested (during training, for example) from a central storage location.

You can also create datasets from Open Datasets classes through the UI. In your workspace, select the Datasets

tab under Assets . On the Create dataset drop-down menu, select From Open Datasets .

Select a dataset by selecting its tile. (You have the option to filter by using the search bar.) Select Next.

Version datasets

Choose a name under which to register the dataset, and optionally filter the data by using the available filters. In

this case, for the public holidays dataset, you filter the time period to one year and the country code to only the

US. Select Create.

The dataset is now available in your workspace under Datasets . You can use it in the same way as other

datasets you've created.

You can register a new dataset under the same name by creating a new version. A dataset version is a way to

bookmark the state of your data so that you can apply a specific version of the dataset for experimentation or

future reproduction. Learn more about dataset versions.

https://docs.microsoft.com/en-us/azure/machine-learning/how-to-version-track-datasets

create a TabularDataset from Titanic training data
web_paths = ['https://dprepdata.blob.core.windows.net/demo/Titanic.csv',
 'https://dprepdata.blob.core.windows.net/demo/Titanic2.csv']
titanic_ds = Dataset.Tabular.from_delimited_files(path=web_paths)

create a new version of titanic_ds
titanic_ds = titanic_ds.register(workspace = workspace,
 name = 'titanic_ds',
 description = 'new titanic training data',
 create_new_version = True)

Access datasets in your script

%%writefile $script_folder/train.py

from azureml.core import Dataset, Run

run = Run.get_context()
workspace = run.experiment.workspace

dataset_name = 'titanic_ds'

Get a dataset by name
titanic_ds = Dataset.get_by_name(workspace=workspace, name=dataset_name)

Load a TabularDataset into pandas DataFrame
df = titanic_ds.to_pandas_dataframe()

Next steps

Registered datasets are accessible both locally and remotely on compute clusters like the Azure Machine

Learning compute. To access your registered dataset across experiments, use the following code to access your

workspace and registered dataset by name. By default, the get_by_name() method on the Dataset class returns

the latest version of the dataset that's registered with the workspace.

Learn how to train with datasets.

Use automated machine learning to train with TabularDatasets.

For more dataset training examples, see the sample notebooks.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py#get-by-name-workspace--name--version--latest--
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-with-datasets
https://aka.ms/automl-dataset
https://aka.ms/dataset-tutorial

Train with datasets in Azure Machine Learning
3/9/2020 • 5 minutes to read • Edit Online

Prerequisites

NOTE

Option 1: Use datasets directly in training scripts

Create a TabularDataset

from azureml.core.dataset import Dataset

web_path ='https://dprepdata.blob.core.windows.net/demo/Titanic.csv'
titanic_ds = Dataset.Tabular.from_delimited_files(path=web_path)

Access the input dataset in your training script

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn the two ways to consume Azure Machine Learning datasets in a remote experiment

training runs without worrying about connection strings or data paths.

Option 1: If you have structured data, create a TabularDataset and use it directly in your training script.

Option 2: If you have unstructured data, create a FileDataset and mount or download files to a remote

compute for training.

Azure Machine Learning datasets provide a seamless integration with Azure Machine Learning training products

like ScriptRun, Estimator, HyperDrive and Azure Machine Learning pipelines.

To create and train with datasets, you need:

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning today.

An Azure Machine Learning workspace.

The Azure Machine Learning SDK for Python installed, which includes the azureml-datasets package.

Some Dataset classes have dependencies on the azureml-dataprep package. For Linux users, these classes are supported

only on the following distributions: Red Hat Enterprise Linux, Ubuntu, Fedora, and CentOS.

In this example, you create a TabularDataset and use it as a direct input to your estimator object for training.

The following code creates an unregistered TabularDataset from a web url. You can also create datasets from local

files or paths in datastores. Learn more about how to create datasets.

TabularDataset objects provide the ability to load the data into a pandas or spark DataFrame so that you can work

with familiar data preparation and training libraries. To leverage this capability, you can pass a TabularDataset as

the input in your training configuration, and then retrieve it in your script.

To do so, access the input dataset through the Run object in your training script and use the

to_pandas_dataframe() method.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-with-datasets.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrun?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive?view=azure-ml-py
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-dataprep/?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py
https://aka.ms/azureml/howto/createdatasets
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset#to-pandas-dataframe-on-error--null---out-of-range-datetime--null--

%%writefile $script_folder/train_titanic.py

from azureml.core import Dataset, Run

run = Run.get_context()
get the input dataset by name
dataset = run.input_datasets['titanic']
load the TabularDataset to pandas DataFrame
df = dataset.to_pandas_dataframe()

Configure the estimator

est = Estimator(source_directory=script_folder,
 entry_script='train_titanic.py',
 # pass dataset object as an input with name 'titanic'
 inputs=[titanic_ds.as_named_input('titanic')],
 compute_target=compute_target,
 environment_definition= conda_env)

Submit the estimator as part of your experiment run
experiment_run = experiment.submit(est)
experiment_run.wait_for_completion(show_output=True)

Option 2: Mount files to a remote compute target

Mount vs. Download

An estimator object is used to submit the experiment run. Azure Machine Learning has pre-configured estimators

for common machine learning frameworks, as well as a generic estimator.

This code creates a generic estimator object, est , that specifies

A script directory for your scripts. All the files in this directory are uploaded into the cluster nodes for execution.

The training script, train_titanic.py.

The input dataset for training, titanic . as_named_input() is required so that the input dataset can be

referenced by the assigned name in your training script.

The compute target for the experiment.

The environment definition for the experiment.

If you want to make your data files available on the compute target for training, use FileDataset to mount or

download files referred by it.

Mounting or downloading files of any format are supported for datasets created from Azure Blob storage, Azure

Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database, and Azure Database for

PostgreSQL.

When you mount a dataset, you attach the files referenced by the dataset to a directory (mount point) and make it

available on the compute target. Mounting is supported for Linux-based computes, including Azure Machine

Learning Compute, virtual machines, and HDInsight. When you download a dataset, all the files referenced by the

dataset will be downloaded to the compute target. Downloading is supported for all compute types.

If your script processes all files referenced by the dataset, and your compute disk can fit your full dataset,

downloading is recommended to avoid the overhead of streaming data from storage services. If your data size

exceeds the compute disk size, downloading is not possible. For this scenario, we recommend mounting since only

the data files used by your script are loaded at the time of processing.

The following code mounts dataset to the temp directory at mounted_path

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.file_dataset.filedataset?view=azure-ml-py

import tempfile
mounted_path = tempfile.mkdtemp()

mount dataset onto the mounted_path of a Linux-based compute
mount_context = dataset.mount(mounted_path)

mount_context.start()

import os
print(os.listdir(mounted_path))
print (mounted_path)

Create a FileDataset

from azureml.core.dataset import Dataset

web_paths = [
 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
]
mnist_ds = Dataset.File.from_files(path = web_paths)

Configure the estimator

from azureml.train.sklearn import SKLearn

script_params = {
 # mount the dataset on the remote compute and pass the mounted path as an argument to the training script
 '--data-folder': mnist_ds.as_named_input('mnist').as_mount(),
 '--regularization': 0.5
}

est = SKLearn(source_directory=script_folder,
 script_params=script_params,
 compute_target=compute_target,
 environment_definition=env,
 entry_script='train_mnist.py')

Run the experiment
run = experiment.submit(est)
run.wait_for_completion(show_output=True)

Retrieve the data in your training script

The following example creates an unregistered FileDataset from web urls. Learn more about how to create

datasets from other sources.

Besides passing the dataset through the inputs parameter in the estimator, you can also pass the dataset through

script_params and get the data path (mounting point) in your training script via arguments. This way, you can

keep your training script independent of azureml-sdk. In other words, you will be able use the same training script

for local debugging and remote training on any cloud platform.

An SKLearn estimator object is used to submit the run for scikit-learn experiments. Learn more about training with

the SKlearn estimator.

After you submit the run, data files referred by the mnist dataset will be mounted to the compute target. The

following code shows how to retrieve the data in your script.

https://aka.ms/azureml/howto/createdatasets
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn.sklearn?view=azure-ml-py

%%writefile $script_folder/train_mnist.py

import argparse
import os
import numpy as np
import glob

from utils import load_data

retrieve the 2 arguments configured through script_params in estimator
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, dest='data_folder', help='data folder mounting point')
parser.add_argument('--regularization', type=float, dest='reg', default=0.01, help='regularization rate')
args = parser.parse_args()

data_folder = args.data_folder
print('Data folder:', data_folder)

get the file paths on the compute
X_train_path = glob.glob(os.path.join(data_folder, '**/train-images-idx3-ubyte.gz'), recursive=True)[0]
X_test_path = glob.glob(os.path.join(data_folder, '**/t10k-images-idx3-ubyte.gz'), recursive=True)[0]
y_train_path = glob.glob(os.path.join(data_folder, '**/train-labels-idx1-ubyte.gz'), recursive=True)[0]
y_test = glob.glob(os.path.join(data_folder, '**/t10k-labels-idx1-ubyte.gz'), recursive=True)[0]

load train and test set into numpy arrays
X_train = load_data(X_train_path, False) / 255.0
X_test = load_data(X_test_path, False) / 255.0
y_train = load_data(y_train_path, True).reshape(-1)
y_test = load_data(y_test, True).reshape(-1)

Notebook examples

Next steps

The dataset notebooks demonstrate and expand upon concepts in this article.

Auto train machine learning models with TabularDatasets

Train image classification models with FileDatasets

Train with datasets using pipelines

https://aka.ms/dataset-tutorial
https://aka.ms/filedataset-samplenotebook
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb

Detect data drift (preview) on datasets
4/19/2020 • 13 minutes to read • Edit Online

IMPORTANT

Prerequisites

What is data drift?

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to create Azure Machine Learning dataset monitors (preview), monitor for data drift

and statistical changes in datasets, and set up alerts.

With Azure Machine Learning dataset monitors, you can:

Analyze dr ift in your data to understand how it changes over time.

Monitor model data for differences between training and serving datasets.

Monitor new data for differences between any baseline and target dataset.

Profile features in data to track how statistical properties change over time.

Set up aler ts on data dr ift for early warnings to potential issues.

Metrics and insights are available through the Azure Application Insights resource associated with the Azure

Machine Learning workspace.

Please note that monitoring data drift with the SDK is available in all editions, while monitoring data drift through the studio

on the web is Enterprise edition only.

To create and work with dataset monitors, you need:

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try the

free or paid version of Azure Machine Learning today.

An Azure Machine Learning workspace.

The Azure Machine Learning SDK for Python installed, which includes the azureml-datasets package.

Structured (tabular) data with a timestamp specified in the file path, file name, or column in the data.

In the context of machine learning, data drift is the change in model input data that leads to model performance

degradation. It is one of the top reasons model accuracy degrades over time, thus monitoring data drift helps

detect model performance issues.

Causes of data drift include:

Upstream process changes, such as a sensor being replaced that changes the units of measurement from

inches to centimeters.

Data quality issues, such as a broken sensor always reading 0.

Natural drift in the data, such as mean temperature changing with the seasons.

Change in relation between features, or covariate shift.

With Azure Machine Learning dataset monitors you can set up alerts that assist in data drift detection in datasets

over time.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-monitor-datasets.md
https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Dataset monitors

SC EN A RIO DESC RIP T IO N

Monitoring a model's serving data for drift from the model's
training data

Results from this scenario can be interpreted as monitoring a
proxy for the model's accuracy, given that model accuracy
degrades if the serving data drifts from the training data.

Monitoring a time series dataset for drift from a previous
time period.

This scenario is more general, and can be used to monitor
datasets involved upstream or downstream of model
building. The target dataset must have a timestamp column,
while the baseline dataset can be any tabular dataset that has
features in common with the target dataset.

Performing analysis on past data. This scenario can be used to understand historical data and
inform decisions in settings for dataset monitors.

How dataset can monitor data

Set the timeseries trait in the target dataset

Python SDK

You can create a dataset monitor to detect and alert to data drift on new data in a dataset, analyze historical data

for drift, and profile new data over time. The data drift algorithm provides an overall measure of change in data

and indication of which features are responsible for further investigation. Dataset monitors produce a number of

other metrics by profiling new data in the timeseries dataset. Custom alerting can be set up on all metrics

generated by the monitor through Azure Application Insights. Dataset monitors can be used to quickly catch data

issues and reduce the time to debug the issue by identifying likely causes.

Conceptually, there are three primary scenarios for setting up dataset monitors in Azure Machine Learning.

Using Azure Machine Learning, data drift is monitored through datasets. To monitor for data drift, a baseline

dataset - usually the training dataset for a model - is specified. A target dataset - usually model input data - is

compared over time to your baseline dataset. This comparison means that your target dataset must have a

timestamp column specified.

The target dataset needs to have the timeseries trait set on it by specifying the timestamp column either from a

column in the data or a virtual column derived from the path pattern of the files. This can be done through the

Python SDK or Azure Machine Learning studio. A column representing a "fine grain" timestamp must be specified

to add timeseries trait to the dataset. If your data is partitioned into folder structure with time info, such as

'{yyyy/MM/dd}', you can create a virtual column through the path pattern setting and set it as the "coarse grain"

timestamp to improve the importance of time series functionality.

The Dataset class' with_timestamp_columns() method defines the time stamp column for the dataset.

https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-timestamp-none--partition-timestamp-none--validate-false----kwargs-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-timestamp-none--partition-timestamp-none--validate-false----kwargs-

from azureml.core import Workspace, Dataset, Datastore

get workspace object
ws = Workspace.from_config()

get datastore object
dstore = Datastore.get(ws, 'your datastore name')

specify datastore paths
dstore_paths = [(dstore, 'weather/*/*/*/*/data.parquet')]

specify partition format
partition_format = 'weather/{state}/{date:yyyy/MM/dd}/data.parquet'

create the Tabular dataset with 'state' and 'date' as virtual columns
dset = Dataset.Tabular.from_parquet_files(path=dstore_paths, partition_format=partition_format)

assign the timestamp attribute to a real or virtual column in the dataset
dset = dset.with_timestamp_columns('date')

register the dataset as the target dataset
dset = dset.register(ws, 'target')

Azure Machine Learning studio

IMPORTANT

For a full example of using the timeseries trait of datasets, see the example notebook or the datasets SDK

documentation.

The functionality in this studio, https://ml.azure.com, is accessible from Enterprise workspaces only . Learn more about

editions and upgrading.

If you create your dataset using Azure Machine Learning studio, ensure the path to your data contains timestamp

information, include all subfolders with data, and set the partition format.

In the following example, all data under the subfolder NoaaIsdFlorida/2019 is taken, and the partition format

specifies the timestamp's year, month, and day.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/timeseries-datasets/tabular-timeseries-dataset-filtering.ipynb
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-timestamp-none--partition-timestamp-none--validate-false----kwargs-
https://ml.azure.com

Dataset monitor settings

Basic info

In the Schema settings, specify the timestamp column from a virtual or real column in the specified dataset:

Once you create your dataset with the specified timestamp settings, you're ready to configure your dataset

monitor.

The various dataset monitor settings are broken into three groups: Basic info, Monitor settings and Backfill

settings .

file:///T:/i2pk/machine-learning/media/how-to-monitor-datasets/partition-format-expand.png

SET T IN G DESC RIP T IO N T IP S M UTA B L E

Name Name of the dataset
monitor.

No

Baseline dataset Tabular dataset that will be
used as the baseline for
comparison of the target
dataset over time.

The baseline dataset must
have features in common
with the target dataset.
Generally, the baseline
should be set to a model's
training dataset or a slice of
the target dataset.

No

Target dataset Tabular dataset with
timestamp column specified
which will be analyzed for
data drift.

The target dataset must
have features in common
with the baseline dataset,
and should be a
timeseries dataset, which

new data is appended to.
Historical data in the target
dataset can be analyzed, or
new data can be monitored.

No

Frequency The frequency that will be
used to schedule the
pipeline job and analyze
historical data if running a
backfill. Options include
daily, weekly, or monthly.

Adjust this setting to include
a comparable size of data to
the baseline.

No

Features List of features that will be
analyzed for data drift over
time.

Set to a model's output
feature(s) to measure
concept drift. Do not include
features that naturally drift
over time (month, year,
index, etc.). You can backfill
and existing data drift
monitor after adjusting the
list of features.

Yes

Compute target Azure Machine Learning
compute target to run the
dataset monitor jobs.

Yes

Monitor settings

SET T IN G DESC RIP T IO N T IP S M UTA B L E

Enable Enable or disable the
schedule on the dataset
monitor pipeline

Disable the schedule to
analyze historical data with
the backfill setting. It can be
enabled after the dataset
monitor is created.

Yes

This table contains basic settings used for the dataset monitor.

These settings are for the scheduled dataset monitor pipeline, which will be created.

Latency Time, in hours, it takes for
data to arrive in the dataset.
For instance, if it takes three
days for data to arrive in the
SQL DB the dataset
encapsulates, set the latency
to 72.

Cannot be changed after
the dataset monitor is
created

No

Email addresses Email addresses for alerting
based on breach of the data
drift percentage threshold.

Emails are sent through
Azure Monitor.

Yes

Threshold Data drift percentage
threshold for email alerting.

Further alerts and events
can be set on many other
metrics in the workspace's
associated Application
Insights resource.

Yes

SET T IN G DESC RIP T IO N T IP S M UTA B L E

Backfill settings

SET T IN G DESC RIP T IO N T IP S

Start date Start date of the backfill job.

End date End date of the backfill job. The end date cannot be more than
31*frequency units of time from the
start date. On an existing dataset
monitor, metrics can be backfilled to
analyze historical data or replace
metrics with updated settings.

Create dataset monitors

Azure Machine Learning studio

IMPORTANT

These settings are for running a backfill on past data for data drift metrics.

Create dataset monitors to detect and alert to data drift on a new dataset with Azure Machine Learning studio or

the Python SDK.

The functionality in this studio, https://ml.azure.com, is accessible from Enterprise workspaces only . Learn more about

editions and upgrading.

To set up alerts on your dataset monitor, the workspace that contains the dataset you want to create a monitor for

must have Enterprise edition capabilities.

After the workspace functionality is confirmed, navigate to the studio's homepage and select the Datasets tab on

the left. Select Dataset monitors.

https://ml.azure.com

From Python SDK

Click on the +Create monitor button and continue through the wizard by clicking Next.

The resulting dataset monitor will appear in the list. Select it to go to that monitor's details page.

See the Python SDK reference documentation on data drift for full details.

The following example shows how to create a dataset monitor using the Python SDK

https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift

from azureml.core import Workspace, Dataset
from azureml.datadrift import DataDriftDetector
from datetime import datetime

get the workspace object
ws = Workspace.from_config()

get the target dataset
dset = Dataset.get_by_name(ws, 'target')

set the baseline dataset
baseline = target.time_before(datetime(2019, 2, 1))

set up feature list
features = ['latitude', 'longitude', 'elevation', 'windAngle', 'windSpeed', 'temperature', 'snowDepth',
'stationName', 'countryOrRegion']

set up data drift detector
monitor = DataDriftDetector.create_from_datasets(ws, 'drift-monitor', baseline, target,
 compute_target='cpu-cluster',
 frequency='Week',
 feature_list=None,
 drift_threshold=.6,
 latency=24)

get data drift detector by name
monitor = DataDriftDetector.get_by_name(ws, 'drift-monitor')

update data drift detector
monitor = monitor.update(feature_list=features)

run a backfill for January through May
backfill1 = monitor.backfill(datetime(2019, 1, 1), datetime(2019, 5, 1))

run a backfill for May through today
backfill1 = monitor.backfill(datetime(2019, 5, 1), datetime.today())

disable the pipeline schedule for the data drift detector
monitor = monitor.disable_schedule()

enable the pipeline schedule for the data drift detector
monitor = monitor.enable_schedule()

Understanding data drift results

For a full example of setting up a timeseries dataset and data drift detector, see our example notebook.

The data monitor produces two groups of results: Drift overview and Feature details. The following animation

shows the available drift monitor charts based on the selected feature and metric.

https://aka.ms/datadrift-notebook

Drift overview

M ET RIC DESC RIP T IO N T IP S

Data drift magnitude Given as a percentage between the
baseline and target dataset over time.
Ranging from 0 to 100 where 0
indicates identical datasets and 100
indicates the Azure Machine Learning
data drift capability can completely tell
the two datasets apart.

Noise in the precise percentage
measured is expected due to machine
learning techniques being used to
generate this magnitude.

Drift contribution by feature The contribution of each feature in the
target dataset to the measured drift
magnitude.

Due to covariate shift, the underlying
distribution of a feature does not
necessarily need to change to have
relatively high feature importance.

The Drift over view section contains top-level insights into the magnitude of data drift and which features should

be further investigated.

The following image is an example of charts seen in the Drift over view results in Azure Machine Learning

studio, resulting from a backfill of NOAA Integrated Surface Data. Data was sampled to

stationName contains 'FLORIDA' , with January 2019 being used as the baseline dataset and all 2019 data used as

the target.

https://azure.microsoft.com/services/open-datasets/catalog/noaa-integrated-surface-data/

Feature details

Numeric features

M ET RIC DESC RIP T IO N

Wasserstein distance Minimum amount of work to transform baseline distribution
into the target distribution.

Mean value Average value of the feature.

Min value Minimum value of the feature.

Max value Maximum value of the feature.

The Feature details section contains feature-level insights into the change in the selected feature's distribution,

as well as other statistics, over time.

The target dataset is also profiled over time. The statistical distance between the baseline distribution of each

feature is compared with the target dataset's over time, which is conceptually similar to the data drift magnitude

with the exception that this statistical distance is for an individual feature. Min, max, and mean are also available.

In the Azure Machine Learning studio, if you click on a data point in the graph the distribution of the feature being

shown will adjust accordingly. By default, it shows the baseline dataset's distribution and the most recent run's

distribution of the same feature.

These metrics can also be retrieved in the Python SDK through the get_metrics() method on a

DataDriftDetector object.

Numeric features are profiled in each dataset monitor run. The following are exposed in the Azure Machine

Learning studio. Probability density is shown for the distribution.

Categorical features

M ET RIC DESC RIP T IO N

Euclidian distance Geometric distance between baseline and target distributions.

Unique values Number of unique values (cardinality) of the feature.

Metrics, alerts, and events

Numeric features are profiled in each dataset monitor run. The following are exposed in the Azure Machine

Learning studio. A histogram is shown for the distribution.

Metrics can be queried in the Azure Application Insights resource associated with your machine learning

workspace. Which gives access to all features of Application Insights including set up for custom alert rules and

action groups to trigger an action such as, an Email/SMS/Push/Voice or Azure Function. Please refer to the

complete Application Insights documentation for details.

To get started, navigate to the Azure portal and select your workspace's Over view page. The associated

Application Insights resource is on the far right:

https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview

Select Logs (Analytics) under Monitoring on the left pane:

The dataset monitor metrics are stored as customMetrics . You can write and run a query after setting up a dataset

monitor to view them:

file:///T:/i2pk/machine-learning/media/how-to-monitor-datasets/ap-overview-expanded.png

After identifying metrics to set up alert rules, create a new alert rule:

You can use an existing action group, or create a new one to define the action to be taken when the set conditions

are met:

file:///T:/i2pk/machine-learning/media/how-to-monitor-datasets/simple-query-expanded.png

Troubleshooting

F EAT URE T Y P E DATA T Y P E C O N DIT IO N L IM ITAT IO N S

Categorical string, bool, int, float The number of unique
values in the feature is less
than 100 and less than 5%
of the number of rows.

Null is treated as its own
category.

Limitations and known issues:

Time range of backfill jobs are limited to 31 intervals of the monitor's frequency setting.

Limitation of 200 features, unless a feature list is not specified (all features used).

Compute size must be large enough to handle the data.

Ensure your dataset has data within the start and end date for a given monitor run.

Dataset monitors will only work on datasets that contain 50 rows or more.

Columns, or features, in the dataset are classified as categorical or numeric based on the conditions in the

following table. If the feature does not meet these conditions - for instance, a column of type string with >100

unique values - the feature is dropped from our data drift algorithm, but is still profiled.

Numerical int, float The values in the feature are
of a numerical data type and
do not meet the condition
for a categorical feature.

Feature dropped if >15% of
values are null.

F EAT URE T Y P E DATA T Y P E C O N DIT IO N L IM ITAT IO N S

Next steps
Head to the Azure Machine Learning studio or the Python notebook to set up a dataset monitor.

See how to set up data drift on models deployed to Azure Kubernetes Service.

Set up dataset drift monitors with event grid.

https://ml.azure.com
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datadrift-tutorial/datadrift-tutorial.ipynb

Version and track datasets in experiments
3/31/2020 • 4 minutes to read • Edit Online

Prerequisites

Register and retrieve dataset versions

Register a dataset version

titanic_ds = titanic_ds.register(workspace = workspace,
 name = 'titanic_ds',
 description = 'titanic training data',
 create_new_version = True)

Retrieve a dataset by name

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you'll learn how to version and track Azure Machine Learning datasets for reproducibility. Dataset

versioning is a way to bookmark the state of your data so that you can apply a specific version of the dataset for

future experiments.

Typical versioning scenarios:

When new data is available for retraining

When you're applying different data preparation or feature engineering approaches

For this tutorial, you need:

import azureml.core
from azureml.core import Workspace

ws = Workspace.from_config()

Azure Machine Learning SDK for Python installed. This SDK includes the azureml-datasets package.

An Azure Machine Learning workspace. Retrieve an existing one by running the following code, or create a

new workspace.

An Azure Machine Learning dataset.

By registering a dataset, you can version, reuse, and share it across experiments and with colleagues. You can

register multiple datasets under the same name and retrieve a specific version by name and version number.

The following code registers a new version of the titanic_ds dataset by setting the create_new_version

parameter to True . If there's no existing titanic_ds dataset registered with the workspace, the code creates a

new dataset with the name titanic_ds and sets its version to 1.

By default, the get_by_name() method on the Dataset class returns the latest version of the dataset registered

with the workspace.

The following code gets version 1 of the titanic_ds dataset.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-version-track-datasets.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py#get-by-name-workspace--name--version--latest--

from azureml.core import Dataset
Get a dataset by name and version number
titanic_ds = Dataset.get_by_name(workspace = workspace,
 name = 'titanic_ds',
 version = 1)

Versioning best practice

IMPORTANT

from azureml.core import Dataset

get the default datastore of the workspace
datastore = workspace.get_default_datastore()

create & register weather_ds version 1 pointing to all files in the folder of week 27
datastore_path1 = [(datastore, 'Weather/week 27')]
dataset1 = Dataset.File.from_files(path=datastore_path1)
dataset1.register(workspace = workspace,
 name = 'weather_ds',
 description = 'weather data in week 27',
 create_new_version = True)

create & register weather_ds version 2 pointing to all files in the folder of week 27 and 28
datastore_path2 = [(datastore, 'Weather/week 27'), (datastore, 'Weather/week 28')]
dataset2 = Dataset.File.from_files(path = datastore_path2)
dataset2.register(workspace = workspace,
 name = 'weather_ds',
 description = 'weather data in week 27, 28',
 create_new_version = True)

When you create a dataset version, you're not creating an extra copy of data with the workspace. Because datasets

are references to the data in your storage service, you have a single source of truth, managed by your storage

service.

If the data referenced by your dataset is overwritten or deleted, calling a specific version of the dataset does not revert the

change.

When you load data from a dataset, the current data content referenced by the dataset is always loaded. If you

want to make sure that each dataset version is reproducible, we recommend that you not modify data content

referenced by the dataset version. When new data comes in, save new data files into a separate data folder and

then create a new dataset version to include data from that new folder.

The following image and sample code show the recommended way to structure your data folders and to create

dataset versions that reference those folders:

Version a pipeline output dataset

from azureml.core import Dataset
from azureml.pipeline.steps import PythonScriptStep
from azureml.pipeline.core import Pipeline, PipelineData
from azureml.core. runconfig import CondaDependencies, RunConfiguration

get input dataset
input_ds = Dataset.get_by_name(workspace, 'weather_ds')

register pipeline output as dataset
output_ds = PipelineData('prepared_weather_ds', datastore=datastore).as_dataset()
output_ds = output_ds.register(name='prepared_weather_ds', create_new_version=True)

conda = CondaDependencies.create(
 pip_packages=['azureml-defaults', 'azureml-dataprep[fuse,pandas]'],
 pin_sdk_version=False)

run_config = RunConfiguration()
run_config.environment.docker.enabled = True
run_config.environment.python.conda_dependencies = conda

configure pipeline step to use dataset as the input and output
prep_step = PythonScriptStep(script_name="prepare.py",
 inputs=[input_ds.as_named_input('weather_ds')],
 outputs=[output_ds],
 runconfig=run_config,
 compute_target=compute_target,
 source_directory=project_folder)

Track datasets in experiments

get input datasets
inputs = run.get_details()['inputDatasets']
input_dataset = inputs[0]['dataset']

list the files referenced by input_dataset
input_dataset.to_path()

You can use a dataset as the input and output of each Machine Learning pipeline step. When you rerun pipelines,

the output of each pipeline step is registered as a new dataset version.

Because Machine Learning pipelines populate the output of each step into a new folder every time the pipeline

reruns, the versioned output datasets are reproducible. Learn more about datasets in pipelines.

For each Machine Learning experiment, you can easily trace the datasets used as the input through the experiment

Run object.

The following code uses the get_details() method to track which input datasets were used with the experiment

run:

You can also find the input_datasets from experiments by using https://ml.azure.com/.

The following image shows where to find the input dataset of an experiment on Azure Machine Learning studio.

For this example, go to your Experiments pane and open the Proper ties tab for a specific run of your

experiment, keras-mnist .

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#get-details--
https://ml.azure.com/

model = run.register_model(model_name='keras-mlp-mnist',
 model_path=model_path,
 datasets =[('training data',train_dataset)])

Next steps

Use the following code to register models with datasets:

After registration, you can see the list of models registered with the dataset by using Python or go to

https://ml.azure.com/.

The following view is from the Datasets pane under Assets . Select the dataset and then select the Models tab for

a list of the models that are registered with the dataset.

Train with datasets

More sample dataset notebooks

https://ml.azure.com/
https://aka.ms/dataset-tutorial

Train models with Azure Machine Learning using
estimator
4/19/2020 • 5 minutes to read • Edit Online

Train with an estimator

Single-node training

from azureml.train.estimator import Estimator

script_params = {
 # to mount files referenced by mnist dataset
 '--data-folder': ds.as_named_input('mnist').as_mount(),
 '--regularization': 0.8
}

sk_est = Estimator(source_directory='./my-sklearn-proj',
 script_params=script_params,
 compute_target=compute_target,
 entry_script='train.py',
 conda_packages=['scikit-learn'])

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

With Azure Machine Learning, you can easily submit your training script to various compute targets, using a

RunConfiguration object and a ScriptRunConfig object. That pattern gives you a lot of flexibility and maximum

control.

To facilitate deep learning model training, the Azure Machine Learning Python SDK provides an alternative

higher-level abstraction, the estimator class, which allows users to easily construct run configurations. You can

create and use a generic Estimator to submit training script using any learning framework you choose (such as

scikit-learn) on any compute target you choose, whether it's your local machine, a single VM in Azure, or a GPU

cluster in Azure. For PyTorch, TensorFlow and Chainer tasks, Azure Machine Learning also provides respective

PyTorch, TensorFlow, and Chainer estimators to simplify using these frameworks.

Once you've created your workspace and set up your development environment, training a model in Azure

Machine Learning involves the following steps:

1. Create a remote compute target (note you can also use local computer as compute target)

2. Upload your training data to datastore (Optional)

3. Create your training script

4. Create an Estimator object

5. Submit the estimator to an experiment object under the workspace

This article focuses on steps 4-5. For steps 1-3, refer to the train a model tutorial for an example.

Use an Estimator for a single-node training run on remote compute in Azure for a scikit-learn model. You

should have already created your compute target object compute_target and your FileDataset object ds .

This code snippet specifies the following parameters to the Estimator constructor.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-ml-models.md
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py

PA RA M ET ER DESC RIP T IO N

source_directory Local directory that contains all of your code needed for the
training job. This folder gets copied from your local machine
to the remote compute.

script_params Dictionary specifying the command-line arguments to pass
to your training script entry_script , in the form of

<command-line argument, value> pairs. To specify a

verbose flag in script_params , use

<command-line argument, ""> .

compute_target Remote compute target that your training script will run on,
in this case an Azure Machine Learning Compute
(AmlCompute) cluster. (Note even though AmlCompute
cluster is the commonly used target, it is also possible to
choose other compute target types such as Azure VMs or
even local computer.)

entry_script Filepath (relative to the source_directory) of the training

script to be run on the remote compute. This file, and any
additional files it depends on, should be located in this folder.

conda_packages List of Python packages to be installed via conda needed by
your training script.

run = experiment.submit(sk_est)
print(run.get_portal_url())

IMPORTANT

Distributed training and custom Docker images

The constructor has another parameter called pip_packages that you use for any pip packages needed.

Now that you've created your Estimator object, submit the training job to be run on the remote compute with a

call to the submit function on your Experiment object experiment .

Special Folders Two folders, outputs and logs, receive special treatment by Azure Machine Learning. During training,

when you write files to folders named outputs and logs that are relative to the root directory (./outputs and ./logs ,

respectively), the files will automatically upload to your run history so that you have access to them once your run is

finished.

To create artifacts during training (such as model files, checkpoints, data files, or plotted images) write these to the

./outputs folder.

Similarly, you can write any logs from your training run to the ./logs folder. To utilize Azure Machine Learning's

TensorBoard integration make sure you write your TensorBoard logs to this folder. While your run is in progress, you will be

able to launch TensorBoard and stream these logs. Later, you will also be able to restore the logs from any of your previous

runs.

For example, to download a file written to the outputs folder to your local machine after your remote training run:

run.download_file(name='outputs/my_output_file', output_file_path='my_destination_path')

There are two additional training scenarios you can carry out with the Estimator :

Using a custom Docker image

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb

from azureml.train.estimator import Estimator
from azureml.core.runconfig import MpiConfiguration

estimator = Estimator(source_directory='./my-keras-proj',
 compute_target=compute_target,
 entry_script='train.py',
 node_count=2,
 process_count_per_node=1,
 distributed_training=MpiConfiguration(),
 conda_packages=['tensorflow', 'keras'],
 custom_docker_image='continuumio/miniconda')

PA RA M ET ER DESC RIP T IO N DEFA ULT

custom_docker_image Name of the image you want to use.
Only provide images available in public
docker repositories (in this case Docker
Hub). To use an image from a private
docker repository, use the
constructor's
environment_definition parameter

instead. See example.

None

node_count Number of nodes to use for your
training job.

1

process_count_per_node Number of processes (or "workers") to
run on each node. In this case, you use
the 2 GPUs available on each node.

1

distributed_training MPIConfiguration object for launching
distributed training using MPI
backend.

None

run = experiment.submit(estimator)
print(run.get_portal_url())

Registering a model

Distributed training on a multi-node cluster

The following code shows how to carry out distributed training for a Keras model. In addition, instead of using

the default Azure Machine Learning images, it specifies a custom docker image from Docker Hub

continuumio/miniconda for training.

You should have already created your compute target object compute_target . You create the estimator as follows:

The above code exposes the following new parameters to the Estimator constructor :

Finally, submit the training job:

Once you've trained the model, you can save and register it to your workspace. Model registration lets you store

and version your models in your workspace to simplify model management and deployment.

Running the following code will register the model to your workspace, and will make it available to reference by

name in remote compute contexts or deployment scripts. See register_model in the reference docs for more

information and additional parameters.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.mpiconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#register-model-model-name--model-path-none--tags-none--properties-none--model-framework-none--model-framework-version-none--description-none--datasets-none--sample-input-dataset-none--sample-output-dataset-none--resource-configuration-none----kwargs-

model = run.register_model(model_name='sklearn-sample', model_path=None)

GitHub tracking and integration

Examples

Next steps

When you start a training run where the source directory is a local Git repository, information about the

repository is stored in the run history. For more information, see Git integration for Azure Machine Learning.

For a notebook that shows the basics of an estimator pattern, see:

how-to-use-azureml/training-with-deep-learning/how-to-use-estimator

For a notebook that trains a scikit-learn model by using estimator, see:

tutorials/img-classification-part1-training.ipynb

For notebooks on training models by using deep-learning-framework specific estimators, see:

how-to-use-azureml/ml-frameworks

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

Track run metrics during training

Train PyTorch models

Train TensorFlow models

Tune hyperparameters

Deploy a trained model

Create and manage environments for training and deployment

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/how-to-use-estimator/how-to-use-estimator.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/img-classification-part1-training.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks

Set up and use compute targets for model training
4/24/2020 • 21 minutes to read • Edit Online

NOTE

Compute targets for training

T RA IN IN G TA RGET S A UTO M AT ED M L M L P IP EL IN ES
A Z URE M A C H IN E L EA RN IN G
DESIGN ER

Local computer yes

Azure Machine Learning
compute cluster

yes &
hyperparameter tuning

yes yes

Remote VM yes &
hyperparameter tuning

yes

Azure Databricks yes (SDK local mode only) yes

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

With Azure Machine Learning, you can train your model on a variety of resources or environments, collectively

referred to as compute targets . A compute target can be a local machine or a cloud resource, such as an Azure

Machine Learning Compute, Azure HDInsight or a remote virtual machine. You can also create compute targets for

model deployment as described in "Where and how to deploy your models".

You can create and manage a compute target using the Azure Machine Learning SDK, Azure Machine Learning

studio, Azure CLI or Azure Machine Learning VS Code extension. If you have compute targets that were created

through another service (for example, an HDInsight cluster), you can use them by attaching them to your Azure

Machine Learning workspace.

In this article, you learn how to use various compute targets for model training. The steps for all compute targets

follow the same workflow:

1. Create a compute target if you don't already have one.

2. Attach the compute target to your workspace.

3. Configure the compute target so that it contains the Python environment and package dependencies needed

by your script.

Code in this article was tested with Azure Machine Learning SDK version 1.0.74.

Azure Machine Learning has varying support across different compute targets. A typical model development

lifecycle starts with dev/experimentation on a small amount of data. At this stage, we recommend using a local

environment. For example, your local computer or a cloud-based VM. As you scale up your training on larger data

sets, or do distributed training, we recommend using Azure Machine Learning Compute to create a single- or multi-

node cluster that autoscales each time you submit a run. You can also attach your own compute resource, although

support for various scenarios may vary as detailed below:

Compute targets can be reused from one training job to the next. For example, once you attach a remote

VM to your workspace, you can reuse it for multiple jobs. For machine learning pipelines, use the appropriate

pipeline step for each compute target.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-set-up-training-targets.md
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps?view=azure-ml-py

Azure Data Lake Analytics yes

Azure HDInsight yes

Azure Batch yes

T RA IN IN G TA RGET S A UTO M AT ED M L M L P IP EL IN ES
A Z URE M A C H IN E L EA RN IN G
DESIGN ER

NOTE

What's a run configuration?

What's an estimator?

What's an ML Pipeline?

Azure Machine Learning Compute can be created as a persistent resource or created dynamically when you request a run.

Run-based creation removes the compute target after the training run is complete, so you cannot reuse compute targets

created this way.

When training, it is common to start on your local computer, and later run that training script on a different

compute target. With Azure Machine Learning, you can run your script on various compute targets without having

to change your script.

All you need to do is define the environment for each compute target within a run configuration. Then, when you

want to run your training experiment on a different compute target, specify the run configuration for that compute.

For details of specifying an environment and binding it to run configuration, see Create and manage environments

for training and deployment.

Learn more about submitting experiments at the end of this article.

To facilitate model training using popular frameworks, the Azure Machine Learning Python SDK provides an

alternative higher-level abstraction, the estimator class. This class allows you to easily construct run configurations.

You can create and use a generic Estimator to submit training scripts that use any learning framework you choose

(such as scikit-learn). We recommend using an estimator for training as it automatically constructs embedded

objects like an environment or RunConfiguration objects for you. If you wish to have more control over how these

objects are created and specify what packages to install for your experiment run, follow these steps to submit your

training experiments using a RunConfiguration object on an Azure Machine Learning Compute.

For PyTorch, TensorFlow, and Chainer tasks, Azure Machine Learning also provides respective PyTorch, TensorFlow,

and Chainer estimators to simplify using these frameworks.

For more information, see Train ML Models with estimators.

With ML pipelines, you can optimize your workflow with simplicity, speed, portability, and reuse. When building

pipelines with Azure Machine Learning, you can focus on your expertise, machine learning, rather than on

infrastructure and automation.

ML pipelines are constructed from multiple steps , which are distinct computational units in the pipeline. Each step

can run independently and use isolated compute resources. This allows multiple data scientists to work on the

same pipeline at the same time without over-taxing compute resources, and also makes it easy to use different

compute types/sizes for each step.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py

TIP

Set up in Python

Local computer

from azureml.core.runconfig import RunConfiguration

Edit a run configuration property on the fly.
run_local = RunConfiguration()

run_local.environment.python.user_managed_dependencies = True

Azure Machine Learning Compute

TIP

ML Pipelines can use run configuration or estimators when training models.

While ML pipelines can train models, they can also prepare data before training and deploy models after training.

One of the primary use cases for pipelines is batch scoring. For more information, see Pipelines: Optimize machine

learning workflows.

Use the sections below to configure these compute targets:

Local computer

Azure Machine Learning Compute

Remote virtual machines

Azure HDInsight

1. Create and attach: There's no need to create or attach a compute target to use your local computer as the

training environment.

2. Configure: When you use your local computer as a compute target, the training code is run in your

development environment. If that environment already has the Python packages you need, use the user-

managed environment.

Now that you've attached the compute and configured your run, the next step is to submit the training run.

Azure Machine Learning Compute is a managed-compute infrastructure that allows the user to easily create a

single or multi-node compute. The compute is created within your workspace region as a resource that can be

shared with other users in your workspace. The compute scales up automatically when a job is submitted, and can

be put in an Azure Virtual Network. The compute executes in a containerized environment and packages your

model dependencies in a Docker container.

You can use Azure Machine Learning Compute to distribute the training process across a cluster of CPU or GPU

compute nodes in the cloud. For more information on the VM sizes that include GPUs, see GPU-optimized virtual

machine sizes.

Azure Machine Learning Compute has default limits, such as the number of cores that can be allocated. For more

information, see Manage and request quotas for Azure resources.

Clusters can generally scale upto 100 nodes as long as you have enough quota for the number of cores required. By default

clusters are setup with inter-node communication enabled between the nodes of the cluster to support MPI jobs for example.

However you can scale your clusters to 1000s of nodes by simply raising a support ticket, and requesting to whitelist your

subscription, or workspace, or a specific cluster for disabling inter-node communication.

Azure Machine Learning Compute can be reused across runs. The compute can be shared with other users in the

https://www.docker.com/why-docker
https://docs.microsoft.com/azure/virtual-machines/linux/sizes-gpu
https://docs.microsoft.com/azure/machine-learning/how-to-manage-quotas
https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest

 Remote virtual machines

workspace and is retained between runs, automatically scaling nodes up or down based on the number of runs

submitted, and the max_nodes set on your cluster.

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

Choose a name for your CPU cluster
cpu_cluster_name = "cpucluster"

Verify that cluster does not exist already
try:
 cpu_cluster = ComputeTarget(workspace=ws, name=cpu_cluster_name)
 print('Found existing cluster, use it.')
except ComputeTargetException:
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',
 max_nodes=4)
 cpu_cluster = ComputeTarget.create(ws, cpu_cluster_name, compute_config)

cpu_cluster.wait_for_completion(show_output=True)

from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_CPU_IMAGE

Create a new runconfig object
run_amlcompute = RunConfiguration()

Use the cpu_cluster you created above.
run_amlcompute.target = cpu_cluster

Enable Docker
run_amlcompute.environment.docker.enabled = True

Set Docker base image to the default CPU-based image
run_amlcompute.environment.docker.base_image = DEFAULT_CPU_IMAGE

Use conda_dependencies.yml to create a conda environment in the Docker image for execution
run_amlcompute.environment.python.user_managed_dependencies = False

Specify CondaDependencies obj, add necessary packages
run_amlcompute.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-
learn'])

1. Create and attach: To create a persistent Azure Machine Learning Compute resource in Python, specify the

vm_size and max_nodes properties. Azure Machine Learning then uses smart defaults for the other

properties. The compute autoscales down to zero nodes when it isn't used. Dedicated VMs are created to run

your jobs as needed.

vm_size: The VM family of the nodes created by Azure Machine Learning Compute.

max_nodes : The max number of nodes to autoscale up to when you run a job on Azure Machine

Learning Compute.

You can also configure several advanced properties when you create Azure Machine Learning Compute. The

properties allow you to create a persistent cluster of fixed size, or within an existing Azure Virtual Network in

your subscription. See the AmlCompute class for details.

Or you can create and attach a persistent Azure Machine Learning Compute resource in Azure Machine

Learning studio.

2. Configure: Create a run configuration for the persistent compute target.

Now that you've attached the compute and configured your run, the next step is to submit the training run.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute?view=azure-ml-py

Azure Machine Learning also supports bringing your own compute resource and attaching it to your workspace.

One such resource type is an arbitrary remote VM, as long as it's accessible from Azure Machine Learning. The

resource can be an Azure VM, a remote server in your organization, or on-premises. Specifically, given the IP

address and credentials (user name and password, or SSH key), you can use any accessible VM for remote runs.

You can use a system-built conda environment, an already existing Python environment, or a Docker container. To

execute on a Docker container, you must have a Docker Engine running on the VM. This functionality is especially

useful when you want a more flexible, cloud-based dev/experimentation environment than your local machine.

Use the Azure Data Science Virtual Machine (DSVM) as the Azure VM of choice for this scenario. This VM is a pre-

configured data science and AI development environment in Azure. The VM offers a curated choice of tools and

frameworks for full-lifecycle machine learning development. For more information on how to use the DSVM with

Azure Machine Learning, see Configure a development environment.

WARNING

from azureml.core.compute import RemoteCompute, ComputeTarget

Create the compute config
compute_target_name = "attach-dsvm"

attach_config = RemoteCompute.attach_configuration(resource_id='<resource_id>',
 ssh_port=22,
 username='<username>',
 password="<password>")

If you authenticate with SSH keys instead, use this code:
ssh_port=22,
username='<username>',
password=None,
private_key_file="<path-to-file>",
private_key_passphrase="<passphrase>")

Attach the compute
compute = ComputeTarget.attach(ws, compute_target_name, attach_config)

compute.wait_for_completion(show_output=True)

1. Create: Create a DSVM before using it to train your model. To create this resource, see Provision the Data

Science Virtual Machine for Linux (Ubuntu).

Azure Machine Learning only supports virtual machines that run Ubuntu. When you create a VM or choose an

existing VM, you must select a VM that uses Ubuntu.

2. Attach: To attach an existing virtual machine as a compute target, you must provide the resource ID, user

name, and password for the virtual machine. The resource ID of the VM can be constructed using the

subscription ID, resource group name, and VM name using the following string format:

/subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.Compute/virtualMachines/<vm_name>

Or you can attach the DSVM to your workspace using Azure Machine Learning studio.

3. Configure: Create a run configuration for the DSVM compute target. Docker and conda are used to create

and configure the training environment on the DSVM.

https://docs.microsoft.com/azure/machine-learning/how-to-configure-environment#dsvm
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro

 Azure HDInsight

import azureml.core
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies

run_dsvm = RunConfiguration(framework = "python")

Set the compute target to the Linux DSVM
run_dsvm.target = compute_target_name

Use Docker in the remote VM
run_dsvm.environment.docker.enabled = True

Use the CPU base image
To use GPU in DSVM, you must also use the GPU base Docker image
"azureml.core.runconfig.DEFAULT_GPU_IMAGE"
run_dsvm.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE
print('Base Docker image is:', run_dsvm.environment.docker.base_image)

Specify the CondaDependencies object
run_dsvm.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-
learn'])

Now that you've attached the compute and configured your run, the next step is to submit the training run.

Azure HDInsight is a popular platform for big-data analytics. The platform provides Apache Spark, which can be

used to train your model.

from azureml.core.compute import ComputeTarget, HDInsightCompute
from azureml.exceptions import ComputeTargetException

try:
 # if you want to connect using SSH key instead of username/password you can provide parameters
private_key_file and private_key_passphrase

 attach_config = HDInsightCompute.attach_configuration(resource_id='<resource_id>',
 ssh_port=22,
 username='<ssh-username>',
 password='<ssh-pwd>')
 hdi_compute = ComputeTarget.attach(workspace=ws,
 name='myhdi',
 attach_configuration=attach_config)

except ComputeTargetException as e:
 print("Caught = {}".format(e.message))

hdi_compute.wait_for_completion(show_output=True)

1. Create: Create the HDInsight cluster before you use it to train your model. To create a Spark on HDInsight

cluster, see Create a Spark Cluster in HDInsight.

When you create the cluster, you must specify an SSH user name and password. Take note of these values, as

you need them to use HDInsight as a compute target.

After the cluster is created, connect to it with the hostname <clustername>-ssh.azurehdinsight.net, where

<clustername> is the name that you provided for the cluster.

2. Attach: To attach an HDInsight cluster as a compute target, you must provide the resource ID, user name,

and password for the HDInsight cluster. The resource ID of the HDInsight cluster can be constructed using

the subscription ID, resource group name, and HDInsight cluster name using the following string format:

/subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.HDInsight/clusters/<cluster_name>

Or you can attach the HDInsight cluster to your workspace using Azure Machine Learning studio.

https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-jupyter-spark-sql

 Azure Batch

from azureml.core.compute import ComputeTarget, BatchCompute
from azureml.exceptions import ComputeTargetException

Name to associate with new compute in workspace
batch_compute_name = 'mybatchcompute'

Batch account details needed to attach as compute to workspace
batch_account_name = "<batch_account_name>" # Name of the Batch account
Name of the resource group which contains this account
batch_resource_group = "<batch_resource_group>"

try:
 # check if the compute is already attached
 batch_compute = BatchCompute(ws, batch_compute_name)
except ComputeTargetException:
 print('Attaching Batch compute...')
 provisioning_config = BatchCompute.attach_configuration(
 resource_group=batch_resource_group, account_name=batch_account_name)
 batch_compute = ComputeTarget.attach(
 ws, batch_compute_name, provisioning_config)
 batch_compute.wait_for_completion()
 print("Provisioning state:{}".format(batch_compute.provisioning_state))
 print("Provisioning errors:{}".format(batch_compute.provisioning_errors))

print("Using Batch compute:{}".format(batch_compute.cluster_resource_id))

Set up in Azure Machine Learning studio

from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies

use pyspark framework
run_hdi = RunConfiguration(framework="pyspark")

Set compute target to the HDI cluster
run_hdi.target = hdi_compute.name

specify CondaDependencies object to ask system installing numpy
cd = CondaDependencies()
cd.add_conda_package('numpy')
run_hdi.environment.python.conda_dependencies = cd

3. Configure: Create a run configuration for the HDI compute target.

Now that you've attached the compute and configured your run, the next step is to submit the training run.

Azure Batch is used to run large-scale parallel and high-performance computing (HPC) applications efficiently in

the cloud. AzureBatchStep can be used in an Azure Machine Learning Pipeline to submit jobs to an Azure Batch pool

of machines.

To attach Azure Batch as a compute target, you must use the Azure Machine Learning SDK and provide the

following information:

Azure Batch compute name: A friendly name to be used for the compute within the workspace

Azure Batch account name: The name of the Azure Batch account

Resource Group: The resource group that contains the Azure Batch account.

The following code demonstrates how to attach Azure Batch as a compute target:

You can access the compute targets that are associated with your workspace in the Azure Machine Learning studio.

You can use the studio to:

from azureml.core.compute import ComputeTarget
myvm = ComputeTarget(workspace=ws, name='my-vm-name')

View compute targets

Create a compute target

View compute targets attached to your workspace

Create a compute target in your workspace

Attach a compute target that was created outside the workspace

After a target is created and attached to your workspace, you will use it in your run configuration with a

ComputeTarget object:

To see the compute targets for your workspace, use the following steps:

1. Navigate to Azure Machine Learning studio.

2. Under Applications , select Compute.

Follow the previous steps to view the list of compute targets. Then use these steps to create a compute target:

1. Select the plus sign (+) to add a compute target.

2. Enter a name for the compute target.

3. Select Machine Learning Compute as the type of compute to use for Training.

https://ml.azure.com
file:///T:/i2pk/machine-learning/media/how-to-set-up-training-targets/azure-machine-learning-service-workspace-expanded.png

 Attach compute targets

NOTE
Azure Machine Learning Compute is the only managed-compute resource you can create in Azure Machine Learning

studio. All other compute resources can be attached after they are created.

4. Fill out the form. Provide values for the required properties, especially VM Family , and the maximum

nodes to use to spin up the compute.

5. Select Create.

6. View the status of the create operation by selecting the compute target from the list:

7. You then see the details for the compute target:

To use compute targets created outside the Azure Machine Learning workspace, you must attach them. Attaching a

compute target makes it available to your workspace.

Follow the steps described earlier to view the list of compute targets. Then use the following steps to attach a

compute target:

1. Select the plus sign (+) to add a compute target.

2. Enter a name for the compute target.

3. Select the type of compute to attach for Training:

Set up with CLI

Set up with VS Code

Submit training run using Azure Machine Learning SDK

IMPORTANT

NOTE

Not all compute types can be attached from Azure Machine Learning studio. The compute types that can currently be

attached for training include:

A remote VM

Azure Databricks (for use in machine learning pipelines)

Azure Data Lake Analytics (for use in machine learning pipelines)

Azure HDInsight

4. Fill out the form and provide values for the required properties.

Microsoft recommends that you use SSH keys, which are more secure than passwords. Passwords are vulnerable to

brute force attacks. SSH keys rely on cryptographic signatures. For information on how to create SSH keys for use

with Azure Virtual Machines, see the following documents:

Create and use SSH keys on Linux or macOS

Create and use SSH keys on Windows

5. Select Attach.

6. View the status of the attach operation by selecting the compute target from the list.

You can access the compute targets that are associated with your workspace using the CLI extension for Azure

Machine Learning. You can use the CLI to:

Create a managed compute target

Update a managed compute target

Attach an unmanaged compute target

For more information, see Resource management.

You can access, create, and manage the compute targets that are associated with your workspace using the VS

Code extension for Azure Machine Learning.

After you create a run configuration, you use it to run your experiment. The code pattern to submit a training run is

the same for all types of compute targets:

1. Create an experiment to run

2. Submit the run.

3. Wait for the run to complete.

https://docs.microsoft.com/azure/virtual-machines/linux/mac-create-ssh-keys
https://docs.microsoft.com/azure/virtual-machines/linux/ssh-from-windows

IMPORTANT

Create an experiment

from azureml.core import Experiment
experiment_name = 'my_experiment'

exp = Experiment(workspace=ws, name=experiment_name)

Submit the experiment

from azureml.core import ScriptRunConfig
import os

script_folder = os.getcwd()
src = ScriptRunConfig(source_directory = script_folder, script = 'train.py', run_config = run_local)
run = exp.submit(src)
run.wait_for_completion(show_output = True)

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(source_directory = script_folder, script = 'train.py', run_config = run_amlcompute)
run = exp.submit(src)
run.wait_for_completion(show_output = True)

TIP

src.run_config.node_count = 4

When you submit the training run, a snapshot of the directory that contains your training scripts is created and sent to the

compute target. It is also stored as part of the experiment in your workspace. If you change files and submit the run again,

only the changed files will be uploaded.

To prevent files from being included in the snapshot, create a .gitignore or .amlignore file in the directory and add the files

to it. The .amlignore file uses the same syntax and patterns as the .gitignore file. If both files exist, the .amlignore file

takes precedence.

For more information, see Snapshots.

First, create an experiment in your workspace.

Submit the experiment with a ScriptRunConfig object. This object includes the:

source_director y : The source directory that contains your training script

scr ipt : Identify the training script

run_config: The run configuration, which in turn defines where the training will occur.

For example, to use the local target configuration:

Switch the same experiment to run in a different compute target by using a different run configuration, such as the

amlcompute target:

This example defaults to only using one node of the compute target for training. To use more than one node, set the

node_count of the run configuration to the desired number of nodes. For example, the following code sets the number of

nodes used for training to four:

Or you can:

https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

 Create run configuration and submit run using Azure Machine Learning
CLI

TIP

Create run configuration

az ml folder attach

Structure of run configuration file

Create an experiment

Submit the experiment with an Estimator object as shown in Train ML models with estimators.

Submit a HyperDrive run for hyperparameter tuning.

Submit an experiment via the VS Code extension.

For more information, see the ScriptRunConfig and RunConfiguration documentation.

You can use Azure CLI and Machine Learning CLI extension to create run configurations and submit runs on

different compute targets. The following examples assume that you have an existing Azure Machine Learning

Workspace and you have logged in to Azure using az login CLI command.

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with

isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the same one

that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure portal by visiting the

overview page for your workspace. You can also use the SDK to get the subscription ID from the workspace object. For

example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify the

subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

The simplest way to create run configuration is to navigate the folder that contains your machine learning Python

scripts, and use CLI command

This command creates a subfolder .azureml that contains template run configuration files for different compute

targets. You can copy and edit these files to customize your configuration, for example to add Python packages or

change Docker settings.

The run configuration file is YAML formatted, with following sections

The script to run and its arguments

Compute target name, either "local" or name of a compute under the workspace.

Parameters for executing the run: framework, communicator for distributed runs, maximum duration, and

number of compute nodes.

Environment section. See Create and manage environments for training and deployment for details of the fields

in this section.

Run history details to specify log file folder, and to enable or disable output collection and run history snapshots.

Configuration details specific to the framework selected.

Data reference and data store details.

Configuration details specific for Machine Learning Compute for creating a new cluster.

To specify Python packages to install for the run, create conda environment file, and set

condaDependenciesFile field.

See the example JSON file for a full runconfig schema.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually
https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json

az ml experiment create -n <experiment>

Script run

az ml run submit-script -e <experiment> -c <runconfig> my_train.py

HyperDrive run

hdconfig.yml
sampling:
 type: random # Supported options: Random, Grid, Bayesian
 parameter_space: # specify a name|expression|values tuple for each parameter.
 - name: --penalty # The name of a script parameter to generate values for.
 expression: choice # supported options: choice, randint, uniform, quniform, loguniform, qloguniform,
normal, qnormal, lognormal, qlognormal
 values: [0.5, 1, 1.5] # The list of values, the number of values is dependent on the expression
specified.
policy:
 type: BanditPolicy # Supported options: BanditPolicy, MedianStoppingPolicy, TruncationSelectionPolicy,
NoTerminationPolicy
 evaluation_interval: 1 # Policy properties are policy specific. See the above link for policy specific
parameter details.
 slack_factor: 0.2
primary_metric_name: Accuracy # The metric used when evaluating the policy
primary_metric_goal: Maximize # Maximize|Minimize
max_total_runs: 8 # The maximum number of runs to generate
max_concurrent_runs: 2 # The number of runs that can run concurrently.
max_duration_minutes: 100 # The maximum length of time to run the experiment before cancelling.

az ml run submit-hyperdrive -e <experiment> -c <runconfig> --hyperdrive-configuration-name <hdconfig>
my_train.py

Git tracking and integration

Notebook examples

First, create an experiment for your runs

To submit a script run, execute a command

You can use HyperDrive with Azure CLI to perform parameter tuning runs. First, create a HyperDrive configuration

file in the following format. See Tune hyperparameters for your model article for details on hyperparameter tuning

parameters.

Add this file alongside the run configuration files. Then submit a HyperDrive run using:

Note the arguments section in runconfig and parameter space in HyperDrive config. They contain the command-

line arguments to be passed to training script. The value in runconfig stays the same for each iteration, while the

range in HyperDrive config is iterated over. Do not specify the same argument in both files.

For more details on these az ml CLI commands and full set of arguments, see the reference documentation.

When you start a training run where the source directory is a local Git repository, information about the repository

is stored in the run history. For more information, see Git integration for Azure Machine Learning.

See these notebooks for examples of training with various compute targets:

how-to-use-azureml/training

tutorials/img-classification-part1-training.ipynb

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training
https://github.com/Azure/MachineLearningNotebooks/blob/master/tutorials/image-classification-mnist-data/img-classification-part1-training.ipynb

Next steps

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

Tutorial: Train a model uses a managed compute target to train a model.

Learn how to efficiently tune hyperparameters to build better models.

Once you have a trained model, learn how and where to deploy models.

View the RunConfiguration class SDK reference.

Use Azure Machine Learning with Azure Virtual Networks

https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.runconfiguration?view=azure-ml-py

Tune hyperparameters for your model with Azure
Machine Learning
3/30/2020 • 15 minutes to read • Edit Online

What are hyperparameters?

Define search space

Types of hyperparameters

Discrete hyperparameters

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Efficiently tune hyperparameters for your model using Azure Machine Learning. Hyperparameter tuning includes

the following steps:

Define the parameter search space

Specify a primary metric to optimize

Specify early termination criteria for poorly performing runs

Allocate resources for hyperparameter tuning

Launch an experiment with the above configuration

Visualize the training runs

Select the best performing configuration for your model

Hyperparameters are adjustable parameters you choose to train a model that govern the training process itself.

For example, to train a deep neural network, you decide the number of hidden layers in the network and the

number of nodes in each layer prior to training the model. These values usually stay constant during the training

process.

In deep learning / machine learning scenarios, model performance depends heavily on the hyperparameter

values selected. The goal of hyperparameter exploration is to search across various hyperparameter

configurations to find a configuration that results in the best performance. Typically, the hyperparameter

exploration process is painstakingly manual, given that the search space is vast and evaluation of each

configuration can be expensive.

Azure Machine Learning allows you to automate hyperparameter exploration in an efficient manner, saving you

significant time and resources. You specify the range of hyperparameter values and a maximum number of

training runs. The system then automatically launches multiple simultaneous runs with different parameter

configurations and finds the configuration that results in the best performance, measured by the metric you

choose. Poorly performing training runs are automatically early terminated, reducing wastage of compute

resources. These resources are instead used to explore other hyperparameter configurations.

Automatically tune hyperparameters by exploring the range of values defined for each hyperparameter.

Each hyperparameter can either be discrete or continuous and has a distribution of values described by a

parameter expression.

Discrete hyperparameters are specified as a choice among discrete values. choice can be:

one or more comma-separated values

a range object

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-tune-hyperparameters.md
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.parameter_expressions?view=azure-ml-py

 {
 "batch_size": choice(16, 32, 64, 128)
 "number_of_hidden_layers": choice(range(1,5))
 }

Continuous hyperparameters

 {
 "learning_rate": normal(10, 3),
 "keep_probability": uniform(0.05, 0.1)
 }

Sampling the hyperparameter space

Picking a sampling method

any arbitrary list object

In this case, batch_size takes on one of the values [16, 32, 64, 128] and number_of_hidden_layers takes on one of

the values [1, 2, 3, 4].

Advanced discrete hyperparameters can also be specified using a distribution. The following distributions are

supported:

quniform(low, high, q) - Returns a value like round(uniform(low, high) / q) * q

qloguniform(low, high, q) - Returns a value like round(exp(uniform(low, high)) / q) * q

qnormal(mu, sigma, q) - Returns a value like round(normal(mu, sigma) / q) * q

qlognormal(mu, sigma, q) - Returns a value like round(exp(normal(mu, sigma)) / q) * q

Continuous hyperparameters are specified as a distribution over a continuous range of values. Supported

distributions include:

uniform(low, high) - Returns a value uniformly distributed between low and high

loguniform(low, high) - Returns a value drawn according to exp(uniform(low, high)) so that the logarithm of

the return value is uniformly distributed

normal(mu, sigma) - Returns a real value that's normally distributed with mean mu and standard deviation

sigma

lognormal(mu, sigma) - Returns a value drawn according to exp(normal(mu, sigma)) so that the logarithm of

the return value is normally distributed

An example of a parameter space definition:

This code defines a search space with two parameters - learning_rate and keep_probability . learning_rate has

a normal distribution with mean value 10 and a standard deviation of 3. keep_probability has a uniform

distribution with a minimum value of 0.05 and a maximum value of 0.1.

You can also specify the parameter sampling method to use over the hyperparameter space definition. Azure

Machine Learning supports random sampling, grid sampling, and Bayesian sampling.

Grid sampling can be used if your hyperparameter space can be defined as a choice among discrete values

and if you have sufficient budget to exhaustively search over all values in the defined search space.

Additionally, one can use automated early termination of poorly performing runs, which reduces wastage of

resources.

Random sampling allows the hyperparameter space to include both discrete and continuous

hyperparameters. In practice it produces good results most of the times and also allows the use of automated

early termination of poorly performing runs. Some users perform an initial search using random sampling

and then iteratively refine the search space to improve results.

Random sampling

from azureml.train.hyperdrive import RandomParameterSampling
param_sampling = RandomParameterSampling({
 "learning_rate": normal(10, 3),
 "keep_probability": uniform(0.05, 0.1),
 "batch_size": choice(16, 32, 64, 128)
 }
)

Grid sampling

from azureml.train.hyperdrive import GridParameterSampling
param_sampling = GridParameterSampling({
 "num_hidden_layers": choice(1, 2, 3),
 "batch_size": choice(16, 32)
 }
)

Bayesian sampling

from azureml.train.hyperdrive import BayesianParameterSampling
param_sampling = BayesianParameterSampling({
 "learning_rate": uniform(0.05, 0.1),
 "batch_size": choice(16, 32, 64, 128)
 }
)

NOTE

Specify primary metric

Bayesian sampling leverages knowledge of previous samples when choosing hyperparameter values,

effectively trying to improve the reported primary metric. Bayesian sampling is recommended when you have

sufficient budget to explore the hyperparameter space - for best results with Bayesian Sampling we

recommend using a maximum number of runs greater than or equal to 20 times the number of

hyperparameters being tuned. Note that Bayesian sampling does not currently support any early termination

policy.

In random sampling, hyperparameter values are randomly selected from the defined search space. Random

sampling allows the search space to include both discrete and continuous hyperparameters.

Grid sampling performs a simple grid search over all feasible values in the defined search space. It can only be

used with hyperparameters specified using choice . For example, the following space has a total of six samples:

Bayesian sampling is based on the Bayesian optimization algorithm and makes intelligent choices on the

hyperparameter values to sample next. It picks the sample based on how the previous samples performed, such

that the new sample improves the reported primary metric.

When you use Bayesian sampling, the number of concurrent runs has an impact on the effectiveness of the

tuning process. Typically, a smaller number of concurrent runs can lead to better sampling convergence, since the

smaller degree of parallelism increases the number of runs that benefit from previously completed runs.

Bayesian sampling only supports choice , uniform , and quniform distributions over the search space.

Bayesian sampling does not support any early termination policy (See Specify an early termination policy). When using

Bayesian parameter sampling, set early_termination_policy = None , or leave off the early_termination_policy

parameter.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.randomparametersampling?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.gridparametersampling?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.bayesianparametersampling?view=azure-ml-py

primary_metric_name="accuracy",
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE

Log metrics for hyperparameter tuning

from azureml.core.run import Run
run_logger = Run.get_context()
run_logger.log("accuracy", float(val_accuracy))

Specify early termination policy

Bandit policy

Specify the primary metric you want the hyperparameter tuning experiment to optimize. Each training run is

evaluated for the primary metric. Poorly performing runs (where the primary metric does not meet criteria set by

the early termination policy) will be terminated. In addition to the primary metric name, you also specify the goal

of the optimization - whether to maximize or minimize the primary metric.

primary_metric_name : The name of the primary metric to optimize. The name of the primary metric needs to

exactly match the name of the metric logged by the training script. See Log metrics for hyperparameter

tuning.

primary_metric_goal : It can be either PrimaryMetricGoal.MAXIMIZE or PrimaryMetricGoal.MINIMIZE and

determines whether the primary metric will be maximized or minimized when evaluating the runs.

Optimize the runs to maximize "accuracy". Make sure to log this value in your training script.

The training script for your model must log the relevant metrics during model training. When you configure the

hyperparameter tuning, you specify the primary metric to use for evaluating run performance. (See Specify a

primary metric to optimize.) In your training script, you must log this metric so it is available to the

hyperparameter tuning process.

Log this metric in your training script with the following sample snippet:

The training script calculates the val_accuracy and logs it as "accuracy", which is used as the primary metric.

Each time the metric is logged it is received by the hyperparameter tuning service. It is up to the model developer

to determine how frequently to report this metric.

Terminate poorly performing runs automatically with an early termination policy. Termination reduces wastage of

resources and instead uses these resources for exploring other parameter configurations.

When using an early termination policy, you can configure the following parameters that control when a policy is

applied:

evaluation_interval : the frequency for applying the policy. Each time the training script logs the primary

metric counts as one interval. Thus an evaluation_interval of 1 will apply the policy every time the training

script reports the primary metric. An evaluation_interval of 2 will apply the policy every other time the

training script reports the primary metric. If not specified, evaluation_interval is set to 1 by default.

delay_evaluation : delays the first policy evaluation for a specified number of intervals. It is an optional

parameter that allows all configurations to run for an initial minimum number of intervals, avoiding

premature termination of training runs. If specified, the policy applies every multiple of evaluation_interval

that is greater than or equal to delay_evaluation.

Azure Machine Learning supports the following Early Termination Policies.

Bandit is a termination policy based on slack factor/slack amount and evaluation interval. The policy early

terminates any runs where the primary metric is not within the specified slack factor / slack amount with respect

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.primarymetricgoal?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.banditpolicy?view=azure-ml-py#definition

from azureml.train.hyperdrive import BanditPolicy
early_termination_policy = BanditPolicy(slack_factor = 0.1, evaluation_interval=1, delay_evaluation=5)

Median stopping policy

from azureml.train.hyperdrive import MedianStoppingPolicy
early_termination_policy = MedianStoppingPolicy(evaluation_interval=1, delay_evaluation=5)

Truncation selection policy

from azureml.train.hyperdrive import TruncationSelectionPolicy
early_termination_policy = TruncationSelectionPolicy(evaluation_interval=1, truncation_percentage=20,
delay_evaluation=5)

to the best performing training run. It takes the following configuration parameters:

slack_factor or slack_amount : the slack allowed with respect to the best performing training run.

slack_factor specifies the allowable slack as a ratio. slack_amount specifies the allowable slack as an

absolute amount, instead of a ratio.

For example, consider a Bandit policy being applied at interval 10. Assume that the best performing run at

interval 10 reported a primary metric 0.8 with a goal to maximize the primary metric. If the policy was

specified with a slack_factor of 0.2, any training runs, whose best metric at interval 10 is less than 0.66

(0.8/(1+ slack_factor)) will be terminated. If instead, the policy was specified with a slack_amount of 0.2,

any training runs, whose best metric at interval 10 is less than 0.6 (0.8 - slack_amount) will be terminated.

evaluation_interval : the frequency for applying the policy (optional parameter).

delay_evaluation : delays the first policy evaluation for a specified number of intervals (optional

parameter).

In this example, the early termination policy is applied at every interval when metrics are reported, starting at

evaluation interval 5. Any run whose best metric is less than (1/(1+0.1) or 91% of the best performing run will be

terminated.

Median stopping is an early termination policy based on running averages of primary metrics reported by the

runs. This policy computes running averages across all training runs and terminates runs whose performance is

worse than the median of the running averages. This policy takes the following configuration parameters:

evaluation_interval : the frequency for applying the policy (optional parameter).

delay_evaluation : delays the first policy evaluation for a specified number of intervals (optional parameter).

In this example, the early termination policy is applied at every interval starting at evaluation interval 5. A run will

be terminated at interval 5 if its best primary metric is worse than the median of the running averages over

intervals 1:5 across all training runs.

Truncation selection cancels a given percentage of lowest performing runs at each evaluation interval. Runs are

compared based on their performance on the primary metric and the lowest X% are terminated. It takes the

following configuration parameters:

truncation_percentage : the percentage of lowest performing runs to terminate at each evaluation interval.

Specify an integer value between 1 and 99.

evaluation_interval : the frequency for applying the policy (optional parameter).

delay_evaluation : delays the first policy evaluation for a specified number of intervals (optional parameter).

In this example, the early termination policy is applied at every interval starting at evaluation interval 5. A run will

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.medianstoppingpolicy?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.truncationselectionpolicy?view=azure-ml-py

No termination policy

policy=None

Default policy

Picking an early termination policy

Allocate resources

NOTE

NOTE

max_total_runs=20,
max_concurrent_runs=4

be terminated at interval 5 if its performance at interval 5 is in the lowest 20% of performance of all runs at

interval 5.

If you want all training runs to run to completion, set policy to None. This will have the effect of not applying any

early termination policy.

If no policy is specified, the hyperparameter tuning service will let all training runs execute to completion.

If you are looking for a conservative policy that provides savings without terminating promising jobs, you can

use a Median Stopping Policy with evaluation_interval 1 and delay_evaluation 5. These are conservative

settings, that can provide approximately 25%-35% savings with no loss on primary metric (based on our

evaluation data).

If you are looking for more aggressive savings from early termination, you can either use Bandit Policy with a

stricter (smaller) allowable slack or Truncation Selection Policy with a larger truncation percentage.

Control your resource budget for your hyperparameter tuning experiment by specifying the maximum total

number of training runs. Optionally specify the maximum duration for your hyperparameter tuning experiment.

max_total_runs : Maximum total number of training runs that will be created. Upper bound - there may be

fewer runs, for instance, if the hyperparameter space is finite and has fewer samples. Must be a number

between 1 and 1000.

max_duration_minutes : Maximum duration in minutes of the hyperparameter tuning experiment. Parameter is

optional, and if present, any runs that would be running after this duration are automatically canceled.

If both max_total_runs and max_duration_minutes are specified, the hyperparameter tuning experiment terminates

when the first of these two thresholds is reached.

Additionally, specify the maximum number of training runs to run concurrently during your hyperparameter

tuning search.

max_concurrent_runs : Maximum number of runs to run concurrently at any given moment. If none specified,

all max_total_runs will be launched in parallel. If specified, must be a number between 1 and 100.

The number of concurrent runs is gated on the resources available in the specified compute target. Hence, you need to

ensure that the compute target has the available resources for the desired concurrency.

Allocate resources for hyperparameter tuning:

Configure experiment

from azureml.train.hyperdrive import HyperDriveConfig
hyperdrive_run_config = HyperDriveConfig(estimator=estimator,
 hyperparameter_sampling=param_sampling,
 policy=early_termination_policy,
 primary_metric_name="accuracy",
 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
 max_total_runs=100,
 max_concurrent_runs=4)

Submit experiment

from azureml.core.experiment import Experiment
experiment = Experiment(workspace, experiment_name)
hyperdrive_run = experiment.submit(hyperdrive_run_config)

Warm start your hyperparameter tuning experiment (optional)

This code configures the hyperparameter tuning experiment to use a maximum of 20 total runs, running four

configurations at a time.

Configure your hyperparameter tuning experiment using the defined hyperparameter search space, early

termination policy, primary metric, and resource allocation from the sections above. Additionally, provide an

estimator that will be called with the sampled hyperparameters. The estimator describes the training script you

run, the resources per job (single or multi-gpu), and the compute target to use. Since concurrency for your

hyperparameter tuning experiment is gated on the resources available, ensure that the compute target specified

in the estimator has sufficient resources for your desired concurrency. (For more information on estimators, see

how to train models.)

Configure your hyperparameter tuning experiment:

Once you define your hyperparameter tuning configuration, submit an experiment:

experiment_name is the name you assign to your hyperparameter tuning experiment, and workspace is the

workspace in which you want to create the experiment (For more information on experiments, see How does

Azure Machine Learning work?)

Often, finding the best hyperparameter values for your model can be an iterative process, needing multiple

tuning runs that learn from previous hyperparameter tuning runs. Reusing knowledge from these previous runs

will accelerate the hyperparameter tuning process, thereby reducing the cost of tuning the model and will

potentially improve the primary metric of the resulting model. When warm starting a hyperparameter tuning

experiment with Bayesian sampling, trials from the previous run will be used as prior knowledge to intelligently

pick new samples, to improve the primary metric. Additionally, when using Random or Grid sampling, any early

termination decisions will leverage metrics from the previous runs to determine poorly performing training runs.

Azure Machine Learning allows you to warm start your hyperparameter tuning run by leveraging knowledge

from up to 5 previously completed / cancelled hyperparameter tuning parent runs. You can specify the list of

parent runs you want to warm start from using this snippet:

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.hyperdriverunconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment%28class%29?view=azure-ml-py#submit-config--tags-none----kwargs-

from azureml.train.hyperdrive import HyperDriveRun

warmstart_parent_1 = HyperDriveRun(experiment, "warmstart_parent_run_ID_1")
warmstart_parent_2 = HyperDriveRun(experiment, "warmstart_parent_run_ID_2")
warmstart_parents_to_resume_from = [warmstart_parent_1, warmstart_parent_2]

from azureml.core.run import Run

resume_child_run_1 = Run(experiment, "resume_child_run_ID_1")
resume_child_run_2 = Run(experiment, "resume_child_run_ID_2")
child_runs_to_resume = [resume_child_run_1, resume_child_run_2]

from azureml.train.hyperdrive import HyperDriveConfig

hyperdrive_run_config = HyperDriveConfig(estimator=estimator,
 hyperparameter_sampling=param_sampling,
 policy=early_termination_policy,
 resume_from=warmstart_parents_to_resume_from,
 resume_child_runs=child_runs_to_resume,
 primary_metric_name="accuracy",
 primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
 max_total_runs=100,
 max_concurrent_runs=4)

Visualize experiment

from azureml.widgets import RunDetails
RunDetails(hyperdrive_run).show()

Additionally, there may be occasions when individual training runs of a hyperparameter tuning experiment are

cancelled due to budget constraints or fail due to other reasons. It is now possible to resume such individual

training runs from the last checkpoint (assuming your training script handles checkpoints). Resuming an

individual training run will use the same hyperparameter configuration and mount the outputs folder used for

that run. The training script should accept the resume-from argument, which contains the checkpoint or model

files from which to resume the training run. You can resume individual training runs using the following snippet:

You can configure your hyperparameter tuning experiment to warm start from a previous experiment or resume

individual training runs using the optional parameters resume_from and resume_child_runs in the config:

The Azure Machine Learning SDK provides a Notebook widget that visualizes the progress of your training runs.

The following snippet visualizes all your hyperparameter tuning runs in one place in a Jupyter notebook:

This code displays a table with details about the training runs for each of the hyperparameter configurations.

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets.rundetails?view=azure-ml-py

You can also visualize the performance of each of the runs as training progresses.

Additionally, you can visually identify the correlation between performance and values of individual

hyperparameters using a Parallel Coordinates Plot.

Find the best model

best_run = hyperdrive_run.get_best_run_by_primary_metric()
best_run_metrics = best_run.get_metrics()
parameter_values = best_run.get_details()['runDefinition']['Arguments']

print('Best Run Id: ', best_run.id)
print('\n Accuracy:', best_run_metrics['accuracy'])
print('\n learning rate:',parameter_values[3])
print('\n keep probability:',parameter_values[5])
print('\n batch size:',parameter_values[7])

Sample notebook

Next steps

You can visualize all your hyperparameter tuning runs in the Azure web portal as well. For more information on

how to view an experiment in the web portal, see how to track experiments.

Once all of the hyperparameter tuning runs have completed, identify the best performing configuration and the

corresponding hyperparameter values:

Refer to train-hyperparameter-* notebooks in this folder :

how-to-use-azureml/training-with-deep-learning

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

Track an experiment

Deploy a trained model

file:///T:/i2pk/machine-learning/media/how-to-tune-hyperparameters/hyperparameter-tuning-parallel-coordinates-expanded.png
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.hyperdrive.hyperdriverun?view=azure-ml-py#get-best-run-by-primary-metric-include-failed-true--include-canceled-true--include-resume-from-runs-true-----typing-union-azureml-core-run-run--nonetype-
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training-with-deep-learning

Use secrets in training runs
3/9/2020 • 2 minutes to read • Edit Online

Set secrets

from azureml.core import Workspace
from azureml.core import Keyvault
import os

ws = Workspace.from_config()
my_secret = os.environ.get("MY_SECRET")
keyvault = ws.get_default_keyvault()
keyvault.set_secret(name="mysecret", value = my_secret)

Get secrets

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to use secrets in training runs securely. Authentication information such as your user

name and password are secrets. For example, if you connect to an external database in order to query training data,

you would need to pass your username and password to the remote run context. Coding such values into training

scripts in cleartext is insecure as it would expose the secret.

Instead, your Azure Machine Learning workspace has an associated resource called a Azure Key Vault. Use this Key

Vault to pass secrets to remote runs securely through a set of APIs in the Azure Machine Learning Python SDK.

The basic flow for using secrets is:

1. On local computer, log in to Azure and connect to your workspace.

2. On local computer, set a secret in Workspace Key Vault.

3. Submit a remote run.

4. Within the remote run, get the secret from Key Vault and use it.

In the Azure Machine Learning, the Keyvault class contains methods for setting secrets. In your local Python session,

first obtain a reference to your workspace Key Vault, and then use the set_secret() method to set a secret by

name and value. The set_secret method updates the secret value if the name already exists.

Do not put the secret value in your Python code as it is insecure to store it in file as cleartext. Instead, obtain the

secret value from an environment variable, for example Azure DevOps build secret, or from interactive user input.

You can list secret names using the list_secrets() method and there is also a batch version,set_secrets() that

allows you to set multiple secrets at a time.

In your local code, you can use the get_secret() method to get the secret value by name.

For runs submitted the Experiment.submit , use the get_secret() method with the Run class. Because a submitted

run is aware of its workspace, this method shortcuts the Workspace instantiation and returns the secret value

directly.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-secrets-in-runs.md
https://docs.microsoft.com/azure/key-vault/key-vault-overview
https://docs.microsoft.com/python/api/azureml-core/azureml.core.keyvault.keyvault?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.keyvault.keyvault?view=azure-ml-py#set-secret-name--value-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.keyvault.keyvault?view=azure-ml-py#list-secrets--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.keyvault.keyvault?view=azure-ml-py#set-secrets-secrets-batch-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.keyvault.keyvault?view=azure-ml-py#get-secret-name-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py#submit-config--tags-none----kwargs-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#get-secret-name-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py

Code in submitted run
from azureml.core import Experiment, Run

run = Run.get_context()
secret_value = run.get_secret(name="mysecret")

Next steps

Be careful not to expose the secret value by writing or printing it out.

There is also a batch version, get_secrets() for accessing multiple secrets at once.

View example notebook

Learn about enterprise security with Azure Machine Learning

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#get-secrets-secrets-
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/manage-azureml-service/authentication-in-azureml/authentication-in-azureml.ipynb

Build scikit-learn models at scale with Azure Machine
Learning
3/9/2020 • 6 minutes to read • Edit Online

Prerequisites

Set up the experiment

Import packages

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, learn how to run your scikit-learn training scripts at enterprise scale by using the Azure Machine

Learning SKlearn estimator class.

The example scripts in this article are used to classify iris flower images to build a machine learning model based

on scikit-learn's iris dataset.

Whether you're training a machine learning scikit-learn model from the ground-up or you're bringing an existing

model into the cloud, you can use Azure Machine Learning to scale out open-source training jobs using elastic

cloud compute resources. You can build, deploy, version and monitor production-grade models with Azure

Machine Learning.

Run this code on either of these environments:

Azure Machine Learning compute instance - no downloads or installation necessary

Complete the Tutorial: Setup environment and workspace to create a dedicated notebook server pre-

loaded with the SDK and the sample repository.

In the samples training folder on the notebook server, find a completed and expanded notebook by

navigating to this directory: how-to-use-azureml > ml-frameworks > scikit-learn > training >

train-hyperparameter-tune-deploy-with-sklearn folder.

Your own Jupyter Notebook server

Install the Azure Machine Learning SDK.

Create a workspace configuration file.

Download the dataset and sample script file

You can also find a completed Jupyter Notebook version of this guide on the GitHub samples page. The

notebook includes an expanded section covering intelligent hyperparameter tuning and retrieving the

best model by primary metrics.

iris dataset

train_iris.py

This section sets up the training experiment by loading the required python packages, initializing a workspace,

creating an experiment, and uploading the training data and training scripts.

First, import the necessary Python libraries.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-scikit-learn.md
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn.sklearn?view=azure-ml-py
https://archive.ics.uci.edu/ml/datasets/iris
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://archive.ics.uci.edu/ml/datasets/iris
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/scikit-learn/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb

import os
import urllib
import shutil
import azureml

from azureml.core import Experiment
from azureml.core import Workspace, Run

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

Initialize a workspace

ws = Workspace.from_config()

Create a machine learning experiment

project_folder = './sklearn-iris'
os.makedirs(project_folder, exist_ok=True)

exp = Experiment(workspace=ws, name='sklearn-iris')

Prepare training script

import shutil
shutil.copy('./train_iris.py', project_folder)

Create or get a compute target

The Azure Machine Learning workspace is the top-level resource for the service. It provides you with a centralized

place to work with all the artifacts you create. In the Python SDK, you can access the workspace artifacts by creating

a workspace object.

Create a workspace object from the config.json file created in the prerequisites section.

Create an experiment and a folder to hold your training scripts. In this example, create an experiment called

"sklearn-iris".

In this tutorial, the training script train_ir is .py is already provided for you. In practice, you should be able to take

any custom training script as is and run it with Azure ML without having to modify your code.

To use the Azure ML tracking and metrics capabilities, add a small amount of Azure ML code inside your training

script. The training script train_ir is .py shows how to log some metrics to your Azure ML run using the Run object

within the script.

The provided training script uses example data from the iris = datasets.load_iris() function. For your own data,

you may need to use steps such as Upload dataset and scripts to make data available during training.

Copy the training script train_ir is .py into your project directory.

Create a compute target for your scikit-learn job to run on. Scikit-learn only supports single node, CPU computing.

The following code, creates an Azure Machine Learning managed compute (AmlCompute) for your remote training

compute resource. Creation of AmlCompute takes approximately 5 minutes. If the AmlCompute with that name is

already in your workspace, this code will skip the creation process.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py

cluster_name = "cpu-cluster"

try:
 compute_target = ComputeTarget(workspace=ws, name=cluster_name)
 print('Found existing compute target')
except ComputeTargetException:
 print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',
 max_nodes=4)

 compute_target = ComputeTarget.create(ws, cluster_name, compute_config)

 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Create a scikit-learn estimator

from azureml.train.sklearn import SKLearn

script_params = {
 '--kernel': 'linear',
 '--penalty': 1.0,
}

estimator = SKLearn(source_directory=project_folder,
 script_params=script_params,
 compute_target=compute_target,
 entry_script='train_iris.py'
 pip_packages=['joblib']
)

Submit a run

run = experiment.submit(estimator)
run.wait_for_completion(show_output=True)

For more information on compute targets, see the what is a compute target article.

The scikit-learn estimator provides a simple way of launching a scikit-learn training job on a compute target. It is

implemented through the SKLearn class, which can be used to support single-node CPU training.

If your training script needs additional pip or conda packages to run, you can have the packages installed on the

resulting docker image by passing their names through the pip_packages and conda_packages arguments.

For more information on customizing your Python environment, see Create and manage environments for training

and deployment.

The Run object provides the interface to the run history while the job is running and after it has completed.

As the run is executed, it goes through the following stages:

Preparing: A docker image is created according to the TensorFlow estimator. The image is uploaded to the

workspace's container registry and cached for later runs. Logs are also streamed to the run history and can

be viewed to monitor progress.

Scaling: The cluster attempts to scale up if the Batch AI cluster requires more nodes to execute the run than

are currently available.

Running: All scripts in the script folder are uploaded to the compute target, data stores are mounted or

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn.sklearn?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py

Save and register the model

import joblib

joblib.dump(svm_model_linear, 'model.joblib')

from azureml.core import Model
from azureml.core.resource_configuration import ResourceConfiguration

model = run.register_model(model_name='sklearn-iris',
 model_path='outputs/model.joblib',
 model_framework=Model.Framework.SCIKITLEARN,
 model_framework_version='0.19.1',
 resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5))

Deployment

(Preview) No-code model deployment

web_service = Model.deploy(ws, "scikit-learn-service", [model])

 - azureml-defaults
 - inference-schema[numpy-support]
 - scikit-learn
 - numpy

copied, and the entry_script is executed. Outputs from stdout and the ./logs folder are streamed to the run

history and can be used to monitor the run.

Post-Processing: The ./outputs folder of the run is copied over to the run history.

Once you've trained the model, you can save and register it to your workspace. Model registration lets you store

and version your models in your workspace to simplify model management and deployment.

Add the following code to your training script, train_iris.py, to save the model.

Register the model to your workspace with the following code. By specifying the parameters model_framework ,

model_framework_version , and resource_configuration , no-code model deployment becomes available. This allows

you to directly deploy your model as a web service from the registered model, and the ResourceConfiguration

object defines the compute resource for the web service.

The model you just registered can be deployed the exact same way as any other registered model in Azure

Machine Learning, regardless of which estimator you used for training. The deployment how-to contains a section

on registering models, but you can skip directly to creating a compute target for deployment, since you already

have a registered model.

Instead of the traditional deployment route, you can also use the no-code deployment feature (preview)for scikit-

learn. No-code model deployment is supported for all built-in scikit-learn model types. By registering your model

as shown above with the model_framework , model_framework_version , and resource_configuration parameters, you

can simply use the deploy() static function to deploy your model.

NOTE: These dependencies are included in the pre-built scikit-learn inference container.

The full how-to covers deployment in Azure Machine Learning in greater depth.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.resource_configuration.resourceconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-

Next steps
In this article, you trained and registered a scikit-learn model, and learned about deployment options. See these

other articles to learn more about Azure Machine Learning.

Track run metrics during training

Tune hyperparameters

Reference architecture for distributed deep learning training in Azure

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

Build a TensorFlow deep learning model at scale with
Azure Machine Learning
3/3/2020 • 8 minutes to read • Edit Online

Prerequisites

Set up the experiment

Import packages

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article shows you how to run your TensorFlow training scripts at scale using Azure Machine Learning's

TensorFlow estimator class. This example trains and registers a TensorFlow model to classify handwritten digits

using a deep neural network (DNN).

Whether you're developing a TensorFlow model from the ground-up or you're bringing an existing model into the

cloud, you can use Azure Machine Learning to scale out open-source training jobs to build, deploy, version, and

monitor production-grade models.

Learn more about deep learning vs machine learning.

Run this code on either of these environments:

Azure Machine Learning compute instance - no downloads or installation necessary

Complete the Tutorial: Setup environment and workspace to create a dedicated notebook server pre-

loaded with the SDK and the sample repository.

In the samples deep learning folder on the notebook server, find a completed and expanded notebook

by navigating to this directory: how-to-use-azureml > ml-frameworks > tensorflow >

deployment > train-hyperparameter-tune-deploy-with-tensorflow folder.

Your own Jupyter Notebook server

Install the Azure Machine Learning SDK.

Create a workspace configuration file.

Download the sample script files mnist-tf.py and utils.py

You can also find a completed Jupyter Notebook version of this guide on the GitHub samples page. The

notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and

notebook widgets.

This section sets up the training experiment by loading the required Python packages, initializing a workspace,

creating an experiment, and uploading the training data and training scripts.

First, import the necessary Python libraries.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-tensorflow.md
https://www.tensorflow.org/overview
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/deployment/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb

import os
import urllib
import shutil
import azureml

from azureml.core import Experiment
from azureml.core import Workspace, Run

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException
from azureml.train.dnn import TensorFlow

Initialize a workspace

ws = Workspace.from_config()

Create a deep learning experiment

script_folder = './tf-mnist'
os.makedirs(script_folder, exist_ok=True)

exp = Experiment(workspace=ws, name='tf-mnist')

Create a file dataset

from azureml.core.dataset import Dataset

web_paths = [
 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
]
dataset = Dataset.File.from_files(path=web_paths)

The Azure Machine Learning workspace is the top-level resource for the service. It provides you with a centralized

place to work with all the artifacts you create. In the Python SDK, you can access the workspace artifacts by

creating a workspace object.

Create a workspace object from the config.json file created in the prerequisites section.

Create an experiment and a folder to hold your training scripts. In this example, create an experiment called "tf-

mnist".

A FileDataset object references one or multiple files in your workspace datastore or public urls. The files can be

of any format, and the class provides you with the ability to download or mount the files to your compute. By

creating a FileDataset , you create a reference to the data source location. If you applied any transformations to

the data set, they will be stored in the data set as well. The data remains in its existing location, so no extra storage

cost is incurred. See the how-to guide on the Dataset package for more information.

Use the register() method to register the data set to your workspace so they can be shared with others, reused

across various experiments, and referred to by name in your training script.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/how-to-create-register-datasets

dataset = dataset.register(workspace=ws,
 name='mnist dataset',
 description='training and test dataset',
 create_new_version=True)

list the files referenced by dataset
dataset.to_path()

Create a compute target

cluster_name = "gpucluster"

try:
 compute_target = ComputeTarget(workspace=ws, name=cluster_name)
 print('Found existing compute target')
except ComputeTargetException:
 print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',
 max_nodes=4)

 compute_target = ComputeTarget.create(ws, cluster_name, compute_config)

 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Create a TensorFlow estimator

script_params = {
 '--data-folder': dataset.as_named_input('mnist').as_mount(),
 '--batch-size': 50,
 '--first-layer-neurons': 300,
 '--second-layer-neurons': 100,
 '--learning-rate': 0.01
}

est = TensorFlow(source_directory=script_folder,
 entry_script='tf_mnist.py',
 script_params=script_params,
 compute_target=compute_target,
 use_gpu=True,
 pip_packages=['azureml-dataprep[pandas,fuse]'])

Create a compute target for your TensorFlow job to run on. In this example, create a GPU-enabled Azure Machine

Learning compute cluster.

For more information on compute targets, see the what is a compute target article.

The TensorFlow estimator provides a simple way of launching a TensorFlow training job on a compute target.

The TensorFlow estimator is implemented through the generic estimator class, which can be used to support any

framework. For more information about training models using the generic estimator, see train models with Azure

Machine Learning using estimator

If your training script needs additional pip or conda packages to run, you can have the packages installed on the

resulting Docker image by passing their names through the pip_packages and conda_packages arguments.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com//python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py

TIP

Submit a run

run = exp.submit(est)
run.wait_for_completion(show_output=True)

Register or download a model

from azureml.core import Model
from azureml.core.resource_configuration import ResourceConfiguration

model = run.register_model(model_name='tf-dnn-mnist',
 model_path='outputs/model',
 model_framework=Model.Framework.TENSORFLOW,
 model_framework_version='1.13.0',
 resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5))

Support for Tensorflow 2.0 has been added to the Tensorflow estimator class. See the blog post for more information.

For more information on customizing your Python environment, see Create and manage environments for

training and deployment.

The Run object provides the interface to the run history while the job is running and after it has completed.

As the Run is executed, it goes through the following stages:

Preparing: A Docker image is created according to the TensorFlow estimator. The image is uploaded to the

workspace's container registry and cached for later runs. Logs are also streamed to the run history and can

be viewed to monitor progress.

Scaling: The cluster attempts to scale up if the Batch AI cluster requires more nodes to execute the run than

are currently available.

Running: All scripts in the script folder are uploaded to the compute target, data stores are mounted or

copied, and the entry_script is executed. Outputs from stdout and the ./logs folder are streamed to the run

history and can be used to monitor the run.

Post-Processing: The ./outputs folder of the run is copied over to the run history.

Once you've trained the model, you can register it to your workspace. Model registration lets you store and

version your models in your workspace to simplify model management and deployment. By specifying the

parameters model_framework , model_framework_version , and resource_configuration , no-code model deployment

becomes available. This allows you to directly deploy your model as a web service from the registered model, and

the ResourceConfiguration object defines the compute resource for the web service.

You can also download a local copy of the model by using the Run object. In the training script mnist-tf.py , a

TensorFlow saver object persists the model to a local folder (local to the compute target). You can use the Run

object to download a copy.

https://azure.microsoft.com/blog/tensorflow-2-0-on-azure-fine-tuning-bert-for-question-tagging/
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py

Create a model folder in the current directory
os.makedirs('./model', exist_ok=True)

for f in run.get_file_names():
 if f.startswith('outputs/model'):
 output_file_path = os.path.join('./model', f.split('/')[-1])
 print('Downloading from {} to {} ...'.format(f, output_file_path))
 run.download_file(name=f, output_file_path=output_file_path)

Distributed training

Horovod

from azureml.core.runconfig import MpiConfiguration
from azureml.train.dnn import TensorFlow

Tensorflow constructor
estimator= TensorFlow(source_directory=project_folder,
 compute_target=compute_target,
 script_params=script_params,
 entry_script='script.py',
 node_count=2,
 process_count_per_node=1,
 distributed_training=MpiConfiguration(),
 framework_version='1.13',
 use_gpu=True,
 pip_packages=['azureml-dataprep[pandas,fuse]'])

Parameter server

The TensorFlow estimator also supports distributed training across CPU and GPU clusters. You can easily run

distributed TensorFlow jobs and Azure Machine Learning will manage the orchestration for you.

Azure Machine Learning supports two methods of distributed training in TensorFlow:

MPI-based distributed training using the Horovod framework

Native distributed TensorFlow using the parameter server method

Horovod is an open-source framework for distributed training developed by Uber. It offers an easy path to

distributed GPU TensorFlow jobs.

To use Horovod, specify an MpiConfiguration object for the distributed_training parameter in the TensorFlow

constructor. This parameter ensures that Horovod library is installed for you to use in your training script.

You can also run native distributed TensorFlow, which uses the parameter server model. In this method, you train

across a cluster of parameter servers and workers. The workers calculate the gradients during training, while the

parameter servers aggregate the gradients.

To use the parameter server method, specify a TensorflowConfiguration object for the distributed_training

parameter in the TensorFlow constructor.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://www.open-mpi.org/
https://github.com/uber/horovod
https://www.tensorflow.org/deploy/distributed
https://github.com/uber/horovod
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.mpiconfiguration?view=azure-ml-py
https://www.tensorflow.org/deploy/distributed
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.tensorflowconfiguration?view=azure-ml-py

from azureml.train.dnn import TensorFlow

distributed_training = TensorflowConfiguration()
distributed_training.worker_count = 2

Tensorflow constructor
tf_est= TensorFlow(source_directory=project_folder,
 compute_target=compute_target,
 script_params=script_params,
 entry_script='script.py',
 node_count=2,
 process_count_per_node=1,
 distributed_training=distributed_training,
 use_gpu=True,
 pip_packages=['azureml-dataprep[pandas,fuse]'])

submit the TensorFlow job
run = exp.submit(tf_est)

Define cluster specifications in 'TF_CONFIG`

TF_CONFIG='{
 "cluster": {
 "ps": ["host0:2222", "host1:2222"],
 "worker": ["host2:2222", "host3:2222", "host4:2222"],
 },
 "task": {"type": "ps", "index": 0},
 "environment": "cloud"
}'

import os, json
import tensorflow as tf

tf_config = os.environ.get('TF_CONFIG')
if not tf_config or tf_config == "":
 raise ValueError("TF_CONFIG not found.")
tf_config_json = json.loads(tf_config)
cluster_spec = tf.train.ClusterSpec(cluster)

Deploy a TensorFlow model

(Preview) No-code model deployment

You also need the network addresses and ports of the cluster for the tf.train.ClusterSpec , so Azure Machine

Learning sets the TF_CONFIG environment variable for you.

The TF_CONFIG environment variable is a JSON string. Here is an example of the variable for a parameter server :

For TensorFlow's high level tf.estimator API, TensorFlow parses the TF_CONFIG variable and builds the cluster

spec for you.

For TensorFlow's lower-level core APIs for training, parse the TF_CONFIG variable and build the

tf.train.ClusterSpec in your training code.

The model you just registered can be deployed the exact same way as any other registered model in Azure

Machine Learning, regardless of which estimator you used for training. The deployment how-to contains a section

on registering models, but you can skip directly to creating a compute target for deployment, since you already

have a registered model.

https://www.tensorflow.org/api_docs/python/tf/train/ClusterSpec
https://www.tensorflow.org/api_docs/python/tf/estimator

service = Model.deploy(ws, "tensorflow-web-service", [model])

Next steps

Instead of the traditional deployment route, you can also use the no-code deployment feature (preview) for

Tensorflow. By registering your model as shown above with the model_framework , model_framework_version , and

resource_configuration parameters, you can simply use the deploy() static function to deploy your model.

The full how-to covers deployment in Azure Machine Learning in greater depth.

In this article, you trained and registered a TensorFlow model, and learned about options for deployment. See

these other articles to learn more about Azure Machine Learning.

Track run metrics during training

Tune hyperparameters

Reference architecture for distributed deep learning training in Azure

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

Train and register a Keras classification model with
Azure Machine Learning
1/8/2020 • 5 minutes to read • Edit Online

Prerequisites

Set up the experiment

Import packages

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article shows you how to train and register a Keras classification model built on TensorFlow using Azure

Machine Learning. It uses the popular MNIST dataset to classify handwritten digits using a deep neural network

(DNN) built using the Keras Python library running on top of TensorFlow.

Keras is a high-level neural network API capable of running top of other popular DNN frameworks to simplify

development. With Azure Machine Learning, you can rapidly scale out training jobs using elastic cloud compute

resources. You can also track your training runs, version models, deploy models, and much more.

Whether you're developing a Keras model from the ground-up or you're bringing an existing model into the cloud,

Azure Machine Learning can help you build production-ready models.

See the conceptual article for information on the differences between machine learning and deep learning.

Run this code on either of these environments:

Azure Machine Learning compute instance - no downloads or installation necessary

Complete the Tutorial: Setup environment and workspace to create a dedicated notebook server pre-

loaded with the SDK and the sample repository.

In the samples folder on the notebook server, find a completed and expanded notebook by navigating to

this directory: how-to-use-azureml > training-with-deep-learning > train-hyperparameter-

tune-deploy-with-keras folder.

Your own Jupyter Notebook server

Install the Azure Machine Learning SDK.

Create a workspace configuration file.

Download the sample script files mnist-keras.py and utils.py

You can also find a completed Jupyter Notebook version of this guide on the GitHub samples page. The

notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and

notebook widgets.

This section sets up the training experiment by loading the required python packages, initializing a workspace,

creating an experiment, and uploading the training data and training scripts.

First, import the necessary Python libraries.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-keras.md
http://yann.lecun.com/exdb/mnist/
https://keras.io
https://www.tensorflow.org/overview
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb

import os
import azureml
from azureml.core import Experiment
from azureml.core import Workspace, Run
from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException

Initialize a workspace

ws = Workspace.from_config()

Create an experiment

exp = Experiment(workspace=ws, name='keras-mnist')

Create a file dataset

from azureml.core.dataset import Dataset

web_paths = [
 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
 'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz'
]
dataset = Dataset.File.from_files(path=web_paths)

dataset = dataset.register(workspace=ws,
 name='mnist dataset',
 description='training and test dataset',
 create_new_version=True)

Create a compute target

The Azure Machine Learning workspace is the top-level resource for the service. It provides you with a centralized

place to work with all the artifacts you create. In the Python SDK, you can access the workspace artifacts by creating

a workspace object.

Create a workspace object from the config.json file created in the prerequisites section.

Create an experiment called "keras-mnist" in your workspace.

A FileDataset object references one or multiple files in your workspace datastore or public urls. The files can be of

any format, and the class provides you with the ability to download or mount the files to your compute. By creating

a FileDataset , you create a reference to the data source location. If you applied any transformations to the data

set, they will be stored in the data set as well. The data remains in its existing location, so no extra storage cost is

incurred. See the how-to guide on the Dataset package for more information.

Use the register() method to register the data set to your workspace so they can be shared with others, reused

across various experiments, and referred to by name in your training script.

Create a compute target for your TensorFlow job to run on. In this example, create a GPU-enabled Azure Machine

Learning compute cluster.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/how-to-create-register-datasets

cluster_name = "gpucluster"

try:
 compute_target = ComputeTarget(workspace=ws, name=cluster_name)
 print('Found existing compute target')
except ComputeTargetException:
 print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',
 max_nodes=4)

 compute_target = ComputeTarget.create(ws, cluster_name, compute_config)

 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Create a TensorFlow estimator and import Keras

dataset = Dataset.get_by_name(ws, 'mnist dataset')

list the files referenced by mnist dataset
dataset.to_path()

from azureml.train.dnn import TensorFlow

script_params = {
 '--data-folder': dataset.as_named_input('mnist').as_mount(),
 '--batch-size': 50,
 '--first-layer-neurons': 300,
 '--second-layer-neurons': 100,
 '--learning-rate': 0.001
}

est = TensorFlow(source_directory=script_folder,
 entry_script='keras_mnist.py',
 script_params=script_params,
 compute_target=compute_target,
 pip_packages=['keras', 'matplotlib'],
 use_gpu=True)

Submit a run

run = exp.submit(est)
run.wait_for_completion(show_output=True)

For more information on compute targets, see the what is a compute target article.

The TensorFlow estimator provides a simple way of launching TensorFlow training jobs on compute target. Since

Keras runs on top of TensorFlow, you can use the TensorFlow estimator and import the Keras library using the

pip_packages argument.

First get the data from the workspace datastore using the Dataset class.

The TensorFlow estimator is implemented through the generic estimator class, which can be used to support any

framework. Additionally, create a dictionary script_params that contains the DNN hyperparameter settings. For

more information about training models using the generic estimator, see train models with Azure Machine

Learning using estimator

The Run object provides the interface to the run history while the job is running and after it has completed.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py
https://docs.microsoft.com//python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py

Register the model

model = run.register_model(model_name='keras-dnn-mnist', model_path='outputs/model')

TIP

Create a model folder in the current directory
os.makedirs('./model', exist_ok=True)

for f in run.get_file_names():
 if f.startswith('outputs/model'):
 output_file_path = os.path.join('./model', f.split('/')[-1])
 print('Downloading from {} to {} ...'.format(f, output_file_path))
 run.download_file(name=f, output_file_path=output_file_path)

Next steps

As the Run is executed, it goes through the following stages:

Preparing: A docker image is created according to the TensorFlow estimator. The image is uploaded to the

workspace's container registry and cached for later runs. Logs are also streamed to the run history and can

be viewed to monitor progress.

Scaling: The cluster attempts to scale up if the Batch AI cluster requires more nodes to execute the run than

are currently available.

Running: All scripts in the script folder are uploaded to the compute target, data stores are mounted or

copied, and the entry_script is executed. Outputs from stdout and the ./logs folder are streamed to the run

history and can be used to monitor the run.

Post-Processing: The ./outputs folder of the run is copied over to the run history.

Once you've trained the DNN model, you can register it to your workspace. Model registration lets you store and

version your models in your workspace to simplify model management and deployment.

The model you just registered is deployed the exact same way as any other registered model in Azure Machine Learning,

regardless of which estimator you used for training. The deployment how-to contains a section on registering models, but

you can skip directly to creating a compute target for deployment, since you already have a registered model.

You can also download a local copy of the model. This can be useful for doing additional model validation work

locally. In the training script, mnist-keras.py , a TensorFlow saver object persists the model to a local folder (local to

the compute target). You can use the Run object to download a copy from datastore.

In this article, you trained and registered a Keras model on Azure Machine Learning. To learn how to deploy a

model, continue on to our model deployment article.

How and where to deploy models

Track run metrics during training

Tune hyperparameters

Deploy a trained model

Reference architecture for distributed deep learning training in Azure

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

Train Pytorch deep learning models at scale with
Azure Machine Learning
1/9/2020 • 6 minutes to read • Edit Online

Prerequisites

Set up the experiment

Import packages

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, learn how to run your PyTorch training scripts at enterprise scale using Azure Machine Learning's

PyTorch estimator class.

The example scripts in this article are used to classify chicken and turkey images to build a deep learning neural

network based on PyTorch's transfer learning tutorial.

Whether you're training a deep learning PyTorch model from the ground-up or you're bringing an existing model

into the cloud, you can use Azure Machine Learning to scale out open-source training jobs using elastic cloud

compute resources. You can build, deploy, version, and monitor production-grade models with Azure Machine

Learning.

Learn more about deep learning vs machine learning.

Run this code on either of these environments:

Azure Machine Learning compute instance - no downloads or installation necessary

Complete the Tutorial: Setup environment and workspace to create a dedicated notebook server pre-

loaded with the SDK and the sample repository.

In the samples deep learning folder on the notebook server, find a completed and expanded notebook

by navigating to this directory: how-to-use-azureml > training-with-deep-learning > train-

hyperparameter-tune-deploy-with-pytorch folder.

Your own Jupyter Notebook server

Install the Azure Machine Learning SDK.

Create a workspace configuration file.

Download the sample script files pytorch_train.py

You can also find a completed Jupyter Notebook version of this guide on the GitHub samples page. The

notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and

notebook widgets.

This section sets up the training experiment by loading the required python packages, initializing a workspace,

creating an experiment, and uploading the training data and training scripts.

First, import the necessary Python libraries.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-train-pytorch.md
https://pytorch.org/
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/pytorch/deployment/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb

import os
import shutil

from azureml.core.workspace import Workspace
from azureml.core import Experiment

from azureml.core.compute import ComputeTarget, AmlCompute
from azureml.core.compute_target import ComputeTargetException
from azureml.train.dnn import PyTorch

Initialize a workspace

ws = Workspace.from_config()

Create a deep learning experiment

project_folder = './pytorch-birds'
os.makedirs(project_folder, exist_ok=True)

experiment_name = 'pytorch-birds'
experiment = Experiment(ws, name=experiment_name)

Get the data

Prepare training scripts

shutil.copy('pytorch_train.py', project_folder)

Create a compute target

The Azure Machine Learning workspace is the top-level resource for the service. It provides you with a centralized

place to work with all the artifacts you create. In the Python SDK, you can access the workspace artifacts by

creating a workspace object.

Create a workspace object from the config.json file created in the prerequisites section.

Create an experiment and a folder to hold your training scripts. In this example, create an experiment called

"pytorch-birds".

The dataset consists of about 120 training images each for turkeys and chickens, with 100 validation images for

each class. We will download and extract the dataset as part of our training script pytorch_train.py . The images

are a subset of the Open Images v5 Dataset.

In this tutorial, the training script, pytorch_train.py , is already provided. In practice, you can take any custom

training script, as is, and run it with Azure Machine Learning.

Upload the Pytorch training script, pytorch_train.py .

However, if you would like to use Azure Machine Learning tracking and metrics capabilities, you will have to add a

small amount code inside your training script. Examples of metrics tracking can be found in pytorch_train.py .

Create a compute target for your PyTorch job to run on. In this example, create a GPU-enabled Azure Machine

Learning compute cluster.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py
https://storage.googleapis.com/openimages/web/index.html

cluster_name = "gpucluster"

try:
 compute_target = ComputeTarget(workspace=ws, name=cluster_name)
 print('Found existing compute target')
except ComputeTargetException:
 print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_NC6',
 max_nodes=4)

 compute_target = ComputeTarget.create(ws, cluster_name, compute_config)

 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

Create a PyTorch estimator

script_params = {
 '--num_epochs': 30,
 '--output_dir': './outputs'
}

estimator = PyTorch(source_directory=project_folder,
 script_params=script_params,
 compute_target=compute_target,
 entry_script='pytorch_train.py',
 use_gpu=True,
 pip_packages=['pillow==5.4.1'])

Submit a run

run = experiment.submit(estimator)
run.wait_for_completion(show_output=True)

For more information on compute targets, see the what is a compute target article.

The PyTorch estimator provides a simple way of launching a PyTorch training job on a compute target.

The PyTorch estimator is implemented through the generic estimator class, which can be used to support any

framework. For more information about training models using the generic estimator, see train models with Azure

Machine Learning using estimator

If your training script needs additional pip or conda packages to run, you can have the packages installed on the

resulting docker image by passing their names through the pip_packages and conda_packages arguments.

For more information on customizing your Python environment, see Create and manage environments for

training and deployment.

The Run object provides the interface to the run history while the job is running and after it has completed.

As the Run is executed, it goes through the following stages:

Preparing: A docker image is created according to the PyTorch estimator. The image is uploaded to the

workspace's container registry and cached for later runs. Logs are also streamed to the run history and can

be viewed to monitor progress.

Scaling: The cluster attempts to scale up if the Batch AI cluster requires more nodes to execute the run than

are currently available.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py

Register or download a model

model = run.register_model(model_name='pt-dnn', model_path='outputs/')

TIP

Create a model folder in the current directory
os.makedirs('./model', exist_ok=True)

for f in run.get_file_names():
 if f.startswith('outputs/model'):
 output_file_path = os.path.join('./model', f.split('/')[-1])
 print('Downloading from {} to {} ...'.format(f, output_file_path))
 run.download_file(name=f, output_file_path=output_file_path)

Distributed training

Horovod

from azureml.train.dnn import PyTorch

estimator= PyTorch(source_directory=project_folder,
 compute_target=compute_target,
 script_params=script_params,
 entry_script='script.py',
 node_count=2,
 process_count_per_node=1,
 distributed_training=MpiConfiguration(),
 framework_version='1.13',
 use_gpu=True)

Running: All scripts in the script folder are uploaded to the compute target, data stores are mounted or

copied, and the entry_script is executed. Outputs from stdout and the ./logs folder are streamed to the run

history and can be used to monitor the run.

Post-Processing: The ./outputs folder of the run is copied over to the run history.

Once you've trained the model, you can register it to your workspace. Model registration lets you store and

version your models in your workspace to simplify model management and deployment.

The model you just registered is deployed the exact same way as any other registered model in Azure Machine Learning,

regardless of which estimator you used for training. The deployment how-to contains a section on registering models, but

you can skip directly to creating a compute target for deployment, since you already have a registered model.

You can also download a local copy of the model by using the Run object. In the training script pytorch_train.py , a

PyTorch save object persists the model to a local folder (local to the compute target). You can use the Run object to

download a copy.

The PyTorch estimator also supports distributed training across CPU and GPU clusters. You can easily run

distributed PyTorch jobs and Azure Machine Learning will manage the orchestration for you.

Horovod is an open-source, all reduce framework for distributed training developed by Uber. It offers an easy path

to distributed GPU PyTorch jobs.

To use Horovod, specify an MpiConfiguration object for the distributed_training parameter in the PyTorch

constructor. This parameter ensures that Horovod library is installed for you to use in your training script.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py
https://github.com/uber/horovod
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.mpiconfiguration?view=azure-ml-py

import torch
import horovod

Export to ONNX

Next steps

Horovod and its dependencies will be installed for you, so you can import it in your training script train.py as

follows:

To optimize inference with the ONNX Runtime, convert your trained PyTorch model to the ONNX format.

Inference, or model scoring, is the phase where the deployed model is used for prediction, most commonly on

production data. See the tutorial for an example.

In this article, you trained and registered a deep learning, neural network using PyTorch on Azure Machine

Learning. To learn how to deploy a model, continue on to our model deployment article.

How and where to deploy models

Track run metrics during training

Tune hyperparameters

Deploy a trained model

Reference architecture for distributed deep learning training in Azure

https://github.com/onnx/tutorials/blob/master/tutorials/PytorchOnnxExport.ipynb
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

Use the interpretability package to explain ML
models & predictions in Python
4/21/2020 • 11 minutes to read • Edit Online

Generate feature importance value on your personal machine

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this how-to guide, you learn to use the interpretability package of the Azure Machine Learning Python SDK to

perform the following tasks:

Explain the entire model behavior or individual predictions on your personal machine locally.

Enable interpretability techniques for engineered features.

Explain the behavior for the entire model and individual predictions in Azure.

Use a visualization dashboard to interact with your model explanations.

Deploy a scoring explainer alongside your model to observe explanations during inferencing.

For more information on the supported interpretability techniques and machine learning models, see Model

interpretability in Azure Machine Learning and sample notebooks.

The following example shows how to use the interpretability package on your personal machine without contacting

Azure services.

pip install azureml-interpret
pip install azureml-contrib-interpret

load breast cancer dataset, a well-known small dataset that comes with scikit-learn
from sklearn.datasets import load_breast_cancer
from sklearn import svm
from sklearn.model_selection import train_test_split
breast_cancer_data = load_breast_cancer()
classes = breast_cancer_data.target_names.tolist()

split data into train and test
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(breast_cancer_data.data,
 breast_cancer_data.target,
 test_size=0.2,
 random_state=0)
clf = svm.SVC(gamma=0.001, C=100., probability=True)
model = clf.fit(x_train, y_train)

1. Install azureml-interpret and azureml-contrib-interpret packages.

2. Train a sample model in a local Jupyter notebook.

3. Call the explainer locally.

To initialize an explainer object, pass your model and some training data to the explainer's constructor.

To make your explanations and visualizations more informative, you can choose to pass in feature names

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-machine-learning-interpretability-aml.md
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model

Explain the entire model behavior (global explanation)

from interpret.ext.blackbox import TabularExplainer

"features" and "classes" fields are optional
explainer = TabularExplainer(model,
 x_train,
 features=breast_cancer_data.feature_names,
 classes=classes)

from interpret.ext.blackbox import MimicExplainer

you can use one of the following four interpretable models as a global surrogate to the black box
model

from interpret.ext.glassbox import LGBMExplainableModel
from interpret.ext.glassbox import LinearExplainableModel
from interpret.ext.glassbox import SGDExplainableModel
from interpret.ext.glassbox import DecisionTreeExplainableModel

"features" and "classes" fields are optional
augment_data is optional and if true, oversamples the initialization examples to improve surrogate
model accuracy to fit original model. Useful for high-dimensional data where the number of rows is less
than the number of columns.
max_num_of_augmentations is optional and defines max number of times we can increase the input data
size.
LGBMExplainableModel can be replaced with LinearExplainableModel, SGDExplainableModel, or
DecisionTreeExplainableModel
explainer = MimicExplainer(model,
 x_train,
 LGBMExplainableModel,
 augment_data=True,
 max_num_of_augmentations=10,
 features=breast_cancer_data.feature_names,
 classes=classes)

from interpret.ext.blackbox import PFIExplainer

"features" and "classes" fields are optional
explainer = PFIExplainer(model,
 features=breast_cancer_data.feature_names,
 classes=classes)

and output class names if doing classification.

The following code blocks show how to instantiate an explainer object with TabularExplainer ,

MimicExplainer , and PFIExplainer locally.

TabularExplainer calls one of the three SHAP explainers underneath (TreeExplainer , DeepExplainer , or

KernelExplainer).

TabularExplainer automatically selects the most appropriate one for your use case, but you can call each

of its three underlying explainers directly.

or

or

Refer to the following example to help you get the aggregate (global) feature importance values.

you can use the training data or the test data here
global_explanation = explainer.explain_global(x_train)

if you used the PFIExplainer in the previous step, use the next line of code instead
global_explanation = explainer.explain_global(x_train, true_labels=y_test)

sorted feature importance values and feature names
sorted_global_importance_values = global_explanation.get_ranked_global_values()
sorted_global_importance_names = global_explanation.get_ranked_global_names()
dict(zip(sorted_global_importance_names, sorted_global_importance_values))

alternatively, you can print out a dictionary that holds the top K feature names and values
global_explanation.get_feature_importance_dict()

Explain an individual prediction (local explanation)

NOTE

get explanation for the first data point in the test set
local_explanation = explainer.explain_local(x_test[0:5])

sorted feature importance values and feature names
sorted_local_importance_names = local_explanation.get_ranked_local_names()
sorted_local_importance_values = local_explanation.get_ranked_local_values()

Raw feature transformations

Get the individual feature importance values of different datapoints by calling explanations for an individual

instance or a group of instances.

PFIExplainer does not support local explanations.

You can opt to get explanations in terms of raw, untransformed features rather than engineered features. For this

option, you pass your feature transformation pipeline to the explainer in train_explain.py . Otherwise, the

explainer provides explanations in terms of engineered features.

The format of supported transformations is the same as described in sklearn-pandas. In general, any

transformations are supported as long as they operate on a single column so that it's clear they're one-to-many.

Get an explanation for raw features by using a sklearn.compose.ColumnTransformer or with a list of fitted

transformer tuples. The following example uses sklearn.compose.ColumnTransformer .

https://github.com/scikit-learn-contrib/sklearn-pandas

from sklearn.compose import ColumnTransformer

numeric_transformer = Pipeline(steps=[
 ('imputer', SimpleImputer(strategy='median')),
 ('scaler', StandardScaler())])

categorical_transformer = Pipeline(steps=[
 ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
 ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(
 transformers=[
 ('num', numeric_transformer, numeric_features),
 ('cat', categorical_transformer, categorical_features)])

append classifier to preprocessing pipeline.
now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', preprocessor),
 ('classifier', LogisticRegression(solver='lbfgs'))])

clf.steps[-1][1] returns the trained classification model
pass transformation as an input to create the explanation object
"features" and "classes" fields are optional
tabular_explainer = TabularExplainer(clf.steps[-1][1],
 initialization_examples=x_train,
 features=dataset_feature_names,
 classes=dataset_classes,
 transformations=preprocessor)

from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn_pandas import DataFrameMapper

assume that we have created two arrays, numerical and categorical, which holds the numerical and categorical
feature names

numeric_transformations = [([f], Pipeline(steps=[('imputer', SimpleImputer(
 strategy='median')), ('scaler', StandardScaler())])) for f in numerical]

categorical_transformations = [([f], OneHotEncoder(
 handle_unknown='ignore', sparse=False)) for f in categorical]

transformations = numeric_transformations + categorical_transformations

append model to preprocessing pipeline.
now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', DataFrameMapper(transformations)),
 ('classifier', LogisticRegression(solver='lbfgs'))])

clf.steps[-1][1] returns the trained classification model
pass transformation as an input to create the explanation object
"features" and "classes" fields are optional
tabular_explainer = TabularExplainer(clf.steps[-1][1],
 initialization_examples=x_train,
 features=dataset_feature_names,
 classes=dataset_classes,
 transformations=transformations)

In case you want to run the example with the list of fitted transformer tuples, use the following code:

 Generate feature importance values via remote runs
The following example shows how you can use the ExplanationClient class to enable model interpretability for

remote runs. It is conceptually similar to the local process, except you:

Use the ExplanationClient in the remote run to upload the interpretability context.

Download the context later in a local environment.

pip install azureml-interpret
pip install azureml-interpret-contrib

from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient
from azureml.core.run import Run
from interpret.ext.blackbox import TabularExplainer

run = Run.get_context()
client = ExplanationClient.from_run(run)

write code to get and split your data into train and test sets here
write code to train your model here

explain predictions on your local machine
"features" and "classes" fields are optional
explainer = TabularExplainer(model,
 x_train,
 features=feature_names,
 classes=classes)

explain overall model predictions (global explanation)
global_explanation = explainer.explain_global(x_test)

uploading global model explanation data for storage or visualization in webUX
the explanation can then be downloaded on any compute
multiple explanations can be uploaded
client.upload_model_explanation(global_explanation, comment='global explanation: all features')
or you can only upload the explanation object with the top k feature info
#client.upload_model_explanation(global_explanation, top_k=2, comment='global explanation: Only top 2
features')

1. Install azureml-interpret and azureml-interpret-contrib packages.

2. Create a training script in a local Jupyter notebook. For example, train_explain.py .

3. Set up an Azure Machine Learning Compute as your compute target and submit your training run. See

setting up compute targets for model training for instructions. You might also find the example notebooks

helpful.

4. Download the explanation in your local Jupyter notebook.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model/azure-integration/remote-explanation

Visualizations

Understand entire model behavior (global explanation)

P LOT DESC RIP T IO N

Data Exploration Displays an overview of the dataset along with prediction
values.

Global Importance Aggregates feature importance values of individual datapoints
to show the model's overall top K (configurable K) important
features. Helps understanding of underlying model's overall
behavior.

Explanation Exploration Demonstrates how a feature affects a change in model's
prediction values, or the probability of prediction values.
Shows impact of feature interaction.

Summary Importance Uses individual feature importance values across all data
points to show the distribution of each feature's impact on the
prediction value. Using this diagram, you investigate in what
direction the feature values affects the prediction values.

from azureml.contrib.interpret.explanation.explanation_client import ExplanationClient

client = ExplanationClient.from_run(run)

get model explanation data
explanation = client.download_model_explanation()
or only get the top k (e.g., 4) most important features with their importance values
explanation = client.download_model_explanation(top_k=4)

global_importance_values = explanation.get_ranked_global_values()
global_importance_names = explanation.get_ranked_global_names()
print('global importance values: {}'.format(global_importance_values))
print('global importance names: {}'.format(global_importance_names))

After you download the explanations in your local Jupyter notebook, you can use the visualization dashboard to

understand and interpret your model.

The following plots provide an overall view of the trained model along with its predictions and explanations.

Understand individual predictions (local explanation)

P LOT DESC RIP T IO N

Local Importance Shows the top K (configurable K) important features for an
individual prediction. Helps illustrate the local behavior of the
underlying model on a specific data point.

Perturbation Exploration (what if analysis) Allows changes to feature values of the selected data point
and observe resulting changes to prediction value.

Individual Conditional Expectation (ICE) Allows feature value changes from a minimum value to a
maximum value. Helps illustrate how the data point's
prediction changes when a feature changes.

You can load the individual feature importance plot for any data point by clicking on any of the individual data

points in any of the overall plots.

file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-aml/global-charts.png#lightbox

NOTE
Before the Jupyter kernel starts, make sure you enable widget extensions for the visualization dashboard.

file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-aml/local-charts.png#lightbox
file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-aml/perturbation.gif#lightbox
file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-aml/ice-plot.png#lightbox

from interpret_community.widget import ExplanationDashboard

ExplanationDashboard(global_explanation, model, x_test)

Visualization in Azure Machine Learning studio

jupyter nbextension install --py --sys-prefix azureml.contrib.interpret.visualize
jupyter nbextension enable --py --sys-prefix azureml.contrib.interpret.visualize

jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install microsoft-mli-widget

Jupyter notebooks

JupyterLab

To load the visualization dashboard, use the following code.

If you complete the remote interpretability steps (uploading generated explanation to Azure Machine Learning Run

History), you can view the visualization dashboard in Azure Machine Learning studio. This dashboard is a simpler

version of the visualization dashboard explained above (explanation exploration and ICE plots are disabled as there

is no active compute in studio that can perform their real time computations).

If the dataset, global, and local explanations are available, data populates all of the tabs (except Perturbation

Exploration and ICE). If only a global explanation is available, the Summary Importance tab and all local explanation

tabs are disabled.

Follow one of these paths to access the visualization dashboard in Azure Machine Learning studio:

Experiments pane (Preview)

1. Select Experiments in the left pane to see a list of experiments that you've run on Azure Machine

Learning.

2. Select a particular experiment to view all the runs in that experiment.

3. Select a run, and then the Explanations tab to the explanation visualization dashboard.

Models pane

https://ml.azure.com
file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-aml/amlstudio-experiments.png#lightbox

Interpretability at inference time

1. If you registered your original model by following the steps in Deploy models with Azure Machine

Learning, you can select Models in the left pane to view it.

2. Select a model, and then the Explanations tab to view the explanation visualization dashboard.

You can deploy the explainer along with the original model and use it at inference time to provide the individual

feature importance values (local explanation) for new any new datapoint. We also offer lighter-weight scoring

explainers to improve interpretability performance at inference time. The process of deploying a lighter-weight

scoring explainer is similar to deploying a model and includes the following steps:

 from interpret.ext.blackbox import TabularExplainer

explainer = TabularExplainer(model,
 initialization_examples=x_train,
 features=dataset_feature_names,
 classes=dataset_classes,
 transformations=transformations)

from azureml.interpret.scoring.scoring_explainer import KernelScoringExplainer, save

create a lightweight explainer at scoring time
scoring_explainer = KernelScoringExplainer(explainer)

pickle scoring explainer
pickle scoring explainer locally
OUTPUT_DIR = 'my_directory'
save(scoring_explainer, directory=OUTPUT_DIR, exist_ok=True)

register explainer model using the path from ScoringExplainer.save - could be done on remote compute
scoring_explainer.pkl is the filename on disk, while my_scoring_explainer.pkl will be the filename in
cloud storage
run.upload_file('my_scoring_explainer.pkl', os.path.join(OUTPUT_DIR, 'scoring_explainer.pkl'))

scoring_explainer_model = run.register_model(model_name='my_scoring_explainer',
 model_path='my_scoring_explainer.pkl')
print(scoring_explainer_model.name, scoring_explainer_model.id, scoring_explainer_model.version, sep =
'\t')

1. Create an explanation object. For example, you can use TabularExplainer :

2. Create a scoring explainer with the explanation object.

3. Configure and register an image that uses the scoring explainer model.

4. As an optional step, you can retrieve the scoring explainer from cloud and test the explanations.

https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where

from azureml.interpret.scoring.scoring_explainer import load

retrieve the scoring explainer model from cloud"
scoring_explainer_model = Model(ws, 'my_scoring_explainer')
scoring_explainer_model_path = scoring_explainer_model.download(target_dir=os.getcwd(), exist_ok=True)

load scoring explainer from disk
scoring_explainer = load(scoring_explainer_model_path)

test scoring explainer locally
preds = scoring_explainer.explain(x_test)
print(preds)

5. Deploy the image to a compute target, by following these steps:

%%writefile score.py
import json
import numpy as np
import pandas as pd
import os
import pickle
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from azureml.core.model import Model

def init():

 global original_model
 global scoring_model

 # retrieve the path to the model file using the model name
 # assume original model is named original_prediction_model
 original_model_path = Model.get_model_path('original_prediction_model')
 scoring_explainer_path = Model.get_model_path('my_scoring_explainer')

 original_model = joblib.load(original_model_path)
 scoring_explainer = joblib.load(scoring_explainer_path)

def run(raw_data):
 # get predictions and explanations for each data point
 data = pd.read_json(raw_data)
 # make prediction
 predictions = original_model.predict(data)
 # retrieve model explanations
 local_importance_values = scoring_explainer.explain(data)
 # you can return any data type as long as it is JSON-serializable
 return {'predictions': predictions.tolist(), 'local_importance_values':
local_importance_values}

a. If needed, register your original prediction model by following the steps in Deploy models with Azure

Machine Learning.

b. Create a scoring file.

c. Define the deployment configuration.

This configuration depends on the requirements of your model. The following example defines a

configuration that uses one CPU core and one GB of memory.

https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where

from azureml.core.webservice import AciWebservice

 aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
 memory_gb=1,
 tags={"data": "NAME_OF_THE_DATASET",
 "method" : "local_explanation"},
 description='Get local explanations for
NAME_OF_THE_PROBLEM')

from azureml.core.conda_dependencies import CondaDependencies

WARNING: to install this, g++ needs to be available on the Docker image and is not by default
(look at the next cell)

azureml_pip_packages = ['azureml-defaults', 'azureml-contrib-interpret', 'azureml-core',
'azureml-telemetry', 'azureml-interpret']

specify CondaDependencies obj
myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas'],
 pip_packages=['sklearn-pandas'] + azureml_pip_packages,
 pin_sdk_version=False)

with open("myenv.yml","w") as f:
 f.write(myenv.serialize_to_string())

with open("myenv.yml","r") as f:
 print(f.read())

%%writefile dockerfile
RUN apt-get update && apt-get install -y g++

from azureml.core.webservice import Webservice
from azureml.core.image import ContainerImage

use the custom scoring, docker, and conda files we created above
image_config = ContainerImage.image_configuration(execution_script="score.py",
 docker_file="dockerfile",
 runtime="python",
 conda_file="myenv.yml")

use configs and models generated above
service = Webservice.deploy_from_model(workspace=ws,
 name='model-scoring-service',
 deployment_config=aciconfig,
 models=[scoring_explainer_model, original_model],
 image_config=image_config)

service.wait_for_deployment(show_output=True)

d. Create a file with environment dependencies.

e. Create a custom dockerfile with g++ installed.

f. Deploy the created image.

This process takes approximately five minutes.

6. Test the deployment.

Next steps

import requests

create data to test service with
examples = x_list[:4]
input_data = examples.to_json()

headers = {'Content-Type':'application/json'}

send request to service
resp = requests.post(service.scoring_uri, input_data, headers=headers)

print("POST to url", service.scoring_uri)
can covert back to Python objects from json string if desired
print("prediction:", resp.text)

7. Clean up.

To delete a deployed web service, use service.delete() .

Learn more about model interpretability

Check out Azure Machine Learning Interpretability sample notebooks

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model

Interpretability: model explanations in automated
machine learning
4/22/2020 • 4 minutes to read • Edit Online

Prerequisites

Interpretability during training for the best model

Download engineered feature importance from artifact store

from azureml.explain.model._internal.explanation_client import ExplanationClient

client = ExplanationClient.from_run(best_run)
engineered_explanations = client.download_model_explanation(raw=False)
print(engineered_explanations.get_feature_importance_dict())

Interpretability during training for any model

Retrieve any other AutoML model from training

automl_run, fitted_model = local_run.get_output(metric='accuracy')

Set up the model explanations

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to get explanations for automated machine learning (ML) in Azure Machine Learning.

Automated ML helps you understand engineered feature importance.

All SDK versions after 1.0.85 set model_explainability=True by default. In SDK version 1.0.85 and earlier versions

users need to set model_explainability=True in the AutoMLConfig object in order to use model interpretability.

In this article, you learn how to:

Perform interpretability during training for best model or any model.

Enable visualizations to help you see patterns in data and explanations.

Implement interpretability during inference or scoring.

Interpretability features. Run pip install azureml-interpret azureml-contrib-interpret to get the necessary

packages.

Knowledge of building automated ML experiments. For more information on how to use the Azure Machine

Learning SDK, complete this regression model tutorial or see how to configure automated ML experiments.

Retrieve the explanation from the best_run , which includes explanations for engineered features.

You can use ExplanationClient to download the engineered feature explanations from the artifact store of the

best_run .

When you compute model explanations and visualize them, you're not limited to an existing model explanation for

an automated ML model. You can also get an explanation for your model with different test data. The steps in this

section show you how to compute and visualize engineered feature importance based on your test data.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-machine-learning-interpretability-automl.md

from azureml.train.automl.runtime.automl_explain_utilities import automl_setup_model_explanations

automl_explainer_setup_obj = automl_setup_model_explanations(fitted_model, X=X_train,
 X_test=X_test, y=y_train,
 task='classification')

Initialize the Mimic Explainer for feature importance

from azureml.explain.model.mimic.models.lightgbm_model import LGBMExplainableModel
from azureml.explain.model.mimic_wrapper import MimicWrapper

Initialize the Mimic Explainer
explainer = MimicWrapper(ws, automl_explainer_setup_obj.automl_estimator, LGBMExplainableModel,
 init_dataset=automl_explainer_setup_obj.X_transform, run=automl_run,
 features=automl_explainer_setup_obj.engineered_feature_names,
 feature_maps=[automl_explainer_setup_obj.feature_map],
 classes=automl_explainer_setup_obj.classes)

Use MimicExplainer for computing and visualizing engineered feature importance

engineered_explanations = explainer.explain(['local', 'global'],
eval_dataset=automl_explainer_setup_obj.X_test_transform)
print(engineered_explanations.get_feature_importance_dict())

Interpretability during inference

Register the model and the scoring explainer

Use automl_setup_model_explanations to get the engineered explanations. The fitted_model can generate the

following items:

Featured data from trained or test samples

Engineered feature name lists

Findable classes in your labeled column in classification scenarios

The automl_explainer_setup_obj contains all the structures from above list.

To generate an explanation for AutoML models, use the MimicWrapper class. You can initialize the MimicWrapper

with these parameters:

The explainer setup object

Your workspace

A LightGBM model, which acts as a surrogate to the fitted_model automated ML model

The MimicWrapper also takes the automl_run object where the engineered explanations will be uploaded.

You can call the explain() method in MimicWrapper with the transformed test samples to get the feature

importance for the generated engineered features. You can also use ExplanationDashboard to view the dashboard

visualization of the feature importance values of the generated engineered features by automated ML featurizers.

In this section, you learn how to operationalize an automated ML model with the explainer that was used to

compute the explanations in the previous section.

Use the TreeScoringExplainer to create the scoring explainer that'll compute the engineered feature importance

values at inference time. You initialize the scoring explainer with the feature_map that was computed previously.

Save the scoring explainer, and then register the model and the scoring explainer with the Model Management

Service. Run the following code:

from azureml.interpret.scoring.scoring_explainer import TreeScoringExplainer, save

Initialize the ScoringExplainer
scoring_explainer = TreeScoringExplainer(explainer.explainer, feature_maps=
[automl_explainer_setup_obj.feature_map])

Pickle scoring explainer locally
save(scoring_explainer, exist_ok=True)

Register trained automl model present in the 'outputs' folder in the artifacts
original_model = automl_run.register_model(model_name='automl_model',
 model_path='outputs/model.pkl')

Register scoring explainer
automl_run.upload_file('scoring_explainer.pkl', 'scoring_explainer.pkl')
scoring_explainer_model = automl_run.register_model(model_name='scoring_explainer',
model_path='scoring_explainer.pkl')

Create the conda dependencies for setting up the service

from azureml.core.conda_dependencies import CondaDependencies

azureml_pip_packages = [
 'azureml-interpret', 'azureml-train-automl', 'azureml-defaults'
]

myenv = CondaDependencies.create(conda_packages=['scikit-learn', 'pandas', 'numpy', 'py-xgboost<=0.80'],
 pip_packages=azureml_pip_packages,
 pin_sdk_version=True)

with open("myenv.yml","w") as f:
 f.write(myenv.serialize_to_string())

with open("myenv.yml","r") as f:
 print(f.read())

Deploy the service

Next, create the necessary environment dependencies in the container for the deployed model. Please note that

azureml-defaults with version >= 1.0.45 must be listed as a pip dependency, because it contains the functionality

needed to host the model as a web service.

Deploy the service using the conda file and the scoring file from the previous steps.

from azureml.core.webservice import Webservice
from azureml.core.webservice import AciWebservice
from azureml.core.model import Model, InferenceConfig
from azureml.core.environment import Environment

aciconfig = AciWebservice.deploy_configuration(cpu_cores=1,
 memory_gb=1,
 tags={"data": "Bank Marketing",
 "method" : "local_explanation"},
 description='Get local explanations for Bank marketing test
data')
myenv = Environment.from_conda_specification(name="myenv", file_path="myenv.yml")
inference_config = InferenceConfig(entry_script="score_local_explain.py", environment=myenv)

Use configs and models generated above
service = Model.deploy(ws,
 'model-scoring',
 [scoring_explainer_model, original_model],
 inference_config,
 aciconfig)
service.wait_for_deployment(show_output=True)

Inference with test data

if service.state == 'Healthy':
 # Serialize the first row of the test data into json
 X_test_json = X_test[:1].to_json(orient='records')
 print(X_test_json)
 # Call the service to get the predictions and the engineered explanations
 output = service.run(X_test_json)
 # Print the predicted value
 print(output['predictions'])
 # Print the engineered feature importances for the predicted value
 print(output['engineered_local_importance_values'])

Visualize to discover patterns in data and explanations at training time

Inference with some test data to see the predicted value from automated ML model. View the engineered feature

importance for the predicted value.

You can visualize the feature importance chart in your workspace in Azure Machine Learning studio. After your

automated ML run is complete, select View model details to view a specific run. Select the Explanations tab to

see the explanation visualization dashboard.

https://ml.azure.com
file:///T:/i2pk/machine-learning/media/how-to-machine-learning-interpretability-automl/automl-explainability.png#lightbox

Next steps
For more information about how you can enable model explanations and feature importance in areas of the Azure

Machine Learning SDK other than automated machine learning, see the concept article on interpretability.

Configure automated ML experiments in Python
4/14/2020 • 14 minutes to read • Edit Online

Select your experiment type

NOTE

C L A SSIF IC AT IO N REGRESSIO N T IM E SERIES F O REC A ST IN G

Logistic Regression* Elastic Net* Elastic Net

Light GBM* Light GBM* Light GBM

Gradient Boosting* Gradient Boosting* Gradient Boosting

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this guide, learn how to define various configuration settings of your automated machine learning experiments

with the Azure Machine Learning SDK. Automated machine learning picks an algorithm and hyperparameters for

you and generates a model ready for deployment. There are several options that you can use to configure

automated machine learning experiments.

To view examples of an automated machine learning experiments, see Tutorial: Train a classification model with

automated machine learning or Train models with automated machine learning in the cloud.

Configuration options available in automated machine learning:

Select your experiment type: Classification, Regression, or Time Series Forecasting

Data source, formats, and fetch data

Choose your compute target: local or remote

Automated machine learning experiment settings

Run an automated machine learning experiment

Explore model metrics

Register and deploy model

If you prefer a no code experience, you can also Create your automated machine learning experiments in Azure

Machine Learning studio.

Before you begin your experiment, you should determine the kind of machine learning problem you are solving.

Automated machine learning supports task types of classification, regression, and forecasting. Learn more about

task types.

Automated machine learning supports the following algorithms during the automation and tuning process. As a

user, there is no need for you to specify the algorithm.

If you plan to export your auto ML created models to an ONNX model, only those algorithms indicated with an * are able

to be converted to the ONNX format. Learn more about converting models to ONNX.

Also note, ONNX only supports classification and regression tasks at this time.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-configure-auto-train.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/ensemble.html#classification
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#regression

Decision Tree* Decision Tree* Decision Tree

K Nearest Neighbors* K Nearest Neighbors* K Nearest Neighbors

Linear SVC* LARS Lasso* LARS Lasso

Support Vector Classification (SVC)* Stochastic Gradient Descent (SGD)* Stochastic Gradient Descent (SGD)

Random Forest* Random Forest* Random Forest

Extremely Randomized Trees* Extremely Randomized Trees* Extremely Randomized Trees

Xgboost* Xgboost* Xgboost

DNN Classifier DNN Regressor DNN Regressor

DNN Linear Classifier Linear Regressor Linear Regressor

Naive Bayes* Fast Linear Regressor Auto-ARIMA

Stochastic Gradient Descent (SGD)* Online Gradient Descent Regressor Prophet

Averaged Perceptron Classifier ForecastTCN

Linear SVM Classifier*

C L A SSIF IC AT IO N REGRESSIO N T IM E SERIES F O REC A ST IN G

from azureml.train.automl import AutoMLConfig

task can be one of classification, regression, forecasting
automl_config = AutoMLConfig(task = "classification")

Data source and format

Use the task parameter in the AutoMLConfig constructor to specify your experiment type.

Automated machine learning supports data that resides on your local desktop or in the cloud such as Azure Blob

Storage. The data can be read into a Pandas DataFrame or an Azure Machine Learning TabularDataset.

Learn more about datasets.

Requirements for training data:

Data must be in tabular form.

The value to predict, target column, must be in the data.

The following code examples demonstrate how to store the data in these formats.

TabularDataset

https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://docs.microsoft.com/python/api/nimbusml/nimbusml.linear_model.fastlinearregressor?view=nimbusml-py-latest
https://www.alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html#pmdarima.arima.auto_arima
https://scikit-learn.org/stable/modules/sgd.html#sgd
https://docs.microsoft.com/python/api/nimbusml/nimbusml.linear_model.onlinegradientdescentregressor?view=nimbusml-py-latest
https://facebook.github.io/prophet/docs/quick_start.html
https://docs.microsoft.com/python/api/nimbusml/nimbusml.linear_model.averagedperceptronbinaryclassifier?view=nimbusml-py-latest
https://docs.microsoft.com/python/api/nimbusml/nimbusml.linear_model.linearsvmbinaryclassifier?view=nimbusml-py-latest

Fetch data for running experiment on remote compute

Train and validation data

K-Folds Cross Validation

Monte Carlo Cross Validation (Repeated Random Sub-Sampling)

Custom validation dataset

Compute to run experiment

from azureml.core.dataset import Dataset
from azureml.opendatasets import Diabetes

tabular_dataset = Diabetes.get_tabular_dataset()
train_dataset, test_dataset = tabular_dataset.random_split(percentage=0.1, seed=42)
label = "Y"

import pandas as pd
from sklearn.model_selection import train_test_split

df = pd.read_csv("your-local-file.csv")
train_data, test_data = train_test_split(df, test_size=0.1, random_state=42)
label = "label-col-name"

Pandas dataframe

For remote executions, training data must be accessible from the remote compute. The class Datasets in the SDK

exposes functionality to:

easily transfer data from static files or URL sources into your workspace

make your data available to training scripts when running on cloud compute resources

See the how-to for an example of using the Dataset class to mount data to your compute target.

You can specify separate train and validation sets directly in the AutoMLConfig constructor.

Use n_cross_validations setting to specify the number of cross validations. The training data set will be

randomly split into n_cross_validations folds of equal size. During each cross validation round, one of the folds

will be used for validation of the model trained on the remaining folds. This process repeats for

n_cross_validations rounds until each fold is used once as validation set. The average scores across all

n_cross_validations rounds will be reported, and the corresponding model will be retrained on the whole

training data set.

Use validation_size to specify the percentage of the training dataset that should be used for validation, and use

n_cross_validations to specify the number of cross validations. During each cross validation round, a subset of

size validation_size will be randomly selected for validation of the model trained on the remaining data. Finally,

the average scores across all n_cross_validations rounds will be reported, and the corresponding model will be

retrained on the whole training data set. Monte Carlo is not supported for time series forecasting.

Use custom validation dataset if random split is not acceptable, usually time series data or imbalanced data. You

can specify your own validation dataset. The model will be evaluated against the validation dataset specified

instead of random dataset.

Next determine where the model will be trained. An automated machine learning training experiment can run on

the following compute options:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py

Configure your experiment settings

Primary Metric

Your local machine such as a local desktop or laptop – Generally when you have small dataset and you are

still in the exploration stage.

A remote machine in the cloud – Azure Machine Learning Managed Compute is a managed service that

enables the ability to train machine learning models on clusters of Azure virtual machines.

See this GitHub site for examples of notebooks with local and remote compute targets.

An Azure Databricks cluster in your Azure subscription. You can find more details here - Setup Azure

Databricks cluster for Automated ML

See this GitHub site for examples of notebooks with Azure Databricks.

There are several options that you can use to configure your automated machine learning experiment. These

parameters are set by instantiating an AutoMLConfig object. See the AutoMLConfig class for a full list of

parameters.

Some examples include:

 automl_classifier=AutoMLConfig(
 task='classification',
 primary_metric='AUC_weighted',
 experiment_timeout_minutes=30,
 blacklist_models=['XGBoostClassifier'],
 training_data=train_data,
 label_column_name=label,
 n_cross_validations=2)

 automl_regressor = AutoMLConfig(
 task='regression',
 experiment_timeout_minutes=60,
 whitelist_models=['KNN'],
 primary_metric='r2_score',
 training_data=train_data,
 label_column_name=label,
 n_cross_validations=5)

1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set

to 30 minutes and 2 cross-validation folds.

2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.

The three different task parameter values (the third task-type is forecasting , and uses a similar algorithm pool

as regression tasks) determine the list of models to apply. Use the whitelist or blacklist parameters to

further modify iterations with the available models to include or exclude. The list of supported models can be

found on SupportedModels Class for (Classification, Forecasting, and Regression).

To help avoid experiment timeout failures, Automated ML's validation service will require that

experiment_timeout_minutes be set to a minimum of 15 minutes, or 60 minutes if your row by column size

exceeds 10 million.

The primary metric determines the metric to be used during model training for optimization. The available

metrics you can select is determined by the task type you choose, and the following table shows valid primary

metrics for each task type.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.classification
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.regression

C L A SSIF IC AT IO N REGRESSIO N T IM E SERIES F O REC A ST IN G

accuracy spearman_correlation spearman_correlation

AUC_weighted normalized_root_mean_squared_error normalized_root_mean_squared_error

average_precision_score_weighted r2_score r2_score

norm_macro_recall normalized_mean_absolute_error normalized_mean_absolute_error

precision_score_weighted

Data featurization

F EAT URIZ AT IO N C O N F IGURAT IO N DESC RIP T IO N

"featurization": 'FeaturizationConfig' Indicates customized featurization step should be used. Learn
how to customize featurization.

"featurization": 'off' Indicates featurization step should not be done automatically.

"featurization": 'auto' Indicates that as part of preprocessing, data guardrails and
featurization steps are performed automatically.

NOTE

Time Series Forecasting

Learn about the specific definitions of these metrics in Understand automated machine learning results.

In every automated machine learning experiment, your data is automatically scaled and normalized to help

certain algorithms that are sensitive to features that are on different scales. However, you can also enable

additional featurization, such as missing values imputation, encoding, and transforms. Learn more about what

featurization is included.

When configuring your experiments, you can enable the advanced setting featurization . The following table

shows the accepted settings for featurization in the AutoMLConfig class.

Automated machine learning featurization steps (feature normalization, handling missing data, converting text to numeric,

etc.) become part of the underlying model. When using the model for predictions, the same featurization steps applied

during training are applied to your input data automatically.

The time series forecasting task requires additional parameters in the configuration object:

1. time_column_name : Required parameter that defines the name of the column in your training data containing a

valid time-series.

2. max_horizon : Defines the length of time you want to predict out based on the periodicity of the training data.

For example if you have training data with daily time grains, you define how far out in days you want the

model to train for.

3. grain_column_names : Defines the name of columns that contain individual time series data in your training

data. For example, if you are forecasting sales of a particular brand by store, you would define store and brand

columns as your grain columns. Separate time-series and forecasts will be created for each grain/grouping.

For examples of the settings used below, see the sample notebook.

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb

Setting Store and Brand as grains for training.
grain_column_names = ['Store', 'Brand']
nseries = data.groupby(grain_column_names).ngroups

View the number of time series data with defined grains
print('Data contains {0} individual time-series.'.format(nseries))

time_series_settings = {
 'time_column_name': time_column_name,
 'grain_column_names': grain_column_names,
 'drop_column_names': ['logQuantity'],
 'max_horizon': n_test_periods
}

automl_config = AutoMLConfig(task = 'forecasting',
 debug_log='automl_oj_sales_errors.log',
 primary_metric='normalized_root_mean_squared_error',
 experiment_timeout_minutes=20,
 training_data=train_data,
 label_column_name=label,
 n_cross_validations=5,
 path=project_folder,
 verbosity=logging.INFO,
 **time_series_settings)

Ensemble configuration
Ensemble models are enabled by default, and appear as the final run iterations in an automated machine learning

run. Currently supported ensemble methods are voting and stacking. Voting is implemented as soft-voting using

weighted averages, and the stacking implementation is using a two layer implementation, where the first layer

has the same models as the voting ensemble, and the second layer model is used to find the optimal

combination of the models from the first layer. If you are using ONNX models, or have model-explainability

enabled, stacking will be disabled and only voting will be utilized.

There are multiple default arguments that can be provided as kwargs in an AutoMLConfig object to alter the

default stack ensemble behavior.

stack_meta_learner_type : the meta-learner is a model trained on the output of the individual heterogeneous

models. Default meta-learners are LogisticRegression for classification tasks (or LogisticRegressionCV if

cross-validation is enabled) and ElasticNet for regression/forecasting tasks (or ElasticNetCV if cross-

validation is enabled). This parameter can be one of the following strings: LogisticRegression ,

LogisticRegressionCV , LightGBMClassifier , ElasticNet , ElasticNetCV , LightGBMRegressor , or

LinearRegression .

stack_meta_learner_train_percentage : specifies the proportion of the training set (when choosing train and

validation type of training) to be reserved for training the meta-learner. Default value is 0.2 .

stack_meta_learner_kwargs : optional parameters to pass to the initializer of the meta-learner. These

parameters and parameter types mirror the parameters and parameter types from the corresponding model

constructor, and are forwarded to the model constructor.

The following code shows an example of specifying custom ensemble behavior in an AutoMLConfig object.

ensemble_settings = {
 "stack_meta_learner_type": "LogisticRegressionCV",
 "stack_meta_learner_train_percentage": 0.3,
 "stack_meta_learner_kwargs": {
 "refit": True,
 "fit_intercept": False,
 "class_weight": "balanced",
 "multi_class": "auto",
 "n_jobs": -1
 }
}

automl_classifier = AutoMLConfig(
 task='classification',
 primary_metric='AUC_weighted',
 experiment_timeout_minutes=30,
 training_data=train_data,
 label_column_name=label,
 n_cross_validations=5,
 **ensemble_settings
)

automl_classifier = AutoMLConfig(
 task='classification',
 primary_metric='AUC_weighted',
 experiment_timeout_minutes=30,
 training_data=data_train,
 label_column_name=label,
 n_cross_validations=5,
 enable_voting_ensemble=False,
 enable_stack_ensemble=False
)

Run experiment

from azureml.core.experiment import Experiment

ws = Workspace.from_config()

Choose a name for the experiment and specify the project folder.
experiment_name = 'automl-classification'
project_folder = './sample_projects/automl-classification'

experiment = Experiment(ws, experiment_name)

run = experiment.submit(automl_config, show_output=True)

Ensemble training is enabled by default, but it can be disabled by using the enable_voting_ensemble and

enable_stack_ensemble boolean parameters.

For automated ML, you create an Experiment object, which is a named object in a Workspace used to run

experiments.

Submit the experiment to run and generate a model. Pass the AutoMLConfig to the submit method to generate

the model.

NOTE

Exit Criteria

Explore model metrics

Understand automated ML models

automl_config = AutoMLConfig(…)
automl_run = experiment.submit(automl_config …)
best_run, fitted_model = automl_run.get_output()

Automated feature engineering

Dependencies are first installed on a new machine. It may take up to 10 minutes before output is shown. Setting

show_output to True results in output being shown on the console.

There are a few options you can define to end your experiment.

1. No Criteria: If you do not define any exit parameters the experiment will continue until no further progress is

made on your primary metric.

2. Exit after a length of time: Using experiment_timeout_minutes in your settings allows you to define how long in

minutes should an experiment continue in run.

3. Exit after a score has been reached: Using experiment_exit_score will complete the experiment after a primary

metric score has been reached.

You can view your training results in a widget or inline if you are in a notebook. See Track and evaluate models

for more details.

Any model produced using automated ML includes the following steps:

Automated feature engineering (if "featurization": 'auto')

Scaling/Normalization and algorithm with hyperparameter values

We make it transparent to get this information from the fitted_model output from automated ML.

See the list of preprocessing and automated feature engineering that happens when "featurization": 'auto' .

Consider this example:

There are four input features: A (Numeric), B (Numeric), C (Numeric), D (DateTime)

Numeric feature C is dropped because it is an ID column with all unique values

Numeric features A and B have missing values and hence are imputed by the mean

DateTime feature D is featurized into 11 different engineered features

Use these 2 APIs on the first step of fitted model to understand more. See this sample notebook.

fitted_model.named_steps['timeseriestransformer']. get_engineered_feature_names ()

Output: ['A', 'B', 'A_WASNULL', 'B_WASNULL', 'year', 'half', 'quarter', 'month', 'day', 'hour',
'am_pm', 'hour12', 'wday', 'qday', 'week']

API 1: get_engineered_feature_names() returns a list of engineered feature names.

Usage:

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand

NOTE

fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()

NOTE

[{'RawFeatureName': 'A',
 'TypeDetected': 'Numeric',
 'Dropped': 'No',
 'EngineeredFeatureCount': 2,
 'Tranformations': ['MeanImputer', 'ImputationMarker']},
{'RawFeatureName': 'B',
 'TypeDetected': 'Numeric',
 'Dropped': 'No',
 'EngineeredFeatureCount': 2,
 'Tranformations': ['MeanImputer', 'ImputationMarker']},
{'RawFeatureName': 'C',
 'TypeDetected': 'Numeric',
 'Dropped': 'Yes',
 'EngineeredFeatureCount': 0,
 'Tranformations': []},
{'RawFeatureName': 'D',
 'TypeDetected': 'DateTime',
 'Dropped': 'No',
 'EngineeredFeatureCount': 11,
 'Tranformations':
['DateTime','DateTime','DateTime','DateTime','DateTime','DateTime','DateTime','DateTime','DateTime','D
ateTime','DateTime']}]

O UT P UT DEF IN IT IO N

RawFeatureName Input feature/column name from the dataset provided.

TypeDetected Detected datatype of the input feature.

Dropped Indicates if the input feature was dropped or used.

EngineeringFeatureCount Number of features generated through automated
feature engineering transforms.

Transformations List of transformations applied to input features to
generate engineered features.

This list includes all engineered feature names.

Use 'timeseriestransformer' for task='forecasting', else use 'datatransformer' for 'regression' or 'classification' task.

API 2: get_featurization_summary() returns featurization summary for all the input features.

Usage:

Use 'timeseriestransformer' for task='forecasting', else use 'datatransformer' for 'regression' or 'classification' task.

Output:

Where:

 Customize feature engineering

C USTO M IZ AT IO N DEF IN IT IO N

Column purpose update Override feature type for the specified column.

Transformer parameter update Update parameters for the specified transformer. Currently
supports Imputer (mean, most frequent & median) and
HashOneHotEncoder.

Drop columns Columns to drop from being featurized.

Block transformers Block transformers to be used on featurization process.

featurization_config = FeaturizationConfig()
featurization_config.blocked_transformers = ['LabelEncoder']
featurization_config.drop_columns = ['aspiration', 'stroke']
featurization_config.add_column_purpose('engine-size', 'Numeric')
featurization_config.add_column_purpose('body-style', 'CategoricalHash')
#default strategy mean, add transformer param for for 3 columns
featurization_config.add_transformer_params('Imputer', ['engine-size'], {"strategy": "median"})
featurization_config.add_transformer_params('Imputer', ['city-mpg'], {"strategy": "median"})
featurization_config.add_transformer_params('Imputer', ['bore'], {"strategy": "most_frequent"})
featurization_config.add_transformer_params('HashOneHotEncoder', [], {"number_of_bits": 3})

Scaling/Normalization and algorithm with hyperparameter values:

[('RobustScaler', RobustScaler(copy=True, quantile_range=[10, 90], with_centering=True, with_scaling=True)),
('LogisticRegression', LogisticRegression(C=0.18420699693267145, class_weight='balanced', dual=False,
fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='multinomial', n_jobs=1, penalty='l2',
random_state=None, solver='newton-cg', tol=0.0001, verbose=0, warm_start=False))

To customize feature engineering, specify "featurization": FeaturizationConfig .

Supported customization includes:

Create the FeaturizationConfig object using API calls:

To understand the scaling/normalization and algorithm/hyperparameter values for a pipeline, use

fitted_model.steps. Learn more about scaling/normalization. Here is a sample output:

To get more details, use this helper function:

from pprint import pprint

def print_model(model, prefix=""):
 for step in model.steps:
 print(prefix + step[0])
 if hasattr(step[1], 'estimators') and hasattr(step[1], 'weights'):
 pprint({'estimators': list(
 e[0] for e in step[1].estimators), 'weights': step[1].weights})
 print()
 for estimator in step[1].estimators:
 print_model(estimator[1], estimator[0] + ' - ')
 else:
 pprint(step[1].get_params())
 print()

print_model(model)

RobustScaler
{'copy': True,
'quantile_range': [10, 90],
'with_centering': True,
'with_scaling': True}

LogisticRegression
{'C': 0.18420699693267145,
'class_weight': 'balanced',
'dual': False,
'fit_intercept': True,
'intercept_scaling': 1,
'max_iter': 100,
'multi_class': 'multinomial',
'n_jobs': 1,
'penalty': 'l2',
'random_state': None,
'solver': 'newton-cg',
'tol': 0.0001,
'verbose': 0,
'warm_start': False}

Predict class probability

best_run, fitted_model = automl_run.get_output()
class_prob = fitted_model.predict_proba(X_test)

The following sample output is for a pipeline using a specific algorithm (LogisticRegression with RobustScalar, in

this case).

Models produced using automated ML all have wrapper objects that mirror functionality from their open-source

origin class. Most classification model wrapper objects returned by automated ML implement the

predict_proba() function, which accepts an array-like or sparse matrix data sample of your features (X values),

and returns an n-dimensional array of each sample and its respective class probability.

Assuming you have retrieved the best run and fitted model using the same calls from above, you can call

predict_proba() directly from the fitted model, supplying an X_test sample in the appropriate format

depending on the model type.

If the underlying model does not support the predict_proba() function or the format is incorrect, a model class-

specific exception will be thrown. See the RandomForestClassifier and XGBoost reference docs for examples of

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.predict_proba
https://xgboost.readthedocs.io/en/latest/python/python_api.html

Model interpretability

Next steps

how this function is implemented for different model types.

Model interpretability allows you to understand why your models made predictions, and the underlying feature

importance values. The SDK includes various packages for enabling model interpretability features, both at

training and inference time, for local and deployed models.

See the how-to for code samples on how to enable interpretability features specifically within automated

machine learning experiments.

For general information on how model explanations and feature importance can be enabled in other areas of the

SDK outside of automated machine learning, see the concept article on interpretability.

Learn more about how and where to deploy a model.

Learn more about how to train a regression model with Automated machine learning or how to train using

Automated machine learning on a remote resource.

Create, review, and deploy automated machine
learning models with Azure Machine Learning
4/12/2020 • 13 minutes to read • Edit Online

Prerequisites

Get started

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this article, you learn how to create, explore, and deploy automated machine learning models without a single

line of code in Azure Machine Learning's studio interface. Automated machine learning is a process in which the

best machine learning algorithm to use for your specific data is selected for you. This process enables you to

generate machine learning models quickly. Learn more about automated machine learning.

For an end to end example, try the tutorial for creating a classification model with Azure Machine Learning's

automated ML interface.

For a Python code-based experience, configure your automated machine learning experiments with the Azure

Machine Learning SDK.

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning today.

An Azure Machine Learning workspace with a type of Enterprise edition. See Create an Azure Machine

Learning workspace. To upgrade an existing workspace to Enterprise edition, see Upgrade to Enterprise

edition.

1. Sign in to Azure Machine Learning at https://ml.azure.com.

2. Select your subscription and workspace.

3. Navigate to the left pane. Select Automated ML under the Author section.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-automated-ml-for-ml-models.md
https://aka.ms/AMLFree
https://ml.azure.com

 Create and run experiment

If this is your first time doing any experiments, you'll see an empty list and links to documentation.

Otherwise, you'll see a list of your recent automated machine learning experiments, including those created with

the SDK.

IMPORTANT

1. Select + New automated ML run and populate the form.

2. Select a dataset from your storage container, or create a new dataset. Datasets can be created from local

files, web urls, datastores, or Azure open datasets.

Requirements for training data:

Data must be in tabular form.

The value you want to predict (target column) must be present in the data.

a. To create a new dataset from a file on your local computer, select Browse and then select the file.

b. Give your dataset a unique name and provide an optional description.

c. Select Next to open the Datastore and file selection form . On this form you select where to

upload your dataset; the default storage container that's automatically created with your workspace,

or choose a storage container that you want to use for the experiment.

d. Review the Settings and preview form for accuracy. The form is intelligently populated based on

the file type.

file:///T:/i2pk/machine-learning/media/how-to-use-automated-ml-for-ml-models/nav-pane-expanded.png

F IEL D DESC RIP T IO N

Compute name Enter a unique name that identifies your compute
context.

Virtual machine size Select the virtual machine size for your compute.

Min / Max nodes (in Advanced Settings) To profile data, you must specify 1 or more nodes. Enter
the maximum number of nodes for your compute. The
default is 6 nodes for an AML Compute.

F IEL D DESC RIP T IO N

File format Defines the layout and type of data stored in a file.

Delimiter One or more characters for specifying the boundary
between separate, independent regions in plain text
or other data streams.

Encoding Identifies what bit to character schema table to use to
read your dataset.

Column headers Indicates how the headers of the dataset, if any, will
be treated.

Skip rows Indicates how many, if any, rows are skipped in the
dataset.

Select Next.

e. The Schema form is intelligently populated based on the selections in the Settings and preview

form. Here configure the data type for each column, review the column names, and select which

columns to Not include for your experiment.

Select Next.

f. The Confirm details form is a summary of the information previously populated in the Basic info

and Settings and preview forms. You also have the option to create a data profile for your dataset

using a profiling enabled compute. Learn more about data profiling.

Select Next.

3. Select your newly created dataset once it appears. You are also able to view a preview of the dataset and

sample statistics.

4. On the Configure run form, enter a unique experiment name.

5. Select a target column; this is the column that you would like to do predictions on.

6. Select a compute for the data profiling and training job. A list of your existing computes is available in the

dropdown. To create a new compute, follow the instructions in step 7.

7. Select Create a new compute to configure your compute context for this experiment.

Select Create. Creation of a new compute can take a few minutes.

NOTE

A DDIT IO N A L C O N F IGURAT IO N S DESC RIP T IO N

Primary metric Main metric used for scoring your model. Learn more
about model metrics.

Automatic featurization Select to enable or disable the preprocessing done by
automated machine learning. Preprocessing includes
automatic data cleansing, preparing, and transformation
to generate synthetic features. Not supported for the
time series forecasting task type. Learn more about
preprocessing.

Explain best model Select to enable or disable to show explainability of the
recommended best model

Blocked algorithm Select algorithms you want to exclude from the training
job.

Exit criterion When any of these criteria are met, the training job is
stopped.
Training job time (hours): How long to allow the training
job to run.
Metric score threshold: Minimum metric score for all
pipelines. This ensures that if you have a defined target
metric you want to reach, you do not spend more time
on the training job than necessary.

Validation Select one of the cross validation options to use in the
training job. Learn more about cross validation.

Concurrency Max concurrent iterations: Maximum number of pipelines
(iterations) to test in the training job. The job will not run
more than the specified number of iterations.

Your compute name will indicate if the compute you select/create is profiling enabled. (See the section data profiling

for more details).

Select Next.

8. On the Task type and settings form, select the task type: classification, regression, or forecasting. See

how to define task types for more information.

a. For classification, you can also enable deep learning which is used for text featurizations.

b. For forecasting:

a. Select time column: This column contains the time data to be used.

b. Select forecast horizon: Indicate how many time units

(minutes/hours/days/weeks/months/years) will the model be able to predict to the future.

The further the model is required to predict into the future, the less accurate it will become.

Learn more about forecasting and forecast horizon.

9. (Optional) View addition configuration settings: additional settings you can use to better control the

training job. Otherwise, defaults are applied based on experiment selection and data.

Data profiling & summary stats

NOTE

STAT IST IC DESC RIP T IO N

Feature Name of the column that is being summarized.

Profile In-line visualization based on the type inferred. For example,
strings, booleans, and dates will have value counts, while
decimals (numerics) have approximated histograms. This
allows you to gain a quick understanding of the distribution
of the data.

Type distribution In-line value count of types within a column. Nulls are their
own type, so this visualization is useful for detecting odd or
missing values.

Type Inferred type of the column. Possible values include: strings,
booleans, dates, and decimals.

Min Minimum value of the column. Blank entries appear for
features whose type does not have an inherent ordering (e.g.
booleans).

Max Maximum value of the column.

Count Total number of missing and non-missing entries in the
column.

Not missing count Number of entries in the column that are not missing. Empty
strings and errors are treated as values, so they will not
contribute to the "not missing count."

Quantiles Approximated values at each quantile to provide a sense of
the distribution of the data.

Mean Arithmetic mean or average of the column.

Standard deviation Measure of the amount of dispersion or variation of this
column's data.

Variance Measure of how far spread out this column's data is from its
average value.

10. (Optional) View featurization settings: if you choose to enable Automatic featur ization in the

Additional configuration settings form, this form is where you specify which columns to perform those

featurizations on, and select which statistical value to use for missing value imputations.

You can get a vast variety of summary statistics across your data set to verify whether your data set is ML-ready.

For non-numeric columns, they include only basic statistics like min, max, and error count. For numeric columns,

you can also review their statistical moments and estimated quantiles. Specifically, our data profile includes:

Blank entries appear for features with irrelevant types.

Skewness Measure of how different this column's data is from a normal
distribution.

Kurtosis Measure of how heavily tailed this column's data is compared
to a normal distribution.

STAT IST IC DESC RIP T IO N

Advanced featurization options

Preprocessing

NOTE

P REP RO C ESSIN G ST EP S DESC RIP T IO N

Drop high cardinality or no variance features* Drop these from training and validation sets, including
features with all values missing, same value across all rows or
with extremely high cardinality (for example, hashes, IDs, or
GUIDs).

Impute missing values* For numerical features, impute with average of values in the
column.

For categorical features, impute with most frequent value.

Generate additional features* For DateTime features: Year, Month, Day, Day of week, Day of
year, Quarter, Week of the year, Hour, Minute, Second.

For Text features: Term frequency based on unigrams, bi-
grams, and tri-character-grams.

Transform and encode * Numeric features with few unique values are transformed into
categorical features.

One-hot encoding is performed for low cardinality categorical;
for high cardinality, one-hot-hash encoding.

Word embeddings Text featurizer that converts vectors of text tokens into
sentence vectors using a pre-trained model. Each word's
embedding vector in a document is aggregated together to
produce a document feature vector.

Target encodings For categorical features, maps each category with averaged
target value for regression problems, and to the class
probability for each class for classification problems.
Frequency-based weighting and k-fold cross validation is
applied to reduce over fitting of the mapping and noise
caused by sparse data categories.

Automated machine learning offers preprocessing and data guardrails automatically, to help you identify and

manage potential issues with your data.

If you plan to export your auto ML created models to an ONNX model, only the featurization options indicated with an *

are supported in the ONNX format. Learn more about converting models to ONNX.

Text target encoding For text input, a stacked linear model with bag-of-words is
used to generate the probability of each class.

Weight of Evidence (WoE) Calculates WoE as a measure of correlation of categorical
columns to the target column. It is calculated as the log of
the ratio of in-class vs out-of-class probabilities. This step
outputs one numerical feature column per class and removes
the need to explicitly impute missing values and outlier
treatment.

Cluster Distance Trains a k-means clustering model on all numerical columns.
Outputs k new features, one new numerical feature per
cluster, containing the distance of each sample to the centroid
of each cluster.

P REP RO C ESSIN G ST EP S DESC RIP T IO N

Data guardrails

Data Guardrail States

STAT E DESC RIP T IO N

Passed No data problems were detected and no user action is
required.

Done Changes were applied to your data. We encourage users to
review the corrective actions Automated ML took to ensure
the changes align with the expected results.

Alerted A data issue that could not be remedied was detected. We
encourage users to revise and fix the issue.

NOTE

GUA RDRA IL STAT US C O N DIT IO N F O R T RIGGER

Missing feature values imputation Passed

Done

No missing feature values were
detected in your training data. Learn
more about missing value imputation.

Missing feature values were detected in
your training data and imputed.

Data guardrails are applied when automatic featurization is enabled or validation is set to auto. Data guardrails

help you identify potential issues with your data (e.g., missing values, class imbalance) and help take corrective

actions for improved results.

Users can review data guardrails in the studio within the Data guardrails tab of an automated ML run or by

setting show_output=True when submitting an experiment using the Python SDK.

Data guardrails will display one of three states: Passed, Done, or Aler ted .

Previous versions of automated ML experiments displayed a fourth state: Fixed. Newer experiments will not display this

state, and all guardrails which displayed the Fixed state will now display Done.

The following table describes the data guardrails currently supported, and the associated statuses that users may

come across when submitting their experiment.

https://docs.microsoft.com/azure/machine-learning/how-to-use-automated-ml-for-ml-models#advanced-featurization-options

High cardinality feature handling Passed

Done

Your inputs were analyzed, and no high
cardinality features were detected.
Learn more about high cardinality
feature detection.

High cardinality features were detected
in your inputs and were handled.

Validation split handling Done The validation configuration was set to
'auto' and the training data contained
less than 20,000 rows.
Each iteration of the trained model was
validated through cross-validation.
Learn more about validation data.

The validation configuration was set to
'auto' and the training data contained
more than 20,000 rows.
The input data has been split into a
training dataset and a validation
dataset for validation of the model.

Class balancing detection Passed

Aler ted

Your inputs were analyzed, and all
classes are balanced in your training
data. A dataset is considered balanced
if each class has good representation in
the dataset, as measured by number
and ratio of samples.

Imbalanced classes were detected in
your inputs. To fix model bias fix the
balancing problem. Learn more about
imbalanced data.

Memory issues detection Passed

Done

The selected {horizon, lag, rolling
window} value(s) were analyzed, and no
potential out-of-memory issues were
detected. Learn more about time-series
forecasting configurations.

The selected {horizon, lag, rolling
window} values were analyzed and will
potentially cause your experiment to
run out of memory. The lag or rolling
window configurations have been
turned off.

GUA RDRA IL STAT US C O N DIT IO N F O R T RIGGER

https://docs.microsoft.com/azure/machine-learning/how-to-use-automated-ml-for-ml-models#advanced-featurization-options
https://docs.microsoft.com/azure/machine-learning/how-to-configure-auto-train#train-and-validation-data
https://docs.microsoft.com/azure/machine-learning/concept-manage-ml-pitfalls#identify-models-with-imbalanced-data
https://docs.microsoft.com/azure/machine-learning/how-to-auto-train-forecast#configure-and-run-experiment

Frequency detection Passed

Done

The time series was analyzed and all
data points are aligned with the
detected frequency.

The time series was analyzed and data
points that do not align with the
detected frequency were detected.
These data points were removed from
the dataset. Learn more about data
preparation for time-series forecasting.

GUA RDRA IL STAT US C O N DIT IO N F O R T RIGGER

Run experiment and view results

View experiment details

View training run details

Select Finish to run your experiment. The experiment preparing process can take up to 10 minutes. Training jobs

can take an additional 2-3 minutes more for each pipeline to finish running.

The Run Detail screen opens to the Details tab. This screen shows you a summary of the experiment run

including a status bar at the top next to the run number.

The Models tab contains a list of the models created ordered by the metric score. By default, the model that

scores the highest based on the chosen metric is at the top of the list. As the training job tries out more models,

they are added to the list. Use this to get a quick comparison of the metrics for the models produced so far.

Drill down on any of the completed models to see training run details, like run metrics on the Model details tab

or performance charts on the Visualizations tab. Learn more about charts.

https://docs.microsoft.com/azure/machine-learning/how-to-auto-train-forecast#preparing-data
file:///T:/i2pk/machine-learning/media/how-to-use-automated-ml-for-ml-models/run-details-expanded.png#lightbox

Deploy your model
Once you have the best model at hand, it is time to deploy it as a web service to predict on new data.

Automated ML helps you with deploying the model without writing code:

F IEL D VA L UE

Name Enter a unique name for your deployment.

Description Enter a description to better identify what this
deployment is for.

Compute type Select the type of endpoint you want to deploy: Azure
Kubernetes Service (AKS) or Azure Container Instance
(ACI).

Compute name Applies to AKS only: Select the name of the AKS cluster
you wish to deploy to.

1. You have a couple options for deployment.

Option 1: To deploy the best model (according to the metric criteria you defined), select the Deploy

best model button on the Details tab.

Option 2: To deploy a specific model iteration from this experiment, drill down on the model to open

its Model details tab and select Deploy model .

2. Populate the Deploy model pane.

file:///T:/i2pk/machine-learning/media/how-to-use-automated-ml-for-ml-models/iteration-details-expanded.png

Next steps

Enable authentication Select to allow for token-based or key-based
authentication.

Use custom deployment assets Enable this feature if you want to upload your own
scoring script and environment file. Learn more about
scoring scripts.

F IEL D VA L UE

IMPORTANT
File names must be under 32 characters and must begin and end with alphanumerics. May include dashes,

underscores, dots, and alphanumerics between. Spaces are not allowed.

The Advanced menu offers default deployment features such as data collection and resource utilization

settings. If you wish to override these defaults do so in this menu.

3. Select Deploy . Deployment can take about 20 minutes to complete.

Now you have an operational web service to generate predictions! You can test the predictions by querying the

service from Power BI's built in Azure Machine Learning support.

Learn how to consume a web service.

Understand automated machine learning results.

Learn more about automated machine learning and Azure Machine Learning.

https://docs.microsoft.com/azure/machine-learning/how-to-consume-web-service

Train models with automated machine learning in the
cloud
3/10/2020 • 5 minutes to read • Edit Online

How does remote differ from local?

ws = Workspace.from_config()

Create resource

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In Azure Machine Learning, you train your model on different types of compute resources that you manage. The

compute target could be a local computer or a resource in the cloud.

You can easily scale up or scale out your machine learning experiment by adding additional compute targets, such

as Azure Machine Learning Compute (AmlCompute). AmlCompute is a managed-compute infrastructure that

allows you to easily create a single or multi-node compute.

In this article, you learn how to build a model using automated ML with AmlCompute.

The tutorial "Train a classification model with automated machine learning" teaches you how to use a local

computer to train a model with automated ML. The workflow when training locally also applies to remote targets

as well. However, with remote compute, automated ML experiment iterations are executed asynchronously. This

functionality allows you to cancel a particular iteration, watch the status of the execution, or continue to work on

other cells in the Jupyter notebook. To train remotely, you first create a remote compute target such as

AmlCompute. Then you configure the remote resource and submit your code there.

This article shows the extra steps needed to run an automated ML experiment on a remote AmlCompute target.

The workspace object, ws , from the tutorial is used throughout the code here.

Create the AmlCompute target in your workspace (ws) if it doesn't already exist.

Time estimate: Creation of the AmlCompute target takes approximately 5 minutes.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-auto-train-remote.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute%28class%29?view=azure-ml-py

from azureml.core.compute import AmlCompute
from azureml.core.compute import ComputeTarget
import os

choose a name for your cluster
compute_name = os.environ.get("AML_COMPUTE_CLUSTER_NAME", "cpu-cluster")
compute_min_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MIN_NODES", 0)
compute_max_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MAX_NODES", 4)

This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("AML_COMPUTE_CLUSTER_SKU", "STANDARD_D2_V2")

if compute_name in ws.compute_targets:
 compute_target = ws.compute_targets[compute_name]
 if compute_target and type(compute_target) is AmlCompute:
 print('found compute target. just use it. ' + compute_name)
else:
 print('creating a new compute target...')
 provisioning_config = AmlCompute.provisioning_configuration(vm_size = vm_size,
 min_nodes = compute_min_nodes,
 max_nodes = compute_max_nodes)

 # create the cluster
 compute_target = ComputeTarget.create(ws, compute_name, provisioning_config)

 # can poll for a minimum number of nodes and for a specific timeout.
 # if no min node count is provided it will use the scale settings for the cluster
 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

 # For a more detailed view of current AmlCompute status, use get_status()
 print(compute_target.get_status().serialize())

Access data using TabularDataset function

You can now use the compute_target object as the remote compute target.

Cluster name restrictions include:

Must be shorter than 64 characters.

Cannot include any of the following characters: \ ~ ! @ # $ % ^ & * () = + _ [] { } \\ | ; : ' \" , < > / ?.`

Defined training_data as TabularDataset and the label, which are passed to Automated ML in the AutoMLConfig .

The TabularDataset method from_delimited_files , by default, sets the infer_column_types to true, which will

infer the columns type automatically.

If you do wish to manually set the column types, you can set the set_column_types argument to manually set the

type of each column. In the following code sample, the data comes from the sklearn package.

https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py

from sklearn import datasets
from azureml.core.dataset import Dataset
from scipy import sparse
import numpy as np
import pandas as pd
import os

Create a project_folder if it doesn't exist
if not os.path.isdir('data'):
 os.mkdir('data')

if not os.path.exists('project_folder'):
 os.makedirs('project_folder')

X = pd.DataFrame(data_train.data[100:,:])
y = pd.DataFrame(data_train.target[100:])

merge X and y
label = "digit"
X[label] = y

training_data = X

training_data.to_csv('data/digits.csv')
ds = ws.get_default_datastore()
ds.upload(src_dir='./data', target_path='digitsdata', overwrite=True, show_progress=True)

training_data = Dataset.Tabular.from_delimited_files(path=ds.path('digitsdata/digits.csv'))

Configure experiment

from azureml.train.automl import AutoMLConfig
import time
import logging

automl_settings = {
 "name": "AutoML_Demo_Experiment_{0}".format(time.time()),
 "experiment_timeout_minutes" : 20,
 "enable_early_stopping" : True,
 "iteration_timeout_minutes": 10,
 "n_cross_validations": 5,
 "primary_metric": 'AUC_weighted',
 "max_concurrent_iterations": 10,
}

automl_config = AutoMLConfig(task='classification',
 debug_log='automl_errors.log',
 path=project_folder,
 compute_target=compute_target,
 training_data=training_data,
 label_column_name=label,
 **automl_settings,
)

Submit training experiment

Specify the settings for AutoMLConfig . (See a full list of parameters and their possible values.)

Now submit the configuration to automatically select the algorithm, hyper parameters, and train the model.

from azureml.core.experiment import Experiment
experiment = Experiment(ws, 'automl_remote')
remote_run = experiment.submit(automl_config, show_output=True)

Running on remote compute: mydsvmParent Run ID: AutoML_015ffe76-c331-406d-9bfd-0fd42d8ab7f6

ITERATION: The iteration being evaluated.
PIPELINE: A summary description of the pipeline being evaluated.
DURATION: Time taken for the current iteration.
METRIC: The result of computing score on the fitted pipeline.
BEST: The best observed score thus far.

 ITERATION PIPELINE DURATION METRIC BEST
 2 Standardize SGD classifier 0:02:36 0.954 0.954
 7 Normalizer DT 0:02:22 0.161 0.954
 0 Scale MaxAbs 1 extra trees 0:02:45 0.936 0.954
 4 Robust Scaler SGD classifier 0:02:24 0.867 0.954
 1 Normalizer kNN 0:02:44 0.984 0.984
 9 Normalizer extra trees 0:03:15 0.834 0.984
 5 Robust Scaler DT 0:02:18 0.736 0.984
 8 Standardize kNN 0:02:05 0.981 0.984
 6 Standardize SVM 0:02:18 0.984 0.984
 10 Scale MaxAbs 1 DT 0:02:18 0.077 0.984
 11 Standardize SGD classifier 0:02:24 0.863 0.984
 3 Standardize gradient boosting 0:03:03 0.971 0.984
 12 Robust Scaler logistic regression 0:02:32 0.955 0.984
 14 Scale MaxAbs 1 SVM 0:02:15 0.989 0.989
 13 Scale MaxAbs 1 gradient boosting 0:02:15 0.971 0.989
 15 Robust Scaler kNN 0:02:28 0.904 0.989
 17 Standardize kNN 0:02:22 0.974 0.989
 16 Scale 0/1 gradient boosting 0:02:18 0.968 0.989
 18 Scale 0/1 extra trees 0:02:18 0.828 0.989
 19 Robust Scaler kNN 0:02:32 0.983 0.989

Explore results

from azureml.widgets import RunDetails
RunDetails(remote_run).show()

You will see output similar to the following example:

You can use the same Jupyter widget as shown in the training tutorial to see a graph and table of results.

Here is a static image of the widget. In the notebook, you can click on any line in the table to see run properties

and output logs for that run. You can also use the dropdown above the graph to view a graph of each available

metric for each iteration.

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

remote_run.get_portal_url()

Example

Next steps

The widget displays a URL you can use to see and explore the individual run details.

If you aren't in a Jupyter notebook, you can display the URL from the run itself:

The same information is available in your workspace. To learn more about these results, see Understand

automated machine learning results.

The following notebook demonstrates concepts in this article.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

Learn how to configure settings for automatic training.

See the how-to on enabling model interpretability features in automated ML experiments.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression/auto-ml-regression.ipynb

How to define a machine learning task
3/31/2020 • 2 minutes to read • Edit Online

What is a machine learning task?

TA SK T Y P E DESC RIP T IO N EXA M P L E

Classification Task for predicting the category of a
particular row in a dataset.

Fraud detection on a credit card. The
target column would be Fraud
Detected with categories of True or
False. In this case, we are classifying
each row in the data as either true or
false.

Regression Task for predicting a continuous
quantity output.

Automobile cost based on its features,
the target column would be price.

Forecasting Task for making informed estimates in
determining the direction of future
trends.

Forecasting energy demand for them
next 48 hours. The target column would
be demand and the predicted values
would be used to show patterns in the
energy demand.

C L A SSIF IC AT IO N REGRESSIO N T IM E SERIES F O REC A ST IN G

Logistic Regression Elastic Net Elastic Net

Light GBM Light GBM Light GBM

Gradient Boosting Gradient Boosting Gradient Boosting

Decision Tree Decision Tree Decision Tree

K Nearest Neighbors K Nearest Neighbors K Nearest Neighbors

Linear SVC LARS Lasso LARS Lasso

C-Support Vector Classification (SVC) Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD)

Random Forest Random Forest Random Forest

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn the supported machine learning tasks and how to define them for an automated machine

learning (automated ML) experiment run.

A machine learning task represents the type of problem being solved by creating a predictive model. Automated

ML supports three different types of tasks including classification, regression, and time series forecasting.

Automated ML supports the following algorithms during the automation and tuning process. As a user, there is no

need for you to specify the algorithm.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-define-task-type.md
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/ensemble.html#classification
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests

Extremely Randomized Trees Extremely Randomized Trees Extremely Randomized Trees

Xgboost Xgboost Xgboost

DNN Classifier DNN Regressor DNN Regressor

DNN Linear Classifier Linear Regressor Linear Regressor

Naive Bayes

Stochastic Gradient Descent (SGD)

C L A SSIF IC AT IO N REGRESSIO N T IM E SERIES F O REC A ST IN G

Set the task type

from azureml.train.automl import AutoMLConfig

task can be one of classification, regression, forecasting
automl_config = AutoMLConfig(task="classification")

IMPORTANT

You can set the task type for your automated ML experiments with the SDK or the Azure Machine Learning studio.

Use the task parameter in the AutoMLConfig constructor to specify your experiment type.

You can set the task as part of your automated ML experiment run creation in the Azure Machine Learning studio.

The functionality in this studio, https://ml.azure.com, is accessible from Enterprise workspaces only . Learn more about

editions and upgrading.

https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://www.tensorflow.org/api_docs/python/tf/estimator/LinearRegressor
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://scikit-learn.org/stable/modules/sgd.html#sgd
https://ml.azure.com

Next steps
Learn more about automated ml in Azure Machine Learning.

Learn more about auto-training a time-series forecast model in Azure Machine Learning

Try the Automated Machine Learning Classification tutorial.

Try the Automated Machine Learning Regression sample notebook.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb

Auto-train a time-series forecast model
4/24/2020 • 12 minutes to read • Edit Online

Time-series and deep learning models

M O DEL S DESC RIP T IO N B EN EF IT S

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to configure and train a time-series forecasting regression model using automated

machine learning in Azure Machine Learning.

Configuring a forecasting model is similar to setting up a standard regression model using automated machine

learning, but certain configuration options and pre-processing steps exist for working with time-series data.

For example, you can configure how far into the future the forecast should extend (the forecast horizon), as well as

lags and more. Automated ML learns a single, but often internally branched model for all items in the dataset and

prediction horizons. More data is thus available to estimate model parameters and generalization to unseen series

becomes possible.

The following examples show you how to:

Prepare data for time series modeling

Configure specific time-series parameters in an AutoMLConfig object

Run predictions with time-series data

Unlike classical time series methods, in automated ML past time-series values are "pivoted" to become additional

dimensions for the regressor together with other predictors. This approach incorporates multiple contextual

variables and their relationship to one another during training. Since multiple factors can influence a forecast, this

method aligns itself well with real world forecasting scenarios. For example, when forecasting sales, interactions of

historical trends, exchange rate and price all jointly drive the sales outcome.

Features extracted from the training data play a critical role. And, automated ML performs standard pre-

processing steps and generates additional time-series features to capture seasonal effects and maximize

predictive accuracy

Automated ML's deep learning allows for forecasting univariate and multivariate time series data.

Deep learning models have three intrinsic capabilities:

1. They can learn from arbitrary mappings from inputs to outputs

2. They support multiple inputs and outputs

3. They can automatically extract patterns in input data that spans over long sequences

Given larger data, deep learning models, such as Microsoft's ForecastTCN, can improve the scores of the resulting

model. Learn how to configure your experiment for deep learning.

Automated ML provides users with both native time-series and deep learning models as part of the

recommendation system.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-auto-train-forecast.md
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig
https://www.microsoft.com/videoplayer/embed/RE2X1GW

Prophet (Preview) Prophet works best with time series
that have strong seasonal effects and
several seasons of historical data.

Accurate & fast, robust to outliers,
missing data, and dramatic changes in
your time series.

Auto-ARIMA (Preview) AutoRegressive Integrated Moving
Average (ARIMA) performs best, when
the data is stationary. This means that
its statistical properties like the mean
and variance are constant over the
entire set. For example, if you flip a
coin, then the probability of you
getting heads is 50%, regardless if you
flip today, tomorrow or next year.

Great for univariate series, since the
past values are used to predict the
future values.

ForecastTCN (Preview) ForecastTCN is a neural network model
designed to tackle the most demanding
forecasting tasks, capturing nonlinear
local and global trends in your data as
well as relationships between time
series.

Capable of leveraging complex trends
in your data and readily scales to the
largest of datasets.

M O DEL S DESC RIP T IO N B EN EF IT S

Prerequisites

Preparing data

day_datetime,store,sales_quantity,week_of_year
9/3/2018,A,2000,36
9/3/2018,B,600,36
9/4/2018,A,2300,36
9/4/2018,B,550,36
9/5/2018,A,2100,36
9/5/2018,B,650,36
9/6/2018,A,2400,36
9/6/2018,B,700,36
9/7/2018,A,2450,36
9/7/2018,B,650,36

An Azure Machine Learning workspace. To create the workspace, see Create an Azure Machine Learning

workspace.

This article assumes basic familiarity with setting up an automated machine learning experiment. Follow the

tutorial or how-to to see the basic automated machine learning experiment design patterns.

The most important difference between a forecasting regression task type and regression task type within

automated machine learning is including a feature in your data that represents a valid time series. A regular time

series has a well-defined and consistent frequency and has a value at every sample point in a continuous time

span. Consider the following snapshot of a file sample.csv .

This data set is a simple example of daily sales data for a company that has two different stores, A and B.

Additionally, there is a feature for week_of_year that will allow the model to detect weekly seasonality. The field

day_datetime represents a clean time series with daily frequency, and the field sales_quantity is the target

column for running predictions. Read the data into a Pandas dataframe, then use the to_datetime function to

ensure the time series is a datetime type.

import pandas as pd
data = pd.read_csv("sample.csv")
data["day_datetime"] = pd.to_datetime(data["day_datetime"])

train_data = data.iloc[:950]
test_data = data.iloc[-50:]

label = "sales_quantity"

test_labels = test_data.pop(label).values

NOTE

Train and validation data

Rolling Origin Cross Validation

automl_config = AutoMLConfig(task='forecasting',
 n_cross_validations=3,
 ...
 **time_series_settings)

Configure and run experiment

In this case, the data is already sorted ascending by the time field day_datetime . However, when setting up an

experiment, ensure the desired time column is sorted in ascending order to build a valid time series. Assume the

data contains 1,000 records, and make a deterministic split in the data to create training and test data sets. Identify

the label column name and set it to label. In this example, the label will be sales_quantity . Then separate the label

field from test_data to form the test_target set.

When training a model for forecasting future values, ensure all the features used in training can be used when running

predictions for your intended horizon. For example, when creating a demand forecast, including a feature for current stock

price could massively increase training accuracy. However, if you intend to forecast with a long horizon, you may not be able

to accurately predict future stock values corresponding to future time-series points, and model accuracy could suffer.

You can specify separate train and validation sets directly in the AutoMLConfig constructor.

For time series forecasting Rolling Origin Cross Validation (ROCV) is used to split time series in a temporally

consistent way. ROCV divides the series into training and validation data using an origin time point. Sliding the

origin in time generates the cross-validation folds.

This strategy will preserve the time series data integrity and eliminate the risk of data leakage. ROCV is

automatically used for forecasting tasks by passing the training and validation data together and setting the

number of cross validation folds using n_cross_validations .

Learn more about the AutoMLConfig.

For forecasting tasks, automated machine learning uses pre-processing and estimation steps that are specific to

time-series data. The following pre-processing steps will be executed:

Detect time-series sample frequency (for example, hourly, daily, weekly) and create new records for absent

time points to make the series continuous.

Impute missing values in the target (via forward-fill) and feature columns (using median column values)

PA RA M ET ER N A M E DESC RIP T IO N REQ UIRED

time_column_name Used to specify the datetime column in
the input data used for building the
time series and inferring its frequency.

✓

grain_column_names Name(s) defining individual series
groups in the input data. If grain is not
defined, the data set is assumed to be
one time-series.

max_horizon Defines the maximum desired forecast
horizon in units of time-series
frequency. Units are based on the time
interval of your training data, for
example, monthly, weekly that the
forecaster should predict out.

✓

target_lags Number of rows to lag the target
values based on the frequency of the
data. The lag is represented as a list or
single integer. Lag should be used when
the relationship between the
independent variables and dependent
variable doesn't match up or correlate
by default. For example, when trying to
forecast demand for a product, the
demand in any month may depend on
the price of specific commodities 3
months prior. In this example, you may
want to lag the target (demand)
negatively by 3 months so that the
model is training on the correct
relationship.

target_rolling_window_size n historical periods to use to generate
forecasted values, <= training set size.
If omitted, n is the full training set size.
Specify this parameter when you only
want to consider a certain amount of
history when training the model.

enable_dnn Enable Forecasting DNNs.

Create grain-based features to enable fixed effects across different series

Create time-based features to assist in learning seasonal patterns

Encode categorical variables to numeric quantities

The AutoMLConfig object defines the settings and data necessary for an automated machine learning task. Similar

to a regression problem, you define standard training parameters like task type, number of iterations, training

data, and number of cross-validations. For forecasting tasks, there are additional parameters that must be set that

affect the experiment. The following table explains each parameter and its usage.

See the reference documentation for more information.

Create the time-series settings as a dictionary object. Set the time_column_name to the day_datetime field in the

data set. Define the grain_column_names parameter to ensure that two separate time-ser ies groups are

created for the data; one for store A and B. Lastly, set the max_horizon to 50 in order to predict for the entire test

set. Set a forecast window to 10 periods with target_rolling_window_size , and specify a single lag on the target

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig

time_series_settings = {
 "time_column_name": "day_datetime",
 "grain_column_names": ["store"],
 "max_horizon": "auto",
 "target_lags": "auto",
 "target_rolling_window_size": "auto",
 "preprocess": True,
}

NOTE

from azureml.core.workspace import Workspace
from azureml.core.experiment import Experiment
from azureml.train.automl import AutoMLConfig
import logging

automl_config = AutoMLConfig(task='forecasting',
 primary_metric='normalized_root_mean_squared_error',
 experiment_timeout_minutes=15,
 enable_early_stopping=True,
 training_data=train_data,
 label_column_name=label,
 n_cross_validations=5,
 enable_ensembling=False,
 verbosity=logging.INFO,
 **time_series_settings)

ws = Workspace.from_config()
experiment = Experiment(ws, "forecasting_example")
local_run = experiment.submit(automl_config, show_output=True)
best_run, fitted_model = local_run.get_output()

Configure a DNN enable Forecasting experiment

values for two periods ahead with the target_lags parameter. It is recommended to set max_horizon ,

target_rolling_window_size and target_lags to "auto" which will automatically detect these values for you. In the

example below, "auto" settings have been used for these parameters.

Automated machine learning pre-processing steps (feature normalization, handling missing data, converting text to

numeric, etc.) become part of the underlying model. When using the model for predictions, the same pre-processing steps

applied during training are applied to your input data automatically.

By defining the grain_column_names in the code snippet above, AutoML will create two separate time-series

groups, also known as multiple time-series. If no grain is defined, AutoML will assume that the dataset is a single

time-series. To learn more about single time-series, see the energy_demand_notebook.

Now create a standard AutoMLConfig object, specifying the forecasting task type, and submit the experiment.

After the model finishes, retrieve the best run iteration.

See the forecasting sample notebooks for detailed code examples of advanced forecasting configuration

including:

holiday detection and featurization

rolling-origin cross validation

configurable lags

rolling window aggregate features

DNN

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb

NOTE

automl_config = AutoMLConfig(task='forecasting',
 enable_dnn=True,
 ...
 **time_series_settings)

Target Rolling Window Aggregation

DNN support for forecasting in Automated Machine Learning is in Preview and not supported for local runs.

In order to leverage DNNs for forecasting, you will need to set the enable_dnn parameter in the AutoMLConfig to

true.

Learn more about the AutoMLConfig.

Alternatively, you can select the Enable deep learning option in the studio.

We recommend using an AML Compute cluster with GPU SKUs and at least two nodes as the compute target. To

allow sufficient time for the DNN training to complete, we recommend setting the experiment timeout to a

minimum of a couple of hours. For more information on AML compute and VM sizes that include GPU's, see the

AML Compute documentation and GPU optimized virtual machine sizes documentation.

View the Beverage Production Forecasting notebook for a detailed code example leveraging DNNs.

Often the best information a forecaster can have is the recent value of the target. Creating cumulative statistics of

the target may increase the accuracy of your predictions. Target rolling window aggregations allows you to add a

rolling aggregation of data values as features. To enable target rolling windows set the

target_rolling_window_size to your desired integer window size.

An example of this can be seen when predicting energy demand. You might add a rolling window feature of three

days to account for thermal changes of heated spaces. In the example below, we've created this window of size

three by setting target_rolling_window_size=3 in the AutoMLConfig constructor. The table shows feature

engineering that occurs when window aggregation is applied. Columns for minimum, maximum, and sum are

generated on a sliding window of three based on the defined settings. Each row has a new calculated feature, in

the case of the time-stamp for September 8, 2017 4:00am the maximum, minimum, and sum values are

calculated using the demand values for September 8, 2017 1:00AM - 3:00AM. This window of three shifts along to

populate data for the remaining rows.

https://docs.microsoft.com/azure/virtual-machines/linux/sizes-gpu
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb

View feature engineering summary

fitted_model.named_steps['timeseriestransformer'].get_featurization_summary()

Forecasting with best model

label_query = test_labels.copy().astype(np.float)
label_query.fill(np.nan)
label_fcst, data_trans = fitted_pipeline.forecast(
 test_data, label_query, forecast_destination=pd.Timestamp(2019, 1, 8))

from sklearn.metrics import mean_squared_error
from math import sqrt

rmse = sqrt(mean_squared_error(actual_labels, predict_labels))
rmse

Generating and using these additional features as extra contextual data helps with the accuracy of the train model.

View a Python code example leveraging the target rolling window aggregate feature.

For time-series task types in automated machine learning, you can view details from the feature engineering

process. The following code shows each raw feature along with the following attributes:

Raw feature name

Number of engineered features formed out of this raw feature

Type detected

Whether feature was dropped

List of feature transformations for the raw feature

Use the best model iteration to forecast values for the test data set.

The forecast() function should be used instead of predict() , this will allow specifications of when predictions

should start. In the following example, you first replace all values in y_pred with NaN . The forecast origin will be

at the end of training data in this case, as it would normally be when using predict() . However, if you replaced

only the second half of y_pred with NaN , the function would leave the numerical values in the first half

unmodified, but forecast the NaN values in the second half. The function returns both the forecasted values and

the aligned features.

You can also use the forecast_destination parameter in the forecast() function to forecast values up until a

specified date.

Calculate RMSE (root mean squared error) between the actual_labels actual values, and the forecasted values in

predict_labels .

Now that the overall model accuracy has been determined, the most realistic next step is to use the model to

forecast unknown future values. Supply a data set in the same format as the test set test_data but with future

datetimes, and the resulting prediction set is the forecasted values for each time-series step. Assume the last time-

series records in the data set were for 12/31/2018. To forecast demand for the next day (or as many periods as

you need to forecast, <= max_horizon), create a single time series record for each store for 01/01/2019.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb

day_datetime,store,week_of_year
01/01/2019,A,1
01/01/2019,A,1

NOTE

Next steps

Repeat the necessary steps to load this future data to a dataframe and then run best_run.predict(test_data) to

predict future values.

Values cannot be predicted for number of periods greater than the max_horizon . The model must be re-trained with a

larger horizon to predict future values beyond the current horizon.

Follow the tutorial to learn how to create experiments with automated machine learning.

View the Azure Machine Learning SDK for Python reference documentation.

https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Understand automated machine learning results
3/11/2020 • 13 minutes to read • Edit Online

Prerequisites

View the run

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to view and understand the charts and metrics for each of your automated machine

learning runs.

Learn more about:

Metrics, charts, and curves for classification models

Metrics, charts, and graphs for regression models

Model interpretability and feature importance

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning today.

Create an experiment for your automated machine learning run, either with the SDK, or in Azure Machine

Learning studio.

Use the SDK to build a classification model or regression model

Use Azure Machine Learning studio to create a classification or regression model by uploading the

appropriate data.

After running an automated machine learning experiment, a history of the runs can be found in your machine

learning workspace.

1. Go to your workspace.

2. In the left panel of the workspace, select Experiments .

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-understand-automated-ml.md
https://aka.ms/AMLFree

3. In the list of experiments, select the one you want to explore.

4. In the bottom table, select the Run.

file:///T:/i2pk/machine-learning/media/how-to-understand-automated-ml/azure-machine-learning-auto-ml-experiment-list-expanded.png

 Classification results

)

5. In the Models, select the Algorithm name for the model that you want to explore further.

You also see these same results during a run when you use the RunDetails Jupyter widget.

Thee following metrics and charts are available for every classification model that you build using the automated

machine learning capabilities of Azure Machine Learning

Metrics

Confusion matrix

Precision-Recall chart

Receiver operating characteristics (or ROC)

file:///T:/i2pk/machine-learning/media/how-to-understand-automated-ml/azure-machine-learning-auto-ml-experiment-run-expanded.png
file:///T:/i2pk/machine-learning/media/how-to-understand-automated-ml/azure-machine-learning-auto-ml-experiment-model-expanded.png
https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

 Classification metrics

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

AUC_Macro AUC is the Area under the
Receiver Operating
Characteristic Curve. Macro
is the arithmetic mean of
the AUC for each class.

Calculation average="macro"

AUC_Micro AUC is the Area under the
Receiver Operating
Characteristic Curve. Micro
is computed globally by
combining the true positives
and false positives from
each class.

Calculation average="micro"

AUC_Weighted AUC is the Area under the
Receiver Operating
Characteristic Curve.
Weighted is the arithmetic
mean of the score for each
class, weighted by the
number of true instances in
each class.

Calculation average="weighted"

accuracy Accuracy is the percent of
predicted labels that exactly
match the true labels.

Calculation None

average_precision_score_ma
cro

Average precision
summarizes a precision-
recall curve as the weighted
mean of precisions achieved
at each threshold, with the
increase in recall from the
previous threshold used as
the weight. Macro is the
arithmetic mean of the
average precision score of
each class.

Calculation average="macro"

average_precision_score_mic
ro

Average precision
summarizes a precision-
recall curve as the weighted
mean of precisions achieved
at each threshold, with the
increase in recall from the
previous threshold used as
the weight. Micro is
computed globally by
combining the true positives
and false positives at each
cutoff.

Calculation average="micro"

Lift curve

Gains curve

Calibration plot

The following metrics are saved in each run iteration for a classification task.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

average_precision_score_wei
ghted

Average precision
summarizes a precision-
recall curve as the weighted
mean of precisions achieved
at each threshold, with the
increase in recall from the
previous threshold used as
the weight. Weighted is the
arithmetic mean of the
average precision score for
each class, weighted by the
number of true instances in
each class.

Calculation average="weighted"

balanced_accuracy Balanced accuracy is the
arithmetic mean of recall for
each class.

Calculation average="macro"

f1_score_macro F1 score is the harmonic
mean of precision and recall.
Macro is the arithmetic
mean of F1 score for each
class.

Calculation average="macro"

f1_score_micro F1 score is the harmonic
mean of precision and recall.
Micro is computed globally
by counting the total true
positives, false negatives,
and false positives.

Calculation average="micro"

f1_score_weighted F1 score is the harmonic
mean of precision and recall.
Weighted mean by class
frequency of F1 score for
each class

Calculation average="weighted"

log_loss This is the loss function used
in (multinomial) logistic
regression and extensions of
it such as neural networks,
defined as the negative log-
likelihood of the true labels
given a probabilistic
classifier's predictions. For a
single sample with true label
yt in {0,1} and estimated
probability yp that yt = 1,
the log loss is -log P(yt|yp)
= -(yt log(yp) + (1 - yt)
log(1 - yp)).

Calculation None

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

norm_macro_recall Normalized Macro Recall is
Macro Recall normalized so
that random performance
has a score of 0 and perfect
performance has a score of
1. This is achieved by
norm_macro_recall :=
(recall_score_macro - R)/(1 -
R), where R is the expected
value of recall_score_macro
for random predictions (i.e.,
R=0.5 for binary
classification and R=(1/C) for
C-class classification
problems).

Calculation average = "macro"

precision_score_macro Precision is the percent of
positively predicted
elements that are correctly
labeled. Macro is the
arithmetic mean of precision
for each class.

Calculation average="macro"

precision_score_micro Precision is the percent of
positively predicted
elements that are correctly
labeled. Micro is computed
globally by counting the
total true positives and false
positives.

Calculation average="micro"

precision_score_weighted Precision is the percent of
positively predicted
elements that are correctly
labeled. Weighted is the
arithmetic mean of precision
for each class, weighted by
number of true instances in
each class.

Calculation average="weighted"

recall_score_macro Recall is the percent of
correctly labeled elements of
a certain class. Macro is the
arithmetic mean of recall for
each class.

Calculation average="macro"

recall_score_micro Recall is the percent of
correctly labeled elements of
a certain class. Micro is
computed globally by
counting the total true
positives, false negatives
and false positives

Calculation average="micro"

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

recall_score_weighted Recall is the percent of
correctly labeled elements of
a certain class. Weighted is
the arithmetic mean of recall
for each class, weighted by
number of true instances in
each class.

Calculation average="weighted"

weighted_accuracy Weighted accuracy is
accuracy where the weight
given to each example is
equal to the proportion of
true instances in that
example's true class.

Calculation sample_weight is a vector
equal to the proportion of
that class for each element
in the target

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

Confusion matrix
What is a confusion matrix?

What does automated ML do with the confusion matrix?

What does a good model look like?

Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l w i t h p o o r a c c u r a c y

Ex a m p l e 2 : A c l a ss i f i c a t i o n m o d e l w i t h h i g h a c c u r a c y

A confusion matrix is used to describe the performance of a classification model. Each row displays the instances

of the true, or actual class in your dataset, and each column represents the instances of the class that was

predicted by the model.

For classification problems, Azure Machine Learning automatically provides a confusion matrix for each model

that is built. For each confusion matrix, automated ML will show the frequency of each predicted label (column)

compared against the true label (row). The darker the color, the higher the count in that particular part of the

matrix.

We are comparing the actual value of the dataset against the predicted values that the model gave. Because of

this, machine learning models have higher accuracy if the model has most of its values along the diagonal,

meaning the model predicted the correct value. If a model has class imbalance, the confusion matrix will help to

detect a biased model.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

Ex a m p l e 3 : A c l a ss i f i c a t i o n m o d e l w i t h h i g h a c c u r a c y a n d h i g h b i a s i n m o d e l p r e d i c t i o n s

Precision-recall chart
What is a precision-recall chart?

What does automated ML do with the precision-recall chart?

What does a good model look like?

The precision-recall curve shows the relationship between precision and recall from a model. The term precision

represents that ability for a model to label all instances correctly. Recall represents the ability for a classifier to find

all instances of a particular label.

With this chart, you can compare the precision-recall curves for each model to determine which model has an

acceptable relationship between precision and recall for your particular business problem. This chart shows

Macro Average Precision-Recall, Micro Average Precision-Recall, and the precision-recall associated with all

classes for a model.

Macro-average will compute the metric independently of each class and then take the average, treating all classes

equally. However, micro-average will aggregate the contributions of all the classes to compute the average. Micro-

average is preferable if there is class imbalance present in the dataset.

Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l w i t h l o w p r e c i s i o n a n d l o w r e c a l l

Ex a m p l e 2 : A c l a ss i f i c a t i o n m o d e l w i t h ~ 1 0 0 % p r e c i s i o n a n d ~ 1 0 0 % r e c a l l

ROC chart
What is a ROC chart?

What does automated ML do with the ROC chart?

Depending on the goal of the business problem, the ideal precision-recall curve could differ. Some examples are

given below

Receiver operating characteristic (or ROC) is a plot of the correctly classified labels vs. the incorrectly classified

labels for a particular model. The ROC curve can be less informative when training models on datasets with high

bias, as it will not show the false positive labels.

Automated ML generates Macro Average Precision-Recall, Micro Average Precision-Recall, and the precision-recall

associated with all classes for a model.

Macro-average will compute the metric independently of each class and then take the average, treating all classes

equally. However, micro-average will aggregate the contributions of all the classes to compute the average. Micro-

What does a good model look like?

Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l w i t h l o w t r u e l a b e l s a n d h i g h fa l se l a b e l s

Ex a m p l e 2 : A c l a ss i f i c a t i o n m o d e l w i t h h i g h t r u e l a b e l s a n d l o w fa l se l a b e l s

Lift chart
What is a lift chart?

What does automated ML do with the lift chart?

What does a good model look like?
Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l t h a t d o e s w o r se t h a n a r a n d o m se l e c t i o n m o d e l

average is preferable if there is class imbalance present in the dataset.

Ideally, the model will have closer to 100% true positive rate and closer to 0% false positive rate.

Lift charts are used to evaluate the performance of a classification model. It shows how much better you can

expect to do with the generated model compared to without a model in terms of accuracy.

You can compare the lift of the model built automatically with Azure Machine Learning to the baseline in order to

view the value gain of that particular model.

Ex a m p l e 2 : A c l a ss i f i c a t i o n m o d e l t h a t p e r fo r m s b e t t e r t h a n a r a n d o m se l e c t i o n m o d e l

Gains chart
What is a gains chart?

What does automated ML do with the gains chart?

What does a good model look like?
Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l w i t h m i n i m a l g a i n

A gains chart evaluates the performance of a classification model by each portion of the data. It shows for each

percentile of the data set, how much better you can expect to perform compared against a random selection

model.

Use the cumulative gains chart to help you choose the classification cutoff using a percentage that corresponds to

a desired gain from the model. This information provides another way of looking at the results in the

accompanying lift chart.

Ex a m p l e 2 : A c l a ss i f i c a t i o n m o d e l w i t h s i g n i f i c a n t g a i n

Calibration chart
What is a calibration chart?

What does automated ML do with the calibration chart?

What does a good model look like?

A calibration plot is used to display the confidence of a predictive model. It does this by showing the relationship

between the predicted probability and the actual probability, where "probability" represents the likelihood that a

particular instance belongs under some label.

For all classification problems, you can review the calibration line for micro-average, macro-average, and each

class in a given predictive model.

Macro-average will compute the metric independently of each class and then take the average, treating all classes

equally. However, micro-average will aggregate the contributions of all the classes to compute the average.

A well-calibrated model aligns with the y=x line, where it is reasonably confident in its predictions. An over-

confident model aligns with the y=0 line, where the predicted probability is present but there is no actual

Ex a m p l e 1 : A w e l l - c a l i b r a t e d m o d e l

Ex a m p l e 2 : A n o v e r- c o n fi d e n t m o d e l

Regression results

Regression metrics

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

probability.

Thee following metrics and charts are available for every regression model that you build using the automated

machine learning capabilities of Azure Machine Learning

Metrics

Predicted vs. True

Histogram of residuals

The following metrics are saved in each run iteration for a regression or forecasting task.

explained_variance Explained variance is the
proportion to which a
mathematical model
accounts for the variation of
a given data set. It is the
percent decrease in variance
of the original data to the
variance of the errors. When
the mean of the errors is 0,
it is equal to explained
variance.

Calculation None

r2_score R2 is the coefficient of
determination or the
percent reduction in
squared errors compared to
a baseline model that
outputs the mean.

Calculation None

spearman_correlation Spearman correlation is a
nonparametric measure of
the monotonicity of the
relationship between two
datasets. Unlike the Pearson
correlation, the Spearman
correlation does not assume
that both datasets are
normally distributed. Like
other correlation
coefficients, this one varies
between -1 and +1 with 0
implying no correlation.
Correlations of -1 or +1
imply an exact monotonic
relationship. Positive
correlations imply that as x
increases, so does y.
Negative correlations imply
that as x increases, y
decreases.

Calculation None

mean_absolute_error Mean absolute error is the
expected value of absolute
value of difference between
the target and the
prediction

Calculation None

normalized_mean_absolute_
error

Normalized mean absolute
error is mean Absolute Error
divided by the range of the
data

Calculation Divide by range of the data

median_absolute_error Median absolute error is the
median of all absolute
differences between the
target and the prediction.
This loss is robust to
outliers.

Calculation None

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.explained_variance_score.html
https://scikit-learn.org/0.16/modules/generated/sklearn.metrics.r2_score.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.stats.spearmanr.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html

normalized_median_absolut
e_error

Normalized median absolute
error is median absolute
error divided by the range
of the data

Calculation Divide by range of the data

root_mean_squared_error Root mean squared error is
the square root of the
expected squared difference
between the target and the
prediction

Calculation None

normalized_root_mean_squa
red_error

Normalized root mean
squared error is root mean
squared error divided by the
range of the data

Calculation Divide by range of the data

root_mean_squared_log_err
or

Root mean squared log
error is the square root of
the expected squared
logarithmic error

Calculation None

normalized_root_mean_squa
red_log_error

Normalized Root mean
squared log error is root
mean squared log error
divided by the range of the
data

Calculation Divide by range of the data

M ET RIC DESC RIP T IO N C A L C UL AT IO N EXT RA PA RA M ET ERS

Predicted vs. True chart
What is a Predicted vs. True chart?

What does automated ML do with the Predicted vs. True chart?

What does a good model look like?
Ex a m p l e 1 : A c l a ss i f i c a t i o n m o d e l w i t h l o w a c c u r a c y

Predicted vs. True shows the relationship between a predicted value and its correlating true value for a regression

problem. This graph can be used to measure performance of a model as the closer to the y=x line the predicted

values are, the better the accuracy of a predictive model.

After each run, you can see a predicted vs. true graph for each regression model. To protect data privacy, values

are binned together and the size of each bin is shown as a bar graph on the bottom portion of the chart area. You

can compare the predictive model, with the lighter shade area showing error margins, against the ideal value of

where the model should be.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_log_error.html

Ex a m p l e 2 : A r e g r e ss i o n m o d e l w i t h h i g h a c c u r a c y

Histogram of residuals chart
What is a residuals chart?

A residual represents an observed y – the predicted y. To show a margin of error with low bias, the histogram of

residuals should be shaped as a bell curve, centered around 0.

file:///T:/i2pk/machine-learning/media/how-to-understand-automated-ml/azure-machine-learning-auto-ml-regression2-expanded.png

What does automated ML do with the residuals chart?

What does a good model look like?

Ex a m p l e 1 : A r e g r e ss i o n m o d e l w i t h b i a s i n i t s e r r o r s

Ex a m p l e 2 : A r e g r e ss i o n m o d e l w i t h m o r e e v e n d i s t r i b u t i o n o f e r r o r s

Automated ML automatically provides a residuals chart to show the distribution of errors in the predictions.

A good model will typically have a bell curve or errors around zero.

 Model interpretability and feature importance

Next steps

Automated ML provides a machine learning interpretability dashboard for your runs. For more information on

enabling interpretability features, see the how-to on enabling interpretability in automated ML experiments.

Learn more about automated ml in Azure Machine Learning.

Try the Automated Machine Learning Model Explanation sample notebooks.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/explain-model

Start, monitor, and cancel training runs in Python
4/17/2020 • 9 minutes to read • Edit Online

Prerequisites

Start a run and its logging process
Using the SDK

import azureml.core
from azureml.core import Workspace, Experiment, Run
from azureml.core import ScriptRunConfig

ws = Workspace.from_config()
exp = Experiment(workspace=ws, name="explore-runs")

notebook_run = exp.start_logging()
notebook_run.log(name="message", value="Hello from run!")

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

The Azure Machine Learning SDK for Python, Machine Learning CLI, and Azure Machine Learning studio provide

various methods to monitor, organize, and manage your runs for training and experimentation.

This article shows examples of the following tasks:

Monitor run performance.

Cancel or fail runs.

Create child runs.

Tag and find runs.

You'll need the following items:

print(azureml.core.VERSION)

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning today.

An Azure Machine Learning workspace.

The Azure Machine Learning SDK for Python (version 1.0.21 or later). To install or update to the latest

version of the SDK, see Install or update the SDK.

To check your version of the Azure Machine Learning SDK, use the following code:

The Azure CLI and CLI extension for Azure Machine Learning.

Set up your experiment by importing the Workspace, Experiment, Run, and ScriptRunConfig classes from the

azureml.core package.

Start a run and its logging process with the start_logging() method.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-manage-runs.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://ml.azure.com
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment(class)?view=azure-ml-py#start-logging--args----kwargs-

Using the CLI

Using Azure Machine Learning studio

To start a run of your experiment, use the following steps:

az login

TIP

az ml folder attach -w myworkspace -g myresourcegroup

az ml run submit-script -c sklearn -e testexperiment train.py

TIP

1. From a shell or command prompt, use the Azure CLI to authenticate to your Azure subscription:

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with

isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the

same one that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure

portal by visiting the overview page for your workspace. You can also use the SDK to get the subscription ID from

the workspace object. For example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify the

subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

2. Attach a workspace configuration to the folder that contains your training script. Replace myworkspace with

your Azure Machine Learning workspace. Replace myresourcegroup with the Azure resource group that

contains your workspace:

This command creates a .azureml subdirectory that contains example runconfig and conda environment

files. It also contains a config.json file that is used to communicate with your Azure Machine Learning

workspace.

For more information, see az ml folder attach.

3. To start the run, use the following command. When using this command, specify the name of the runconfig

file (the text before *.runconfig if you are looking at your file system) against the -c parameter.

The az ml folder attach command created a .azureml subdirectory, which contains two example runconfig

files.

If you have a Python script that creates a run configuration object programmatically, you can use RunConfig.save() to

save it as a runconfig file.

For more example runconfig files, see https://github.com/MicrosoftDocs/pipelines-azureml/tree/master/.azureml.

For more information, see az ml run submit-script.

To start a submit a pipeline run in the designer (preview), use the following steps:

1. Set a default compute target for your pipeline.

2. Select Run at the top of the pipeline canvas.

https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/folder?view=azure-cli-latest#ext-azure-cli-ml-az-ml-folder-attach
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py#save-path-none--name-none--separate-environment-yaml-false-
https://github.com/MicrosoftDocs/pipelines-azureml/tree/master/.azureml
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-submit-script

Monitor the status of a run
Using the SDK

print(notebook_run.get_status())

print(notebook_run.get_details())

notebook_run.complete()
print(notebook_run.get_status())

with exp.start_logging() as notebook_run:
 notebook_run.log(name="message", value="Hello from run!")
 print(notebook_run.get_status())

print(notebook_run.get_status())

Using the CLI

Using Azure Machine Learning studio

3. Select an Experiment to group your pipeline runs.

Get the status of a run with the get_status() method.

To get the run ID, execution time, and additional details about the run, use the get_details() method.

When your run finishes successfully, use the complete() method to mark it as completed.

If you use Python's with...as design pattern, the run will automatically mark itself as completed when the run is

out of scope. You don't need to manually mark the run as completed.

az ml run list --experiment-name experiment

az ml run show -r runid

1. To view a list of runs for your experiment, use the following command. Replace experiment with the name

of your experiment:

This command returns a JSON document that lists information about runs for this experiment.

For more information, see az ml experiment list.

2. To view information on a specific run, use the following command. Replace runid with the ID of the run:

This command returns a JSON document that lists information about the run.

For more information, see az ml run show.

To view the number of active runs for your experiment in the studio.

1. Navigate to the Experiments section..

2. Select an experiment.

In the experiment page, you can see the number of active compute targets and the duration for each run.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#get-status--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace.workspace?view=azure-ml-py#get-details--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#complete--set-status-true-
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/experiment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-experiment-list
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-show

Cancel or fail runs

Using the SDK

run_config = ScriptRunConfig(source_directory='.', script='hello_with_delay.py')
local_script_run = exp.submit(run_config)
print(local_script_run.get_status())

local_script_run.cancel()
print(local_script_run.get_status())

local_script_run = exp.submit(run_config)
local_script_run.fail()
print(local_script_run.get_status())

Using the CLI

az ml run cancel -r runid -w workspace_name -e experiment_name

Using Azure Machine Learning studio

Create child runs

NOTE

3. Select a specific run number.

4. In the Logs tab, you can find diagnostic and error logs for your pipeline run.

If you notice a mistake or if your run is taking too long to finish, you can cancel the run.

To cancel a run using the SDK, use the cancel() method:

If your run finishes, but it contains an error (for example, the incorrect training script was used), you can use the

fail() method to mark it as failed.

To cancel a run using the CLI, use the following command. Replace runid with the ID of the run

For more information, see az ml run cancel.

To cancel a run in the studio, using the following steps:

1. Go to the running pipeline in either the Experiments or Pipelines section.

2. Select the pipeline run number you want to cancel.

3. In the toolbar, select Cancel

Create child runs to group together related runs, such as for different hyperparameter-tuning iterations.

Child runs can only be created using the SDK.

This code example uses the hello_with_children.py script to create a batch of five child runs from within a

submitted run by using the child_run() method:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#cancel--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)#fail-error-details-none--error-code-none---set-status-true-
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-cancel
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#child-run-name-none--run-id-none--outputs-none-

!more hello_with_children.py
run_config = ScriptRunConfig(source_directory='.', script='hello_with_children.py')

local_script_run = exp.submit(run_config)
local_script_run.wait_for_completion(show_output=True)
print(local_script_run.get_status())

with exp.start_logging() as parent_run:
 for c,count in enumerate(range(5)):
 with parent_run.child_run() as child:
 child.log(name="Hello from child run", value=c)

NOTE

Submit child runs

parent.py
This script controls the launching of child scripts
from azureml.core import Run, ScriptRunConfig, RunConfiguration

run_config_for_aml_compute = RunConfiguration()
run_config_for_aml_compute.target = "gpu-compute"
run_config_for_aml_compute.environment.docker.enabled = True

run = Run.get_context()

child_args = ['Apple', 'Banana', 'Orange']
for arg in child_args:
 run.log('Status', f'Launching {arg}')
 child_config = ScriptRunConfig(source_directory=".", script='child.py', arguments=['--fruit', arg],
run_config = run_config_for_aml_compute)
 # Starts the run asynchronously
 run.submit_child(child_config)

Experiment will "complete" successfully at this point.
Instead of returning immediately, block until child runs complete

for child in run.get_children():
 child.wait_for_completion()

As they move out of scope, child runs are automatically marked as completed.

To create many child runs efficiently, use the create_children() method. Because each creation results in a

network call, creating a batch of runs is more efficient than creating them one by one.

Child runs can also be submitted from a parent run. This allows you to create hierarchies of parent and child runs.

You may wish your child runs to use a different run configuration than the parent run. For instance, you might use

a less-powerful, CPU-based configuration for the parent, while using GPU-based configurations for your children.

Another common desire is to pass each child different arguments and data. To customize a child run, pass a

RunConfiguration object to the child's ScriptRunConfig constructor. This code example, which would be part of the

parent ScriptRunConfig object's script:

Creates a RunConfiguration retrieving a named compute resource "gpu-compute"

Iterates over different argument values to be passed to the children ScriptRunConfig objects

Creates and submits a new child run, using the custom compute resource and argument

Blocks until all of the child runs complete

To create many child runs with identical configurations, arguments, and inputs efficiently, use the

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#create-children-count-none--tag-key-none--tag-values-none-

In child run script
child_run = Run.get_context()
child_run.parent.id

Query child runs

print(parent_run.get_children())

Tag and find runs

Add properties and tags
Using the SDK

local_script_run.add_properties({"author":"azureml-user"})
print(local_script_run.get_properties())

try:
 local_script_run.add_properties({"author":"different-user"})
except Exception as e:
 print(e)

local_script_run.tag("quality", "great run")
print(local_script_run.get_tags())

local_script_run.tag("quality", "fantastic run")
print(local_script_run.get_tags())

local_script_run.tag("worth another look")
print(local_script_run.get_tags())

create_children() method. Because each creation results in a network call, creating a batch of runs is more

efficient than creating them one by one.

Within a child run, you can view the parent run ID:

To query the child runs of a specific parent, use the get_children() method. The recursive = True argument

allows you to query a nested tree of children and grandchildren.

In Azure Machine Learning, you can use properties and tags to help organize and query your runs for important

information.

To add searchable metadata to your runs, use the add_properties() method. For example, the following code adds

the "author" property to the run:

Properties are immutable, so they create a permanent record for auditing purposes. The following code example

results in an error, because we already added "azureml-user" as the "author" property value in the preceding

code:

Unlike properties, tags are mutable. To add searchable and meaningful information for consumers of your

experiment, use the tag() method.

You can also add simple string tags. When these tags appear in the tag dictionary as keys, they have a value of

None .

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#create-children-count-none--tag-key-none--tag-values-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#get-children-recursive-false--tags-none--properties-none--type-none--status-none---rehydrate-runs-true-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#add-properties-properties-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#tag-key--value-none-

Using the CLI

NOTE

az ml run update -r runid --add-tag quality='fantastic run'

Query properties and tags

Using the SDK

list(exp.get_runs(properties={"author":"azureml-user"},tags={"quality":"fantastic run"}))
list(exp.get_runs(properties={"author":"azureml-user"},tags="worth another look"))

Using the CLI

list runs where the author property = 'azureml-user'
az ml run list --experiment-name experiment [?properties.author=='azureml-user']
list runs where the tag contains a key that starts with 'worth another look'
az ml run list --experiment-name experiment [?tags.keys(@)[?starts_with(@, 'worth another look')]]
list runs where the author property = 'azureml-user' and the 'quality' tag starts with 'fantastic run'
az ml run list --experiment-name experiment [?properties.author=='azureml-user' && tags.quality=='fantastic
run']

Using Azure Machine Learning studio

Example notebooks

Next steps

Using the CLI, you can only add or update tags.

To add or update a tag, use the following command:

For more information, see az ml run update.

You can query runs within an experiment to return a list of runs that match specific properties and tags.

The Azure CLI supports JMESPath queries, which can be used to filter runs based on properties and tags. To use a

JMESPath query with the Azure CLI, specify it with the --query parameter. The following examples show basic

queries using properties and tags:

For more information on querying Azure CLI results, see Query Azure CLI command output.

1. Navigate to the Pipelines section.

2. Use the search bar to filter pipelines using tags, descriptions, experiment names, and submitter name.

The following notebooks demonstrate the concepts in this article:

To learn more about the logging APIs, see the logging API notebook.

For more information about managing runs with the Azure Machine Learning SDK, see the manage runs

notebook.

To learn how to log metrics for your experiments, see Log metrics during training runs.

To learn how to monitor resources and logs from Azure Machine Learning, see Monitoring Azure Machine

Learning.

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-update
http://jmespath.org
https://docs.microsoft.com/cli/azure/query-azure-cli?view=azure-cli-latest
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/manage-runs/manage-runs.ipynb

Monitor Azure ML experiment runs and metrics
3/13/2020 • 11 minutes to read • Edit Online

NOTE

TIP

Available metrics to track

T Y P E P Y T H O N F UN C T IO N N OT ES

Scalar values Function:
run.log(name, value,
description='')

Example:
run.log("accuracy", 0.95)

Log a numerical or string value to the
run with the given name. Logging a
metric to a run causes that metric to
be stored in the run record in the
experiment. You can log the same
metric multiple times within a run, the
result being considered a vector of that
metric.

Lists Function:
run.log_list(name, value,
description='')

Example:
run.log_list("accuracies", [0.6, 0.7, 0.87])

Log a list of values to the run with the
given name.

Row Function:
run.log_row(name,
description=None, **kwargs)

Example:
run.log_row("Y over X", x=1, y=0.4)

Using log_row creates a metric with
multiple columns as described in
kwargs. Each named parameter
generates a column with the value
specified. log_row can be called once to
log an arbitrary tuple, or multiple times
in a loop to generate a complete table.

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Enhance the model creation process by tracking your experiments and monitoring run metrics. In this article,

learn how to add logging code to your training script, submit an experiment run, monitor that run, and inspect

the results in Azure Machine Learning.

Azure Machine Learning may also log information from other sources during training, such as automated machine learning

runs, or the Docker container that runs the training job. These logs are not documented. If you encounter problems and

contact Microsoft support, they may be able to use these logs during troubleshooting.

The information in this document is primarily for data scientists and developers who want to monitor the model training

process. If you are an administrator interested in monitoring resource usage and events from Azure Machine learning,

such as quotas, completed training runs, or completed model deployments, see Monitoring Azure Machine Learning.

The following metrics can be added to a run while training an experiment. To view a more detailed list of what

can be tracked on a run, see the Run class reference documentation.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-track-experiments.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py

Table Function:
run.log_table(name, value,
description='')

Example:
run.log_table("Y over X", {"x":[1, 2, 3],
"y":[0.6, 0.7, 0.89]})

Log a dictionary object to the run with
the given name.

Images Function:
run.log_image(name, path=None,
plot=None)

Example:
run.log_image("ROC", plot=plt)

Log an image to the run record. Use
log_image to log an image file or a
matplotlib plot to the run. These
images will be visible and comparable
in the run record.

Tag a run Function:
run.tag(key, value=None)

Example:
run.tag("selected", "yes")

Tag the run with a string key and
optional string value.

Upload file or directory Function:
run.upload_file(name,
path_or_stream)

Example:
run.upload_file("best_model.pkl",
"./model.pkl")

Upload a file to the run record. Runs
automatically capture file in the
specified output directory, which
defaults to "./outputs" for most run
types. Use upload_file only when
additional files need to be uploaded or
an output directory is not specified. We
suggest adding outputs to the name

so that it gets uploaded to the outputs
directory. You can list all of the files
that are associated with this run record
by called run.get_file_names()

T Y P E P Y T H O N F UN C T IO N N OT ES

NOTE

Choose a logging option

Set up the workspace

Metrics for scalars, lists, rows, and tables can have type: float, integer, or string.

If you want to track or monitor your experiment, you must add code to start logging when you submit the run.

The following are ways to trigger the run submission:

Run.star t_ logging - Add logging functions to your training script and start an interactive logging session in

the specified experiment. star t_ logging creates an interactive run for use in scenarios such as notebooks.

Any metrics that are logged during the session are added to the run record in the experiment.

Scr iptRunConfig - Add logging functions to your training script and load the entire script folder with the

run. Scr iptRunConfig is a class for setting up configurations for script runs. With this option, you can add

monitoring code to be notified of completion or to get a visual widget to monitor.

Before adding logging and submitting an experiment, you must set up the workspace.

1. Load the workspace. To learn more about setting the workspace configuration, see workspace configuration

import azureml.core
from azureml.core import Experiment, Workspace

Check core SDK version number
print("This notebook was created using version 1.0.2 of the Azure ML SDK")
print("You are currently using version", azureml.core.VERSION, "of the Azure ML SDK")
print("")

ws = Workspace.from_config()
print('Workspace name: ' + ws.name,
 'Azure region: ' + ws.location,
 'Subscription id: ' + ws.subscription_id,
 'Resource group: ' + ws.resource_group, sep='\n')

Option 1: Use start_logging

Load the data

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib

X, y = load_diabetes(return_X_y = True)
columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
data = {
 "train":{"X": X_train, "y": y_train},
 "test":{"X": X_test, "y": y_test}
}

print ("Data contains", len(data['train']['X']), "training samples and",len(data['test']['X']), "test
samples")

Add tracking

file.

star t_ logging creates an interactive run for use in scenarios such as notebooks. Any metrics that are logged

during the session are added to the run record in the experiment.

The following example trains a simple sklearn Ridge model locally in a local Jupyter notebook. To learn more

about submitting experiments to different environments, see Set up compute targets for model training with

Azure Machine Learning.

This example uses the diabetes dataset, a well-known small dataset that comes with scikit-learn. This cell loads

the dataset and splits it into random training and testing sets.

Add experiment tracking using the Azure Machine Learning SDK, and upload a persisted model into the

experiment run record. The following code adds tags, logs, and uploads a model file to the experiment run.

https://docs.microsoft.com/azure/machine-learning/how-to-set-up-training-targets

Get an experiment object from Azure Machine Learning
experiment = Experiment(workspace=ws, name="train-within-notebook")

Create a run object in the experiment
run = experiment.start_logging()
Log the algorithm parameter alpha to the run
run.log('alpha', 0.03)

Create, fit, and test the scikit-learn Ridge regression model
regression_model = Ridge(alpha=0.03)
regression_model.fit(data['train']['X'], data['train']['y'])
preds = regression_model.predict(data['test']['X'])

Output the Mean Squared Error to the notebook and to the run
print('Mean Squared Error is', mean_squared_error(data['test']['y'], preds))
run.log('mse', mean_squared_error(data['test']['y'], preds))

Save the model to the outputs directory for capture
model_file_name = 'outputs/model.pkl'

joblib.dump(value = regression_model, filename = model_file_name)

upload the model file explicitly into artifacts
run.upload_file(name = model_file_name, path_or_stream = model_file_name)

Complete the run
run.complete()

Option 2: Use ScriptRunConfig

The script ends with run.complete() , which marks the run as completed. This function is typically used in

interactive notebook scenarios.

Scr iptRunConfig is a class for setting up configurations for script runs. With this option, you can add

monitoring code to be notified of completion or to get a visual widget to monitor.

This example expands on the basic sklearn Ridge model from above. It does a simple parameter sweep to sweep

over alpha values of the model to capture metrics and trained models in runs under the experiment. The example

runs locally against a user-managed environment.

1. Create a training script train.py .

https://docs.microsoft.com/python/api/azureml-core/azureml.core.scriptrunconfig?view=azure-ml-py

Copyright (c) Microsoft. All rights reserved.
Licensed under the MIT license.

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from azureml.core.run import Run
from sklearn.externals import joblib
import os
import numpy as np
import mylib

os.makedirs('./outputs', exist_ok=True)

X, y = load_diabetes(return_X_y=True)

run = Run.get_context()

X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.2,
 random_state=0)
data = {"train": {"X": X_train, "y": y_train},
 "test": {"X": X_test, "y": y_test}}

list of numbers from 0.0 to 1.0 with a 0.05 interval
alphas = mylib.get_alphas()

for alpha in alphas:
 # Use Ridge algorithm to create a regression model
 reg = Ridge(alpha=alpha)
 reg.fit(data["train"]["X"], data["train"]["y"])

 preds = reg.predict(data["test"]["X"])
 mse = mean_squared_error(preds, data["test"]["y"])
 run.log('alpha', alpha)
 run.log('mse', mse)

 model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha)
 # save model in the outputs folder so it automatically get uploaded
 with open(model_file_name, "wb") as file:
 joblib.dump(value=reg, filename=os.path.join('./outputs/',
 model_file_name))

 print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse))

Copyright (c) Microsoft. All rights reserved.
Licensed under the MIT license.

import numpy as np

def get_alphas():
 # list of numbers from 0.0 to 1.0 with a 0.05 interval
 return np.arange(0.0, 1.0, 0.05)

2. The train.py script references mylib.py which allows you to get the list of alpha values to use in the

ridge model.

3. Configure a user-managed local environment.

Manage a run

View run details
View active/queued runs from the browser

from azureml.core import Environment

Editing a run configuration property on-fly.
user_managed_env = Environment("user-managed-env")

user_managed_env.python.user_managed_dependencies = True

You can choose a specific Python environment by pointing to a Python path
#user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python'

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(source_directory='./', script='train.py')
src.run_config.environment = user_managed_env

run = exp.submit(src)

4. Submit the train.py script to run in the user-managed environment. This whole script folder is submitted

for training, including the mylib.py file.

The Start, monitor, and cancel training runs article highlights specific Azure Machine Learning workflows for how

to manage your experiments.

Compute targets used to train models are a shared resource. As such, they may have multiple runs queued or

active at a given time. To see the runs for a specific compute target from your browser, use the following steps:

1. From the Azure Machine Learning studio, select your workspace, and then select Compute from the left

side of the page.

2. Select Training Clusters to display a list of compute targets used for training. Then select the cluster.

3. Select Runs . The list of runs that use this cluster is displayed. To view details for a specific run, use the link

in the Run column. To view details for the experiment, use the link in the Experiment column.

https://ml.azure.com/

Monitor run with Jupyter notebook widget

TIP
A run can contain child runs, so one training job can result in multiple entries.

Once a run completes, it is no longer displayed on this page. To view information on completed runs, visit the

Experiments section of the studio and select the experiment and run. For more information, see the Query run

metrics section.

When you use the Scr iptRunConfig method to submit runs, you can watch the progress of the run with a

Jupyter widget. Like the run submission, the widget is asynchronous and provides live updates every 10-15

seconds until the job completes.

from azureml.widgets import RunDetails
RunDetails(run).show()

print(run.get_portal_url())

1. View the Jupyter widget while waiting for the run to complete.

You can also get a link to the same display in your workspace.

2. [For automated machine learning runs] To access the charts from a previous run. Replace

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py

Get log results upon completion

Query run metrics

View the experiment in your workspace in Azure Machine Learning

from azureml.widgets import RunDetails
from azureml.core.run import Run

experiment = Experiment (workspace, <<experiment_name>>)
run_id = 'autoML_my_runID' #replace with run_ID
run = Run(experiment, run_id)
RunDetails(run).show()

<<experiment_name>> with the appropriate experiment name:

To view further details of a pipeline click on the Pipeline you would like to explore in the table, and the charts will

render in a pop-up from the Azure Machine Learning studio.

Model training and monitoring occur in the background so that you can run other tasks while you wait. You can

also wait until the model has completed training before running more code. When you use Scr iptRunConfig ,

you can use run.wait_for_completion(show_output = True) to show when the model training is complete. The

show_output flag gives you verbose output.

You can view the metrics of a trained model using run.get_metrics() . You can now get all of the metrics that

were logged in the example above to determine the best model.

https://ml.azure.com

studio

Viewing charts in run details

LO GGED VA L UE EXA M P L E C O DE VIEW IN P O RTA L

Log an array of numeric values run.log_list(name='Fibonacci',
value=[0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89])

single-variable line chart

Log a single numeric value with the
same metric name repeatedly used
(like from within a for loop)

for i in tqdm(range(-10, 10)):
run.log(name='Sigmoid', value=1
/ (1 + np.exp(-i))) angle = i /
2.0

Single-variable line chart

Log a row with 2 numerical columns
repeatedly

run.log_row(name='Cosine Wave',
angle=angle, cos=np.cos(angle))
sines['angle'].append(angle)
sines['sine'].append(np.sin(angle))

Two-variable line chart

Log table with 2 numerical columns run.log_table(name='Sine Wave',
value=sines)

Two-variable line chart

Example notebooks

When an experiment has finished running, you can browse to the recorded experiment run record. You can

access the history from the Azure Machine Learning studio.

Navigate to the Experiments tab and select your experiment. You are brought to the experiment run dashboard,

where you can see tracked metrics and charts that are logged for each run. In this case, we logged MSE and the

alpha values.

You can drill down to a specific run to view its outputs or logs, or download the snapshot of the experiment you

submitted so you can share the experiment folder with others.

There are various ways to use the logging APIs to record different types of metrics during a run and view them

as charts in Azure Machine Learning studio.

The following notebooks demonstrate concepts in this article:

how-to-use-azureml/training/train-within-notebook

https://ml.azure.com
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook

Next steps

how-to-use-azureml/training/train-on-local

how-to-use-azureml/track-and-monitor-experiments/logging-api

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

Try these next steps to learn how to use the Azure Machine Learning SDK for Python:

See an example of how to register the best model and deploy it in the tutorial, Train an image classification

model with Azure Machine Learning.

Learn how to Train PyTorch Models with Azure Machine Learning.

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-on-local
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/track-and-monitor-experiments/logging-api

Track models metrics with MLflow and Azure
Machine Learning (preview)
2/4/2020 • 10 minutes to read • Edit Online

TIP

Compare MLflow and Azure Machine Learning clients

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article demonstrates how to enable MLflow's tracking URI and logging API, collectively known as MLflow

Tracking, to connect your MLflow experiments and Azure Machine Learning. Doing so enables you to track and log

experiment metrics and artifacts in your Azure Machine Learning workspace. If you already use MLflow Tracking

for your experiments, the workspace provides a centralized, secure, and scalable location to store training metrics

and models.

MLflow is an open-source library for managing the life cycle of your machine learning experiments. MLFlow

Tracking is a component of MLflow that logs and tracks your training run metrics and model artifacts, no matter

your experiment's environment--locally on your computer, on a remote compute target, a virtual machine, or an

Azure Databricks cluster.

The following diagram illustrates that with MLflow Tracking, you track an experiment's run metrics and store

model artifacts in your Azure Machine Learning workspace.

The information in this document is primarily for data scientists and developers who want to monitor the model training

process. If you are an administrator interested in monitoring resource usage and events from Azure Machine Learning, such

as quotas, completed training runs, or completed model deployments, see Monitoring Azure Machine Learning.

The below table summarizes the different clients that can use Azure Machine Learning, and their respective

function capabilities.

MLflow Tracking offers metric logging and artifact storage functionalities that are only otherwise available via the

Azure Machine Learning Python SDK.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-mlflow.md
https://mlflow.org/docs/latest/quickstart.html#using-the-tracking-api
https://docs.microsoft.com/azure/machine-learning/concept-azure-machine-learning-architecture#workspaces
https://www.mlflow.org
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

M L F LO W T RA C K IN G

A Z URE M A C H IN E
L EA RN IN G P Y T H O N
SDK

A Z URE M A C H IN E
L EA RN IN G C L I

A Z URE M A C H IN E
L EA RN IN G ST UDIO

Manage workspace ✓ ✓ ✓

Use data stores ✓ ✓

Log metrics ✓ ✓

Upload artifacts ✓ ✓

View metrics ✓ ✓ ✓ ✓

Manage compute ✓ ✓ ✓

Prerequisites

Track local runs

pip install azureml-mlflow

NOTE

import mlflow
from azureml.core import Workspace

ws = Workspace.from_config()

mlflow.set_tracking_uri(ws.get_mlflow_tracking_uri())

Install MLflow.

Install the Azure Machine Learning SDK on your local computer The SDK provides the connectivity for MLflow

to access your workspace.

Create an Azure Machine Learning Workspace.

MLflow Tracking with Azure Machine Learning lets you store the logged metrics and artifacts from your local runs

into your Azure Machine Learning workspace.

Install the azureml-mlflow package to use MLflow Tracking with Azure Machine Learning on your experiments

locally run in a Jupyter Notebook or code editor.

The azureml.contrib namespace changes frequently, as we work to improve the service. As such, anything in this namespace

should be considered as a preview, and not fully supported by Microsoft.

Import the mlflow and Workspace classes to access MLflow's tracking URI and configure your workspace.

In the following code, the get_mlflow_tracking_uri() method assigns a unique tracking URI address to the

workspace, ws , and set_tracking_uri() points the MLflow tracking URI to that address.

https://mlflow.org/docs/latest/quickstart.html
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py

NOTE

experiment_name = 'experiment_with_mlflow'
mlflow.set_experiment(experiment_name)

with mlflow.start_run():
 mlflow.log_metric('alpha', 0.03)

Track remote runs

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core import ScriptRunConfig

exp = Experiment(workspace = 'my_workspace',
 name='my_experiment')

mlflow_env = Environment(name='mlflow-env')

cd = CondaDependencies.create(pip_packages=['mlflow', 'azureml-mlflow'])

mlflow_env.python.conda_dependencies = cd

src = ScriptRunConfig(source_directory='./my_script_location', script='my_training_script.py')

src.run_config.target = 'my-remote-compute-compute'
src.run_config.environment = mlflow_env

import mlflow

with mlflow.start_run():
 mlflow.log_metric('example', 1.23)

The tracking URI is valid up to an hour or less. If you restart your script after some idle time, use the get_mlflow_tracking_uri

API to get a new URI.

Set the MLflow experiment name with set_experiment() and start your training run with start_run() . Then use

log_metric() to activate the MLflow logging API and begin logging your training run metrics.

MLflow Tracking with Azure Machine Learning lets you store the logged metrics and artifacts from your remote

runs into your Azure Machine Learning workspace.

Remote runs let you train your models on more powerful computes, such as GPU enabled virtual machines, or

Machine Learning Compute clusters. See Set up compute targets for model training to learn about different

compute options.

Configure your compute and training run environment with the Environment class. Include mlflow and

azureml-mlflow pip packages in environment's CondaDependencies section. Then construct ScriptRunConfig with

your remote compute as the compute target.

In your training script, import mlflow to use the MLflow logging APIs, and start logging your run metrics.

With this compute and training run configuration, use the Experiment.submit('train.py') method to submit a run.

This method automatically sets the MLflow tracking URI and directs the logging from MLflow to your Workspace.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py

run = exp.submit(src)

Track Azure Databricks runs

Install libraries

Set up your notebook and workspace

MLflow Tracking with Azure Machine Learning lets you store the logged metrics and artifacts from your Azure

Databricks runs in your Azure Machine Learning workspace.

To run your Mlflow experiments with Azure Databricks, you need to first create an Azure Databricks workspace and

cluster. In your cluster, be sure to install the azureml-mlflow library from PyPi, to ensure that your cluster has

access to the necessary functions and classes.

From here, import your experiment notebook, attach it to your Azure Databricks cluster and run your experiment.

To install libraries on your cluster, navigate to the L ibrar ies tab and click Install New

In the Package field, type azureml-mlflow and then click install. Repeat this step as necessary to install other

additional packages to your cluster for your experiment.

Once your cluster is set up, import your experiment notebook, open it and attach your cluster to it.

https://docs.microsoft.com/azure/azure-databricks/quickstart-create-databricks-workspace-portal

import mlflow
import mlflow.azureml
import azureml.mlflow
import azureml.core

from azureml.core import Workspace
from azureml.mlflow import get_portal_url

subscription_id = 'subscription_id'

Azure Machine Learning resource group NOT the managed resource group
resource_group = 'resource_group_name'

#Azure Machine Learning workspace name, NOT Azure Databricks workspace
workspace_name = 'workspace_name'

Instantiate Azure Machine Learning workspace
ws = Workspace.get(name=workspace_name,
 subscription_id=subscription_id,
 resource_group=resource_group)

Connect your Azure Databricks and Azure Machine Learning workspaces

Link MLflow tracking to your workspace

Directly set MLflow Tracking in your notebook

uri = ws.get_mlflow_tracking_uri()
mlflow.set_tracking_uri(uri)

import mlflow
mlflow.log_metric('epoch_loss', loss.item())

Automate setting MLflow Tracking

View metrics and artifacts in your workspace

The following code should be in your experiment notebook. This code gets the details of your Azure subscription

to instantiate your workspace. This code assumes you have an existing resource group and Azure Machine

Learning workspace, otherwise you can create them.

On the Azure portal, you can link your Azure Databricks (ADB) workspace to a new or existing Azure Machine

Learning workspace. To do so, navigate to your ADB workspace and select the L ink Azure Machine Learning

workspace button on the bottom right. Linking your workspaces enables you to track your experiment data in the

Azure Machine Learning workspace.

After you instantiate your workspace, set the MLflow tracking URI. By doing so, you link the MLflow tracking to

Azure Machine Learning workspace. After linking, all your experiments will land in the managed Azure Machine

Learning tracking service.

In your training script, import mlflow to use the MLflow logging APIs, and start logging your run metrics. The

following example, logs the epoch loss metric.

Instead of manually setting the tracking URI in every subsequent experiment notebook session on your clusters,

do so automatically using this Azure Machine Learning Tracking Cluster Init script.

When configured correctly, you are able to see your MLflow tracking data in the Azure Machine Learning REST API

and all clients, and in Azure Databricks via the MLflow user interface or by using the MLflow client.

The metrics and artifacts from MLflow logging are kept in your workspace. To view them anytime, navigate to your

workspace and find the experiment by name in your workspace in Azure Machine Learning studio. Or run the

https://ms.portal.azure.com
https://github.com/Azure/MachineLearningNotebooks/blob/3ce779063b000e0670bdd1acc6bc3a4ee707ec13/how-to-use-azureml/azure-databricks/linking/README.md
https://ml.azure.com

run.get_metrics()
ws.get_details()

Example notebooks

Next steps

below code.

The MLflow with Azure ML notebooks demonstrate and expand upon concepts presented in this article.

Manage your models.

Monitor your production models for data drift.

https://aka.ms/azureml-mlflow-examples

Visualize experiment runs and metrics with
TensorBoard and Azure Machine Learning
2/28/2020 • 7 minutes to read • Edit Online

TIP

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to view your experiment runs and metrics in TensorBoard using the tensorboard

package in the main Azure Machine Learning SDK. Once you've inspected your experiment runs, you can better

tune and retrain your machine learning models.

TensorBoard is a suite of web applications for inspecting and understanding your experiment structure and

performance.

How you launch TensorBoard with Azure Machine Learning experiments depends on the type of experiment:

If your experiment natively outputs log files that are consumable by TensorBoard, such as PyTorch, Chainer

and TensorFlow experiments, then you can launch TensorBoard directly from experiment's run history.

For experiments that don't natively output TensorBoard consumable files, such as like Scikit-learn or Azure

Machine Learning experiments, use the export_to_tensorboard() method to export the run histories as

TensorBoard logs and launch TensorBoard from there.

The information in this document is primarily for data scientists and developers who want to monitor the model training

process. If you are an administrator interested in monitoring resource usage and events from Azure Machine learning, such

as quotas, completed training runs, or completed model deployments, see Monitoring Azure Machine Learning.

To launch TensorBoard and view your experiment run histories, your experiments need to have previously

enabled logging to track its metrics and performance.

The code in this document can be run in either of the following environments:

Azure Machine Learning compute instance - no downloads or installation necessary

Complete the Tutorial: Setup environment and workspace to create a dedicated notebook

server pre-loaded with the SDK and the sample repository.

In the samples folder on the notebook server, find two completed and expanded notebooks by

navigating to these directories:

how-to-use-azureml > training-with-deep-learning > expor t-run-histor y-to-

tensorboard > expor t-run-histor y-to-tensorboard.ipynb

how-to-use-azureml > track-and-monitor-experiments > tensorboard.ipynb

Your own Juptyer notebook server

Install the Azure Machine Learning SDK with the tensorboard extra

Create an Azure Machine Learning workspace.

Create a workspace configuration file.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-monitor-tensorboard.md
https://docs.microsoft.com/python/api/azureml-tensorboard/?view=azure-ml-py
https://www.tensorflow.org/tensorboard/r1/overview
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Option 1: Directly view run history in TensorBoard

Set experiment name and create project folder

from os import path, makedirs
experiment_name = 'tensorboard-demo'

experiment folder
exp_dir = './sample_projects/' + experiment_name

if not path.exists(exp_dir):
 makedirs(exp_dir)

Download TensorFlow demo experiment code

import requests
import os

tf_code =
requests.get("https://raw.githubusercontent.com/tensorflow/tensorflow/r1.8/tensorflow/examples/tutorials/mnist
/mnist_with_summaries.py")
with open(os.path.join(exp_dir, "mnist_with_summaries.py"), "w") as file:
 file.write(tf_code.text)

Configure experiment

NOTE

This option works for experiments that natively outputs log files consumable by TensorBoard, such as PyTorch,

Chainer, and TensorFlow experiments. If that is not the case of your experiment, use the export_to_tensorboard()

method instead.

The following example code uses the MNIST demo experiment from TensorFlow's repository in a remote compute

target, Azure Machine Learning Compute. Next, we train our model with the SDK's custom TensorFlow estimator,

and then start TensorBoard against this TensorFlow experiment, that is, an experiment that natively outputs

TensorBoard event files.

Here we name the experiment and create its folder.

TensorFlow's repository has an MNIST demo with extensive TensorBoard instrumentation. We do not, nor need to,

alter any of this demo's code for it to work with Azure Machine Learning. In the following code, we download the

MNIST code and save it in our newly created experiment folder.

Throughout the MNIST code file, mnist_with_summaries.py, notice that there are lines that call

tf.summary.scalar() , tf.summary.histogram() , tf.summary.FileWriter() etc. These methods group, log, and tag

key metrics of your experiments into run history. The tf.summary.FileWriter() is especially important as it

serializes the data from your logged experiment metrics, which allows for TensorBoard to generate visualizations

off of them.

In the following, we configure our experiment and set up directories for logs and data. These logs will be uploaded

to the Artifact Service, which TensorBoard accesses later.

For this TensorFlow example, you will need to install TensorFlow on your local machine. Further, the TensorBoard module (that

is, the one included with TensorFlow) must be accessible to this notebook's kernel, as the local machine is what runs

TensorBoard.

https://raw.githubusercontent.com/tensorflow/tensorflow/r1.8/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py

import azureml.core
from azureml.core import Workspace
from azureml.core import Experiment

ws = Workspace.from_config()

create directories for experiment logs and dataset
logs_dir = os.path.join(os.curdir, "logs")
data_dir = os.path.abspath(os.path.join(os.curdir, "mnist_data"))

if not path.exists(data_dir):
 makedirs(data_dir)

os.environ["TEST_TMPDIR"] = data_dir

Writing logs to ./logs results in their being uploaded to Artifact Service,
and thus, made accessible to our TensorBoard instance.
arguments_list = ["--log_dir", logs_dir]

Create an experiment
exp = Experiment(ws, experiment_name)

Create a cluster for your experiment

from azureml.core.compute import ComputeTarget, AmlCompute

cluster_name = "cpucluster"

cts = ws.compute_targets
found = False
if cluster_name in cts and cts[cluster_name].type == 'AmlCompute':
 found = True
 print('Found existing compute target.')
 compute_target = cts[cluster_name]
if not found:
 print('Creating a new compute target...')
 compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_D2_V2',
 max_nodes=4)

 # create the cluster
 compute_target = ComputeTarget.create(ws, cluster_name, compute_config)

compute_target.wait_for_completion(show_output=True, min_node_count=None)

use get_status() to get a detailed status for the current cluster.
print(compute_target.get_status().serialize())

Submit run with TensorFlow estimator

We create an AmlCompute cluster for this experiment, however your experiments can be created in any

environment and you are still able to launch TensorBoard against the experiment run history.

The TensorFlow estimator provides a simple way of launching a TensorFlow training job on a compute target. It's

implemented through the generic estimator class, which can be used to support any framework. For more

information about training models using the generic estimator, see train models with Azure Machine Learning

using estimator

https://docs.microsoft.com//python/api/azureml-train-core/azureml.train.estimator.estimator?view=azure-ml-py

from azureml.train.dnn import TensorFlow
script_params = {"--log_dir": "./logs"}

tf_estimator = TensorFlow(source_directory=exp_dir,
 compute_target=compute_target,
 entry_script='mnist_with_summaries.py',
 script_params=script_params)

run = exp.submit(tf_estimator)

Launch TensorBoard

from azureml.tensorboard import Tensorboard

tb = Tensorboard([run])

If successful, start() returns a string with the URI of the instance.
tb.start()

After your job completes, be sure to stop() the streaming otherwise it will continue to run.
tb.stop()

NOTE

Option 2: Export history as log to view in TensorBoard

Set up experiment

from azureml.core import Workspace, Experiment
import azuremml.core

set experiment name and run name
ws = Workspace.from_config()
experiment_name = 'export-to-tensorboard'
exp = Experiment(ws, experiment_name)
root_run = exp.start_logging()

You can launch TensorBoard during your run or after it completes. In the following, we create a TensorBoard object

instance, tb , that takes the experiment run history loaded in the run , and then launches TensorBoard with the

start() method.

The TensorBoard constructor takes an array of runs, so be sure and pass it in as a single-element array.

While this example used TensorFlow, TensorBoard can be used as easily with PyTorch or Chainer models.

TensorFlow must be available on the machine running TensorBoard, but is not necessary on the machine doing

PyTorch or Chainer computations.

The following code sets up a sample experiment, begins the logging process using the Azure Machine Learning run

history APIs, and exports the experiment run history into logs consumable by TensorBoard for visualization.

The following code sets up a new experiment and names the run directory root_run .

Here we load the diabetes dataset-- a built-in small dataset that comes with scikit-learn, and split it into test and

training sets.

https://docs.microsoft.com/python/api/azureml-tensorboard/azureml.tensorboard.tensorboard?view=azure-ml-py

from sklearn.datasets import load_diabetes
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
X, y = load_diabetes(return_X_y=True)
columns = ['age', 'gender', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
data = {
 "train":{"x":x_train, "y":y_train},
 "test":{"x":x_test, "y":y_test}
}

Run experiment and log metrics

from tqdm import tqdm
alphas = [.1, .2, .3, .4, .5, .6 , .7]
try a bunch of alpha values in a Linear Regression (aka Ridge regression) mode
for alpha in tqdm(alphas):
 # create child runs and fit lines for the resulting models
 with root_run.child_run("alpha" + str(alpha)) as run

 reg = Ridge(alpha=alpha)
 reg.fit(data["train"]["x"], data["train"]["y"])

 preds = reg.predict(data["test"]["x"])
 mse = mean_squared_error(preds, data["test"]["y"])
 # End train and eval

log alpha, mean_squared_error and feature names in run history
 root_run.log("alpha", alpha)
 root_run.log("mse", mse)

Export runs to TensorBoard

from azureml.tensorboard.export import export_to_tensorboard
import os

logdir = 'exportedTBlogs'
log_path = os.path.join(os.getcwd(), logdir)
try:
 os.stat(log_path)
except os.error:
 os.mkdir(log_path)
print(logdir)

export run history for the project
export_to_tensorboard(root_run, logdir)

root_run.complete()

NOTE

For this code, we train a linear regression model and log key metrics, the alpha coefficient, alpha , and mean

squared error, mse , in run history.

With the SDK's export_to_tensorboard() method, we can export the run history of our Azure machine learning

experiment into TensorBoard logs, so we can view them via TensorBoard.

In the following code, we create the folder logdir in our current working directory. This folder is where we will

export our experiment run history and logs from root_run and then mark that run as completed.

https://docs.microsoft.com/python/api/azureml-tensorboard/azureml.tensorboard.export?view=azure-ml-py

Start and stop TensorBoard

from azureml.tensorboard import Tensorboard

The TensorBoard constructor takes an array of runs, so be sure and pass it in as a single-element array here
tb = Tensorboard([], local_root=logdir, port=6006)

If successful, start() returns a string with the URI of the instance.
tb.start()

tb.stop()

Next steps

You can also export a particular run to TensorBoard by specifying the name of the run

export_to_tensorboard(run_name, logdir)

Once our run history for this experiment is exported, we can launch TensorBoard with the start() method.

When you're done, make sure to call the stop() method of the TensorBoard object. Otherwise, TensorBoard will

continue to run until you shut down the notebook kernel.

In this how-to you, created two experiments and learned how to launch TensorBoard against their run histories to

identify areas for potential tuning and retraining.

If you are satisfied with your model, head over to our How to deploy a model article.

Learn more about hyperparameter tuning.

https://docs.microsoft.com/python/api/azureml-tensorboard/azureml.tensorboard.tensorboard?view=azure-ml-py#start-start-browser-false-
https://docs.microsoft.com/python/api/azureml-tensorboard/azureml.tensorboard.tensorboard?view=azure-ml-py#stop--

Deploy models with Azure Machine Learning
4/6/2020 • 37 minutes to read • Edit Online

Prerequisites

Connect to your workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to deploy your machine learning model as a web service in the Azure cloud or to Azure IoT

Edge devices.

The workflow is similar no matter where you deploy your model:

1. Register the model.

2. Prepare to deploy. (Specify assets, usage, compute target.)

3. Deploy the model to the compute target.

4. Test the deployed model, also called a web service.

For more information on the concepts involved in the deployment workflow, see Manage, deploy, and

monitor models with Azure Machine Learning.

An Azure Machine Learning workspace. For more information, see Create an Azure Machine

Learning workspace.

A model. If you don't have a trained model, you can use the model and dependency files

provided in this tutorial.

The Azure CLI extension for the Machine Learning service, the Azure Machine Learning SDK for

Python, or the Azure Machine Learning Visual Studio Code extension.

The following code shows how to connect to an Azure Machine Learning workspace by using

information cached to the local development environment:

from azureml.core import Workspace
ws = Workspace.from_config(path=".file-path/ws_config.json")

Using the SDK

For more information on using the SDK to connect to a workspace, see the Azure Machine

Learning SDK for Python documentation.

Using the CLI

When using the CLI, use the -w or --workspace-name parameter to specify the workspace for

the command.

Using Visual Studio Code

When you use Visual Studio Code, you select the workspace by using a graphical interface. For

more information, see Deploy and manage models in the Visual Studio Code extension

documentation.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-and-where.md
https://aka.ms/azml-deploy-cloud
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py#workspace

 Register your model

TIP

Register a model from an experiment run

IMPORTANT

A registered model is a logical container for one or more files that make up your model. For example, if

you have a model that's stored in multiple files, you can register them as a single model in the

workspace. After you register the files, you can then download or deploy the registered model and

receive all the files that you registered.

When you register a model, you provide the path of either a cloud location (from a training run) or a local

directory. This path is just to locate the files for upload as part of the registration process. It doesn't need to

match the path used in the entry script. For more information, see Locate model files in your entry script.

Machine learning models are registered in your Azure Machine Learning workspace. The model can

come from Azure Machine Learning or from somewhere else. When registering a model, you can

optionally provide metadata about the model. The tags and properties dictionaries that you apply to

a model registration can then be used to filter models.

The following examples demonstrate how to register a model.

The code snippets in this section demonstrate how to register a model from a training run:

To use these snippets, you need to have previously performed a training run and you need to have access to

the Run object (SDK example) or the run ID value (CLI example). For more information on training models, see

Set up compute targets for model training.

Using the SDK

When you use the SDK to train a model, you can receive either a Run object or an AutoMLRun

object, depending on how you trained the model. Each object can be used to register a model

created by an experiment run.

model = run.register_model(model_name='sklearn_mnist',
 tags={'area': 'mnist'},
 model_path='outputs/sklearn_mnist_model.pkl')
print(model.name, model.id, model.version, sep='\t')

 description = 'My AutoML Model'
 model = run.register_model(description = description,
 tags={'area': 'mnist'})

 print(run.model_id)

Register a model from an azureml.core.Run object:

The model_path parameter refers to the cloud location of the model. In this example, the

path of a single file is used. To include multiple files in the model registration, set

model_path to the path of a folder that contains the files. For more information, see the

Run.register_model documentation.

Register a model from an azureml.train.automl.run.AutoMLRun object:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.run.automlrun
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#register-model-model-name--model-path-none--tags-none--properties-none--model-framework-none--model-framework-version-none--description-none--datasets-none--sample-input-dataset-none--sample-output-dataset-none--resource-configuration-none----kwargs-

Register a model from a local file

IMPORTANT

az ml model register -n sklearn_mnist --asset-path outputs/sklearn_mnist_model.pkl --
experiment-name myexperiment --run-id myrunid --tag area=mnist

TIP

az extension add -n azure-cli-ml

In this example, the metric and iteration parameters aren't specified, so the iteration

with the best primary metric will be registered. The model_id value returned from the

run is used instead of a model name.

For more information, see the AutoMLRun.register_model documentation.

Using the CLI

If you get an error message stating that the ml extension isn't installed, use the following command to

install it:

The --asset-path parameter refers to the cloud location of the model. In this example, the path

of a single file is used. To include multiple files in the model registration, set --asset-path to the

path of a folder that contains the files.

Using Visual Studio Code

Register models using any model files or folders by using the Visual Studio Code extension.

You can register a model by providing the local path of the model. You can provide the path of either a

folder or a single file. You can use this method to register models trained with Azure Machine Learning

and then downloaded. You can also use this method to register models trained outside of Azure

Machine Learning.

You should use only models that you create or obtain from a trusted source. You should treat serialized models

as code, because security vulnerabilities have been discovered in a number of popular formats. Also, models

might be intentionally trained with malicious intent to provide biased or inaccurate output.

import os
import urllib.request
from azureml.core.model import Model
Download model
onnx_model_url = "https://www.cntk.ai/OnnxModels/mnist/opset_7/mnist.tar.gz"
urllib.request.urlretrieve(onnx_model_url, filename="mnist.tar.gz")
os.system('tar xvzf mnist.tar.gz')
Register model
model = Model.register(workspace = ws,
 model_path ="mnist/model.onnx",
 model_name = "onnx_mnist",
 tags = {"onnx": "demo"},
 description = "MNIST image classification CNN from ONNX Model Zoo",)

Using the SDK and ONNX

To include multiple files in the model registration, set model_path to the path of a folder that

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.run.automlrun#register-model-model-name-none--description-none--tags-none--iteration-none--metric-none-

Single versus multi-model endpoints

Prepare to deploy

1. Define inference environment

az ml model register -n onnx_mnist -p mnist/model.onnx

contains the files.

Using the CLI

To include multiple files in the model registration, set -p to the path of a folder that contains

the files.

Time estimate: Approximately 10 seconds.

For more information, see the documentation for the Model class.

For more information on working with models trained outside Azure Machine Learning, see How to

deploy an existing model.

Azure ML supports deploying single or multiple models behind a single endpoint.

Multi-model endpoints use a shared container to host multiple models. This helps to reduce overhead

costs, improves utilization, and enables you to chain modules together into ensembles. Models you

specify in your deployment script are mounted and made available on the disk of the serving container

- you can load them into memory on demand and score based on the specific model being requested

at scoring time.

For an E2E example, which shows how to use multiple models behind a single containerized endpoint,

see this example

To deploy the model as a service, you need the following components:

Define inference environment. This environment encapsulates the dependencies required to

run your model for inference.

Define scoring code. This script accepts requests, scores the requests by using the model, and

returns the results.

Define inference configuration. The inference configuration specifies the environment

configuration, entry script, and other components needed to run the model as a service.

Once you have the necessary components, you can profile the service that will be created as a result of

deploying your model to understand its CPU and memory requirements.

An inference configuration describes how to set up the web-service containing your model. It's used

later, when you deploy the model.

Inference configuration uses Azure Machine Learning environments to define the software

dependencies needed for your deployment. Environments allow you to create, manage, and reuse the

software dependencies required for training and deployment. You can create an environment from

custom dependency files or use one of the curated Azure Machine Learning environments. The

following YAML is an example of a Conda dependencies file for inference. Note that you must indicate

azureml-defaults with verion >= 1.0.45 as a pip dependency, because it contains the functionality

needed to host the model as a web service. If you want to use automatic schema generation, your

entry script must also import the inference-schema packages.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment/deploy-multi-model

name: project_environment
dependencies:
 - python=3.6.2
 - scikit-learn=0.20.0
 - pip:
 # You must list azureml-defaults as a pip dependency
 - azureml-defaults>=1.0.45
 - inference-schema[numpy-support]

IMPORTANT

from azureml.core.environment import Environment
myenv = Environment.from_conda_specification(name = 'myenv',
 file_path = 'path-to-conda-specification-file'
myenv.register(workspace=ws)

2. Define scoring code

Load model files in your entry script

A Z U R E M L _ M O D E L _ D I R

If your dependency is available through both Conda and pip (from PyPi), Microsoft recommends using the

Conda version, as Conda packages typically come with pre-built binaries that make installation more reliable.

For more information, see Understanding Conda and Pip.

To check if your dependency is available through Conda, use the conda search <package-name> command,

or use the package indexes at https://anaconda.org/anaconda/repo and https://anaconda.org/conda-

forge/repo.

You can use the dependencies file to create an environment object and save it to your workspace for

future use:

The entry script receives data submitted to a deployed web service and passes it to the model. It then

takes the response returned by the model and returns that to the client. The script is specific to your

model. It must understand the data that the model expects and returns.

The script contains two functions that load and run the model:

init() : Typically, this function loads the model into a global object. This function is run only

once, when the Docker container for your web service is started.

run(input_data) : This function uses the model to predict a value based on the input data. Inputs

and outputs of the run typically use JSON for serialization and deserialization. You can also work

with raw binary data. You can transform the data before sending it to the model or before

returning it to the client.

There are two ways to locate models in your entry script:

AZUREML_MODEL_DIR : An environment variable containing the path to the model location.

Model.get_model_path : An API that returns the path to model file using the registered model name.

AZUREML_MODEL_DIR is an environment variable created during service deployment. You can use

this environment variable to find the location of the deployed model(s).

The following table describes the value of AZUREML_MODEL_DIR depending on the number of

models deployed:

https://www.anaconda.com/understanding-conda-and-pip/
https://anaconda.org/anaconda/repo
https://anaconda.org/conda-forge/repo

DEP LO Y M EN T EN VIRO N M EN T VA RIA B L E VA L UE

Single model The path to the folder containing the model.

Multiple models The path to the folder containing all models. Models
are located by name and version in this folder (
$MODEL_NAME/$VERSION)

Example when the model is a file
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_regression_model.pkl')

Example when the model is a folder containing a file
file_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'my_model_folder',
'sklearn_regression_model.pkl')

Example when the model is a file, and the deployment contains multiple models
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_model', '1',
'sklearn_regression_model.pkl')

g e t _ m o d e l _ p a t h

(Optional) Define model web service schema

During model registration and deployment, Models are placed in the AZUREML_MODEL_DIR path, and

their original filenames are preserved.

To get the path to a model file in your entry script, combine the environment variable with the file path

you're looking for.

S ingle model example

Multiple model example

When you register a model, you provide a model name that's used for managing the model in the

registry. You use this name with the Model.get_model_path() method to retrieve the path of the model

file or files on the local file system. If you register a folder or a collection of files, this API returns the

path of the directory that contains those files.

When you register a model, you give it a name. The name corresponds to where the model is placed,

either locally or during service deployment.

To automatically generate a schema for your web service, provide a sample of the input and/or output

in the constructor for one of the defined type objects. The type and sample are used to automatically

create the schema. Azure Machine Learning then creates an OpenAPI (Swagger) specification for the

web service during deployment.

These types are currently supported:

pandas

numpy

pyspark

Standard Python object

To use schema generation, include the open-source inference-schema package in your dependencies

file. For more information on this package, see https://github.com/Azure/InferenceSchema. Define the

input and output sample formats in the input_sample and output_sample variables, which represent

the request and response formats for the web service. Use these samples in the input and output

function decorators on the run() function. The following scikit-learn example uses schema

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#get-model-path-model-name--version-none---workspace-none-
https://swagger.io/docs/specification/about/
https://github.com/Azure/InferenceSchema

Ex a m p l e e n t r y sc r i p t

#Example: scikit-learn and Swagger
import json
import numpy as np
import os
from sklearn.externals import joblib
from sklearn.linear_model import Ridge

from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType

def init():
 global model
 # AZUREML_MODEL_DIR is an environment variable created during deployment. Join this path with
the filename of the model file.
 # It holds the path to the directory that contains the deployed model (./azureml-
models/$MODEL_NAME/$VERSION).
 # If there are multiple models, this value is the path to the directory containing all
deployed models (./azureml-models).
 # Alternatively: model_path = Model.get_model_path('sklearn_mnist')
 model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'sklearn_mnist_model.pkl')
 # Deserialize the model file back into a sklearn model
 model = joblib.load(model_path)

input_sample = np.array([[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]])
output_sample = np.array([3726.995])

@input_schema('data', NumpyParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
 try:
 result = model.predict(data)
 # You can return any data type, as long as it is JSON serializable.
 return result.tolist()
 except Exception as e:
 error = str(e)
 return error

generation.

The following example demonstrates how to accept and return JSON data:

The following example demonstrates how to define the input data as a <key: value> dictionary by

using a DataFrame. This method is supported for consuming the deployed web service from Power BI.

(Learn more about how to consume the web service from Power BI.)

https://docs.microsoft.com/power-bi/service-machine-learning-integration

import json
import pickle
import numpy as np
import pandas as pd
import azureml.train.automl
from sklearn.externals import joblib
from azureml.core.model import Model

from inference_schema.schema_decorators import input_schema, output_schema
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
from inference_schema.parameter_types.pandas_parameter_type import PandasParameterType

def init():
 global model
 # Replace filename if needed.
 model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model_file.pkl')
 # Deserialize the model file back into a sklearn model.
 model = joblib.load(model_path)

input_sample = pd.DataFrame(data=[{
 # This is a decimal type sample. Use the data type that reflects this column in your data.
 "input_name_1": 5.1,
 # This is a string type sample. Use the data type that reflects this column in your data.
 "input_name_2": "value2",
 # This is an integer type sample. Use the data type that reflects this column in your data.
 "input_name_3": 3
}])

This is an integer type sample. Use the data type that reflects the expected result.
output_sample = np.array([0])

@input_schema('data', PandasParameterType(input_sample))
@output_schema(NumpyParameterType(output_sample))
def run(data):
 try:
 result = model.predict(data)
 # You can return any data type, as long as it is JSON serializable.
 return result.tolist()
 except Exception as e:
 error = str(e)
 return error

3. Define inference configuration

For more examples, see the following scripts:

PyTorch

TensorFlow

Keras

AutoML

ONNX

Binary Data

CORS

The following example demonstrates loading an environment from your workspace and then using it

with the inference configuration:

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/pytorch
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-keras
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/onnx/

from azureml.core.environment import Environment
from azureml.core.model import InferenceConfig

myenv = Environment.get(workspace=ws, name='myenv', version='1')
inference_config = InferenceConfig(entry_script='path-to-score.py',
 environment=myenv)

CLI example of InferenceConfig

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

entryScript entry_script Path to a local file that contains the
code to run for the image.

sourceDirectory source_directory Optional. Path to folders that
contain all files to create the image,
which makes it easy to access any
files within this folder or subfolder.
You can upload an entire folder
from your local machine as
dependencies for the Webservice.
Note: your entry_script, conda_file,
and extra_docker_file_steps paths
are relative paths to the
source_directory path.

environment environment Optional. Azure Machine Learning
environment.

For more information on environments, see Create and manage environments for training and

deployment.

For more information on inference configuration, see the InferenceConfig class documentation.

For information on using a custom Docker image with an inference configuration, see How to deploy a

model using a custom Docker image.

The entries in the inferenceconfig.json document map to the parameters for the InferenceConfig

class. The following table describes the mapping between entities in the JSON document and the

parameters for the method:

You can include full specifications of an Azure Machine Learning environment in the inference

configuration file. If this environment doesn't exist in your workspace, Azure Machine Learning will

create it. Otherwise, Azure Machine Learning will update the environment if necessary. The following

JSON is an example:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

{
 "entryScript": "score.py",
 "environment": {
 "docker": {
 "arguments": [],
 "baseDockerfile": null,
 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
 "enabled": false,
 "sharedVolumes": true,
 "shmSize": null
 },
 "environmentVariables": {
 "EXAMPLE_ENV_VAR": "EXAMPLE_VALUE"
 },
 "name": "my-deploy-env",
 "python": {
 "baseCondaEnvironment": null,
 "condaDependencies": {
 "channels": [
 "conda-forge"
],
 "dependencies": [
 "python=3.6.2",
 {
 "pip": [
 "azureml-defaults",
 "azureml-telemetry",
 "scikit-learn",
 "inference-schema[numpy-support]"
]
 }
],
 "name": "project_environment"
 },
 "condaDependenciesFile": null,
 "interpreterPath": "python",
 "userManagedDependencies": false
 },
 "version": "1"
 }
}

{
 "entryScript": "score.py",
 "sourceDirectory": null
}

az ml model deploy -m mymodel:1 --ic myInferenceConfig.json -e AzureML-Minimal --dc
deploymentconfig.json

You can also use an existing Azure Machine Learning environment in separated CLI parameters and

remove the "environment" key from the inference configuration file. Use -e for the environment name,

and --ev for the environment version. If you don't specify --ev, the latest version will be used. Here is

an example of an inference configuration file:

The following command demonstrates how to deploy a model using the previous inference

configuration file (named myInferenceConfig.json).

It also uses the latest version of an existing Azure Machine Learning environment (named AzureML-

Minimal).

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

az ml model deploy -n myservice -m mymodel:1 --ic inferenceconfig.json

4. (Optional) Profile your model to determine resource utilization

IMPORTANT

The following command demonstrates how to deploy a model by using the CLI:

In this example, the configuration specifies the following settings:

That the model requires Python.

The entry script, which is used to handle web requests sent to the deployed service.

The Conda file that describes the Python packages needed for inference.

For information on using a custom Docker image with an inference configuration, see How to deploy a

model using a custom Docker image.

Once you have registered your model and prepared the other components necessary for its

deployment, you can determine the CPU and memory the deployed service will need. Profiling tests

the service that runs your model and returns information such as the CPU usage, memory usage, and

response latency. It also provides a recommendation for the CPU and memory based on resource

usage.

In order to profile your model, you will need:

A registered model.

An inference configuration based on your entry script and inference environment definition.

A single column tabular dataset, where each row contains a string representing sample request

data.

At this point we only support profiling of services that expect their request data to be a string, for example:

string serialized json, text, string serialized image, etc. The content of each row of the dataset (string) will be put

into the body of the HTTP request and sent to the service encapsulating the model for scoring.

Below is an example of how you can construct an input dataset to profile a service that expects its

incoming request data to contain serialized json. In this case, we created a dataset based one hundred

instances of the same request data content. In real world scenarios we suggest that you use larger

datasets containing various inputs, especially if your model resource usage/behavior is input

dependent.

import json
from azureml.core import Datastore
from azureml.core.dataset import Dataset
from azureml.data import dataset_type_definitions

input_json = {'data': [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]}
create a string that can be utf-8 encoded and
put in the body of the request
serialized_input_json = json.dumps(input_json)
dataset_content = []
for i in range(100):
 dataset_content.append(serialized_input_json)
dataset_content = '\n'.join(dataset_content)
file_name = 'sample_request_data.txt'
f = open(file_name, 'w')
f.write(dataset_content)
f.close()

upload the txt file created above to the Datastore and create a dataset from it
data_store = Datastore.get_default(ws)
data_store.upload_files(['./' + file_name], target_path='sample_request_data')
datastore_path = [(data_store, 'sample_request_data' +'/' + file_name)]
sample_request_data = Dataset.Tabular.from_delimited_files(
 datastore_path, separator='\n',
 infer_column_types=True,
 header=dataset_type_definitions.PromoteHeadersBehavior.NO_HEADERS)
sample_request_data = sample_request_data.register(workspace=ws,
 name='sample_request_data',
 create_new_version=True)

from azureml.core.model import InferenceConfig, Model
from azureml.core.dataset import Dataset

model = Model(ws, id=model_id)
inference_config = InferenceConfig(entry_script='path-to-score.py',
 environment=myenv)
input_dataset = Dataset.get_by_name(workspace=ws, name='sample_request_data')
profile = Model.profile(ws,
 'unique_name',
 [model],
 inference_config,
 input_dataset=input_dataset)

profile.wait_for_completion(True)

see the result
details = profile.get_details()

az ml model profile -g <resource-group-name> -w <workspace-name> --inference-config-file <path-to-
inf-config.json> -m <model-id> --idi <input-dataset-id> -n <unique-name>

Once you have the dataset containing sample request data ready, create an inference configuration.

Inference configuration is based on the score.py and the environment definition. The following

example demonstrates how to create the inference configuration and run profiling:

The following command demonstrates how to profile a model by using the CLI:

TIP

model.add_tags({'requestedCpu': details['requestedCpu'],
 'requestedMemoryInGb': details['requestedMemoryInGb']})

az ml model profile -g <resource-group-name> -w <workspace-name> --i <model-id> --add-tag
requestedCpu=1 --add-tag requestedMemoryInGb=0.5

Deploy to target

Choose a compute target

C O M P UT E TA RGET USED F O R GP U SUP P O RT F P GA SUP P O RT DESC RIP T IO N

Local web service Testing/debugging Use for limited
testing and
troubleshooting.
Hardware
acceleration
depends on use of
libraries in the local
system.

Azure Machine
Learning compute
instance web servic
e

Testing/debugging Use for limited
testing and
troubleshooting.

To persist the information returned by profiling, use tags or properties for the model. Using tags or properties

stores the data with the model in the model registry. The following examples demonstrate adding a new tag

containing the requestedCpu and requestedMemoryInGb information:

Deployment uses the inference configuration deployment configuration to deploy the models. The

deployment process is similar regardless of the compute target. Deploying to AKS is slightly different

because you must provide a reference to the AKS cluster.

You can use the following compute targets, or compute resources, to host your web service

deployment:

Azure Kubernetes
Service (AKS)

Real-time inference Yes (web service
deployment)

Yes Use for high-scale
production
deployments.
Provides fast
response time and
autoscaling of the
deployed service.
Cluster autoscaling
isn't supported
through the Azure
Machine Learning
SDK. To change the
nodes in the AKS
cluster, use the UI
for your AKS
cluster in the Azure
portal. AKS is the
only option
available for the
designer.

Azure Container
Instances

Testing or
development

 Use for low-scale
CPU-based
workloads that
require less than
48 GB of RAM.

Azure Machine
Learning compute
clusters

(Preview)
Batch inference

Yes (machine
learning pipeline)

 Run batch scoring
on serverless
compute. Supports
normal and low-
priority VMs.

Azure Functions (Preview) Real-time
inference

Azure IoT Edge (Preview)
IoT module

 Deploy and serve
ML models on IoT
devices.

Azure Data Box
Edge

Via IoT Edge Yes Deploy and serve
ML models on IoT
devices.

C O M P UT E TA RGET USED F O R GP U SUP P O RT F P GA SUP P O RT DESC RIP T IO N

NOTE

Define your deployment configuration

Although compute targets like local, Azure Machine Learning compute instance, and Azure Machine Learning

compute clusters support GPU for training and experimentation, using GPU for inference when deployed as

a web ser vice is supported only on Azure Kubernetes Service.

Using a GPU for inference when scoring with a machine learning pipeline is supported only on Azure

Machine Learning Compute.

Before deploying your model, you must define the deployment configuration. The deployment

configuration is specific to the compute target that will host the web service. For example, when you

https://docs.microsoft.com/en-us/azure/databox-online/data-box-edge-overview

C O M P UT E TA RGET DEP LO Y M EN T C O N F IGURAT IO N EXA M P L E

Local deployment_config =
LocalWebservice.deploy_configuration(port=8890)

Azure Container Instances deployment_config =
AciWebservice.deploy_configuration(cpu_cores =
1, memory_gb = 1)

Azure Kubernetes Service deployment_config =
AksWebservice.deploy_configuration(cpu_cores =
1, memory_gb = 1)

from azureml.core.webservice import AciWebservice, AksWebservice, LocalWebservice

Securing deployments with TLS

Local deployment

Using the SDK

from azureml.core.webservice import LocalWebservice, Webservice

deployment_config = LocalWebservice.deploy_configuration(port=8890)
service = Model.deploy(ws, "myservice", [model], inference_config, deployment_config)
service.wait_for_deployment(show_output = True)
print(service.state)

Using the CLI

az ml model deploy -m mymodel:1 --ic inferenceconfig.json --dc deploymentconfig.json

deploy a model locally, you must specify the port where the service accepts requests. The deployment

configuration isn't part of your entry script. It's used to define the characteristics of the compute target

that will host the model and entry script.

You might also need to create the compute resource, if, for example, you don't already have an Azure

Kubernetes Service (AKS) instance associated with your workspace.

The following table provides an example of creating a deployment configuration for each compute

target:

The classes for local, Azure Container Instances, and AKS web services can be imported from

azureml.core.webservice :

For more information on how to secure a web service deployment, see Enable TLS and deploy.

To deploy a model locally, you need to have Docker installed on your local machine.

For more information, see the documentation for LocalWebservice, Model.deploy(), and Webservice.

To deploy a model by using the CLI, use the following command. Replace mymodel:1 with the name

and version of the registered model:

The entries in the deploymentconfig.json document map to the parameters for

LocalWebservice.deploy_configuration. The following table describes the mapping between the entities

in the JSON document and the parameters for the method:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.local.localwebservice?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.webservice?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.local.localwebservicedeploymentconfiguration?view=azure-ml-py

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For local
targets, the value must be local .

port port The local port on which to expose
the service's HTTP endpoint.

{
 "computeType": "local",
 "port": 32267
}

Understanding service state

W EB SERVIC E STAT E DESC RIP T IO N F IN A L STAT E?

Transitioning The service is in the process of
deployment.

No

Unhealthy The service has deployed but is
currently unreachable.

No

Unschedulable The service cannot be deployed at
this time due to lack of resources.

No

Failed The service has failed to deploy
due to an error or crash.

Yes

Healthy The service is healthy and the
endpoint is available.

Yes

Compute instance web service (dev/test)

Azure Container Instances (dev/test)

Azure Kubernetes Service (dev/test and production)

A/B Testing (controlled rollout)

Consume web services

This JSON is an example deployment configuration for use with the CLI:

For more information, see the az ml model deploy documentation.

During model deployment, you may see the service state change while it fully deploys.

The following table describes the different service states:

See Deploy a model to Azure Machine Learning compute instance.

See Deploy to Azure Container Instances.

See Deploy to Azure Kubernetes Service.

See Controlled rollout of ML models for more information.

Every deployed web service provides a REST endpoint, so you can create client applications in any

programming language. If you've enabled key-based authentication for your service, you need to

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-deploy

TIP

Request-response consumption

import requests
import json

headers = {'Content-Type': 'application/json'}

if service.auth_enabled:
 headers['Authorization'] = 'Bearer '+service.get_keys()[0]
elif service.token_auth_enabled:
 headers['Authorization'] = 'Bearer '+service.get_token()[0]

print(headers)

test_sample = json.dumps({'data': [
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
]})

response = requests.post(
 service.scoring_uri, data=test_sample, headers=headers)
print(response.status_code)
print(response.elapsed)
print(response.json())

Web service schema (OpenAPI specification)

{
 "swagger": "2.0",
 "info": {
 "title": "myservice",
 "description": "API specification for Azure Machine Learning myservice",
 "version": "1.0"

provide a service key as a token in your request header. If you've enabled token-based authentication

for your service, you need to provide an Azure Machine Learning JSON Web Token (JWT) as a bearer

token in your request header.

The primary difference is that keys are static and can be regenerated manually , and tokens

need to be refreshed upon expiration. Key-based auth is supported for Azure Container Instance

and Azure Kubernetes Service deployed web-services, and token-based auth is only available for

Azure Kubernetes Service deployments. See the how-to on authentication for more information and

specific code samples.

You can retrieve the schema JSON document after you deploy the service. Use the swagger_uri property from

the deployed web service (for example, service.swagger_uri) to get the URI to the local web service's

Swagger file.

Here's an example of how to invoke your service in Python:

For more information, see Create client applications to consume web services.

If you used automatic schema generation with your deployment, you can get the address of the

OpenAPI specification for the service by using the swagger_uri property. (For example,

print(service.swagger_uri) .) Use a GET request or open the URI in a browser to retrieve the

specification.

The following JSON document is an example of a schema (OpenAPI specification) generated for a

deployment:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.local.localwebservice?view=azure-ml-py#swagger-uri
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.local.localwebservice?view=azure-ml-py#swagger-uri

 },
 "schemes": [
 "https"
],
 "consumes": [
 "application/json"
],
 "produces": [
 "application/json"
],
 "securityDefinitions": {
 "Bearer": {
 "type": "apiKey",
 "name": "Authorization",
 "in": "header",
 "description": "For example: Bearer abc123"
 }
 },
 "paths": {
 "/": {
 "get": {
 "operationId": "ServiceHealthCheck",
 "description": "Simple health check endpoint to ensure the service is up at any
given point.",
 "responses": {
 "200": {
 "description": "If service is up and running, this response will be
returned with the content 'Healthy'",
 "schema": {
 "type": "string"
 },
 "examples": {
 "application/json": "Healthy"
 }
 },
 "default": {
 "description": "The service failed to execute due to an error.",
 "schema": {
 "$ref": "#/definitions/ErrorResponse"
 }
 }
 }
 }
 },
 "/score": {
 "post": {
 "operationId": "RunMLService",
 "description": "Run web service's model and get the prediction output",
 "security": [
 {
 "Bearer": []
 }
],
 "parameters": [
 {
 "name": "serviceInputPayload",
 "in": "body",
 "description": "The input payload for executing the real-time machine
learning service.",
 "schema": {
 "$ref": "#/definitions/ServiceInput"
 }
 }
],
 "responses": {
 "200": {
 "description": "The service processed the input correctly and provided a
result prediction, if applicable.",
 "schema": {

 "$ref": "#/definitions/ServiceOutput"
 }
 },
 "default": {
 "description": "The service failed to execute due to an error.",
 "schema": {
 "$ref": "#/definitions/ErrorResponse"
 }
 }
 }
 }
 }
 },
 "definitions": {
 "ServiceInput": {
 "type": "object",
 "properties": {
 "data": {
 "type": "array",
 "items": {
 "type": "array",
 "items": {
 "type": "integer",
 "format": "int64"
 }
 }
 }
 },
 "example": {
 "data": [
 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
]
 }
 },
 "ServiceOutput": {
 "type": "array",
 "items": {
 "type": "number",
 "format": "double"
 },
 "example": [
 3726.995
]
 },
 "ErrorResponse": {
 "type": "object",
 "properties": {
 "status_code": {
 "type": "integer",
 "format": "int32"
 },
 "message": {
 "type": "string"
 }
 }
 }
 }
}

Batch inference

For more information, see OpenAPI specification.

For a utility that can create client libraries from the specification, see swagger-codegen.

Azure Machine Learning Compute targets are created and managed by Azure Machine Learning. They

can be used for batch prediction from Azure Machine Learning pipelines.

https://swagger.io/specification/
https://github.com/swagger-api/swagger-codegen

IoT Edge inference

Update web services

IMPORTANT

from azureml.core import Environment
from azureml.core.webservice import Webservice
from azureml.core.model import Model, InferenceConfig

Register new model.
new_model = Model.register(model_path="outputs/sklearn_mnist_model.pkl",
 model_name="sklearn_mnist",
 tags={"key": "0.1"},
 description="test",
 workspace=ws)

Use version 3 of the environment.
deploy_env = Environment.get(workspace=ws,name="myenv",version="3")
inference_config = InferenceConfig(entry_script="score.py",
 environment=deploy_env)

service_name = 'myservice'
Retrieve existing service.
service = Webservice(name=service_name, workspace=ws)

Update to new model(s).
service.update(models=[new_model], inference_config=inference_config)
print(service.state)
print(service.get_logs())

az ml model register -n sklearn_mnist --asset-path outputs/sklearn_mnist_model.pkl --experiment-
name myexperiment --output-metadata-file modelinfo.json
az ml service update -n myservice --model-metadata-file modelinfo.json

For a walkthrough of batch inference with Azure Machine Learning Compute, see How to run batch

predictions.

Support for deploying to the edge is in preview. For more information, see Deploy Azure Machine

Learning as an IoT Edge module.

To update a web service, use the update method. You can update the web service to use a new model,

a new entry script, or new dependencies that can be specified in an inference configuration. For more

information, see the documentation for Webservice.update.

When you create a new version of a model, you must manually update each service that you want to use it.

You can not use the SDK to update a web service published from the Azure Machine Learning designer.

Using the SDK

The following code shows how to use the SDK to update the model, environment, and entry script for a

web service:

Using the CLI

You can also update a web service by using the ML CLI. The following example demonstrates

registering a new model and then updating a web service to use the new model:

https://docs.microsoft.com/azure/iot-edge/tutorial-deploy-machine-learning
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.webservice.webservice?view=azure-ml-py#update--args-

TIP

Continuously deploy models

In this example, a JSON document is used to pass the model information from the registration command into

the update command.

To update the service to use a new entry script or environment, create an inference configuration file and

specify it with the ic parameter.

For more information, see the az ml service update documentation.

You can continuously deploy models by using the Machine Learning extension for Azure DevOps. You

can use the Machine Learning extension for Azure DevOps to trigger a deployment pipeline when a

new machine learning model is registered in an Azure Machine Learning workspace.

1. Sign up for Azure Pipelines, which makes continuous integration and delivery of your

application to any platform or cloud possible. (Note that Azure Pipelines isn't the same as

Machine Learning pipelines.)

2. Create an Azure DevOps project.

3. Install the Machine Learning extension for Azure Pipelines.

4. Use service connections to set up a service principal connection to your Azure Machine

Learning workspace so you can access your artifacts. Go to project settings, select Ser vice

connections , and then select Azure Resource Manager :

5. In the Scope level list, select AzureMLWorkspace, and then enter the rest of the values:

https://docs.microsoft.com/azure/machine-learning/service/reference-azure-machine-learning-cli#inference-configuration-schema
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/service?view=azure-cli-latest#ext-azure-cli-ml-az-ml-service-update
https://azure.microsoft.com/services/devops/
https://docs.microsoft.com/azure/devops/pipelines/get-started/pipelines-sign-up?view=azure-devops
https://docs.microsoft.com/azure/devops/organizations/projects/create-project?view=azure-devops
https://marketplace.visualstudio.com/items?itemName=ms-air-aiagility.vss-services-azureml&targetId=6756afbe-7032-4a36-9cb6-2771710cadc2&utm_source=vstsproduct&utm_medium=ExtHubManageList
file:///T:/i2pk/machine-learning/media/how-to-deploy-and-where/view-service-connection-expanded.png

6. To continuously deploy your machine learning model by using Azure Pipelines, under pipelines,

select release. Add a new artifact, and then select the AzureML Model artifact and the service

connection that you created earlier. Select the model and version to trigger a deployment:

7. Enable the model trigger on your model artifact. When you turn on the trigger, every time the

specified version (that is, the newest version) of that model is registered in your workspace, an

Azure DevOps release pipeline is triggered.

file:///T:/i2pk/machine-learning/media/how-to-deploy-and-where/enable-modeltrigger-artifact-expanded.png

Download a model

model_path = Model(ws,'mymodel').download()

az ml model download --model-id mymodel:1 --target-dir model_folder

(Preview) No-code model deployment

Tensorflow SavedModel format

For more sample projects and examples, see these sample repos in GitHub:

Microsoft/MLOps

Microsoft/MLOpsPython

If you want to download your model to use it in your own execution environment, you can do so with

the following SDK / CLI commands:

SDK:

CLI:

No-code model deployment is currently in preview and supports the following machine learning

frameworks:

Tensorflow models need to be registered in SavedModel format to work with no-code model

deployment.

Please see this link for information on how to create a SavedModel.

file:///T:/i2pk/machine-learning/media/how-to-deploy-and-where/set-modeltrigger-expanded.png
https://github.com/Microsoft/MLOps
https://github.com/microsoft/MLOpsPython
https://www.tensorflow.org/guide/saved_model

from azureml.core import Model

model = Model.register(workspace=ws,
 model_name='flowers', # Name of the registered model
in your workspace.
 model_path='./flowers_model', # Local Tensorflow SavedModel
folder to upload and register as a model.
 model_framework=Model.Framework.TENSORFLOW, # Framework used to create the
model.
 model_framework_version='1.14.0', # Version of Tensorflow used
to create the model.
 description='Flowers model')

service_name = 'tensorflow-flower-service'
service = Model.deploy(ws, service_name, [model])

ONNX models

from azureml.core import Model

model = Model.register(workspace=ws,
 model_name='mnist-sample', # Name of the registered model
in your workspace.
 model_path='mnist-model.onnx', # Local ONNX model to upload
and register as a model.
 model_framework=Model.Framework.ONNX , # Framework used to create the
model.
 model_framework_version='1.3', # Version of ONNX used to
create the model.
 description='Onnx MNIST model')

service_name = 'onnx-mnist-service'
service = Model.deploy(ws, service_name, [model])

Scikit-learn models

ONNX model registration and deployment is supported for any ONNX inference graph. Preprocess

and postprocess steps are not currently supported.

Here is an example of how to register and deploy an MNIST ONNX model:

If you're using Pytorch, Exporting models from PyTorch to ONNX has the details on conversion and

limitations.

No code model deployment is supported for all built-in scikit-learn model types.

Here is an example of how to register and deploy a sklearn model with no extra code:

https://github.com/onnx/tutorials/blob/master/tutorials/PytorchOnnxExport.ipynb

from azureml.core import Model
from azureml.core.resource_configuration import ResourceConfiguration

model = Model.register(workspace=ws,
 model_name='my-sklearn-model', # Name of the registered
model in your workspace.
 model_path='./sklearn_regression_model.pkl', # Local file to upload and
register as a model.
 model_framework=Model.Framework.SCIKITLEARN, # Framework used to create
the model.
 model_framework_version='0.19.1', # Version of scikit-learn
used to create the model.
 resource_configuration=ResourceConfiguration(cpu=1, memory_in_gb=0.5),
 description='Ridge regression model to predict diabetes progression.',
 tags={'area': 'diabetes', 'type': 'regression'})

service_name = 'my-sklearn-service'
service = Model.deploy(ws, service_name, [model])

import json

input_payload = json.dumps({
 'data': [
 [0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235,
 -0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613]
],
 'method': 'predict' # If you have a classification model, the default behavior is to run
'predict_proba'.
})

output = service.run(input_payload)

print(output)

 - azureml-defaults
 - inference-schema[numpy-support]
 - scikit-learn
 - numpy

Package models

NOTE: Models which support predict_proba will use that method by default. To override this to use

predict you can modify the POST body as below:

NOTE: These dependencies are included in the prebuilt sklearn inference container :

In some cases, you might want to create a Docker image without deploying the model (if, for example,

you plan to deploy to Azure App Service). Or you might want to download the image and run it on a

local Docker installation. You might even want to download the files used to build the image, inspect

them, modify them, and build the image manually.

Model packaging enables you to do these things. It packages all the assets needed to host a model as a

web service and allows you to download either a fully built Docker image or the files needed to build

one. There are two ways to use model packaging:

Download a packaged model: Download a Docker image that contains the model and other files

needed to host it as a web service.

TIP

IMPORTANT

Download a packaged model

package = Model.package(ws, [model], inference_config)
package.wait_for_creation(show_output=True)

REPOSITORY TAG IMAGE ID CREATED
SIZE
myworkspacef78fd10.azurecr.io/package 20190822181338 7ff48015d5bd 4 minutes ago
1.43 GB

docker run -p 6789:5001 --name mycontainer <imageid>

Generate a Dockerfile and dependencies

Generate a Dockerfile: Download the Dockerfile, model, entry script, and other assets needed to

build a Docker image. You can then inspect the files or make changes before you build the image

locally.

Both packages can be used to get a local Docker image.

Creating a package is similar to deploying a model. You use a registered model and an inference configuration.

To download a fully built image or build an image locally, you need to have Docker installed in your

development environment.

The following example builds an image, which is registered in the Azure container registry for your

workspace:

After you create a package, you can use package.pull() to pull the image to your local Docker

environment. The output of this command will display the name of the image. For example:

Status: Downloaded newer image for myworkspacef78fd10.azurecr.io/package:20190822181338 .

After you download the model, use the docker images command to list the local images:

To start a local container based on this image, use the following command to start a named container

from the shell or command line. Replace the <imageid> value with the image ID returned by the

docker images command.

This command starts the latest version of the image named myimage . It maps local port 6789 to the

port in the container on which the web service is listening (5001). It also assigns the name

mycontainer to the container, which makes the container easier to stop. After the container is started,

you can submit requests to http://localhost:6789/score .

The following example shows how to download the Dockerfile, model, and other assets needed to

build an image locally. The generate_dockerfile=True parameter indicates that you want the files, not a

fully built image.

https://www.docker.com

package = Model.package(ws, [model], inference_config, generate_dockerfile=True)
package.wait_for_creation(show_output=True)
Download the package.
package.save("./imagefiles")
Get the Azure container registry that the model/Dockerfile uses.
acr=package.get_container_registry()
print("Address:", acr.address)
print("Username:", acr.username)
print("Password:", acr.password)

REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 2d5ee0bf3b3b 49 seconds ago 1.43 GB
myimage latest 739f22498d64 3 minutes ago 1.43 GB

docker run -p 6789:5001 --name mycontainer myimage:latest

Example client to test the local container

This code downloads the files needed to build the image to the imagefiles directory. The Dockerfile

included in the saved files references a base image stored in an Azure container registry. When you

build the image on your local Docker installation, you need to use the address, user name, and

password to authenticate to the registry. Use the following steps to build the image by using a local

Docker installation:

docker login <address> -u <username> -p <password>

docker build --tag myimage <imagefiles>

1. From a shell or command-line session, use the following command to authenticate Docker with

the Azure container registry. Replace <address> , <username> , and <password> with the values

retrieved by package.get_container_registry() .

2. To build the image, use the following command. Replace <imagefiles> with the path of the

directory where package.save() saved the files.

This command sets the image name to myimage .

To verify that the image is built, use the docker images command. You should see the myimage image

in the list:

To start a new container based on this image, use the following command:

This command starts the latest version of the image named myimage . It maps local port 6789 to the

port in the container on which the web service is listening (5001). It also assigns the name

mycontainer to the container, which makes the container easier to stop. After the container is started,

you can submit requests to http://localhost:6789/score .

The following code is an example of a Python client that can be used with the container :

import requests
import json

URL for the web service.
scoring_uri = 'http://localhost:6789/score'

Two sets of data to score, so we get two results back.
data = {"data":
 [
 [1,2,3,4,5,6,7,8,9,10],
 [10,9,8,7,6,5,4,3,2,1]
]
 }
Convert to JSON string.
input_data = json.dumps(data)

Set the content type.
headers = {'Content-Type': 'application/json'}

Make the request and display the response.
resp = requests.post(scoring_uri, input_data, headers=headers)
print(resp.text)

Stop the Docker container

docker kill mycontainer

Clean up resources

Advanced entry script authoring
Binary data

For example clients in other programming languages, see Consume models deployed as web services.

To stop the container, use the following command from a different shell or command line:

To delete a deployed web service, use service.delete() . To delete a registered model, use

model.delete() .

For more information, see the documentation for WebService.delete() and Model.delete().

If your model accepts binary data, like an image, you must modify the score.py file used for your

deployment to accept raw HTTP requests. To accept raw data, use the AMLRequest class in your entry

script and add the @rawhttp decorator to the run() function.

Here's an example of a score.py that accepts binary data:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py#delete--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#delete--

from azureml.contrib.services.aml_request import AMLRequest, rawhttp
from azureml.contrib.services.aml_response import AMLResponse

def init():
 print("This is init()")

@rawhttp
def run(request):
 print("This is run()")
 print("Request: [{0}]".format(request))
 if request.method == 'GET':
 # For this example, just return the URL for GETs.
 respBody = str.encode(request.full_path)
 return AMLResponse(respBody, 200)
 elif request.method == 'POST':
 reqBody = request.get_data(False)
 # For a real-world solution, you would load the data from reqBody
 # and send it to the model. Then return the response.

 # For demonstration purposes, this example just returns the posted data as the response.
 return AMLResponse(reqBody, 200)
 else:
 return AMLResponse("bad request", 500)

IMPORTANT

pip install azureml-contrib-services

import requests
Load image data
data = open('example.jpg', 'rb').read()
Post raw data to scoring URI
res = request.post(url='<scoring-uri>', data=data, headers={'Content-Type': 'application/octet-
stream'})

Cross-origin resource sharing (CORS)

The AMLRequest class is in the azureml.contrib namespace. Entities in this namespace change frequently as

we work to improve the service. Anything in this namespace should be considered a preview that's not fully

supported by Microsoft.

If you need to test this in your local development environment, you can install the components by using the

following command:

The AMLRequest class only allows you to access the raw posted data in the score.py, there is no client-

side component. From a client, you post data as normal. For example, the following Python code reads

an image file and posts the data:

Cross-origin resource sharing is a way to allow resources on a webpage to be requested from another

domain. CORS works via HTTP headers sent with the client request and returned with the service

response. For more information on CORS and valid headers, see Cross-origin resource sharing in

Wikipedia.

To configure your model deployment to support CORS, use the AMLResponse class in your entry script.

This class allows you to set the headers on the response object.

The following example sets the Access-Control-Allow-Origin header for the response from the entry

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

from azureml.contrib.services.aml_response import AMLResponse

def init():
 print("This is init()")

def run(request):
 print("This is run()")
 print("Request: [{0}]".format(request))
 if request.method == 'GET':
 # For this example, just return the URL for GETs.
 respBody = str.encode(request.full_path)
 return AMLResponse(respBody, 200)
 elif request.method == 'POST':
 reqBody = request.get_data(False)
 # For a real-world solution, you would load the data from reqBody
 # and send it to the model. Then return the response.

 # For demonstration purposes, this example
 # adds a header and returns the request body.
 resp = AMLResponse(reqBody, 200)
 resp.headers['Access-Control-Allow-Origin'] = "http://www.example.com"
 return resp
 else:
 return AMLResponse("bad request", 500)

IMPORTANT

pip install azureml-contrib-services

WARNING

Next steps

script:

The AMLResponse class is in the azureml.contrib namespace. Entities in this namespace change frequently

as we work to improve the service. Anything in this namespace should be considered a preview that's not fully

supported by Microsoft.

If you need to test this in your local development environment, you can install the components by using the

following command:

Azure Machine Learning will route only POST and GET requests to the containers running the scoring service.

This can cause errors due to browsers using OPTIONS requests to pre-flight CORS requests.

How to deploy a model using a custom Docker image

Deployment troubleshooting

Use TLS to secure a web service through Azure Machine Learning

Consume an Azure Machine Learning model deployed as a web service

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

Create event alerts and triggers for model deployments

Deploy a model to Azure Machine Learning compute
instances
4/6/2020 • 2 minutes to read • Edit Online

TIP

Prerequisites

Deploy to the compute instances

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to use Azure Machine Learning to deploy a model as a web service on your Azure Machine Learning

compute instance. Use compute instances if one of the following conditions is true:

You need to quickly deploy and validate your model.

You are testing a model that is under development.

Deploying a model from a Jupyter Notebook on a compute instance, to a web service on the same VM is a local deployment.

In this case, the 'local' computer is the compute instance. For more information on deployments, see Deploy models with

Azure Machine Learning.

An Azure Machine Learning workspace with a compute instance running. For more information, see Setup

environment and workspace.

An example notebook that demonstrates local deployments is included on your compute instance. Use the

following steps to load the notebook and deploy the model as a web service on the VM:

1. From Azure Machine Learning studio, select your Azure Machine Learning compute instances.

2. Open the samples-* subdirectory, and then open

how-to-use-azureml/deploy-to-local/register-model-deploy-local.ipynb . Once open, run the notebook.

3. The notebook displays the URL and port that the service is running on. For example,

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-local-container-notebook-vm.md
https://ml.azure.com

Test the service

NOTE

https://localhost:6789 . You can also run the cell containing

print('Local service port: {}'.format(local_service.port)) to display the port.

4. To test the service from a compute instance, use the https://localhost:<local_service.port> URL. To test

from a remote client, get the public URL of the service running on the compute instance. The public URL can

be determined use the following formula;

Notebook VM:

https://<vm_name>-<local_service_port>.<azure_region_of_workspace>.notebooks.azureml.net/score .

Compute instance:

https://<vm_name>-<local_service_port>.<azure_region_of_workspace>.instances.azureml.net/score .

For example,

Notebook VM: https://vm-name-6789.northcentralus.notebooks.azureml.net/score

Compute instance: https://vm-name-6789.northcentralus.instances.azureml.net/score

To submit sample data to the running service, use the following code. Replace the value of service_url with the

URL of from the previous step:

When authenticating to a deployment on the compute instance, the authentication is made using Azure Active Directory. The

call to interactive_auth.get_authentication_header() in the example code authenticates you using AAD, and returns a

header that can then be used to authenticate to the service on the compute instance. For more information, see Set up

authentication for Azure Machine Learning resources and workflows.

When authenticating to a deployment on Azure Kubernetes Service or Azure Container Instances, a different authentication

method is used. For more information on, see Set up authentication for Azure Machine Learning resources and workflows.

import requests
import json
from azureml.core.authentication import InteractiveLoginAuthentication

Get a token to authenticate to the compute instance from remote
interactive_auth = InteractiveLoginAuthentication()
auth_header = interactive_auth.get_authentication_header()

Create and submit a request using the auth header
headers = auth_header
Add content type header
headers.update({'Content-Type':'application/json'})

Sample data to send to the service
test_sample = json.dumps({'data': [
 [1,2,3,4,5,6,7,8,9,10],
 [10,9,8,7,6,5,4,3,2,1]
]})
test_sample = bytes(test_sample,encoding = 'utf8')

Replace with the URL for your compute instance, as determined from the previous section
service_url = "https://vm-name-6789.northcentralus.notebooks.azureml.net/score"
for a compute instance, the url would be https://vm-name-6789.northcentralus.instances.azureml.net/score
resp = requests.post(service_url, test_sample, headers=headers)
print("prediction:", resp.text)

Next steps
How to deploy a model using a custom Docker image

Deployment troubleshooting

Use TLS to secure a web service through Azure Machine Learning

Consume a ML Model deployed as a web service

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

Deploy a model to an Azure Kubernetes Service
cluster
4/7/2020 • 17 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to use Azure Machine Learning to deploy a model as a web service on Azure Kubernetes Service (AKS).

Azure Kubernetes Service is good for high-scale production deployments. Use Azure Kubernetes service if you

need one or more of the following capabilities:

Fast response time.

Autoscaling of the deployed service.

Hardware acceleration options such as GPU and field-programmable gate arrays (FPGA).

Cluster scaling is not provided through the Azure Machine Learning SDK. For more information on scaling the nodes in an

AKS cluster, see Scale the node count in an AKS cluster.

When deploying to Azure Kubernetes Service, you deploy to an AKS cluster that is connected to your

workspace. There are two ways to connect an AKS cluster to your workspace:

Create the AKS cluster using the Azure Machine Learning SDK, the Machine Learning CLI, or Azure Machine

Learning studio. This process automatically connects the cluster to the workspace.

Attach an existing AKS cluster to your Azure Machine Learning workspace. A cluster can be attached using the

Azure Machine Learning SDK, Machine Learning CLI, or Azure Machine Learning studio.

The creation or attachment process is a one time task. Once an AKS cluster is connected to the workspace, you can use it

for deployments. You can detach or delete the AKS cluster if you no longer need it. Once detached or deleted, you will no

longer be able to deploy to the cluster.

An Azure Machine Learning workspace. For more information, see Create an Azure Machine Learning

workspace.

A machine learning model registered in your workspace. If you don't have a registered model, see How and

where to deploy models.

The Azure CLI extension for Machine Learning service, Azure Machine Learning Python SDK, or the Azure

Machine Learning Visual Studio Code extension.

The Python code snippets in this article assume that the following variables are set:

ws - Set to your workspace.

model - Set to your registered model.

inference_config - Set to the inference configuration for the model.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-azure-kubernetes-service.md
https://docs.microsoft.com/en-us/azure/aks/scale-cluster
https://ml.azure.com
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Create a new AKS cluster

TIP

WARNING

from azureml.core.compute import AksCompute, ComputeTarget

Use the default configuration (you can also provide parameters to customize this).
For example, to create a dev/test cluster, use:
prov_config = AksCompute.provisioning_configuration(cluster_purpose = AksCompute.ClusterPurpose.DEV_TEST)
prov_config = AksCompute.provisioning_configuration()

aks_name = 'myaks'
Create the cluster
aks_target = ComputeTarget.create(workspace = ws,
 name = aks_name,
 provisioning_configuration = prov_config)

Wait for the create process to complete
aks_target.wait_for_completion(show_output = True)

For more information on setting these variables, see How and where to deploy models.

The CLI snippets in this article assume that you've created an inferenceconfig.json document. For more

information on creating this document, see How and where to deploy models.

Time estimate: Approximately 20 minutes.

Creating or attaching an AKS cluster is a one time process for your workspace. You can reuse this cluster for

multiple deployments. If you delete the cluster or the resource group that contains it, you must create a new

cluster the next time you need to deploy. You can have multiple AKS clusters attached to your workspace.

If you want to secure your AKS cluster using an Azure Virtual Network, you must create the virtual network first. For more

information, see Secure experimentation and inference with Azure Virtual Network.

If you want to create an AKS cluster for development, validation, and testing instead of production, you can

specify the cluster purpose to dev test.

If you set cluster_purpose = AksCompute.ClusterPurpose.DEV_TEST , the cluster that is created is not suitable for

production level traffic and may increase inference times. Dev/test clusters also do not guarantee fault tolerance. We

recommend at least 2 virtual CPUs for dev/test clusters.

The following examples demonstrate how to create a new AKS cluster using the SDK and CLI:

Using the SDK

IMPORTANT

az ml computetarget create aks -n myaks

Attach an existing AKS cluster

TIP

For provisioning_configuration() , if you pick custom values for agent_count and vm_size , and cluster_purpose

is not DEV_TEST , then you need to make sure agent_count multiplied by vm_size is greater than or equal to 12 virtual

CPUs. For example, if you use a vm_size of "Standard_D3_v2", which has 4 virtual CPUs, then you should pick an

agent_count of 3 or greater.

The Azure Machine Learning SDK does not provide support scaling an AKS cluster. To scale the nodes in the cluster, use the

UI for your AKS cluster in the Azure Machine Learning studio. You can only change the node count, not the VM size of the

cluster.

For more information on the classes, methods, and parameters used in this example, see the following reference

documents:

AksCompute.ClusterPurpose

AksCompute.provisioning_configuration

ComputeTarget.create

ComputeTarget.wait_for_completion

Using the CLI

For more information, see the az ml computetarget create aks reference.

Time estimate: Approximately 5 minutes.

If you already have AKS cluster in your Azure subscription, and it is version 1.17 or lower, you can use it to deploy

your image.

The existing AKS cluster can be in a Azure region other than your Azure Machine Learning workspace.

If you want to secure your AKS cluster using an Azure Virtual Network, you must create the virtual network first. For more

information, see Secure experimentation and inference with Azure Virtual Network.

When attaching an AKS cluster to a workspace, you can define how you will use the cluster by setting the

cluster_purpose parameter.

If you do not set the cluster_purpose parameter, or set cluster_purpose = AksCompute.ClusterPurpose.FAST_PROD ,

then the cluster must have at least 12 virtual CPUs available.

If you set cluster_purpose = AksCompute.ClusterPurpose.DEV_TEST , then the cluster does not need to have 12 virtual

CPUs. We recommend at least 2 virtual CPUs for dev/test. However a cluster that is configured for dev/test is not

suitable for production level traffic and may increase inference times. Dev/test clusters also do not guarantee fault

tolerance.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.akscompute.clusterpurpose?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#attach-configuration-resource-group-none--cluster-name-none--resource-id-none--cluster-purpose-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.computetarget?view=azure-ml-py#create-workspace--name--provisioning-configuration-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.computetarget?view=azure-ml-py#wait-for-completion-show-output-false-
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/create?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-create-aks

WARNING

from azureml.core.compute import AksCompute, ComputeTarget
Set the resource group that contains the AKS cluster and the cluster name
resource_group = 'myresourcegroup'
cluster_name = 'myexistingcluster'

Attach the cluster to your workgroup. If the cluster has less than 12 virtual CPUs, use the following
instead:
attach_config = AksCompute.attach_configuration(resource_group = resource_group,
cluster_name = cluster_name,
cluster_purpose = AksCompute.ClusterPurpose.DEV_TEST)
attach_config = AksCompute.attach_configuration(resource_group = resource_group,
 cluster_name = cluster_name)
aks_target = ComputeTarget.attach(ws, 'myaks', attach_config)

az aks show -n myexistingcluster -g myresourcegroup --query id

/subscriptions/{GUID}/resourcegroups/{myresourcegroup}/providers/Microsoft.ContainerService/managedClusters/{
myexistingcluster}

Do not create multiple, simultaneous attachments to the same AKS cluster from your workspace. For example, attaching

one AKS cluster to a workspace using two different names. Each new attachment will break the previous existing

attachment(s).

If you want to re-attach an AKS cluster, for example to change TLS or other cluster configuration setting, you must first

remove the existing attachment by using AksCompute.detach().

For more information on creating an AKS cluster using the Azure CLI or portal, see the following articles:

Create an AKS cluster (CLI)

Create an AKS cluster (portal)

The following examples demonstrate how to attach an existing AKS cluster to your workspace:

Using the SDK

For more information on the classes, methods, and parameters used in this example, see the following reference

documents:

AksCompute.attach_configuration()

AksCompute.ClusterPurpose

AksCompute.attach

Using the CLI

To attach an existing cluster using the CLI, you need to get the resource ID of the existing cluster. To get this value,

use the following command. Replace myexistingcluster with the name of your AKS cluster. Replace

myresourcegroup with the resource group that contains the cluster :

This command returns a value similar to the following text:

To attach the existing cluster to your workspace, use the following command. Replace aksresourceid with the

value returned by the previous command. Replace myresourcegroup with the resource group that contains your

workspace. Replace myworkspace with your workspace name.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#detach--
https://docs.microsoft.com/cli/azure/aks?toc=%2Fazure%2Faks%2FTOC.json&bc=%2Fazure%2Fbread%2Ftoc.json&view=azure-cli-latest#az-aks-create
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal?view=azure-cli-latest
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#attach-configuration-resource-group-none--cluster-name-none--resource-id-none--cluster-purpose-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.akscompute.clusterpurpose?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.computetarget?view=azure-ml-py#attach-workspace--name--attach-configuration-

az ml computetarget attach aks -n myaks -i aksresourceid -g myresourcegroup -w myworkspace

Deploy to AKS

Using the SDK

from azureml.core.webservice import AksWebservice, Webservice
from azureml.core.model import Model

aks_target = AksCompute(ws,"myaks")
If deploying to a cluster configured for dev/test, ensure that it was created with enough
cores and memory to handle this deployment configuration. Note that memory is also used by
things such as dependencies and AML components.
deployment_config = AksWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1)
service = Model.deploy(ws, "myservice", [model], inference_config, deployment_config, aks_target)
service.wait_for_deployment(show_output = True)
print(service.state)
print(service.get_logs())

Using the CLI

az ml model deploy -ct myaks -m mymodel:1 -n myservice -ic inferenceconfig.json -dc deploymentconfig.json

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For AKS, the value
must be aks .

autoScaler NA Contains configuration elements for
autoscale. See the autoscaler table.

For more information, see the az ml computetarget attach aks reference.

To deploy a model to Azure Kubernetes Service, create a deployment configuration that describes the compute

resources needed. For example, number of cores and memory. You also need an inference configuration, which

describes the environment needed to host the model and web service. For more information on creating the

inference configuration, see How and where to deploy models.

For more information on the classes, methods, and parameters used in this example, see the following reference

documents:

AksCompute

AksWebservice.deploy_configuration

Model.deploy

Webservice.wait_for_deployment

To deploy using the CLI, use the following command. Replace myaks with the name of the AKS compute target.

Replace mymodel:1 with the name and version of the registered model. Replace myservice with the name to give

this service:

The entries in the deploymentconfig.json document map to the parameters for

AksWebservice.deploy_configuration. The following table describes the mapping between the entities in the JSON

document and the parameters for the method:

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/attach?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-attach-aks
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.aks.akscompute?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aks.aksservicedeploymentconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#wait-for-deployment-show-output-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aks.aksservicedeploymentconfiguration?view=azure-ml-py

   autoscaleEnabled autoscale_enabled Whether to enable autoscaling for the
web service. If numReplicas = 0 ,

True ; otherwise, False .

   minReplicas autoscale_min_replicas The minimum number of containers to
use when autoscaling this web service.
Default, 1 .

   maxReplicas autoscale_max_replicas The maximum number of containers to
use when autoscaling this web service.
Default, 10 .

   refreshPeriodInSeconds autoscale_refresh_seconds How often the autoscaler attempts to
scale this web service. Default, 1 .

   targetUtilization autoscale_target_utilization The target utilization (in percent out of
100) that the autoscaler should
attempt to maintain for this web
service. Default, 70 .

dataCollection NA Contains configuration elements for
data collection.

   storageEnabled collect_model_data Whether to enable model data
collection for the web service. Default,
False .

authEnabled auth_enabled Whether or not to enable key
authentication for the web service.
Both tokenAuthEnabled and

authEnabled cannot be True .

Default, True .

tokenAuthEnabled token_auth_enabled Whether or not to enable token
authentication for the web service.
Both tokenAuthEnabled and

authEnabled cannot be True .

Default, False .

containerResourceRequirements NA Container for the CPU and memory
entities.

   cpu cpu_cores The number of CPU cores to allocate
for this web service. Defaults, 0.1

   memoryInGB memory_gb The amount of memory (in GB) to
allocate for this web service. Default,
0.5

appInsightsEnabled enable_app_insights Whether to enable Application Insights
logging for the web service. Default,
False .

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

scoringTimeoutMs scoring_timeout_ms A timeout to enforce for scoring calls to
the web service. Default, 60000 .

maxConcurrentRequestsPerContainer replica_max_concurrent_requests The maximum concurrent requests per
node for this web service. Default, 1 .

maxQueueWaitMs max_request_wait_time The maximum time a request will stay
in thee queue (in milliseconds) before a
503 error is returned. Default, 500 .

numReplicas num_replicas The number of containers to allocate
for this web service. No default value. If
this parameter is not set, the autoscaler
is enabled by default.

keys NA Contains configuration elements for
keys.

   primaryKey primary_key A primary auth key to use for this
Webservice

   secondaryKey secondary_key A secondary auth key to use for this
Webservice

gpuCores gpu_cores The number of GPU cores (per-
container replica) to allocate for this
Webservice. Default is 1. Only supports
whole number values.

livenessProbeRequirements NA Contains configuration elements for
liveness probe requirements.

   periodSeconds period_seconds How often (in seconds) to perform the
liveness probe. Default to 10 seconds.
Minimum value is 1.

   initialDelaySeconds initial_delay_seconds Number of seconds after the container
has started before liveness probes are
initiated. Defaults to 310

   timeoutSeconds timeout_seconds Number of seconds after which the
liveness probe times out. Defaults to 2
seconds. Minimum value is 1

   successThreshold success_threshold Minimum consecutive successes for the
liveness probe to be considered
successful after having failed. Defaults
to 1. Minimum value is 1.

   failureThreshold failure_threshold When a Pod starts and the liveness
probe fails, Kubernetes will try
failureThreshold times before giving up.
Defaults to 3. Minimum value is 1.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

namespace namespace The Kubernetes namespace that the
webservice is deployed into. Up to 63
lowercase alphanumeric ('a'-'z', '0'-'9')
and hyphen ('-') characters. The first
and last characters can't be hyphens.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

{
 "computeType": "aks",
 "autoScaler":
 {
 "autoscaleEnabled": true,
 "minReplicas": 1,
 "maxReplicas": 3,
 "refreshPeriodInSeconds": 1,
 "targetUtilization": 70
 },
 "dataCollection":
 {
 "storageEnabled": true
 },
 "authEnabled": true,
 "containerResourceRequirements":
 {
 "cpu": 0.5,
 "memoryInGB": 1.0
 }
}

Using VS Code

IMPORTANT

Deploy models to AKS using controlled rollout (preview)

The following JSON is an example deployment configuration for use with the CLI:

For more information, see the az ml model deploy reference.

For information on using VS Code, see deploy to AKS via the VS Code extension.

Deploying through VS Code requires the AKS cluster to be created or attached to your workspace in advance.

Analyze and promote model versions in a controlled fashion using endpoints. You can deploy up to six versions

behind a single endpoint. Endpoints provide the following capabilities:

NOTE

Configure the percentage of scoring traffic sent to each endpoint. For example, route 20% of the

traffic to endpoint 'test' and 80% to 'production'.

If you do not account for 100% of the traffic, any remaining percentage is routed to the default endpoint version.

For example, if you configure endpoint version 'test' to get 10% of the traffic, and 'prod' for 30%, the remaining 60%

is sent to the default endpoint version.

The first endpoint version created is automatically configured as the default. You can change this by setting

is_default=True when creating or updating an endpoint version.

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-deploy

Create an endpoint

TIP

import azureml.core,
from azureml.core.webservice import AksEndpoint
from azureml.core.compute import AksCompute
from azureml.core.compute import ComputeTarget
select a created compute
compute = ComputeTarget(ws, 'myaks')
namespace_name= endpointnamespace
define the endpoint and version name
endpoint_name = "mynewendpoint"
version_name= "versiona"
create the deployment config and define the scoring traffic percentile for the first deployment
endpoint_deployment_config = AksEndpoint.deploy_configuration(cpu_cores = 0.1, memory_gb = 0.2,
 enable_app_insights = True,
 tags = {'sckitlearn':'demo'},
 description = "testing versions",
 version_name = version_name,
 traffic_percentile = 20)
 # deploy the model and endpoint
 endpoint = Model.deploy(ws, endpoint_name, [model], inference_config, endpoint_deployment_config, compute)
 # Wait for he process to complete
 endpoint.wait_for_deployment(True)

Update and add versions to an endpoint

TIP

NOTE

Tag an endpoint version as either control or treatment. For example, the current production endpoint

version might be the control, while potential new models are deployed as treatment versions. After

evaluating performance of the treatment versions, if one outperforms the current control, it might be

promoted to the new production/control.

You can only have one control. You can have multiple treatments.

You can enable app insights to view operational metrics of endpoints and deployed versions.

Once you are ready to deploy your models, create a scoring endpoint and deploy your first version. The following

example shows how to deploy and create the endpoint using the SDK. The first deployment will be defined as the

default version, which means that unspecified traffic percentile across all versions will go to the default version.

In the following example, the configuration sets the initial endpoint version to handle 20% of the traffic. Since this is the first

endpoint, it's also the default version. And since we don't have any other versions for the other 80% of traffic, it is routed to

the default as well. Until other versions that take a percentage of traffic are deployed, this one effectively receives 100% of

the traffic.

Add another version to your endpoint and configure the scoring traffic percentile going to the version. There are

two types of versions, a control and a treatment version. There can be multiple treatment versions to help

compare against a single control version.

The second version, created by the following code snippet, accepts 10% of traffic. The first version is configured for 20%, so

only 30% of the traffic is configured for specific versions. The remaining 70% is sent to the first endpoint version, because it

is also the default version.

from azureml.core.webservice import AksEndpoint

add another model deployment to the same endpoint as above
version_name_add = "versionb"
endpoint.create_version(version_name = version_name_add,
 inference_config=inference_config,
 models=[model],
 tags = {'modelVersion':'b'},
 description = "my second version",
 traffic_percentile = 10)
endpoint.wait_for_deployment(True)

TIP

from azureml.core.webservice import AksEndpoint

update the version's scoring traffic percentage and if it is a default or control type
endpoint.update_version(version_name=endpoint.versions["versionb"].name,
 description="my second version update",
 traffic_percentile=40,
 is_default=True,
 is_control_version_type=True)
Wait for the process to complete before deleting
endpoint.wait_for_deployment(true)
delete a version in an endpoint
endpoint.delete_version(version_name="versionb")

Web service authentication

deployment_config = AksWebservice.deploy_configuration(cpu_cores=1, memory_gb=1, auth_enabled=False)

Authentication with keys

Update existing versions or delete them in an endpoint. You can change the version's default type, control type,

and the traffic percentile. In the following example, the second version increases its traffic to 40% and is now the

default.

After the following code snippet, the second version is now default. It is now configured for 40%, while the original version is

still configured for 20%. This means that 40% of traffic is not accounted for by version configurations. The leftover traffic will

be routed to the second version, because it is now default. It effectively receives 80% of the traffic.

When deploying to Azure Kubernetes Service, key-based authentication is enabled by default. You can also

enable token-based authentication. Token-based authentication requires clients to use an Azure Active Directory

account to request an authentication token, which is used to make requests to the deployed service.

To disable authentication, set the auth_enabled=False parameter when creating the deployment configuration.

The following example disables authentication using the SDK:

For information on authenticating from a client application, see the Consume an Azure Machine Learning model

deployed as a web service.

If key authentication is enabled, you can use the get_keys method to retrieve a primary and secondary

authentication key:

primary, secondary = service.get_keys()
print(primary)

IMPORTANT

Authentication with tokens

deployment_config = AksWebservice.deploy_configuration(cpu_cores=1, memory_gb=1, token_auth_enabled=True)

token, refresh_by = service.get_token()
print(token)

IMPORTANT

Update the web service

IMPORTANT

If you need to regenerate a key, use service.regen_key

To enable token authentication, set the token_auth_enabled=True parameter when you are creating or updating a

deployment. The following example enables token authentication using the SDK:

If token authentication is enabled, you can use the get_token method to retrieve a JWT token and that token's

expiration time:

You will need to request a new token after the token's refresh_by time.

Microsoft strongly recommends that you create your Azure Machine Learning workspace in the same region as your Azure

Kubernetes Service cluster. To authenticate with a token, the web service will make a call to the region in which your Azure

Machine Learning workspace is created. If your workspace's region is unavailable, then you will not be able to fetch a token

for your web service even, if your cluster is in a different region than your workspace. This effectively results in Token-based

Authentication being unavailable until your workspace's region is available again. In addition, the greater the distance

between your cluster's region and your workspace's region, the longer it will take to fetch a token.

To update a web service, use the update method. You can update the web service to use a new model, a new

entry script, or new dependencies that can be specified in an inference configuration. For more information, see

the documentation for Webservice.update.

When you create a new version of a model, you must manually update each service that you want to use it.

You can not use the SDK to update a web service published from the Azure Machine Learning designer.

Using the SDK

The following code shows how to use the SDK to update the model, environment, and entry script for a web

service:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.webservice.webservice?view=azure-ml-py#update--args-

from azureml.core import Environment
from azureml.core.webservice import Webservice
from azureml.core.model import Model, InferenceConfig

Register new model.
new_model = Model.register(model_path="outputs/sklearn_mnist_model.pkl",
 model_name="sklearn_mnist",
 tags={"key": "0.1"},
 description="test",
 workspace=ws)

Use version 3 of the environment.
deploy_env = Environment.get(workspace=ws,name="myenv",version="3")
inference_config = InferenceConfig(entry_script="score.py",
 environment=deploy_env)

service_name = 'myservice'
Retrieve existing service.
service = Webservice(name=service_name, workspace=ws)

Update to new model(s).
service.update(models=[new_model], inference_config=inference_config)
print(service.state)
print(service.get_logs())

az ml model register -n sklearn_mnist --asset-path outputs/sklearn_mnist_model.pkl --experiment-name
myexperiment --output-metadata-file modelinfo.json
az ml service update -n myservice --model-metadata-file modelinfo.json

TIP

Next steps

Using the CLI

You can also update a web service by using the ML CLI. The following example demonstrates registering a new

model and then updating a web service to use the new model:

In this example, a JSON document is used to pass the model information from the registration command into the update

command.

To update the service to use a new entry script or environment, create an inference configuration file and specify it with the

ic parameter.

For more information, see the az ml service update documentation.

Secure experimentation and inference in a virtual network

How to deploy a model using a custom Docker image

Deployment troubleshooting

Use TLS to secure a web service through Azure Machine Learning

Consume a ML Model deployed as a web service

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

https://docs.microsoft.com/azure/machine-learning/service/reference-azure-machine-learning-cli#inference-configuration-schema
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/service?view=azure-cli-latest#ext-azure-cli-ml-az-ml-service-update

Deploy a model to Azure Container Instances
3/31/2020 • 4 minutes to read • Edit Online

Prerequisites

Deploy to ACI

Using the SDK

from azureml.core.webservice import AciWebservice, Webservice
from azureml.core.model import Model

deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1, memory_gb = 1)
service = Model.deploy(ws, "aciservice", [model], inference_config, deployment_config)
service.wait_for_deployment(show_output = True)
print(service.state)

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to use Azure Machine Learning to deploy a model as a web service on Azure Container Instances (ACI).

Use Azure Container Instances if one of the following conditions is true:

You need to quickly deploy and validate your model. You do not need to create ACI containers ahead of time.

They are created as part of the deployment process.

You are testing a model that is under development.

For information on quota and region availability for ACI, see Quotas and region availability for Azure Container

Instances article.

An Azure Machine Learning workspace. For more information, see Create an Azure Machine Learning

workspace.

A machine learning model registered in your workspace. If you don't have a registered model, see How and

where to deploy models.

The Azure CLI extension for Machine Learning service, Azure Machine Learning Python SDK, or the Azure

Machine Learning Visual Studio Code extension.

The Python code snippets in this article assume that the following variables are set:

ws - Set to your workspace.

model - Set to your registered model.

inference_config - Set to the inference configuration for the model.

For more information on setting these variables, see How and where to deploy models.

The CLI snippets in this article assume that you've created an inferenceconfig.json document. For more

information on creating this document, see How and where to deploy models.

To deploy a model to Azure Container Instances, create a deployment configuration that describes the compute

resources needed. For example, number of cores and memory. You also need an inference configuration, which

describes the environment needed to host the model and web service. For more information on creating the

inference configuration, see How and where to deploy models.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-azure-container-instance.md
https://docs.microsoft.com/azure/container-instances/container-instances-quotas
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Using the CLI

az ml model deploy -m mymodel:1 -n myservice -ic inferenceconfig.json -dc deploymentconfig.json

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For ACI, the value
must be ACI .

containerResourceRequirements NA Container for the CPU and memory
entities.

   cpu cpu_cores The number of CPU cores to allocate.
Defaults, 0.1

   memoryInGB memory_gb The amount of memory (in GB) to
allocate for this web service. Default,
0.5

location location The Azure region to deploy this
Webservice to. If not specified the
Workspace location will be used. More
details on available regions can be
found here: ACI Regions

authEnabled auth_enabled Whether to enable auth for this
Webservice. Defaults to False

sslEnabled ssl_enabled Whether to enable SSL for this
Webservice. Defaults to False.

appInsightsEnabled enable_app_insights Whether to enable AppInsights for this
Webservice. Defaults to False

sslCertificate ssl_cert_pem_file The cert file needed if SSL is enabled

sslKey ssl_key_pem_file The key file needed if SSL is enabled

cname ssl_cname The cname for if SSL is enabled

For more information on the classes, methods, and parameters used in this example, see the following reference

documents:

AciWebservice.deploy_configuration

Model.deploy

Webservice.wait_for_deployment

To deploy using the CLI, use the following command. Replace mymodel:1 with the name and version of the

registered model. Replace myservice with the name to give this service:

The entries in the deploymentconfig.json document map to the parameters for

AciWebservice.deploy_configuration. The following table describes the mapping between the entities in the JSON

document and the parameters for the method:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aciwebservice?view=azure-ml-py#deploy-configuration-cpu-cores-none--memory-gb-none--tags-none--properties-none--description-none--location-none--auth-enabled-none--ssl-enabled-none--enable-app-insights-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--ssl-cname-none--dns-name-label-none--primary-key-none--secondary-key-none--collect-model-data-none--cmk-vault-base-url-none--cmk-key-name-none--cmk-key-version-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#wait-for-deployment-show-output-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciservicedeploymentconfiguration?view=azure-ml-py
https://azure.microsoft.com/global-infrastructure/services/?regions=all&products=container-instances

dnsNameLabel dns_name_label The dns name label for the scoring
endpoint. If not specified a unique dns
name label will be generated for the
scoring endpoint.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

{
 "computeType": "aci",
 "containerResourceRequirements":
 {
 "cpu": 0.5,
 "memoryInGB": 1.0
 },
 "authEnabled": true,
 "sslEnabled": false,
 "appInsightsEnabled": false
}

Using VS Code

IMPORTANT

Update the web service

IMPORTANT

The following JSON is an example deployment configuration for use with the CLI:

For more information, see the az ml model deploy reference.

See deploy your models with VS Code.

You don't need to create an ACI container to test in advance. ACI containers are created as needed.

To update a web service, use the update method. You can update the web service to use a new model, a new entry

script, or new dependencies that can be specified in an inference configuration. For more information, see the

documentation for Webservice.update.

When you create a new version of a model, you must manually update each service that you want to use it.

You can not use the SDK to update a web service published from the Azure Machine Learning designer.

Using the SDK

The following code shows how to use the SDK to update the model, environment, and entry script for a web

service:

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-deploy
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.webservice.webservice?view=azure-ml-py#update--args-

from azureml.core import Environment
from azureml.core.webservice import Webservice
from azureml.core.model import Model, InferenceConfig

Register new model.
new_model = Model.register(model_path="outputs/sklearn_mnist_model.pkl",
 model_name="sklearn_mnist",
 tags={"key": "0.1"},
 description="test",
 workspace=ws)

Use version 3 of the environment.
deploy_env = Environment.get(workspace=ws,name="myenv",version="3")
inference_config = InferenceConfig(entry_script="score.py",
 environment=deploy_env)

service_name = 'myservice'
Retrieve existing service.
service = Webservice(name=service_name, workspace=ws)

Update to new model(s).
service.update(models=[new_model], inference_config=inference_config)
print(service.state)
print(service.get_logs())

az ml model register -n sklearn_mnist --asset-path outputs/sklearn_mnist_model.pkl --experiment-name
myexperiment --output-metadata-file modelinfo.json
az ml service update -n myservice --model-metadata-file modelinfo.json

TIP

Next steps

Using the CLI

You can also update a web service by using the ML CLI. The following example demonstrates registering a new

model and then updating a web service to use the new model:

In this example, a JSON document is used to pass the model information from the registration command into the update

command.

To update the service to use a new entry script or environment, create an inference configuration file and specify it with the

ic parameter.

For more information, see the az ml service update documentation.

How to deploy a model using a custom Docker image

Deployment troubleshooting

Use TLS to secure a web service through Azure Machine Learning

Consume a ML Model deployed as a web service

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

https://docs.microsoft.com/azure/machine-learning/service/reference-azure-machine-learning-cli#inference-configuration-schema
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/service?view=azure-cli-latest#ext-azure-cli-ml-az-ml-service-update

Deploy a deep learning model for inference with
GPU
3/5/2020 • 6 minutes to read • Edit Online

IMPORTANT

TIP

NOTE

Prerequisites

Connect to your workspace

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article teaches you how to use Azure Machine Learning to deploy a GPU-enabled model as a web service. The

information in this article is based on deploying a model on Azure Kubernetes Service (AKS). The AKS cluster

provides a GPU resource that is used by the model for inference.

Inference, or model scoring, is the phase where the deployed model is used to make predictions. Using GPUs

instead of CPUs offers performance advantages on highly parallelizable computation.

For web service deployments, GPU inference is only supported on Azure Kubernetes Service. For inference using a machine

learning pipeline, GPUs are only supported on Azure Machine Learning Compute. For more information on using ML

pipelines, see Run batch predictions.

Although the code snippets in this article use a TensorFlow model, you can apply the information to any machine learning

framework that supports GPUs.

The information in this article builds on the information in the How to deploy to Azure Kubernetes Service article. Where

that article generally covers deployment to AKS, this article covers GPU specific deployment.

An Azure Machine Learning workspace. For more information, see Create an Azure Machine Learning

workspace.

A Python development environment with the Azure Machine Learning SDK installed. For more information,

see Azure Machine Learning SDK.

A registered model that uses a GPU.

To learn how to register models, see Deploy Models.

To create and register the Tensorflow model used to create this document, see How to Train a

TensorFlow Model.

A general understanding of How and where to deploy models.

To connect to an existing workspace, use the following code:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-inferencing-gpus.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

IMPORTANT

from azureml.core import Workspace

Connect to the workspace
ws = Workspace.from_config()

Create a Kubernetes cluster with GPUs

from azureml.core.compute import ComputeTarget, AksCompute
from azureml.exceptions import ComputeTargetException

Choose a name for your cluster
aks_name = "aks-gpu"

Check to see if the cluster already exists
try:
 aks_target = ComputeTarget(workspace=ws, name=aks_name)
 print('Found existing compute target')
except ComputeTargetException:
 print('Creating a new compute target...')
 # Provision AKS cluster with GPU machine
 prov_config = AksCompute.provisioning_configuration(vm_size="Standard_NC6")

 # Create the cluster
 aks_target = ComputeTarget.create(
 workspace=ws, name=aks_name, provisioning_configuration=prov_config
)

 aks_target.wait_for_completion(show_output=True)

IMPORTANT

Write the entry script

TIP

This code snippet expects the workspace configuration to be saved in the current directory or its parent. For more

information on creating a workspace, see Create and manage Azure Machine Learning workspaces. For more information on

saving the configuration to file, see Create a workspace configuration file.

Azure Kubernetes Service provides many different GPU options. You can use any of them for model inference. See

the list of N-series VMs for a full breakdown of capabilities and costs.

The following code demonstrates how to create a new AKS cluster for your workspace:

Azure will bill you as long as the AKS cluster exists. Make sure to delete your AKS cluster when you're done with it.

For more information on using AKS with Azure Machine Learning, see How to deploy to Azure Kubernetes Service.

The entry script receives data submitted to the web service, passes it to the model, and returns the scoring results.

The following script loads the Tensorflow model on startup, and then uses the model to score data.

The entry script is specific to your model. For example, the script must know the framework to use with your model, data

formats, etc.

https://azure.microsoft.com/pricing/details/virtual-machines/linux/#n-series

import json
import numpy as np
import os
import tensorflow as tf

from azureml.core.model import Model

def init():
 global X, output, sess
 tf.reset_default_graph()
 model_root = os.getenv('AZUREML_MODEL_DIR')
 # the name of the folder in which to look for tensorflow model files
 tf_model_folder = 'model'
 saver = tf.train.import_meta_graph(
 os.path.join(model_root, tf_model_folder, 'mnist-tf.model.meta'))
 X = tf.get_default_graph().get_tensor_by_name("network/X:0")
 output = tf.get_default_graph().get_tensor_by_name("network/output/MatMul:0")

 sess = tf.Session()
 saver.restore(sess, os.path.join(model_root, tf_model_folder, 'mnist-tf.model'))

def run(raw_data):
 data = np.array(json.loads(raw_data)['data'])
 # make prediction
 out = output.eval(session=sess, feed_dict={X: data})
 y_hat = np.argmax(out, axis=1)
 return y_hat.tolist()

Define the conda environment

name: project_environment
dependencies:
 # The python interpreter version.
 # Currently Azure ML only supports 3.5.2 and later.
- python=3.6.2

- pip:
 # You must list azureml-defaults as a pip dependency
 - azureml-defaults>=1.0.45
- numpy
- tensorflow-gpu=1.12
channels:
- conda-forge

Define the deployment configuration

This file is named score.py . For more information on entry scripts, see How and where to deploy.

The conda environment file specifies the dependencies for the service. It includes dependencies required by both

the model and the entry script. Please note that you must indicate azureml-defaults with verion >= 1.0.45 as a pip

dependency, because it contains the functionality needed to host the model as a web service. The following YAML

defines the environment for a Tensorflow model. It specifies tensorflow-gpu , which will make use of the GPU used

in this deployment:

For this example, the file is saved as myenv.yml .

The deployment configuration defines the Azure Kubernetes Service environment used to run the web service:

from azureml.core.webservice import AksWebservice

gpu_aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,
 num_replicas=3,
 cpu_cores=2,
 memory_gb=4)

Define the inference configuration

from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment, DEFAULT_GPU_IMAGE

myenv = Environment.from_conda_specification(name="myenv", file_path="myenv.yml")
myenv.docker.base_image = DEFAULT_GPU_IMAGE
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)

Deploy the model

from azureml.core.model import Model

Name of the web service that is deployed
aks_service_name = 'aks-dnn-mnist'
Get the registerd model
model = Model(ws, "tf-dnn-mnist")
Deploy the model
aks_service = Model.deploy(ws,
 models=[model],
 inference_config=inference_config,
 deployment_config=gpu_aks_config,
 deployment_target=aks_target,
 name=aks_service_name)

aks_service.wait_for_deployment(show_output=True)
print(aks_service.state)

NOTE

Issue a sample query to your service

For more information, see the reference documentation for AksService.deploy_configuration.

The inference configuration points to the entry script and an environment object, which uses a docker image with

GPU support. Please note that the YAML file used for environment definition must list azureml-defaults with

version >= 1.0.45 as a pip dependency, because it contains the functionality needed to host the model as a web

service.

For more information on environments, see Create and manage environments for training and deployment. For

more information, see the reference documentation for InferenceConfig.

Deploy the model to your AKS cluster and wait for it to create your service.

If the InferenceConfig object has enable_gpu=True , then the deployment_target parameter must reference a cluster

that provides a GPU. Otherwise, the deployment will fail.

For more information, see the reference documentation for Model.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.akswebservice?view=azure-ml-py#deploy-configuration-autoscale-enabled-none--autoscale-min-replicas-none--autoscale-max-replicas-none--autoscale-refresh-seconds-none--autoscale-target-utilization-none--collect-model-data-none--auth-enabled-none--cpu-cores-none--memory-gb-none--enable-app-insights-none--scoring-timeout-ms-none--replica-max-concurrent-requests-none--max-request-wait-time-none--num-replicas-none--primary-key-none--secondary-key-none--tags-none--properties-none--description-none--gpu-cores-none--period-seconds-none--initial-delay-seconds-none--timeout-seconds-none--success-threshold-none--failure-threshold-none--namespace-none--token-auth-enabled-none--compute-target-name-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py

Used to test your webservice
import os
import urllib
import gzip
import numpy as np
import struct
import requests

load compressed MNIST gz files and return numpy arrays
def load_data(filename, label=False):
 with gzip.open(filename) as gz:
 struct.unpack('I', gz.read(4))
 n_items = struct.unpack('>I', gz.read(4))
 if not label:
 n_rows = struct.unpack('>I', gz.read(4))[0]
 n_cols = struct.unpack('>I', gz.read(4))[0]
 res = np.frombuffer(gz.read(n_items[0] * n_rows * n_cols), dtype=np.uint8)
 res = res.reshape(n_items[0], n_rows * n_cols)
 else:
 res = np.frombuffer(gz.read(n_items[0]), dtype=np.uint8)
 res = res.reshape(n_items[0], 1)
 return res

one-hot encode a 1-D array
def one_hot_encode(array, num_of_classes):
 return np.eye(num_of_classes)[array.reshape(-1)]

Download test data
os.makedirs('./data/mnist', exist_ok=True)
urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
filename='./data/mnist/test-images.gz')
urllib.request.urlretrieve('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
filename='./data/mnist/test-labels.gz')

Load test data from model training
X_test = load_data('./data/mnist/test-images.gz', False) / 255.0
y_test = load_data('./data/mnist/test-labels.gz', True).reshape(-1)

send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1)
input_data = "{\"data\": [" + str(list(X_test[random_index])) + "]}"

api_key = aks_service.get_keys()[0]
headers = {'Content-Type': 'application/json',
 'Authorization': ('Bearer ' + api_key)}
resp = requests.post(aks_service.scoring_uri, input_data, headers=headers)

print("POST to url", aks_service.scoring_uri)
print("label:", y_test[random_index])
print("prediction:", resp.text)

Clean up the resources

IMPORTANT

Send a test query to the deployed model. When you send a jpeg image to the model, it scores the image. The

following code sample downloads test data and then selects a random test image to send to the service.

For more information on creating a client application, see Create client to consume deployed web service.

If you created the AKS cluster specifically for this example, delete your resources after you're done.

Azure bills you based on how long the AKS cluster is deployed. Make sure to clean it up after you are done with it.

aks_service.delete()
aks_target.delete()

Next steps
Deploy model on FPGA

Deploy model with ONNX

Train Tensorflow DNN Models

Deploy a machine learning model to Azure App
Service (preview)
3/25/2020 • 7 minutes to read • Edit Online

IMPORTANT

IMPORTANT

Prerequisites

Prepare for deployment

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to deploy a model from Azure Machine Learning as a web app in Azure App Service.

While both Azure Machine Learning and Azure App Service are generally available, the ability to deploy a model from the

Machine Learning service to App Service is in preview.

With Azure Machine Learning, you can create Docker images from trained machine learning models. This image

contains a web service that receives data, submits it to the model, and then returns the response. Azure App

Service can be used to deploy the image, and provides the following features:

Advanced authentication for enhanced security. Authentication methods include both Azure Active Directory

and multi-factor auth.

Autoscale without having to redeploy.

TLS support for secure communications between clients and the service.

For more information on features provided by Azure App Service, see the App Service overview.

If you need the ability to log the scoring data used with your deployed model, or the results of scoring, you should instead

deploy to Azure Kubernetes Service. For more information, see Collect data on your production models.

IMPORTANT

An Azure Machine Learning workspace. For more information, see the Create a workspace article.

The Azure CLI.

A trained machine learning model registered in your workspace. If you do not have a model, use the Image

classification tutorial: train model to train and register one.

The code snippets in this article assume that you have set the following variables:

ws - Your Azure Machine Learning workspace.

model - The registered model that will be deployed.

inference_config - The inference configuration for the model.

For more information on setting these variables, see Deploy models with Azure Machine Learning.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-app-service.md
https://docs.microsoft.com/azure/app-service/configure-authentication-provider-aad
https://docs.microsoft.com/azure/azure-monitor/platform/autoscale-get-started?toc=%2fazure%2fapp-service%2ftoc.json
https://docs.microsoft.com/azure/app-service/configure-ssl-certificate-in-code
https://docs.microsoft.com/azure/app-service/overview
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

IMPORTANT

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.model import InferenceConfig

Create an environment and add conda dependencies to it
myenv = Environment(name="myenv")
Enable Docker based environment
myenv.docker.enabled = True
Build conda dependencies
myenv.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],
 pip_packages=['azureml-defaults'])
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)

IMPORTANT

Before deploying, you must define what is needed to run the model as a web service. The following list describes

the basic items needed for a deployment:

IMPORTANT

IMPORTANT

An entr y scr ipt . This script accepts requests, scores the request using the model, and returns the results.

The entry script is specific to your model; it must understand the format of the incoming request data, the format of

the data expected by your model, and the format of the data returned to clients.

If the request data is in a format that is not usable by your model, the script can transform it into an acceptable

format. It may also transform the response before returning to it to the client.

The Azure Machine Learning SDK does not provide a way for the web service access your datastore or data sets. If

you need the deployed model to access data stored outside the deployment, such as in an Azure Storage account,

you must develop a custom code solution using the relevant SDK. For example, the Azure Storage SDK for Python.

Another alternative that may work for your scenario is batch predictions, which does provide access to datastores

when scoring.

For more information on entry scripts, see Deploy models with Azure Machine Learning.

Dependencies , such as helper scripts or Python/Conda packages required to run the entry script or model

These entities are encapsulated into an inference configuration. The inference configuration references the

entry script and other dependencies.

When creating an inference configuration for use with Azure App Service, you must use an Environment object. Please note

that if you are defining a custom environment, you must add azureml-defaults with version >= 1.0.45 as a pip dependency.

This package contains the functionality needed to host the model as a web service. The following example demonstrates

creating an environment object and using it with an inference configuration:

For more information on environments, see Create and manage environments for training and deployment.

For more information on inference configuration, see Deploy models with Azure Machine Learning.

When deploying to Azure App Service, you do not need to create a deployment configuration.

https://github.com/Azure/azure-storage-python
https://docs.microsoft.com//python/api/azureml-core/azureml.core.environment%28class%29?view=azure-ml-py

Create the image

NOTE

from azureml.core import Model

package = Model.package(ws, [model], inference_config)
package.wait_for_creation(show_output=True)
Display the package location/ACR path
print(package.location)

IMPORTANT

Deploy image as a web app

To create the Docker image that is deployed to Azure App Service, use Model.package. The following code snippet

demonstrates how to build a new image from the model and inference configuration:

The code snippet assumes that model contains a registered model, and that inference_config contains the configuration

for the inference environment. For more information, see Deploy models with Azure Machine Learning.

When show_output=True , the output of the Docker build process is shown. Once the process finishes, the image has

been created in the Azure Container Registry for your workspace. Once the image has been built, the location in

your Azure Container Registry is displayed. The location returned is in the format

<acrinstance>.azurecr.io/package:<imagename> . For example, myml08024f78fd10.azurecr.io/package:20190827151241 .

Save the location information, as it is used when deploying the image.

az acr credential show --name <myacr>

{
"passwords": [
 {
 "name": "password",
 "value": "Iv0lRZQ9762LUJrFiffo3P4sWgk4q+nW"
 },
 {
 "name": "password2",
 "value": "=pKCxHatX96jeoYBWZLsPR6opszr==mg"
 }
],
"username": "myml08024f78fd10"
}

1. Use the following command to get the login credentials for the Azure Container Registry that contains the

image. Replace <acrinstance> with th e value returned previously from package.location :

The output of this command is similar to the following JSON document:

Save the value for username and one of the passwords .

2. If you do not already have a resource group or app service plan to deploy the service, the following

commands demonstrate how to create both:

https://docs.microsoft.com//python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#package-workspace--models--inference-config-none--generate-dockerfile-false-

az group create --name myresourcegroup --location "West Europe"
az appservice plan create --name myplanname --resource-group myresourcegroup --sku B1 --is-linux

IMPORTANT

az webapp create --resource-group myresourcegroup --plan myplanname --name <app-name> --deployment-
container-image-name <acrinstance>.azurecr.io/package:<imagename>

{
"adminSiteName": null,
"appServicePlanName": "myplanname",
"geoRegion": "West Europe",
"hostingEnvironmentProfile": null,
"id": "/subscriptions/0000-
0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myplanname",
"kind": "linux",
"location": "West Europe",
"maximumNumberOfWorkers": 1,
"name": "myplanname",
< JSON data removed for brevity. >
"targetWorkerSizeId": 0,
"type": "Microsoft.Web/serverfarms",
"workerTierName": null
}

IMPORTANT

az webapp config container set --name <app-name> --resource-group myresourcegroup --docker-custom-image-
name <acrinstance>.azurecr.io/package:<imagename> --docker-registry-server-url
https://<acrinstance>.azurecr.io --docker-registry-server-user <username> --docker-registry-server-
password <password>

In this example, a Basic pricing tier (--sku B1) is used.

Images created by Azure Machine Learning use Linux, so you must use the --is-linux parameter.

3. To create the web app, use the following command. Replace <app-name> with the name you want to use.

Replace <acrinstance> and <imagename> with the values from returned package.location earlier :

This command returns information similar to the following JSON document:

At this point, the web app has been created. However, since you haven't provided the credentials to the Azure

Container Registry that contains the image, the web app is not active. In the next step, you provide the

authentication information for the container registry.

4. To provide the web app with the credentials needed to access the container registry, use the following

command. Replace <app-name> with the name you want to use. Replace <acrinstance> and <imagename>

with the values from returned package.location earlier. Replace <username> and <password> with the ACR

login information retrieved earlier :

This command returns information similar to the following JSON document:

IMPORTANT

az webapp log tail --name <app-name> --resource-group myresourcegroup

az webapp show --name <app-name> --resource-group myresourcegroup

Use the Web App

[
{
 "name": "WEBSITES_ENABLE_APP_SERVICE_STORAGE",
 "slotSetting": false,
 "value": "false"
},
{
 "name": "DOCKER_REGISTRY_SERVER_URL",
 "slotSetting": false,
 "value": "https://myml08024f78fd10.azurecr.io"
},
{
 "name": "DOCKER_REGISTRY_SERVER_USERNAME",
 "slotSetting": false,
 "value": "myml08024f78fd10"
},
{
 "name": "DOCKER_REGISTRY_SERVER_PASSWORD",
 "slotSetting": false,
 "value": null
},
{
 "name": "DOCKER_CUSTOM_IMAGE_NAME",
 "value": "DOCKER|myml08024f78fd10.azurecr.io/package:20190827195524"
}
]

At this point, the web app begins loading the image.

It may take several minutes before the image has loaded. To monitor progress, use the following command:

Once the image has been loaded and the site is active, the log displays a message that states

Container <container name> for site <app-name> initialized successfully and is ready to serve requests .

Once the image is deployed, you can find the hostname by using the following command:

This command returns information similar to the following hostname - <app-name>.azurewebsites.net . Use this

value as part of the base ur l for the service.

The web service that passes requests to the model is located at {baseurl}/score . For example,

https://<app-name>.azurewebsites.net/score . The following Python code demonstrates how to submit data to the

URL and display the response:

import requests
import json

scoring_uri = "https://mywebapp.azurewebsites.net/score"

headers = {'Content-Type':'application/json'}

test_sample = json.dumps({'data': [
 [1,2,3,4,5,6,7,8,9,10],
 [10,9,8,7,6,5,4,3,2,1]
]})

response = requests.post(scoring_uri, data=test_sample, headers=headers)
print(response.status_code)
print(response.elapsed)
print(response.json())

Next steps
Learn to configure your Web App in the App Service on Linux documentation.

Learn more about scaling in Get started with Autoscale in Azure.

Use a TLS/SSL certificate in your Azure App Service.

Configure your App Service app to use Azure Active Directory sign-in.

Consume a ML Model deployed as a web service

https://docs.microsoft.com/azure/app-service/containers/
https://docs.microsoft.com/azure/azure-monitor/platform/autoscale-get-started?toc=%2fazure%2fapp-service%2ftoc.json
https://docs.microsoft.com/azure/app-service/configure-ssl-certificate-in-code
https://docs.microsoft.com/azure/app-service/configure-authentication-provider-aad

Deploy a machine learning model to Azure Functions
(preview)
3/8/2020 • 8 minutes to read • Edit Online

IMPORTANT

Prerequisites

Prepare for deployment

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to deploy a model from Azure Machine Learning as a function app in Azure Functions.

While both Azure Machine Learning and Azure Functions are generally available, the ability to package a model from the

Machine Learning service for Functions is in preview.

With Azure Machine Learning, you can create Docker images from trained machine learning models. Azure

Machine Learning now has the preview functionality to build these machine learning models into function apps,

which can be deployed into Azure Functions.

IMPORTANT

An Azure Machine Learning workspace. For more information, see the Create a workspace article.

The Azure CLI.

A trained machine learning model registered in your workspace. If you do not have a model, use the Image

classification tutorial: train model to train and register one.

The code snippets in this article assume that you have set the following variables:

ws - Your Azure Machine Learning workspace.

model - The registered model that will be deployed.

inference_config - The inference configuration for the model.

For more information on setting these variables, see Deploy models with Azure Machine Learning.

Before deploying, you must define what is needed to run the model as a web service. The following list describes

the basic items needed for a deployment:

An entr y scr ipt . This script accepts requests, scores the request using the model, and returns the results.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-functions.md
https://docs.microsoft.com/azure/azure-functions/functions-deployment-technologies#docker-container
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

IMPORTANT

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies

Create an environment and add conda dependencies to it
myenv = Environment(name="myenv")
Enable Docker based environment
myenv.docker.enabled = True
Build conda dependencies
myenv.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],
 pip_packages=['azureml-defaults'])
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)

IMPORTANT

Install the SDK preview package for functions support

pip install azureml-contrib-functions

Create the image

IMPORTANT
The entry script is specific to your model; it must understand the format of the incoming request data, the format of

the data expected by your model, and the format of the data returned to clients.

If the request data is in a format that is not usable by your model, the script can transform it into an acceptable

format. It may also transform the response before returning to it to the client.

By default when packaging for functions, the input is treated as text. If you are interested in consuming the raw bytes

of the input (for instance for Blob triggers), you should use AMLRequest to accept raw data.

Dependencies , such as helper scripts or Python/Conda packages required to run the entry script or model

These entities are encapsulated into an inference configuration. The inference configuration references the

entry script and other dependencies.

When creating an inference configuration for use with Azure Functions, you must use an Environment object. Please note

that if you are defining a custom environment, you must add azureml-defaults with version >= 1.0.45 as a pip dependency.

This package contains the functionality needed to host the model as a web service. The following example demonstrates

creating an environment object and using it with an inference configuration:

For more information on environments, see Create and manage environments for training and deployment.

For more information on inference configuration, see Deploy models with Azure Machine Learning.

When deploying to Functions, you do not need to create a deployment configuration.

To build packages for Azure Functions, you must install the SDK preview package.

To create the Docker image that is deployed to Azure Functions, use azureml.contrib.functions.package or the

specific package function for the trigger you are interested in using. The following code snippet demonstrates how

to create a new package with a blob trigger from the model and inference configuration:

https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where#binary-data
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-contrib-functions/azureml.contrib.functions?view=azure-ml-py

NOTE

from azureml.contrib.functions import package
from azureml.contrib.functions import BLOB_TRIGGER
blob = package(ws, [model], inference_config, functions_enabled=True, trigger=BLOB_TRIGGER,
input_path="input/{blobname}.json", output_path="output/{blobname}_out.json")
blob.wait_for_creation(show_output=True)
Display the package location/ACR path
print(blob.location)

NOTE

IMPORTANT

Deploy image as a web app

The code snippet assumes that model contains a registered model, and that inference_config contains the

configuration for the inference environment. For more information, see Deploy models with Azure Machine Learning.

When show_output=True , the output of the Docker build process is shown. Once the process finishes, the image has

been created in the Azure Container Registry for your workspace. Once the image has been built, the location in

your Azure Container Registry is displayed. The location returned is in the format

<acrinstance>.azurecr.io/package@sha256:<hash> .

Packaging for functions currently supports HTTP Triggers, Blob triggers and Service bus triggers. For more information on

triggers, see Azure Functions bindings.

Save the location information, as it is used when deploying the image.

az acr credential show --name <myacr>

{
"passwords": [
 {
 "name": "password",
 "value": "Iv0lRZQ9762LUJrFiffo3P4sWgk4q+nW"
 },
 {
 "name": "password2",
 "value": "=pKCxHatX96jeoYBWZLsPR6opszr==mg"
 }
],
"username": "myml08024f78fd10"
}

1. Use the following command to get the login credentials for the Azure Container Registry that contains the

image. Replace <myacr> with the value returned previously from package.location :

The output of this command is similar to the following JSON document:

Save the value for username and one of the passwords .

2. If you do not already have a resource group or app service plan to deploy the service, the following

commands demonstrate how to create both:

https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-blob-trigger#blob-name-patterns

az group create --name myresourcegroup --location "West Europe"
az appservice plan create --name myplanname --resource-group myresourcegroup --sku B1 --is-linux

IMPORTANT

az storage account create --name <webjobStorage> --location westeurope --resource-group myresourcegroup
--sku Standard_LRS

az storage account show-connection-string --resource-group myresourcegroup --name <webJobStorage> --
query connectionString --output tsv

az functionapp create --resource-group myresourcegroup --plan myplanname --name <app-name> --
deployment-container-image-name <acrinstance>.azurecr.io/package:<imagename> --storage-account
<webjobStorage>

IMPORTANT

az storage account create --name <triggerStorage> --location westeurope --resource-group
myresourcegroup --sku Standard_LRS

az storage account show-connection-string --resource-group myresourcegroup --name <triggerStorage> --
query connectionString --output tsv

az storage container create -n input --connection-string <triggerConnectionString>

In this example, a Linux basic pricing tier (--sku B1) is used.

Images created by Azure Machine Learning use Linux, so you must use the --is-linux parameter.

3. Create the storage account to use for the web job storage and get its connection string. Replace

<webjobStorage> with the name you want to use.

4. To create the function app, use the following command. Replace <app-name> with the name you want to use.

Replace <acrinstance> and <imagename> with the values from returned package.location earlier. Replace

<webjobStorage> with the name of the storage account from the previous step:

At this point, the function app has been created. However, since you haven't provided the connection string for the

blob trigger or credentials to the Azure Container Registry that contains the image, the function app is not active. In

the next steps, you provide the connection string and the authentication information for the container registry.

5. Create the storage account to use for the blob trigger storage and get its connection string. Replace

<triggerStorage> with the name you want to use.

Record this connection string to provide to the function app. We will use it later when we ask for

<triggerConnectionString>

6. Create the containers for the input and output in the storage account. Replace <triggerConnectionString>

with the connection string returned earlier :

az storage container create -n output --connection-string <triggerConnectionString>

az functionapp config appsettings set --name <app-name> --resource-group myresourcegroup --settings
"TriggerConnectionString=<triggerConnectionString>"

az acr repository show-tags --repository package --name <username> --output tsv

az functionapp config container set --name <app-name> --resource-group myresourcegroup --docker-custom-
image-name <acrinstance>.azurecr.io/package:<imagetag> --docker-registry-server-url
https://<acrinstance>.azurecr.io --docker-registry-server-user <username> --docker-registry-server-
password <password>

[
{
 "name": "WEBSITES_ENABLE_APP_SERVICE_STORAGE",
 "slotSetting": false,
 "value": "false"
},
{
 "name": "DOCKER_REGISTRY_SERVER_URL",
 "slotSetting": false,
 "value": "https://myml08024f78fd10.azurecr.io"
},
{
 "name": "DOCKER_REGISTRY_SERVER_USERNAME",
 "slotSetting": false,
 "value": "myml08024f78fd10"
},
{
 "name": "DOCKER_REGISTRY_SERVER_PASSWORD",
 "slotSetting": false,
 "value": null
},
{
 "name": "DOCKER_CUSTOM_IMAGE_NAME",
 "value": "DOCKER|myml08024f78fd10.azurecr.io/package:20190827195524"
}
]

7. To associate the trigger connection string with the function app, use the following command. Replace

<app-name> with the name of the function app. Replace <triggerConnectionString> with the connection

string returned earlier :

8. You will need to retrieve the tag associated with the created container using the following command.

Replace <username> with the username returned earlier from the container registry:

Save the value returned, it will be used as the imagetag in the next step.

9. To provide the function app with the credentials needed to access the container registry, use the following

command. Replace <app-name> with the name of the function app. Replace <acrinstance> and <imagetag>

with the values from the AZ CLI call in the previous step. Replace <username> and <password> with the ACR

login information retrieved earlier :

This command returns information similar to the following JSON document:

At this point, the function app begins loading the image.

IMPORTANT

Test the deployment

It may take several minutes before the image has loaded. You can monitor progress using the Azure Portal.

Once the image has loaded and the app is available, use the following steps to trigger the app:

{"data": [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]]}

IMPORTANT

az storage blob upload --container-name input --file <file> --name <file> --connection-string
<triggerConnectionString>

{
"etag": "\"0x8D7C21528E08844\"",
"lastModified": "2020-03-06T21:27:23+00:00"
}

az storage blob list --container-name output --connection-string <triggerConnectionString> --query
'[].name' --output tsv

az storage blob download --container-name output --file <file> --name <file> --connection-string
<triggerConnectionString>

1. Create a text file that contains the data that the score.py file expects. The following example would work with

a score.py that expects an array of 10 numbers:

The format of the data depends on what your score.py and model expects.

2. Use the following command to upload this file to the input container in the trigger storage blob created

earlier. Replace <file> with the name of the file containing the data. Replace <triggerConnectionString>

with the connection string returned earlier. In this example, input is the name of the input container

created earlier. If you used a different name, replace this value:

The output of this command is similar to the following JSON:

3. To view the output produced by the function, use the following command to list the output files generated.

Replace <triggerConnectionString> with the connection string returned earlier. In this example, output is

the name of the output container created earlier. If you used a different name, replace this value::

The output of this command is similar to sample_input_out.json .

4. To download the file and inspect the contents, use the following command. Replace <file> with the file

name returned by the previous command. Replace <triggerConnectionString> with the connection string

returned earlier :

Once the command completes, open the file. It contains the data returned by the model.

For more information on using blob triggers, see the Create a function triggered by Azure Blob storage article.

https://docs.microsoft.com/azure/azure-functions/functions-create-storage-blob-triggered-function

Next steps
Learn to configure your Functions App in the Functions documentation.

Learn more about Blob storage triggers Azure Blob storage bindings.

Deploy your model to Azure App Service.

Consume a ML Model deployed as a web service

API Reference

https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-image
https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-blob
https://docs.microsoft.com/python/api/azureml-contrib-functions/azureml.contrib.functions?view=azure-ml-py

What are field-programmable gate arrays (FPGA)
and how to deploy
4/10/2020 • 10 minutes to read • Edit Online

FPGAs vs. CPU, GPU, and ASIC

P RO C ESSO R DESC RIP T IO N

Application-specific integrated circuits ASICs Custom circuits, such as Google's
TensorFlow Processor Units (TPU),
provide the highest efficiency. They
can't be reconfigured as your needs
change.

Field-programmable gate arrays FPGAs FPGAs, such as those available on
Azure, provide performance close to
ASICs. They are also flexible and
reconfigurable over time, to implement
new logic.

Graphics processing units GPUs A popular choice for AI computations.
GPUs offer parallel processing
capabilities, making it faster at image
rendering than CPUs.

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article provides an introduction to field-programmable gate arrays (FPGA), and shows you how to deploy

your models using Azure Machine Learning to an Azure FPGA.

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable interconnects. The

interconnects allow these blocks to be configured in various ways after manufacturing. Compared to other chips,

FPGAs provide a combination of programmability and performance.

The following diagram and table show how FPGAs compare to other processors.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-fpga-web-service.md

Central processing units CPUs General-purpose processors, the
performance of which isn't ideal for
graphics and video processing.

P RO C ESSO R DESC RIP T IO N

Reconfigurable power

What's supported on Azure

IMPORTANT

FPGAs on Azure are based on Intel's FPGA devices, which data scientists and developers use to accelerate real-time

AI calculations. This FPGA-enabled architecture offers performance, flexibility, and scale, and is available on Azure.

FPGAs make it possible to achieve low latency for real-time inference (or model scoring) requests. Asynchronous

requests (batching) aren't needed. Batching can cause latency, because more data needs to be processed.

Implementations of neural processing units don't require batching; therefore the latency can be many times lower,

compared to CPU and GPU processors.

You can reconfigure FPGAs for different types of machine learning models. This flexibility makes it easier to

accelerate the applications based on the most optimal numerical precision and memory model being used.

Because FPGAs are reconfigurable, you can stay current with the requirements of rapidly changing AI algorithms.

Microsoft Azure is the world's largest cloud investment in FPGAs. Using this FPGA-enabled hardware architecture,

trained neural networks run quickly and with lower latency. Azure can parallelize pre-trained deep neural networks

(DNN) across FPGAs to scale out your service. The DNNs can be pre-trained, as a deep featurizer for transfer

learning, or fine-tuned with updated weights.

FPGAs on Azure supports:

Image classification and recognition scenarios

TensorFlow deployment (requires Tensorflow 1.x)

Intel FPGA hardware

These DNN models are currently available:

ResNet 50

ResNet 152

DenseNet-121

VGG-16

SSD-VGG

FPGAs are available in these Azure regions:

East US

Southeast Asia

West Europe

West US 2

To optimize latency and throughput, your client sending data to the FPGA model should be in one of the regions above (the

one you deployed the model to).

The PBS Family of Azure VMs contains Intel Arria 10 FPGAs. It will show as "Standard PBS Family vCPUs" when

you check your Azure quota allocation. The PB6 VM has six vCPUs and one FPGA, and it will automatically be

Scenarios and applications

Example: Deploy models on FPGAs

Prerequisites

1. Create and containerize models

provisioned by Azure ML as part of deploying a model to an FPGA. It is only used with Azure ML, and it cannot run

arbitrary bitstreams. For example, you will not be able to flash the FPGA with bitstreams to do encryption,

encoding, etc.

Azure FPGAs are integrated with Azure Machine Learning. Microsoft uses FPGAs for DNN evaluation, Bing search

ranking, and software defined networking (SDN) acceleration to reduce latency, while freeing CPUs for other tasks.

The following scenarios use FPGAs:

Automated optical inspection system

Land cover mapping

You can deploy a model as a web service on FPGAs with Azure Machine Learning Hardware Accelerated Models.

Using FPGAs provides ultra-low latency inference, even with a single batch size. Inference, or model scoring, is the

phase where the deployed model is used for prediction, most commonly on production data.

az vm list-usage --location "eastus" -o table --query "[?localName=='Standard PBS Family vCPUs']"

TIP

CurrentValue Limit LocalName
-------------- ------- -------------------------
0 6 Standard PBS Family vCPUs

pip install --upgrade azureml-accel-models[cpu]

An Azure subscription. If you do not have one, create a free account before you begin. Try the free or paid

version of Azure Machine Learning today.

FPGA quota. Use the Azure CLI to check whether you have quota:

The other possible locations are southeastasia , westeurope , and westus2 .

The command returns text similar to the following:

Make sure you have at least 6 vCPUs under CurrentValue.

If you do not have quota, then submit a request at https://aka.ms/accelerateAI.

An Azure Machine Learning workspace and the Azure Machine Learning SDK for Python installed. For more

information, see Create a workspace.

The Python SDK for hardware-accelerated models:

This document will describe how to create a TensorFlow graph to preprocess the input image, make it a featurizer

using ResNet 50 on an FPGA, and then run the features through a classifier trained on the ImageNet data set.

Follow the instructions to:

https://blogs.microsoft.com/ai/build-2018-project-brainwave/
https://blogs.technet.microsoft.com/machinelearning/2018/05/29/how-to-use-fpgas-for-deep-learning-inference-to-perform-land-cover-mapping-on-terabytes-of-aerial-images/
https://aka.ms/AMLFree
https://aka.ms/accelerateAI

Load Azure Machine Learning workspace

import os
import tensorflow as tf

from azureml.core import Workspace

ws = Workspace.from_config()
print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n')

Preprocess image

Input images as a two-dimensional tensor containing an arbitrary number of images represented a strings
import azureml.accel.models.utils as utils
tf.reset_default_graph()

in_images = tf.placeholder(tf.string)
image_tensors = utils.preprocess_array(in_images)
print(image_tensors.shape)

Load featurizer

from azureml.accel.models import QuantizedResnet50
save_path = os.path.expanduser('~/models')
model_graph = QuantizedResnet50(save_path, is_frozen=True)
feature_tensor = model_graph.import_graph_def(image_tensors)
print(model_graph.version)
print(feature_tensor.name)
print(feature_tensor.shape)

Add classifier

Define the TensorFlow model

Convert the model

Deploy the model

Consume the deployed model

Delete deployed services

Use the Azure Machine Learning SDK for Python to create a service definition. A service definition is a file

describing a pipeline of graphs (input, featurizer, and classifier) based on TensorFlow. The deployment command

automatically compresses the definition and graphs into a ZIP file, and uploads the ZIP to Azure Blob storage. The

DNN is already deployed to run on the FPGA.

Load your Azure Machine Learning workspace.

The input to the web service is a JPEG image. The first step is to decode the JPEG image and preprocess it. The

JPEG images are treated as strings and the result are tensors that will be the input to the ResNet 50 model.

Initialize the model and download a TensorFlow checkpoint of the quantized version of ResNet50 to be used as a

featurizer. You may replace "QuantizedResnet50" in the code snippet below with by importing other deep neural

networks:

QuantizedResnet152

QuantizedVgg16

Densenet121

This classifier has been trained on the ImageNet data set. Examples for transfer learning and training your

customized weights are available in the set of sample notebooks.

https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://aka.ms/aml-notebooks

classifier_output = model_graph.get_default_classifier(feature_tensor)
print(classifier_output)

Save the model

model_name = "resnet50"
model_save_path = os.path.join(save_path, model_name)
print("Saving model in {}".format(model_save_path))

with tf.Session() as sess:
 model_graph.restore_weights(sess)
 tf.saved_model.simple_save(sess, model_save_path,
 inputs={'images': in_images},
 outputs={'output_alias': classifier_output})

Save input and output tensors

input_tensors = in_images.name
output_tensors = classifier_output.name

print(input_tensors)
print(output_tensors)

IMPORTANT

Now that the preprocessor, ResNet 50 featurizer, and the classifier have been loaded, save the graph and

associated variables as a model.

The input and output tensors that were created during the preprocessing and classifier steps will be needed for

model conversion and inference.

Save the input and output tensors because you will need them for model conversion and inference requests.

The available models and the corresponding default classifier output tensors are below, which is what you would

use for inference if you used the default classifier.

Resnet50, QuantizedResnet50

output_tensors = "classifier_1/resnet_v1_50/predictions/Softmax:0"

Resnet152, QuantizedResnet152

output_tensors = "classifier/resnet_v1_152/predictions/Softmax:0"

Densenet121, QuantizedDensenet121

output_tensors = "classifier/densenet121/predictions/Softmax:0"

Vgg16, QuantizedVgg16

output_tensors = "classifier/vgg_16/fc8/squeezed:0"

SsdVgg, QuantizedSsdVgg

Register model

from azureml.core.model import Model

registered_model = Model.register(workspace=ws,
 model_path=model_save_path,
 model_name=model_name)

print("Successfully registered: ", registered_model.name,
 registered_model.description, registered_model.version, sep='\t')

from azureml.core.model import Model
model_name = "resnet50"
By default, the latest version is retrieved. You can specify the version, i.e. version=1
registered_model = Model(ws, name="resnet50")
print(registered_model.name, registered_model.description,
 registered_model.version, sep='\t')

Convert model

from azureml.accel import AccelOnnxConverter

convert_request = AccelOnnxConverter.convert_tf_model(
 ws, registered_model, input_tensors, output_tensors)

If it fails, you can run wait_for_completion again with show_output=True.
convert_request.wait_for_completion(show_output=False)

If the above call succeeded, get the converted model
converted_model = convert_request.result
print("\nSuccessfully converted: ", converted_model.name, converted_model.url, converted_model.version,
 converted_model.id, converted_model.created_time, '\n')

Create Docker image

output_tensors = ['ssd_300_vgg/block4_box/Reshape_1:0', 'ssd_300_vgg/block7_box/Reshape_1:0',
'ssd_300_vgg/block8_box/Reshape_1:0', 'ssd_300_vgg/block9_box/Reshape_1:0',
'ssd_300_vgg/block10_box/Reshape_1:0', 'ssd_300_vgg/block11_box/Reshape_1:0',
'ssd_300_vgg/block4_box/Reshape:0', 'ssd_300_vgg/block7_box/Reshape:0',
'ssd_300_vgg/block8_box/Reshape:0', 'ssd_300_vgg/block9_box/Reshape:0',
'ssd_300_vgg/block10_box/Reshape:0', 'ssd_300_vgg/block11_box/Reshape:0']

Register the model by using the SDK with the ZIP file in Azure Blob storage. Adding tags and other metadata about

the model helps you keep track of your trained models.

If you've already registered a model and want to load it, you may retrieve it.

Convert the TensorFlow graph to the Open Neural Network Exchange format (ONNX). You will need to provide the

names of the input and output tensors, and these names will be used by your client when you consume the web

service.

The converted model and all dependencies are added to a Docker image. This Docker image can then be deployed

and instantiated. Supported deployment targets include AKS in the cloud or an edge device such as Azure Data

Box Edge. You can also add tags and descriptions for your registered Docker image.

https://onnx.ai/
https://docs.microsoft.com/azure/databox-online/data-box-edge-overview

from azureml.core.image import Image
from azureml.accel import AccelContainerImage

image_config = AccelContainerImage.image_configuration()
Image name must be lowercase
image_name = "{}-image".format(model_name)

image = Image.create(name=image_name,
 models=[converted_model],
 image_config=image_config,
 workspace=ws)
image.wait_for_creation(show_output=False)

for i in Image.list(workspace=ws):
 print('{}(v.{} [{}]) stored at {} with build log {}'.format(
 i.name, i.version, i.creation_state, i.image_location, i.image_build_log_uri))

2. Deploy to cloud or edge
Deploy to the cloud

from azureml.core.compute import AksCompute, ComputeTarget

Specify the Standard_PB6s Azure VM and location. Values for location may be "eastus", "southeastasia",
"westeurope", or "westus2". If no value is specified, the default is "eastus".
prov_config = AksCompute.provisioning_configuration(vm_size = "Standard_PB6s",
 agent_count = 1,
 location = "eastus")

aks_name = 'my-aks-cluster'
Create the cluster
aks_target = ComputeTarget.create(workspace=ws,
 name=aks_name,
 provisioning_configuration=prov_config)

aks_target.wait_for_completion(show_output=True)
print(aks_target.provisioning_state)
print(aks_target.provisioning_errors)

List the images by tag and get the detailed logs for any debugging.

To deploy your model as a high-scale production web service, use Azure Kubernetes Service (AKS). You can create

a new one using the Azure Machine Learning SDK, CLI, or Azure Machine Learning studio.

The AKS deployment may take around 15 minutes. Check to see if the deployment succeeded.

Deploy the container to the AKS cluster.

https://ml.azure.com

from azureml.core.webservice import Webservice, AksWebservice

For this deployment, set the web service configuration without enabling auto-scaling or authentication for
testing
aks_config = AksWebservice.deploy_configuration(autoscale_enabled=False,
 num_replicas=1,
 auth_enabled=False)

aks_service_name = 'my-aks-service'

aks_service = Webservice.deploy_from_image(workspace=ws,
 name=aks_service_name,
 image=image,
 deployment_config=aks_config,
 deployment_target=aks_target)
aks_service.wait_for_deployment(show_output=True)

Test the cloud service

Using the grpc client in Azure ML Accelerated Models SDK package
from azureml.accel import PredictionClient

address = aks_service.scoring_uri
ssl_enabled = address.startswith("https")
address = address[address.find('/')+2:].strip('/')
port = 443 if ssl_enabled else 80

Initialize Azure ML Accelerated Models client
client = PredictionClient(address=address,
 port=port,
 use_ssl=ssl_enabled,
 service_name=aks_service.name)

import requests
classes_entries = requests.get(

"https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt").text.splitl
ines()

Score image with input and output tensor names
results = client.score_file(path="./snowleopardgaze.jpg",
 input_name=input_tensors,
 outputs=output_tensors)

map results [class_id] => [confidence]
results = enumerate(results)
sort results by confidence
sorted_results = sorted(results, key=lambda x: x[1], reverse=True)
print top 5 results
for top in sorted_results[:5]:
 print(classes_entries[top[0]], 'confidence:', top[1])

Clean-up the service

The Docker image supports gRPC and the TensorFlow Serving "predict" API. Use the sample client to call into the

Docker image to get predictions from the model. Sample client code is available:

Python

C#

If you want to use TensorFlow Serving, you can download a sample client.

Since this classifier was trained on the ImageNet data set, map the classes to human-readable labels.

https://github.com/Azure/aml-real-time-ai/blob/master/pythonlib/amlrealtimeai/client.py
https://github.com/Azure/aml-real-time-ai/blob/master/sample-clients/csharp
https://www.tensorflow.org/serving/setup
http://www.image-net.org/

aks_service.delete()
aks_target.delete()
image.delete()
registered_model.delete()
converted_model.delete()

Deploy to a local edge server

Secure FPGA web services

Next steps

Delete your web service, image, and model (must be done in this order since there are dependencies).

All Azure Data Box Edge devices contain an FPGA for running the model. Only one model can be running on the

FPGA at one time. To run a different model, just deploy a new container. Instructions and sample code can be

found in this Azure Sample.

To secure your FPGA web services, see the Secure web services document.

Check out these notebooks, videos, and blogs:

Several sample notebooks

Hyperscale hardware: ML at scale on top of Azure + FPGA: Build 2018 (video)

Inside the Microsoft FPGA-based configurable cloud (video)

Project Brainwave for real-time AI: project home page

https://docs.microsoft.com/azure/databox-online/data-box-edge-overview
https://github.com/Azure-Samples/aml-hardware-accelerated-models
https://aka.ms/aml-accel-models-notebooks
https://channel9.msdn.com/events/Build/2018/BRK3202
https://channel9.msdn.com/Events/Build/2017/B8063
https://www.microsoft.com/research/project/project-brainwave/

Deploy a model using a custom Docker base image
4/17/2020 • 11 minutes to read • Edit Online

IMPORTANT

WARNING

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to use a custom Docker base image when deploying trained models with Azure Machine Learning.

When you deploy a trained model to a web service or IoT Edge device, a package is created which contains a web

server to handle incoming requests.

Azure Machine Learning provides a default Docker base image so you don't have to worry about creating one.

You can also use Azure Machine Learning environments to select a specific base image, or use a custom one

that you provide.

A base image is used as the starting point when an image is created for a deployment. It provides the underlying

operating system and components. The deployment process then adds additional components, such as your

model, conda environment, and other assets, to the image before deploying it.

Typically, you create a custom base image when you want to use Docker to manage your dependencies, maintain

tighter control over component versions or save time during deployment. For example, you might want to

standardize on a specific version of Python, Conda, or other component. You might also want to install software

required by your model, where the installation process takes a long time. Installing the software when creating

the base image means that you don't have to install it for each deployment.

When you deploy a model, you cannot override core components such as the web server or IoT Edge components. These

components provide a known working environment that is tested and supported by Microsoft.

Microsoft may not be able to help troubleshoot problems caused by a custom image. If you encounter problems, you may

be asked to use the default image or one of the images Microsoft provides to see if the problem is specific to your image.

This document is broken into two sections:

Create a custom base image: Provides information to admins and DevOps on creating a custom image and

configuring authentication to an Azure Container Registry using the Azure CLI and Machine Learning CLI.

Deploy a model using a custom base image: Provides information to Data Scientists and DevOps / ML

Engineers on using custom images when deploying a trained model from the Python SDK or ML CLI.

An Azure Machine Learning workgroup. For more information, see the Create a workspace article.

The Azure Machine Learning SDK.

The Azure CLI.

The CLI extension for Azure Machine Learning.

An Azure Container Registry or other Docker registry that is accessible on the internet.

The steps in this document assume that you are familiar with creating and using an inference configuration

object as part of model deployment. For more information, see the "prepare to deploy" section of Where to

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-custom-docker-image.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/azure/container-registry

Create a custom base image

Get container registry information

WARNING

deploy and how.

The information in this section assumes that you are using an Azure Container Registry to store Docker images.

Use the following checklist when planning to create custom images for Azure Machine Learning:

WARNING

Will you use the Azure Container Registry created for the Azure Machine Learning workspace, or a

standalone Azure Container Registry?

When using images stored in the container registr y for the workspace , you do not need to

authenticate to the registry. Authentication is handled by the workspace.

The Azure Container Registry for your workspace is created the first time you train or deploy a model using

the workspace. If you've created a new workspace, but not trained or created a model, no Azure Container Registry

will exist for the workspace.

For information on retrieving the name of the Azure Container Registry for your workspace, see the Get

container registry name section of this article.

When using images stored in a standalone container registr y , you will need to configure a service

principal that has at least read access. You then provide the service principal ID (username) and password

to anyone that uses images from the registry. The exception is if you make the container registry publicly

accessible.

For information on creating a private Azure Container Registry, see Create a private container registry.

For information on using service principals with Azure Container Registry, see Azure Container Registry

authentication with service principals.

Azure Container Registry and image information: Provide the image name to anyone that needs to use it.

For example, an image named myimage , stored in a registry named myregistry , is referenced as

myregistry.azurecr.io/myimage when using the image for model deployment

Image requirements: Azure Machine Learning only supports Docker images that provide the following

software:

Ubuntu 16.04 or greater.

Conda 4.5.# or greater.

Python 3.5.# or 3.6.#.

In this section, learn how to get the name of the Azure Container Registry for your Azure Machine Learning

workspace.

The Azure Container Registry for your workspace is created the first time you train or deploy a model using the

workspace. If you've created a new workspace, but not trained or created a model, no Azure Container Registry will exist for

the workspace.

If you've already trained or deployed models using Azure Machine Learning, a container registry was created for

your workspace. To find the name of this container registry, use the following steps:

https://docs.microsoft.com/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/azure/container-registry/container-registry-auth-service-principal

Build a custom base image

az login

TIP

az ml workspace show -w <myworkspace> -g <resourcegroup> --query containerRegistry

TIP

az extension add -n azure-cli-ml

/subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.ContainerRegistry
/registries/<registry_name>

1. Open a new shell or command-prompt and use the following command to authenticate to your Azure

subscription:

Follow the prompts to authenticate to the subscription.

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information

with isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be

the same one that contains your Azure Machine Learning workspace. You can find the subscription ID from the

Azure portal by visiting the overview page for your workspace. You can also use the SDK to get the subscription ID

from the workspace object. For example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify

the subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

2. Use the following command to list the container registry for the workspace. Replace <myworkspace> with

your Azure Machine Learning workspace name. Replace <resourcegroup> with the Azure resource group

that contains your workspace:

If you get an error message stating that the ml extension isn't installed, use the following command to install it:

The information returned is similar to the following text:

The <registry_name> value is the name of the Azure Container Registry for your workspace.

The steps in this section walk-through creating a custom Docker image in your Azure Container Registry.

1. Create a new text file named Dockerfile , and use the following text as the contents:

https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest

Use a custom base image

FROM ubuntu:16.04

ARG CONDA_VERSION=4.5.12
ARG PYTHON_VERSION=3.6

ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
ENV PATH /opt/miniconda/bin:$PATH

RUN apt-get update --fix-missing && \
 apt-get install -y wget bzip2 && \
 apt-get clean && \
 rm -rf /var/lib/apt/lists/*

RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-${CONDA_VERSION}-Linux-x86_64.sh -O
~/miniconda.sh && \
 /bin/bash ~/miniconda.sh -b -p /opt/miniconda && \
 rm ~/miniconda.sh && \
 /opt/miniconda/bin/conda clean -tipsy

RUN conda install -y conda=${CONDA_VERSION} python=${PYTHON_VERSION} && \
 conda clean -aqy && \
 rm -rf /opt/miniconda/pkgs && \
 find / -type d -name __pycache__ -prune -exec rm -rf {} \;

az acr login --name <registry_name>

az acr build --image myimage:v1 --registry <registry_name> --file Dockerfile .

TIP

Run ID: cda was successful after 2m56s

2. From a shell or command-prompt, use the following to authenticate to the Azure Container Registry.

Replace the <registry_name> with the name of the container registry you want to store the image in:

3. To upload the Dockerfile, and build it, use the following command. Replace <registry_name> with the name

of the container registry you want to store the image in:

In this example, a tag of :v1 is applied to the image. If no tag is provided, a tag of :latest is applied.

During the build process, information is streamed to back to the command line. If the build is successful,

you receive a message similar to the following text:

For more information on building images with an Azure Container Registry, see Build and run a container image

using Azure Container Registry Tasks

For more information on uploading existing images to an Azure Container Registry, see Push your first image to a

private Docker container registry.

To use a custom image, you need the following information:

The image name. For example, mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda is the

path to a basic Docker Image provided by Microsoft.

https://docs.microsoft.com/azure/container-registry/container-registry-quickstart-task-cli
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-docker-cli

Publicly available base images

IM A GE DESC RIP T IO N

mcr.microsoft.com/azureml/o16n-sample-user-
base/ubuntu-miniconda

Basic image for Azure Machine Learning

mcr.microsoft.com/azureml/onnxruntime:latest Contains ONNX Runtime for CPU inferencing

mcr.microsoft.com/azureml/onnxruntime:latest-cuda Contains the ONNX Runtime and CUDA for GPU

mcr.microsoft.com/azureml/onnxruntime:latest-
tensorrt

Contains ONNX Runtime and TensorRT for GPU

mcr.microsoft.com/azureml/onnxruntime:latest-
openvino-vadm

Contains ONNX Runtime and OpenVINO for Intel Vision
Accelerator Design based on Movidius MyriadX VPUs

mcr.microsoft.com/azureml/onnxruntime:latest-
openvino-myriad

Contains ONNX Runtime and OpenVINO for Intel
Movidius USB sticks

TIP

TIP

Use an image built during training with SDK 1.0.22 or greater
image_config.base_image = run.properties["AzureML.DerivedImageName"]

IMPORTANT
For custom images that you've created, be sure to include any tags that were used with the image. For example, if

your image was created with a specific tag, such as :v1 . If you did not use a specific tag when creating the image,

a tag of :latest was applied.

If the image is in a pr ivate repositor y , you need the following information:

The registry address . For example, myregistry.azureecr.io .

A service principal username and password that has read access to the registry.

If you do not have this information, speak to the administrator for the Azure Container Registry that

contains your image.

Microsoft provides several docker images on a publicly accessible repository, which can be used with the steps in

this section:

TM

TM

For more information about the ONNX Runtime base images see the ONNX Runtime dockerfile section in the

GitHub repo.

Since these images are publicly available, you do not need to provide an address, username or password when using them.

For more information, see Azure Machine Learning containers.

If your model is trained on Azure Machine Learning Compute, using version 1.0.22 or greater of the Azure

Machine Learning SDK, an image is created during training. To discover the name of this image, use

run.properties["AzureML.DerivedImageName"] . The following example demonstrates how to use this image:

https://github.com/microsoft/onnxruntime/blob/master/dockerfiles/README.md
https://github.com/Azure/AzureML-Containers

Use an image with the Azure Machine Learning SDK

from azureml.core.environment import Environment
Create the environment
myenv = Environment(name="myenv")
Enable Docker and reference an image
myenv.docker.enabled = True
myenv.docker.base_image = "mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda"

Set the container registry information
myenv.docker.base_image_registry.address = "myregistry.azurecr.io"
myenv.docker.base_image_registry.username = "username"
myenv.docker.base_image_registry.password = "password"

myenv.inferencing_stack_version = "latest" # This will install the inference specific apt packages.

Define the packages needed by the model and scripts
from azureml.core.conda_dependencies import CondaDependencies
conda_dep = CondaDependencies()
you must list azureml-defaults as a pip dependency
conda_dep.add_pip_package("azureml-defaults")
myenv.python.conda_dependencies=conda_dep

from azureml.core.model import InferenceConfig
Use environment in InferenceConfig
inference_config = InferenceConfig(entry_script="score.py",
 environment=myenv)

from azureml.core.webservice import LocalWebservice, Webservice

deployment_config = LocalWebservice.deploy_configuration(port=8890)
service = Model.deploy(ws, "myservice", [model], inference_config, deployment_config)
service.wait_for_deployment(show_output = True)
print(service.state)

To use an image stored in the Azure Container Registr y for your workspace , or a container registr y that

is publicly accessible, set the following Environment attributes:

docker.enabled=True

docker.base_image : Set to the registry and path to the image.

To use an image from a pr ivate container registr y that is not in your workspace, you must use

docker.base_image_registry to specify the address of the repository and a user name and password:

You must add azureml-defaults with version >= 1.0.45 as a pip dependency. This package contains the

functionality needed to host the model as a web service. You must also set inferencing_stack_version property on

the environment to "latest", this will install specific apt packages needed by web service.

After defining the environment, use it with an InferenceConfig object to define the inference environment in

which the model and web service will run.

At this point, you can continue with deployment. For example, the following code snippet would deploy a web

service locally using the inference configuration and custom image:

For more information on deployment, see Deploy models with Azure Machine Learning.

For more information on customizing your Python environment, see Create and manage environments for

training and deployment.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py

Use an image with the Machine Learning CLI

IMPORTANT

{
 "entryScript": "score.py",
 "environment": {
 "docker": {
 "arguments": [],
 "baseDockerfile": null,
 "baseImage": "mcr.microsoft.com/azureml/o16n-sample-user-base/ubuntu-miniconda",
 "enabled": false,
 "sharedVolumes": true,
 "shmSize": null
 },
 "environmentVariables": {
 "EXAMPLE_ENV_VAR": "EXAMPLE_VALUE"
 },
 "name": "my-deploy-env",
 "python": {
 "baseCondaEnvironment": null,
 "condaDependencies": {
 "channels": [
 "conda-forge"
],
 "dependencies": [
 "python=3.6.2",
 {
 "pip": [
 "azureml-defaults",
 "azureml-telemetry",
 "scikit-learn",
 "inference-schema[numpy-support]"
]
 }
],
 "name": "project_environment"
 },
 "condaDependenciesFile": null,
 "interpreterPath": "python",
 "userManagedDependencies": false
 },
 "version": "1"
 }
}

az ml model deploy -n myservice -m mymodel:1 --ic inferenceconfig.json --dc deploymentconfig.json --ct
akscomputetarget

Currently the Machine Learning CLI can use images from the Azure Container Registry for your workspace or publicly

accessible repositories. It cannot use images from standalone private registries.

Before deploying a model using the Machine Learning CLI, create an environment that uses the custom image.

Then create an inference configuration file that references the environment. You can also define the environment

directly in the inference configuration file. The following JSON document demonstrates how to reference an

image in a public container registry. In this example, the environment is defined inline:

This file is used with the az ml model deploy command. The --ic parameter is used to specify the inference

configuration file.

For more information on deploying a model using the ML CLI, see the "model registration, profiling, and

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

Next steps

deployment" section of the CLI extension for Azure Machine Learning article.

Learn more about Where to deploy and how.

Learn how to Train and deploy machine learning models using Azure Pipelines.

https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning?view=azure-devops

Use an existing model with Azure Machine Learning
3/17/2020 • 7 minutes to read • Edit Online

TIP

Prerequisites

Register the model(s)

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to use an existing machine learning model with Azure Machine Learning.

If you have a machine learning model that was trained outside Azure Machine Learning, you can still use the

service to deploy the model as a web service or to an IoT Edge device.

This article provides basic information on registering and deploying an existing model. Once deployed, Azure Machine

Learning provides monitoring for your model. It also allows you to store input data sent to the deployment, which can be

used for data drift analysis or training new versions of the model.

For more information on the concepts and terms used here, see Manage, deploy, and monitor machine learning models.

For general information on the deployment process, see Deploy models with Azure Machine Learning.

TIP

NOTE

An Azure Machine Learning workspace. For more information, see Create a workspace.

The Python examples in this article assume that the ws variable is set to your Azure Machine Learning workspace.

The CLI examples use a placeholder of myworkspace and myresourcegroup . Replace these with the name of your

workspace and the resource group that contains it.

The Azure Machine Learning SDK.

The Azure CLI and Machine Learning CLI extension.

A trained model. The model must be persisted to one or more files on your development environment.

To demonstrate registering a model trained outside Azure Machine Learning, the example code snippets in this article

use the models created by Paolo Ripamonti's Twitter sentiment analysis project:

https://www.kaggle.com/paoloripamonti/twitter-sentiment-analysis.

Registering a model allows you to store, version, and track metadata about models in your workspace. In the

following Python and CLI examples, the models directory contains the model.h5 , model.w2v , encoder.pkl , and

tokenizer.pkl files. This example uploads the files contained in the models directory as a new model registration

named sentiment :

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-deploy-existing-model.md
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://www.kaggle.com/paoloripamonti/twitter-sentiment-analysis

from azureml.core.model import Model
Tip: When model_path is set to a directory, you can use the child_paths parameter to include
only some of the files from the directory
model = Model.register(model_path = "./models",
 model_name = "sentiment",
 description = "Sentiment analysis model trained outside Azure Machine Learning",
 workspace = ws)

az ml model register -p ./models -n sentiment -w myworkspace -g myresourcegroup

TIP

Define inference configuration

from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies

Create the environment
myenv = Environment(name="myenv")
conda_dep = CondaDependencies()

Define the packages needed by the model and scripts
conda_dep.add_conda_package("tensorflow")
conda_dep.add_conda_package("numpy")
conda_dep.add_conda_package("scikit-learn")
You must list azureml-defaults as a pip dependency
conda_dep.add_pip_package("azureml-defaults")
conda_dep.add_pip_package("keras")
conda_dep.add_pip_package("gensim")

Adds dependencies to PythonSection of myenv
myenv.python.conda_dependencies=conda_dep

inference_config = InferenceConfig(entry_script="score.py",
 environment=myenv)

For more information, see the Model.register() reference.

You can also set add tags and properties dictionary objects to the registered model. These values can be used later to

help identify a specific model. For example, the framework used, training parameters, etc.

For more information, see the az ml model register reference.

For more information on model registration in general, see Manage, deploy, and monitor machine learning

models.

The inference configuration defines the environment used to run the deployed model. The inference configuration

references the following entities, which are used to run the model when it's deployed:

An entry script. This file (named score.py) loads the model when the deployed service starts. It is also

responsible for receiving data, passing it to the model, and then returning a response.

An Azure Machine Learning environment. An environment defines the software dependencies needed to run

the model and entry script.

The following example shows how to use the SDK to create an environment and then use it with an inference

configuration:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model(class)?view=azure-ml-py#register-workspace--model-path--model-name--tags-none--properties-none--description-none--datasets-none--model-framework-none--model-framework-version-none--child-paths-none--sample-input-dataset-none--sample-output-dataset-none--resource-configuration-none-
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-register

{
 "entryScript": "score.py",
 "runtime": "python",
 "condaFile": "myenv.yml"
}

name: inference_environment
dependencies:
- python=3.6.2
- tensorflow
- numpy
- scikit-learn
- pip:
 - azureml-defaults
 - keras
 - gensim

Entry script

IMPORTANT

import os
import pickle
import json
import time
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
from gensim.models.word2vec import Word2Vec

SENTIMENT
POSITIVE = "POSITIVE"
NEGATIVE = "NEGATIVE"
NEUTRAL = "NEUTRAL"
SENTIMENT_THRESHOLDS = (0.4, 0.7)
SEQUENCE_LENGTH = 300

Called when the deployed service starts
def init():
 global model
 global tokenizer

For more information, see the following articles:

How to use environments.

InferenceConfig reference.

The CLI loads the inference configuration from a YAML file:

With the CLI, the conda environment is defined in the myenv.yml file referenced by the inference configuration. The

following YAML is the contents of this file:

For more information on inference configuration, see Deploy models with Azure Machine Learning.

The entry script has only two required functions, init() and run(data) . These functions are used to initialize the

service at startup and run the model using request data passed in by a client. The rest of the script handles loading

and running the model(s).

There isn't a generic entry script that works for all models. It is always specific to the model that is used. It must understand

how to load the model, the data format that the model expects, and how to score data using the model.

The following Python code is an example entry script (score.py):

https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py

 global tokenizer
 global encoder
 global w2v_model

 # Get the path where the deployed model can be found.
 model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), './models')
 # load models
 model = load_model(model_path + '/model.h5')
 w2v_model = Word2Vec.load(model_path + '/model.w2v')

 with open(model_path + '/tokenizer.pkl','rb') as handle:
 tokenizer = pickle.load(handle)

 with open(model_path + '/encoder.pkl','rb') as handle:
 encoder = pickle.load(handle)

Handle requests to the service
def run(data):
 try:
 # Pick out the text property of the JSON request.
 # This expects a request in the form of {"text": "some text to score for sentiment"}
 data = json.loads(data)
 prediction = predict(data['text'])
 #Return prediction
 return prediction
 except Exception as e:
 error = str(e)
 return error

Determine sentiment from score
def decode_sentiment(score, include_neutral=True):
 if include_neutral:
 label = NEUTRAL
 if score <= SENTIMENT_THRESHOLDS[0]:
 label = NEGATIVE
 elif score >= SENTIMENT_THRESHOLDS[1]:
 label = POSITIVE
 return label
 else:
 return NEGATIVE if score < 0.5 else POSITIVE

Predict sentiment using the model
def predict(text, include_neutral=True):
 start_at = time.time()
 # Tokenize text
 x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
 # Predict
 score = model.predict([x_test])[0]
 # Decode sentiment
 label = decode_sentiment(score, include_neutral=include_neutral)

 return {"label": label, "score": float(score),
 "elapsed_time": time.time()-start_at}

Define deployment

For more information on entry scripts, see Deploy models with Azure Machine Learning.

The Webservice package contains the classes used for deployment. The class you use determines where the model

is deployed. For example, to deploy as a web service on Azure Kubernetes Service, use

AksWebService.deploy_configuration() to create the deployment configuration.

The following Python code defines a deployment configuration for a local deployment. This configuration deploys

the model as a web service to your local computer.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.akswebservice?view=azure-ml-py#deploy-configuration-autoscale-enabled-none--autoscale-min-replicas-none--autoscale-max-replicas-none--autoscale-refresh-seconds-none--autoscale-target-utilization-none--collect-model-data-none--auth-enabled-none--cpu-cores-none--memory-gb-none--enable-app-insights-none--scoring-timeout-ms-none--replica-max-concurrent-requests-none--max-request-wait-time-none--num-replicas-none--primary-key-none--secondary-key-none--tags-none--properties-none--description-none--gpu-cores-none--period-seconds-none--initial-delay-seconds-none--timeout-seconds-none--success-threshold-none--failure-threshold-none--namespace-none--token-auth-enabled-none--compute-target-name-none-

IMPORTANT

from azureml.core.webservice import LocalWebservice

deployment_config = LocalWebservice.deploy_configuration()

{
 "computeType": "LOCAL"
}

Deploy the model

from azureml.core.model import Model

model = Model(ws, name='sentiment')
service = Model.deploy(ws, 'myservice', [model], inference_config, deployment_config)

service.wait_for_deployment(True)
print(service.state)
print("scoring URI: " + service.scoring_uri)

az ml model deploy -n myservice -m sentiment:1 --ic inferenceConfig.json --dc deploymentConfig.json

Request-response consumption

A local deployment requires a working installation of Docker on your local computer:

For more information, see the LocalWebservice.deploy_configuration() reference.

The CLI loads the deployment configuration from a YAML file:

Deploying to a different compute target, such as Azure Kubernetes Service in the Azure cloud, is as easy as

changing the deployment configuration. For more information, see How and where to deploy models.

The following example loads information on the registered model named sentiment , and then deploys it as a

service named sentiment . During deployment, the inference configuration and deployment configuration are used

to create and configure the service environment:

For more information, see the Model.deploy() reference.

To deploy the model from the CLI, use the following command. This command deploys version 1 of the registered

model (sentiment:1) using the inference and deployment configuration stored in the inferenceConfig.json and

deploymentConfig.json files:

For more information, see the az ml model deploy reference.

For more information on deployment, see How and where to deploy models.

After deployment, the scoring URI is displayed. This URI can be used by clients to submit requests to the service.

The following example is a basic Python client that submits data to the service and displays the response:

https://www.docker.com/
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.localwebservice?view=azure-ml-py#deploy-configuration-port-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-deploy

import requests
import json

scoring_uri = 'scoring uri for your service'
headers = {'Content-Type':'application/json'}

test_data = json.dumps({'text': 'Today is a great day!'})

response = requests.post(scoring_uri, data=test_data, headers=headers)
print(response.status_code)
print(response.elapsed)
print(response.json())

Next steps

For more information on how to consume the deployed service, see Create a client.

Monitor your Azure Machine Learning models with Application Insights

Collect data for models in production

How and where to deploy models

How to create a client for a deployed model

Troubleshooting Azure Machine Learning Azure
Kubernetes Service and Azure Container Instances
deployment
3/5/2020 • 13 minutes to read • Edit Online

Prerequisites

Before you begin

Learn how to work around or solve common Docker deployment errors with Azure Container Instances (ACI) and

Azure Kubernetes Service (AKS) using Azure Machine Learning.

When deploying a model in Azure Machine Learning, the system performs a number of tasks.

The recommended and the most up to date approach for model deployment is via the Model.deploy() API using

an Environment object as an input parameter. In this case our service will create a base docker image for you

during deployment stage and mount the required models all in one call. The basic deployment tasks are:

1. Register the model in the workspace model registry.

2. Define Inference Configuration:

a. Create an Environment object based on the dependencies you specify in the environment yaml file or

use one of our procured environments.

b. Create an inference configuration (InferenceConfig object) based on the environment and the scoring

script.

3. Deploy the model to Azure Container Instance (ACI) service or to Azure Kubernetes Service (AKS).

Learn more about this process in the Model Management introduction.

An Azure subscr iption . If you do not have one, try the free or paid version of Azure Machine Learning.

The Azure Machine Learning SDK.

The Azure CLI.

The CLI extension for Azure Machine Learning.

To debug locally, you must have a working Docker installation on your local system.

To verify your Docker installation, use the command docker run hello-world from a terminal or command

prompt. For information on installing Docker, or troubleshooting Docker errors, see the Docker

Documentation.

If you run into any issue, the first thing to do is to break down the deployment task (previous described) into

individual steps to isolate the problem.

Assuming you are using the new/recommended deployment method via Model.deploy() API with an Environment

object as an input parameter, your code can be broken down into three major steps:

1. Register the model. Here is some sample code:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-troubleshoot-deployment.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments
https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.docker.com/
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model%28class%29?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false-
https://docs.microsoft.com/azure/machine-learning/service/how-to-use-environments

Debug locally

WARNING

from azureml.core.model import Model

register a model out of a run record
model = best_run.register_model(model_name='my_best_model', model_path='outputs/my_model.pkl')

or, you can register a file or a folder of files as a model
model = Model.register(model_path='my_model.pkl', model_name='my_best_model', workspace=ws)

from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment

create inference configuration based on the requirements defined in the YAML
myenv = Environment.from_conda_specification(name="myenv", file_path="myenv.yml")
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)

from azureml.core.webservice import AciWebservice

deploy the model
aci_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)
aci_service = Model.deploy(workspace=ws,
 name='my-service',
 models=[model],
 inference_config=inference_config,
 deployment_config=aci_config)
aci_service.wait_for_deployment(show_output=True)

2. Define inference configuration for deployment:

3. Deploy the model using the inference configuration created in the previous step:

Once you have broken down the deployment process into individual tasks, we can look at some of the most

common errors.

If you encounter problems deploying a model to ACI or AKS, try deploying it as a local web service. Using a local

web service makes it easier to troubleshoot problems. The Docker image containing the model is downloaded and

started on your local system.

Local web service deployments are not supported for production scenarios.

To deploy locally, modify your code to use LocalWebservice.deploy_configuration() to create a deployment

configuration. Then use Model.deploy() to deploy the service. The following example deploys a model (contained

in the model variable) as a local web service:

from azureml.core.environment import Environment
from azureml.core.model import InferenceConfig, Model
from azureml.core.webservice import LocalWebservice

Create inference configuration based on the environment definition and the entry script
myenv = Environment.from_conda_specification(name="env", file_path="myenv.yml")
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)
Create a local deployment, using port 8890 for the web service endpoint
deployment_config = LocalWebservice.deploy_configuration(port=8890)
Deploy the service
service = Model.deploy(
 ws, "mymodel", [model], inference_config, deployment_config)
Wait for the deployment to complete
service.wait_for_deployment(True)
Display the port that the web service is available on
print(service.port)

import json

test_sample = json.dumps({'data': [
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
]})

test_sample = bytes(test_sample, encoding='utf8')

prediction = service.run(input_data=test_sample)
print(prediction)

Update the service

IMPORTANT

service.reload()
print(service.run(input_data=test_sample))

NOTE

Please note that if you are defining your own conda specification YAML, you must list azureml-defaults with

version >= 1.0.45 as a pip dependency. This package contains the functionality needed to host the model as a web

service.

At this point, you can work with the service as normal. For example, the following code demonstrates sending

data to the service:

For more information on customizing your Python environment, see Create and manage environments for

training and deployment.

During local testing, you may need to update the score.py file to add logging or attempt to resolve any problems

that you've discovered. To reload changes to the score.py file, use reload() . For example, the following code

reloads the script for the service, and then sends data to it. The data is scored using the updated score.py file:

The reload method is only available for local deployments. For information on updating a deployment to another

compute target, see the update section of Deploy models.

The script is reloaded from the location specified by the InferenceConfig object used by the service.

service.update([different_model], inference_config, deployment_config)

Delete the service

Inspect the Docker log

if you already have the service object handy
print(service.get_logs())

if you only know the name of the service (note there might be multiple services with the same name but
different version number)
print(ws.webservices['mysvc'].get_logs())

Service launch fails

Function fails: get_model_path()

from azureml.core.model import Model
import logging
logging.basicConfig(level=logging.DEBUG)
print(Model.get_model_path(model_name='my-best-model'))

Function fails: run(input_data)

To change the model, Conda dependencies, or deployment configuration, use update(). The following example

updates the model used by the service:

To delete the service, use delete().

You can print out detailed Docker engine log messages from the service object. You can view the log for ACI, AKS,

and Local deployments. The following example demonstrates how to print the logs.

After the image is successfully built, the system attempts to start a container using your deployment

configuration. As part of container starting-up process, the init() function in your scoring script is invoked by

the system. If there are uncaught exceptions in the init() function, you might see CrashLoopBackOff error in

the error message.

Use the info in the Inspect the Docker log section to check the logs.

Often, in the init() function in the scoring script, Model.get_model_path() function is called to locate a model file

or a folder of model files in the container. If the model file or folder cannot be found, the function fails. The easiest

way to debug this error is to run the below Python code in the Container shell:

This example prints out the local path (relative to /var/azureml-app) in the container where your scoring script is

expecting to find the model file or folder. Then you can verify if the file or folder is indeed where it is expected to

be.

Setting the logging level to DEBUG may cause additional information to be logged, which may be useful in

identifying the failure.

If the service is successfully deployed, but it crashes when you post data to the scoring endpoint, you can add

error catching statement in your run(input_data) function so that it returns detailed error message instead. For

example:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#update--args-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice%28class%29?view=azure-ml-py#delete--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#get-model-path-model-name--version-none---workspace-none-

def run(input_data):
 try:
 data = json.loads(input_data)['data']
 data = np.array(data)
 result = model.predict(data)
 return json.dumps({"result": result.tolist()})
 except Exception as e:
 result = str(e)
 # return error message back to the client
 return json.dumps({"error": result})

HTTP status code 502

HTTP status code 503

Note: Returning error messages from the run(input_data) call should be done for debugging purpose only. For

security reasons, you should not return error messages this way in a production environment.

A 502 status code indicates that the service has thrown an exception or crashed in the run() method of the

score.py file. Use the information in this article to debug the file.

Azure Kubernetes Service deployments support autoscaling, which allows replicas to be added to support

additional load. However, the autoscaler is designed to handle gradual changes in load. If you receive large spikes

in requests per second, clients may receive an HTTP status code 503.

There are two things that can help prevent 503 status codes:

IMPORTANT

Change the utilization level at which autoscaling creates new replicas.

By default, autoscaling target utilization is set to 70%, which means that the service can handle spikes in

requests per second (RPS) of up to 30%. You can adjust the utilization target by setting the

autoscale_target_utilization to a lower value.

This change does not cause replicas to be created faster. Instead, they are created at a lower utilization threshold.

Instead of waiting until the service is 70% utilized, changing the value to 30% causes replicas to be created when

30% utilization occurs.

If the web service is already using the current max replicas and you are still seeing 503 status codes,

increase the autoscale_max_replicas value to increase the maximum number of replicas.

Change the minimum number of replicas. Increasing the minimum replicas provides a larger pool to

handle the incoming spikes.

To increase the minimum number of replicas, set autoscale_min_replicas to a higher value. You can

calculate the required replicas by using the following code, replacing values with values specific to your

project:

HTTP status code 504

Advanced debugging

IMPORTANT

Configure development environment

from math import ceil
target requests per second
targetRps = 20
time to process the request (in seconds)
reqTime = 10
Maximum requests per container
maxReqPerContainer = 1
target_utilization. 70% in this example
targetUtilization = .7

concurrentRequests = targetRps * reqTime / targetUtilization

Number of container replicas
replicas = ceil(concurrentRequests / maxReqPerContainer)

NOTE
If you receive request spikes larger than the new minimum replicas can handle, you may receive 503s again. For

example, as traffic to your service increases, you may need to increase the minimum replicas.

For more information on setting autoscale_target_utilization , autoscale_max_replicas , and

autoscale_min_replicas for, see the AksWebservice module reference.

A 504 status code indicates that the request has timed out. The default timeout is 1 minute.

You can increase the timeout or try to speed up the service by modifying the score.py to remove unnecessary

calls. If these actions do not correct the problem, use the information in this article to debug the score.py file. The

code may be in a hung state or an infinite loop.

In some cases, you may need to interactively debug the Python code contained in your model deployment. For

example, if the entry script is failing and the reason cannot be determined by additional logging. By using Visual

Studio Code and the Python Tools for Visual Studio (PTVSD), you can attach to the code running inside the Docker

container.

This method of debugging does not work when using Model.deploy() and LocalWebservice.deploy_configuration to

deploy a model locally. Instead, you must create an image using the Model.package() method.

Local web service deployments require a working Docker installation on your local system. For more information

on using Docker, see the Docker Documentation.

python -m pip install --upgrade ptvsd

1. To install the Python Tools for Visual Studio (PTVSD) on your local VS Code development environment, use

the following command:

For more information on using PTVSD with VS Code, see Remote Debugging.

2. To configure VS Code to communicate with the Docker image, create a new debug configuration:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.akswebservice?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model?view=azure-ml-py#package-workspace--models--inference-config-none--generate-dockerfile-false-
https://docs.docker.com/
https://code.visualstudio.com/docs/python/debugging#_remote-debugging

Create an image that includes PTVSD

{
 "name": "Azure Machine Learning: Docker Debug",
 "type": "python",
 "request": "attach",
 "port": 5678,
 "host": "localhost",
 "pathMappings": [
 {
 "localRoot": "${workspaceFolder}",
 "remoteRoot": "/var/azureml-app"
 }
]
}

IMPORTANT

a. From VS Code, select the Debug menu and then select Open configurations . A file named

launch.json opens.

b. In the launch.json file, find the line that contains "configurations": [, and insert the following text

after it:

If there are already other entries in the configurations section, add a comma (,) after the code that you

inserted.

This section attaches to the Docker container using port 5678.

c. Save the launch.json file.

from azureml.core.conda_dependencies import CondaDependencies

Usually a good idea to choose specific version numbers
so training is made on same packages as scoring
myenv = CondaDependencies.create(conda_packages=['numpy==1.15.4',
 'scikit-learn==0.19.1', 'pandas==0.23.4'],
 pip_packages = ['azureml-defaults==1.0.45', 'ptvsd'])

with open("myenv.yml","w") as f:
 f.write(myenv.serialize_to_string())

import ptvsd
Allows other computers to attach to ptvsd on this IP address and port.
ptvsd.enable_attach(address=('0.0.0.0', 5678), redirect_output = True)
Wait 30 seconds for a debugger to attach. If none attaches, the script continues as normal.
ptvsd.wait_for_attach(timeout = 30)
print("Debugger attached...")

1. Modify the conda environment for your deployment so that it includes PTVSD. The following example

demonstrates adding it using the pip_packages parameter :

2. To start PTVSD and wait for a connection when the service starts, add the following to the top of your

score.py file:

3. Create an image based on the environment definition and pull the image to the local registry. During

debugging, you may want to make changes to the files in the image without having to recreate it. To install

a text editor (vim) in the Docker image, use the Environment.docker.base_image and

Debug the service

TIP

NOTE

from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.model import InferenceConfig
from azureml.core.environment import Environment

myenv = Environment.from_conda_specification(name="env", file_path="myenv.yml")
myenv.docker.base_image = None
myenv.docker.base_dockerfile = "FROM mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04\nRUN
apt-get update && apt-get install vim -y"
inference_config = InferenceConfig(entry_script="score.py", environment=myenv)
package = Model.package(ws, [model], inference_config)
package.wait_for_creation(show_output=True) # Or show_output=False to hide the Docker build logs.
package.pull()

Status: Downloaded newer image for myregistry.azurecr.io/package@sha256:<image-digest>

docker tag myimagepath debug:1

Environment.docker.base_dockerfile properties:

This example assumes that ws points to your Azure Machine Learning workspace, and that model is the model

being deployed. The myenv.yml file contains the conda dependencies created in step 1.

Once the image has been created and downloaded, the image path (includes repository, name, and tag,

which in this case is also its digest) is displayed in a message similar to the following:

4. To make it easier to work with the image, use the following command to add a tag. Replace myimagepath

with the location value from the previous step.

For the rest of the steps, you can refer to the local image as debug:1 instead of the full image path value.

If you set a timeout for the PTVSD connection in the score.py file, you must connect VS Code to the debug session

before the timeout expires. Start VS Code, open the local copy of score.py , set a breakpoint, and have it ready to go

before using the steps in this section.

For more information on debugging and setting breakpoints, see Debugging.

docker run --rm --name debug -p 8000:5001 -p 5678:5678 debug:1

1. To start a Docker container using the image, use the following command:

2. To attach VS Code to PTVSD inside the container, open VS Code and use the F5 key or select Debug. When

prompted, select the Azure Machine Learning: Docker Debug configuration. You can also select the

debug icon from the side bar, the Azure Machine Learning: Docker Debug entry from the Debug

dropdown menu, and then use the green arrow to attach the debugger.

https://code.visualstudio.com/Docs/editor/debugging

Modify the container files

Stop the container

docker stop debug

Next steps

At this point, VS Code connects to PTVSD inside the Docker container and stops at the breakpoint you set

previously. You can now step through the code as it runs, view variables, etc.

For more information on using VS Code to debug Python, see Debug your Python code.

To make changes to files in the image, you can attach to the running container, and execute a bash shell. From

there, you can use vim to edit files:

docker exec -it debug /bin/bash

cd /var/azureml-app

docker commit debug debug:2

TIP

1. To connect to the running container and launch a bash shell in the container, use the following command:

2. To find the files used by the service, use the following command from the bash shell in the container if the

default directory is different than /var/azureml-app :

From here, you can use vim to edit the score.py file. For more information on using vim, see Using the

Vim editor.

3. Changes to a container are not normally persisted. To save any changes you make, use the following

command, before you exit the shell started in the step above (that is, in another shell):

This command creates a new image named debug:2 that contains your edits.

You will need to stop the current container and start using the new version before changes take effect.

4. Make sure to keep the changes you make to files in the container in sync with the local files that VS Code

uses. Otherwise, the debugger experience will not work as expected.

To stop the container, use the following command:

https://docs.microsoft.com/visualstudio/python/debugging-python-in-visual-studio?view=vs-2019
https://www.tldp.org/LDP/intro-linux/html/sect_06_02.html

Learn more about deployment:

How to deploy and where

Tutorial: Train & deploy models

Consume an Azure Machine Learning model
deployed as a web service
4/14/2020 • 10 minutes to read • Edit Online

TIP

Connection information

NOTE

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Deploying an Azure Machine Learning model as a web service creates a REST API endpoint. You can send data

to this endpoint and receive the prediction returned by the model. In this document, learn how to create

clients for the web service by using C#, Go, Java, and Python.

You create a web service when you deploy a model to your local environment, Azure Container Instances,

Azure Kubernetes Service, or field-programmable gate arrays (FPGA). You retrieve the URI used to access the

web service by using the Azure Machine Learning SDK. If authentication is enabled, you can also use the SDK

to get the authentication keys or tokens.

The general workflow for creating a client that uses a machine learning web service is:

1. Use the SDK to get the connection information.

2. Determine the type of request data used by the model.

3. Create an application that calls the web service.

The examples in this document are manually created without the use of OpenAPI (Swagger) specifications. If you've

enabled an OpenAPI specification for your deployment, you can use tools such as swagger-codegen to create client

libraries for your service.

Use the Azure Machine Learning SDK to get the web service information. This is a Python SDK. You can use any

language to create a client for the service.

The azureml.core.Webservice class provides the information you need to create a client. The following

Webservice properties are useful for creating a client application:

auth_enabled - If key authentication is enabled, True ; otherwise, False .

token_auth_enabled - If token authentication is enabled, True ; otherwise, False .

scoring_uri - The REST API address.

swagger_uri - The address of the OpenAPI specification. This URI is available if you enabled automatic

schema generation. For more information, see Deploy models with Azure Machine Learning.

There are a three ways to retrieve this information for deployed web services:

When you deploy a model, a Webservice object is returned with information about the service:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-consume-web-service.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://github.com/swagger-api/swagger-codegen
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py

Secured web service

IMPORTANT

Authentication for services

A UT H EN T IC AT IO N M ET H O D A C I A KS

Key Disabled by default Enabled by default

Token Not Available Disabled by default

Authentication with keys

service = Model.deploy(ws, "myservice", [model], inference_config, deployment_config)
service.wait_for_deployment(show_output = True)
print(service.scoring_uri)
print(service.swagger_uri)

services = Webservice.list(ws)
print(services[0].scoring_uri)
print(services[0].swagger_uri)

service = Webservice(workspace=ws, name='myservice')
print(service.scoring_uri)
print(service.swagger_uri)

You can use Webservice.list to retrieve a list of deployed web services for models in your workspace.

You can add filters to narrow the list of information returned. For more information about what can be

filtered on, see the Webservice.list reference documentation.

If you know the name of the deployed service, you can create a new instance of Webservice , and

provide the workspace and service name as parameters. The new object contains information about

the deployed service.

If you secured the deployed web service using a TLS/SSL certificate, you can use HTTPS to connect to the

service using the scoring or swagger URI. HTTPS helps secure communications between a client and a web

service by encrypting communications between the two. Encryption uses Transport Layer Security (TLS). TLS

is sometimes still referred to as Secure Sockets Layer (SSL), which was the predecessor of TLS.

Web services deployed by Azure Machine Learning only support TLS version 1.2. When creating a client application,

make sure that it supports this version.

For more information, see Use TLS to secure a web service through Azure Machine Learning.

Azure Machine Learning provides two ways to control access to your web services.

When sending a request to a service that is secured with a key or token, use the Authorization header to

pass the key or token. The key or token must be formatted as Bearer <key-or-token> , where <key-or-token>

is your key or token value.

When you enable authentication for a deployment, you automatically create authentication keys.

Authentication is enabled by default when you are deploying to Azure Kubernetes Service.

Authentication is disabled by default when you are deploying to Azure Container Instances.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.webservice.webservice?view=azure-ml-py
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Transport_Layer_Security

primary, secondary = service.get_keys()
print(primary)

IMPORTANT

Authentication with tokens

token, refresh_by = service.get_token()
print(token)

IMPORTANT

Request data

{
 "data":
 [
 <model-specific-data-structure>
]
}

IMPORTANT

To control authentication, use the auth_enabled parameter when you are creating or updating a deployment.

If authentication is enabled, you can use the get_keys method to retrieve a primary and secondary

authentication key:

If you need to regenerate a key, use service.regen_key .

When you enable token authentication for a web service, a user must provide an Azure Machine Learning JWT

token to the web service to access it.

Token authentication is disabled by default when you are deploying to Azure Kubernetes Service.

Token authentication is not supported when you are deploying to Azure Container Instances.

To control token authentication, use the token_auth_enabled parameter when you are creating or updating a

deployment.

If token authentication is enabled, you can use the get_token method to retrieve a bearer token and that

tokens expiration time:

You will need to request a new token after the token's refresh_by time.

The REST API expects the body of the request to be a JSON document with the following structure:

The structure of the data needs to match what the scoring script and model in the service expect. The scoring script

might modify the data before passing it to the model.

For example, the model in the Train within notebook example expects an array of 10 numbers. The scoring

script for this example creates a Numpy array from the request, and passes it to the model. The following

example shows the data this service expects:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice(class)?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb

{
 "data":
 [
 [
 0.0199132141783263,
 0.0506801187398187,
 0.104808689473925,
 0.0700725447072635,
 -0.0359677812752396,
 -0.0266789028311707,
 -0.0249926566315915,
 -0.00259226199818282,
 0.00371173823343597,
 0.0403433716478807
]
]
}

Binary data

TIP

import requests
Load image data
data = open('example.jpg', 'rb').read()
Post raw data to scoring URI
res = request.post(url='<scoring-uri>', data=data, headers={'Content-Type': 'application/> octet-
stream'})

Cross-origin resource sharing (CORS)

Call the service (C#)

using System;
using System.Collections.Generic;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
using Newtonsoft.Json;

namespace MLWebServiceClient
{
 // The data structure expected by the service
 internal class InputData
 {
 [JsonProperty("data")]
 // The service used by this example expects an array containing
 // one or more arrays of doubles

The web service can accept multiple sets of data in one request. It returns a JSON document containing an

array of responses.

For information on how to enable support for binary data in your service, see Binary data.

Enabling support for binary data happens in the score.py file used by the deployed model. From the client, use the

HTTP functionality of your programming language. For example, the following snippet sends the contents of a JPG file

to a web service:

For information on enabling CORS support in your service, see Cross-origin resource sharing.

This example demonstrates how to use C# to call the web service created from the Train within notebook

example:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb

 internal double[,] data;
 }
 class Program
 {
 static void Main(string[] args)
 {
 // Set the scoring URI and authentication key or token
 string scoringUri = "<your web service URI>";
 string authKey = "<your key or token>";

 // Set the data to be sent to the service.
 // In this case, we are sending two sets of data to be scored.
 InputData payload = new InputData();
 payload.data = new double[,] {
 {
 0.0199132141783263,
 0.0506801187398187,
 0.104808689473925,
 0.0700725447072635,
 -0.0359677812752396,
 -0.0266789028311707,
 -0.0249926566315915,
 -0.00259226199818282,
 0.00371173823343597,
 0.0403433716478807
 },
 {
 -0.0127796318808497,
 -0.044641636506989,
 0.0606183944448076,
 0.0528581912385822,
 0.0479653430750293,
 0.0293746718291555,
 -0.0176293810234174,
 0.0343088588777263,
 0.0702112981933102,
 0.00720651632920303
 }
 };

 // Create the HTTP client
 HttpClient client = new HttpClient();
 // Set the auth header. Only needed if the web service requires authentication.
 client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer",
authKey);

 // Make the request
 try {
 var request = new HttpRequestMessage(HttpMethod.Post, new Uri(scoringUri));
 request.Content = new StringContent(JsonConvert.SerializeObject(payload));
 request.Content.Headers.ContentType = new MediaTypeHeaderValue("application/json");
 var response = client.SendAsync(request).Result;
 // Display the response from the web service
 Console.WriteLine(response.Content.ReadAsStringAsync().Result);
 }
 catch (Exception e)
 {
 Console.Out.WriteLine(e.Message);
 }
 }
 }
}

The results returned are similar to the following JSON document:

[217.67978776218715, 224.78937091757172]

Call the service (Go)

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "io/ioutil"
 "net/http"
)

// Features for this model are an array of decimal values
type Features []float64

// The web service input can accept multiple sets of values for scoring
type InputData struct {
 Data []Features `json:"data",omitempty`
}

// Define some example data
var exampleData = []Features{
 []float64{
 0.0199132141783263,
 0.0506801187398187,
 0.104808689473925,
 0.0700725447072635,
 -0.0359677812752396,
 -0.0266789028311707,
 -0.0249926566315915,
 -0.00259226199818282,
 0.00371173823343597,
 0.0403433716478807,
 },
 []float64{
 -0.0127796318808497,
 -0.044641636506989,
 0.0606183944448076,
 0.0528581912385822,
 0.0479653430750293,
 0.0293746718291555,
 -0.0176293810234174,
 0.0343088588777263,
 0.0702112981933102,
 0.00720651632920303,
 },
}

// Set to the URI for your service
var serviceUri string = "<your web service URI>"
// Set to the authentication key or token (if any) for your service
var authKey string = "<your key or token>"

func main() {
 // Create the input data from example data
 jsonData := InputData{
 Data: exampleData,
 }
 // Create JSON from it and create the body for the HTTP request
 jsonValue, _ := json.Marshal(jsonData)

This example demonstrates how to use Go to call the web service created from the Train within notebook

example:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb

 jsonValue, _ := json.Marshal(jsonData)
 body := bytes.NewBuffer(jsonValue)

 // Create the HTTP request
 client := &http.Client{}
 request, err := http.NewRequest("POST", serviceUri, body)
 request.Header.Add("Content-Type", "application/json")

 // These next two are only needed if using an authentication key
 bearer := fmt.Sprintf("Bearer %v", authKey)
 request.Header.Add("Authorization", bearer)

 // Send the request to the web service
 resp, err := client.Do(request)
 if err != nil {
 fmt.Println("Failure: ", err)
 }

 // Display the response received
 respBody, _ := ioutil.ReadAll(resp.Body)
 fmt.Println(string(respBody))
}

[217.67978776218715, 224.78937091757172]

Call the service (Java)

import java.io.IOException;
import org.apache.http.client.fluent.*;
import org.apache.http.entity.ContentType;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;

public class App {
 // Handle making the request
 public static void sendRequest(String data) {
 // Replace with the scoring_uri of your service
 String uri = "<your web service URI>";
 // If using authentication, replace with the auth key or token
 String key = "<your key or token>";
 try {
 // Create the request
 Content content = Request.Post(uri)
 .addHeader("Content-Type", "application/json")
 // Only needed if using authentication
 .addHeader("Authorization", "Bearer " + key)
 // Set the JSON data as the body
 .bodyString(data, ContentType.APPLICATION_JSON)
 // Make the request and display the response.
 .execute().returnContent();
 System.out.println(content);
 }
 catch (IOException e) {
 System.out.println(e);
 }
 }
 public static void main(String[] args) {
 // Create the data to send to the service
 JSONObject obj = new JSONObject();
 // In this case, it's an array of arrays

The results returned are similar to the following JSON document:

This example demonstrates how to use Java to call the web service created from the Train within notebook

example:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb

 // In this case, it's an array of arrays
 JSONArray dataItems = new JSONArray();
 // Inner array has 10 elements
 JSONArray item1 = new JSONArray();
 item1.add(0.0199132141783263);
 item1.add(0.0506801187398187);
 item1.add(0.104808689473925);
 item1.add(0.0700725447072635);
 item1.add(-0.0359677812752396);
 item1.add(-0.0266789028311707);
 item1.add(-0.0249926566315915);
 item1.add(-0.00259226199818282);
 item1.add(0.00371173823343597);
 item1.add(0.0403433716478807);
 // Add the first set of data to be scored
 dataItems.add(item1);
 // Create and add the second set
 JSONArray item2 = new JSONArray();
 item2.add(-0.0127796318808497);
 item2.add(-0.044641636506989);
 item2.add(0.0606183944448076);
 item2.add(0.0528581912385822);
 item2.add(0.0479653430750293);
 item2.add(0.0293746718291555);
 item2.add(-0.0176293810234174);
 item2.add(0.0343088588777263);
 item2.add(0.0702112981933102);
 item2.add(0.00720651632920303);
 dataItems.add(item2);
 obj.put("data", dataItems);

 // Make the request using the JSON document string
 sendRequest(obj.toJSONString());
 }
}

[217.67978776218715, 224.78937091757172]

Call the service (Python)

The results returned are similar to the following JSON document:

This example demonstrates how to use Python to call the web service created from the Train within notebook

example:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb

import requests
import json

URL for the web service
scoring_uri = '<your web service URI>'
If the service is authenticated, set the key or token
key = '<your key or token>'

Two sets of data to score, so we get two results back
data = {"data":
 [
 [
 0.0199132141783263,
 0.0506801187398187,
 0.104808689473925,
 0.0700725447072635,
 -0.0359677812752396,
 -0.0266789028311707,
 -0.0249926566315915,
 -0.00259226199818282,
 0.00371173823343597,
 0.0403433716478807
],
 [
 -0.0127796318808497,
 -0.044641636506989,
 0.0606183944448076,
 0.0528581912385822,
 0.0479653430750293,
 0.0293746718291555,
 -0.0176293810234174,
 0.0343088588777263,
 0.0702112981933102,
 0.00720651632920303]
]
 }
Convert to JSON string
input_data = json.dumps(data)

Set the content type
headers = {'Content-Type': 'application/json'}
If authentication is enabled, set the authorization header
headers['Authorization'] = f'Bearer {key}'

Make the request and display the response
resp = requests.post(scoring_uri, input_data, headers=headers)
print(resp.text)

[217.67978776218715, 224.78937091757172]

Consume the service from Power BI

The results returned are similar to the following JSON document:

Power BI supports consumption of Azure Machine Learning web services to enrich the data in Power BI with

predictions.

To generate a web service that's supported for consumption in Power BI, the schema must support the format

that's required by Power BI. Learn how to create a Power BI-supported schema.

Once the web service is deployed, it's consumable from Power BI dataflows. Learn how to consume an Azure

Machine Learning web service from Power BI.

https://docs.microsoft.com/azure/machine-learning/how-to-deploy-and-where#example-entry-script
https://docs.microsoft.com/power-bi/service-machine-learning-integration

Next steps
To view a reference architecture for real-time scoring of Python and deep learning models, go to the Azure

architecture center.

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/realtime-scoring-python

Collect data for models in production
3/31/2020 • 5 minutes to read • Edit Online

IMPORTANT

What is collected and where it goes

NOTE

/modeldata/<subscriptionid>/<resourcegroup>/<workspace>/<webservice>/<model>/<version>/<designation>/<year>/
<month>/<day>/data.csv
example: /modeldata/1a2b3c4d-5e6f-7g8h-9i10-j11k12l13m14/myresourcegrp/myWorkspace/aks-w-
collv9/best_model/10/inputs/2018/12/31/data.csv

NOTE

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

The Azure Machine Learning Monitoring SDK will be retired soon. The SDK is still appropriate for developers who currently

use the SDK to monitor data drift in models. But for new customers, we recommend using the simplified data monitoring

with Application Insights.

This article shows how to collect input model data from Azure Machine Learning. It also shows how to deploy the

input data into an Azure Kubernetes Service (AKS) cluster and store the output data in Azure Blob storage.

Once collection is enabled, the data you collect helps you:

Monitor data drifts as production data enters your model.

Make better decisions about when to retrain or optimize your model.

Retrain your model with the collected data.

The following data can be collected:

Model input data from web services deployed in an AKS cluster. Voice audio, images, and video are not

collected.

Model predictions using production input data.

Preaggregation and precalculations on this data are not currently part of the collection service.

The output is saved in Blob storage. Because the data is added to Blob storage, you can choose your favorite tool

to run the analysis.

The path to the output data in the blob follows this syntax:

In versions of the Azure Machine Learning SDK for Python earlier than version 0.1.0a16, the designation argument is

named identifier . If you developed your code with an earlier version, you need to update it accordingly.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-enable-data-collection.md
https://docs.microsoft.com/azure/machine-learning/how-to-enable-app-insights

Prerequisites

Enable data collection

If you don't have an Azure subscription, create a free account before you begin.

A AzureMachine Learning workspace, a local directory containing your scripts, and the Azure Machine

Learning SDK for Python must be installed. To learn how to install them, see How to configure a

development environment.

You need a trained machine-learning model to be deployed to AKS. If you don't have a model, see the Train

image classification model tutorial.

You need an AKS cluster. For information on how to create one and deploy to it, see How to deploy and

where.

Set up your environment and install the Azure Machine Learning Monitoring SDK.

You can enable data collection regardless of the model you deploy through Azure Machine Learning or other

tools.

To enable data collection, you need to:

from azureml.monitoring import ModelDataCollector

global inputs_dc, prediction_dc
inputs_dc = ModelDataCollector("best_model", designation="inputs", feature_names=["feat1", "feat2",
"feat3". "feat4", "feat5", "feat6"])
prediction_dc = ModelDataCollector("best_model", designation="predictions", feature_names=
["prediction1", "prediction2"])

data = np.array(data)
result = model.predict(data)
inputs_dc.collect(data) #this call is saving our input data into Azure Blob
prediction_dc.collect(result) #this call is saving our input data into Azure Blob

aks_config = AksWebservice.deploy_configuration(collect_model_data=True)

1. Open the scoring file.

2. Add the following code at the top of the file:

3. Declare your data collection variables in your init function:

CorrelationId is an optional parameter. You don't need to use it if your model doesn't require it. Use of

CorrelationId does help you more easily map with other data, such as LoanNumber or CustomerId.

The Identifier parameter is later used for building the folder structure in your blob. You can use it to

differentiate raw data from processed data.

4. Add the following lines of code to the run(input_df) function:

5. Data collection is not automatically set to true when you deploy a service in AKS. Update your

configuration file, as in the following example:

You can also enable Application Insights for service monitoring by changing this configuration:

https://aka.ms/AMLFree
https://aka.ms/aml-monitoring-sdk
https://aka.ms/aml-monitoring-sdk

Disable data collection

Option 1 - Disable data collection in Azure Machine Learning

aks_config = AksWebservice.deploy_configuration(collect_model_data=True, enable_app_insights=True)

6. To create a new image and deploy the machine learning model, see How to deploy and where.

If you already have a service with the dependencies installed in your environment file and scoring file, enable

data collection by following these steps:

1. Go to Azure Machine Learning.

2. Open your workspace.

3. Select Deployments > Select ser vice > Edit.

4. In Advanced Settings , select Enable Application Insights diagnostics and data collection.

5. Select Update to apply the changes.

You can stop collecting data at any time. Use Python code or Azure Machine Learning to disable data collection.

1. Sign in to Azure Machine Learning.

2. Open your workspace.

3. Select Deployments > Select ser vice > Edit.

https://ml.azure.com
https://ml.azure.com

Option 2 - Use Python to disable data collection

replace <service_name> with the name of the web service
<service_name>.update(collect_model_data=False)

Validate and analyze your data

Quickly access your blob data

4. In Advanced Settings , clear Enable Application Insights diagnostics and data collection.

5. Select Update to apply the change.

You can also access these settings in your workspace in Azure Machine Learning.

You can choose a tool of your preference to analyze the data collected in your Blob storage.

/modeldata/<subscriptionid>/<resourcegroup>/<workspace>/<webservice>/<model>/<version>/<designation>/<
year>/<month>/<day>/data.csv
example: /modeldata/1a2b3c4d-5e6f-7g8h-9i10-j11k12l13m14/myresourcegrp/myWorkspace/aks-w-
collv9/best_model/10/inputs/2018/12/31/data.csv

1. Sign in to Azure Machine Learning.

2. Open your workspace.

3. Select Storage.

4. Follow the path to the blob's output data with this syntax:

file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/editservice.png#lightbox
https://ml.azure.com
https://ml.azure.com
file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/storagelocation.png#lightbox

Analyze model data using Power BI
1. Download and open Power BI Desktop.

2. Select Get Data and select Azure Blob Storage.

3. Add your storage account name and enter your storage key. You can find this information by selecting

Settings > Access keys in your blob.

4. Select the model data container and select Edit.

https://www.powerbi.com
https://docs.microsoft.com/power-bi/desktop-data-sources
file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/pbiblob.png#lightbox

5. In the query editor, click under the Name column and add your storage account.

6. Enter your model path into the filter. If you want to look only into files from a specific year or month, just

expand the filter path. For example, to look only into March data, use this filter path:

/modeldata/<subscriptionid>/<resourcegroupname>/<workspacename>/<webservicename>/<modeln

ame>/<modelversion>/<designation>/<year>/3

7. Filter the data that is relevant to you based on Name values. If you stored predictions and inputs, you

need to create a query for each.

8. Select the downward double arrows next to the Content column heading to combine the files.

9. Select OK. The data preloads.

file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/pbinavigator.png#lightbox
file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/pbicontent.png#lightbox

Analyze model data using Azure Databricks

10. Select Close and Apply .

11. If you added inputs and predictions, your tables are automatically ordered by RequestId values.

12. Start building your custom reports on your model data.

1. Create an Azure Databricks workspace.

2. Go to your Databricks workspace.

3. In your Databricks workspace, select Upload Data.

file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/pbicombine.png#lightbox
https://docs.microsoft.com/azure/azure-databricks/quickstart-create-databricks-workspace-portal

4. Select Create New Table and select Other Data Sources > Azure Blob Storage > Create Table in

Notebook.

5. Update the location of your data. Here is an example:

file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/dbupload.png#lightbox
file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/dbtable.png#lightbox

file_location = "wasbs://mycontainer@storageaccountname.blob.core.windows.net/modeldata/1a2b3c4d-5e6f-
7g8h-9i10-j11k12l13m14/myresourcegrp/myWorkspace/aks-w-collv9/best_model/10/inputs/2018/*/*/data.csv"
file_type = "csv"

6. Follow the steps on the template to view and analyze your data.

file:///T:/i2pk/machine-learning/media/how-to-enable-data-collection/dbsetup.png#lightbox

Detect data drift (preview) on models deployed to
Azure Kubernetes Service (AKS)
12/27/2019 • 6 minutes to read • Edit Online

What is data drift?

What can I monitor?

NOTE

How data drift is monitored in Azure Machine Learning

Prerequisites

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this article, you learn how to monitor for data drift between the training dataset and inference data of a

deployed model. In the context of machine learning, trained machine learning models may experience degraded

prediction performance because of drift. With Azure Machine Learning, you can monitor data drift and the service

can send an email alert to you when drift is detected.

In the context of machine learning, data drift is the change in model input data that leads to model performance

degradation. It is one of the top reasons where model accuracy degrades over time, thus monitoring data drift

helps detect model performance issues.

With Azure Machine Learning, you can monitor the inputs to a model deployed on AKS and compare this data to

the training dataset for the model. At regular intervals, the inference data is snapshot and profiled, then computed

against the baseline dataset to produce a data drift analysis that:

Measures the magnitude of data drift, called the drift coefficient.

Measures the data drift contribution by feature, indicating which features caused data drift.

Measures distance metrics. Currently Wasserstein and Energy Distance are computed.

Measures distributions of features. Currently kernel density estimation and histograms.

Send alerts to data drift by email.

This service is in (preview) and limited in configuration options. Please see our API Documentation and Release Notes for

details and updates.

Using Azure Machine Learning, data drift is monitored through datasets or deployments. To monitor for data drift,

a baseline dataset - usually the training dataset for a model - is specified. A second dataset - usually model input

data gathered from a deployment - is tested against the baseline dataset. Both datasets are profiled and input to

the data drift monitoring service. A machine learning model is trained to detect differences between the two

datasets. The model's performance is converted to the drift coefficient, which measures the magnitude of drift

between the two datasets. Using model interpretability, the features that contribute to the drift coefficient are

computed. From the dataset profile, statistical information about each feature is tracked.

An Azure subscription. If you don’t have one, create a free account before you begin. Try the free or paid

version of Azure Machine Learning today.

The Azure Machine Learning SDK for Python installed. Use the instructions at Azure Machine Learning SDK

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-monitor-data-drift.md
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-datadrift/
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/install?view=azure-ml-py

Configure data drift

Import Azure ML packages
from azureml.core import Experiment, Run, RunDetails
from azureml.datadrift import DataDriftDetector, AlertConfiguration

if email address is specified, setup AlertConfiguration
alert_config = AlertConfiguration('your_email@contoso.com')

create a new DataDriftDetector object
datadrift = DataDriftDetector.create(ws, model.name, model.version, services, frequency="Day",
alert_config=alert_config)

print('Details of Datadrift Object:\n{}'.format(datadrift))

Submit a DataDriftDetector run

pip install azureml-datadrift

model = Model.register(model_path=model_file,
 model_name=model_name,
 workspace=ws,
 datasets=datasets)

print(model_name, image_name, service_name, model)

to do the following:

Create a Miniconda environment

Install the Azure Machine Learning SDK for Python

An Azure Machine Learning workspace.

A workspace configuration file.

Install the data drift SDK using the following command:

Create a dataset from your model's training data.

Specify the training dataset when registering the model. The following example demonstrates using the

datasets parameter to specify the training dataset:

Enable model data collection to collect data from the AKS deployment of the model and confirm data is

being collected in the modeldata blob container.

To configure data drift for your experiment, import dependencies as seen in the following Python example.

This example demonstrates configuring the DataDriftDetector object:

With the DataDriftDetector object configured, you can submit a data drift run on a given date for the model. As

part of the run, enable DataDriftDetector alerts by setting the drift_threshold parameter. If the

datadrift_coefficient is above the given drift_threshold , an email is sent.

https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift.datadriftdetector.datadriftdetector
https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift.datadriftdetector.datadriftdetector#run-target-date--services-none--compute-target-none--create-compute-target-false--feature-list-none--drift-threshold-none-

adhoc run today
target_date = datetime.today()

create a new compute - creates datadrift-server
run = datadrift.run(target_date, services, feature_list=feature_list, create_compute_target=True)

or specify existing compute cluster
run = datadrift.run(target_date, services, feature_list=feature_list, compute_target='cpu-cluster')

show details of the data drift run
exp = Experiment(ws, datadrift._id)
dd_run = Run(experiment=exp, run_id=run.id)
RunDetails(dd_run).show()

Visualize drift metrics

M ET RIC DESC RIP T IO N

wasserstein_distance Statistical distance defined for one-dimensional numerical
distribution.

energy_distance Statistical distance defined for one-dimensional numerical
distribution.

datadrift_coefficient Calculated similarly as Matthew's correlation coefficient, but
this output is a real number ranging from 0 to 1. In the
context of drift, 0 indicates no drift and 1 indicates maximum
drift.

datadrift_contribution Feature importance of features contributing to drift.

start and end are datetime objects
drift_metrics = datadrift.get_output(start_time=start, end_time=end)

Show all data drift result figures, one per service.
If setting with_details is False (by default), only the data drift magnitude will be shown; if it's True,
all details will be shown.
drift_figures = datadrift.show(with_details=True)

 After you submit your DataDriftDetector run, you are able to see the drift metrics that are saved in each run

iteration for a data drift task:

There are multiple ways to view drift metrics:

Use the RunDetails Jupyter widget.

Use the get_metrics() function on any datadrift run object.

View the metrics from the Models section of your workspace in Azure Machine Learning studio.

The following Python example demonstrates how to plot relevant data drift metrics. You can use the returned

metrics to build custom visualizations:

https://docs.microsoft.com/python/api/azureml-widgets/azureml.widgets?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29?view=azure-ml-py#get-metrics-name-none--recursive-false--run-type-none--populate-false-
https://ml.azure.com

Schedule data drift scans

datadrift.enable_schedule()
datadrift.disable_schedule()

When you enable data drift detection, a DataDriftDetector is run at the specified, scheduled frequency. If the

datadrift_coefficient reaches the given drift_threshold , an email is sent with each scheduled run.

The configuration of the data drift detector can be seen under Models in the Details tab in your workspace on the

Azure Machine Learning studio.

https://ml.azure.com

View results in your Azure Machine Learning studio
To view results in your workspace in Azure Machine Learning studio, navigate to the model page. On the details

tab of the model, the data drift configuration is shown. A Data dr ift tab is now available visualizing the data drift

metrics.

file:///T:/i2pk/machine-learning/media/how-to-monitor-data-drift/drift-config-expanded.png
https://ml.azure.com

Receiving drift alerts
By setting the drift coefficient alerting threshold and providing an email address, an Azure Monitor email alert is

automatically sent whenever the drift coefficient is above the threshold.

In order for you to set up custom alerts and actions, all data drift metrics are stored in the Application Insights

resource that was created along with the Azure Machine Learning workspace. You can follow the link in the email

alert to the Application Insights query.

file:///T:/i2pk/machine-learning/media/how-to-monitor-data-drift/drift-ui-expanded.png
https://docs.microsoft.com/azure/azure-monitor/overview

Retrain your model after drift

Next steps

When data drift negatively impacts the performance of your deployed model, it is time to retrain the model. To do

so, proceed with the following steps.

Investigate the collected data and prepare data to train the new model.

Split it into train/test data.

Train the model again using the new data.

Evaluate performance of the newly generated model.

Deploy new model if performance is better than the production model.

For a full example of using data drift, see the Azure ML data drift notebook. This Jupyter Notebook

demonstrates using an Azure Open Dataset to train a model to predict the weather, deploy it to AKS, and

monitor for data drift.

Detect data drift with dataset monitors.

We would greatly appreciate your questions, comments, or suggestions as data drift moves toward general

availability. Use the product feedback button below!

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/monitor-models/data-drift/drift-on-aks.ipynb
https://docs.microsoft.com/azure/open-datasets/overview-what-are-open-datasets

Monitor and collect data from ML web service
endpoints
3/12/2020 • 4 minutes to read • Edit Online

Prerequisites

Web service metadata and response data

IMPORTANT

Use Python SDK to configure
Update a deployed service

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to collect data from and monitor models deployed to web service endpoints in

Azure Kubernetes Service (AKS) or Azure Container Instances (ACI) by enabling Azure Application Insights via

Azure Machine Learning Python SDK

Azure Machine Learning studio at https://ml.azure.com

In addition to collecting an endpoint's output data and response, you can monitor :

Request rates, response times, and failure rates

Dependency rates, response times, and failure rates

Exceptions

Learn more about Azure Application Insights.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid

version of Azure Machine Learning today

An Azure Machine Learning workspace, a local directory that contains your scripts, and the Azure

Machine Learning SDK for Python installed. To learn how to get these prerequisites, see How to configure

a development environment

A trained machine learning model to be deployed to Azure Kubernetes Service (AKS) or Azure Container

Instance (ACI). If you don't have one, see the Train image classification model tutorial

Azure Application Insights only logs payloads of up to 64kb. If this limit is reached then only the most recent outputs of

the model are logged.

The metadata and response to the service - corresponding to the web service metadata and the model's

predictions - are logged to the Azure Application Insights traces under the message "model_data_collection" .

You can query Azure Application Insights directly to access this data, or set up a continuous export to a storage

account for longer retention or further processing. Model data can then be used in the Azure Machine Learning

to set up labeling, retraining, explainability, data analysis, or other use.

1. Identify the service in your workspace. The value for ws is the name of your workspace

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-enable-app-insights.md
https://ml.azure.com
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://aka.ms/AMLFree
https://docs.microsoft.com/azure/azure-monitor/app/export-telemetry

Log custom traces in your service

Disable tracking in Python

replace <service_name> with the name of the web service
<service_name>.update(enable_app_insights=False)

Use Azure Machine Learning studio to configure

from azureml.core.webservice import Webservice
aks_service= Webservice(ws, "my-service-name")

aks_service.update(enable_app_insights=True)

2. Update your service and enable Azure Application Insights

If you want to log custom traces, follow the standard deployment process for AKS or ACI in the How to deploy

and where document. Then use the following steps:

print ("model initialized" + time.strftime("%H:%M:%S"))

config = Webservice.deploy_configuration(enable_app_insights=True)

1. Update the scoring file by adding print statements

2. Update the service configuration

3. Build an image and deploy it on AKS or ACI.

To disable Azure Application Insights, use the following code:

You can also enable Azure Application Insights from Azure Machine Learning studio when you're ready to

deploy your model with these steps.

1. Sign in to your workspace at https://ml.azure.com/

2. Go to Models and select which model you want to deploy

3. Select +Deploy

4. Populate the Deploy model form

5. Expand the Advanced menu

https://ml.azure.com/

6. Select Enable Application Insights diagnostics and data collection

Evaluate data
Your service's data is stored in your Azure Application Insights account, within the same resource group as Azure

Machine Learning. To view it:

1. Go to your Azure Machine Learning workspace in the Azure portal and click on the Application Insights

link

2. Select the Over view tab to see a basic set of metrics for your service

https://ms.portal.azure.com/
file:///T:/i2pk/machine-learning/media/how-to-enable-app-insights/appinsightsloc.png#lightbox
file:///T:/i2pk/machine-learning/media/how-to-enable-app-insights/overview.png#lightbox

Export data for further processing and longer retention

IMPORTANT

3. To look into your web service request metadata and response, select the requests table in the Logs

(Analytics) section and select Run to view requests

4. To look into your custom traces, select Analytics

5. In the schema section, select Traces . Then select Run to run your query. Data should appear in a table

format and should map to your custom calls in your scoring file

To learn more about how to use Azure Application Insights, see What is Application Insights?.

Azure Application Insights only supports exports to blob storage. Additional limits of this export capability are listed in

Export telemetry from App Insights.

You can use Azure Application Insights' continuous export to send messages to a supported storage account,

where a longer retention can be set. The "model_data_collection" messages are stored in JSON format and can

file:///T:/i2pk/machine-learning/media/how-to-enable-app-insights/model-data-trace.png#lightbox
file:///T:/i2pk/machine-learning/media/how-to-enable-app-insights/logs.png#lightbox
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/azure/azure-monitor/app/export-telemetry#continuous-export-advanced-storage-configuration
https://docs.microsoft.com/azure/azure-monitor/app/export-telemetry

Example notebook

Next steps

be easily parsed to extract model data.

Azure Data Factory, Azure ML Pipelines, or other data processing tools can be used to transform the data as

needed. When you have transformed the data, you can then register it with the Azure Machine Learning

workspace as a dataset. To do so, see How to create and register datasets.

The enable-app-insights-in-production-service.ipynb notebook demonstrates concepts in this article.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

See how to deploy a model to an Azure Kubernetes Service cluster or how to deploy a model to Azure

Container Instances to deploy your models to web service endpoints, and enable Azure Application Insights

to leverage data collection and endpoint monitoring

See MLOps: Manage, deploy, and monitor models with Azure Machine Learning to learn more about

leveraging data collected from models in production. Such data can help to continually improve your

machine learning process

file:///T:/i2pk/machine-learning/media/how-to-enable-app-insights/continuous-export-setup.png
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/deployment/enable-app-insights-in-production-service/enable-app-insights-in-production-service.ipynb
https://docs.microsoft.com/azure/machine-learning/how-to-deploy-azure-kubernetes-service
https://docs.microsoft.com/azure/machine-learning/how-to-deploy-azure-container-instance
https://docs.microsoft.com/azure/machine-learning/concept-model-management-and-deployment

Create and run machine learning pipelines with
Azure Machine Learning SDK
4/24/2020 • 14 minutes to read • Edit Online

Prerequisites

import azureml.core
from azureml.core import Workspace, Datastore

ws = Workspace.from_config()

Set up machine learning resources

Set up a datastore

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to create, publish, run, and track a machine learning pipeline by using the Azure

Machine Learning SDK. Use ML pipelines to create a workflow that stitches together various ML phases, and

then publish that pipeline into your Azure Machine Learning workspace to access later or share with others. ML

pipelines are ideal for batch scoring scenarios, using various computes, reusing steps instead of rerunning them,

as well as sharing ML workflows with others.

While you can use a different kind of pipeline called an Azure Pipeline for CI/CD automation of ML tasks, that

type of pipeline is never stored inside your workspace. Compare these different pipelines.

Each phase of an ML pipeline, such as data preparation and model training, can include one or more steps.

The ML pipelines you create are visible to the members of your Azure Machine Learning workspace.

ML pipelines use remote compute targets for computation and the storage of the intermediate and final data

associated with that pipeline. They can read and write data to and from supported Azure Storage locations.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid version of

Azure Machine Learning.

Create an Azure Machine Learning workspace to hold all your pipeline resources.

Configure your development environment to install the Azure Machine Learning SDK, or use an Azure

Machine Learning compute instance (preview) with the SDK already installed.

Start by attaching your workspace:

Create the resources required to run an ML pipeline:

Set up a datastore used to access the data needed in the pipeline steps.

Configure a Dataset object to point to persistent data that lives in, or is accessible in, a datastore.

Configure a PipelineData object for temporary data passed between pipeline steps.

Set up the compute targets on which your pipeline steps will run.

A datastore stores the data for the pipeline to access. Each workspace has a default datastore. You can register

additional datastores.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-create-your-first-pipeline.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning?context=azure%2Fmachine-learning%2Fservice%2Fcontext%2Fml-context&view=azure-devops&tabs=yaml
https://docs.microsoft.com/azure/storage/
https://aka.ms/AMLFree

Default datastore
def_data_store = ws.get_default_datastore()

Get the blob storage associated with the workspace
def_blob_store = Datastore(ws, "workspaceblobstore")

Get file storage associated with the workspace
def_file_store = Datastore(ws, "workspacefilestore")

def_blob_store.upload_files(
 ["iris.csv"],
 target_path="train-dataset",
 overwrite=True)

Configure data using Dataset and PipelineData objects

from azureml.core import Dataset

iris_tabular_dataset = Dataset.Tabular.from_delimited_files([(def_blob_store, 'train-dataset/iris.csv')])

When you create your workspace, Azure Files and Azure Blob storage are attached to the workspace. A default

datastore is registered to connect to the Azure Blob storage. To learn more, see Deciding when to use Azure Files,

Azure Blobs, or Azure Disks.

Upload data files or directories to the datastore for them to be accessible from your pipelines. This example uses

the Blob storage as the datastore:

A pipeline consists of one or more steps. A step is a unit run on a compute target. Steps might consume data

sources and produce "intermediate" data. A step can create data such as a model, a directory with model and

dependent files, or temporary data. This data is then available for other steps later in the pipeline.

To learn more about connecting your pipeline to your data, see the articles How to Access Data and How to

Register Datasets.

You just created a data source that can be referenced in a pipeline as an input to a step. The preferred way to

provide data to a pipeline is a Dataset object. The Dataset object points to data that lives in or is accessible from

a datastore or at a Web URL. The Dataset class is abstract, so you will create an instance of either a

FileDataset (referring to one or more files) or a TabularDataset that's created by from one or more files with

delimited columns of data.

Dataset objects support versioning, diffs, and summary statistics. Dataset s are lazily evaluated (like Python

generators) and it's efficient to subset them by splitting or filtering.

You create a Dataset using methods like from_file or from_delimited_files.

Intermediate data (or output of a step) is represented by a PipelineData object. output_data1 is produced as the

output of a step, and used as the input of one or more future steps. PipelineData introduces a data dependency

between steps, and creates an implicit execution order in the pipeline. This object will be used later when

creating pipeline steps.

https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/storage/common/storage-decide-blobs-files-disks
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.Dataset
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none--support-multi-line-false-
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py

from azureml.pipeline.core import PipelineData

output_data1 = PipelineData(
 "output_data1",
 datastore=def_blob_store,
 output_name="output_data1")

Set up a compute target

IMPORTANT

Azure Machine Learning compute

from azureml.core.compute import ComputeTarget, AmlCompute

compute_name = "aml-compute"
vm_size = "STANDARD_NC6"
if compute_name in ws.compute_targets:
 compute_target = ws.compute_targets[compute_name]
 if compute_target and type(compute_target) is AmlCompute:
 print('Found compute target: ' + compute_name)
else:
 print('Creating a new compute target...')
 provisioning_config = AmlCompute.provisioning_configuration(vm_size=vm_size, # STANDARD_NC6 is GPU-
enabled
 min_nodes=0,
 max_nodes=4)
 # create the compute target
 compute_target = ComputeTarget.create(
 ws, compute_name, provisioning_config)

 # Can poll for a minimum number of nodes and for a specific timeout.
 # If no min node count is provided it will use the scale settings for the cluster
 compute_target.wait_for_completion(
 show_output=True, min_node_count=None, timeout_in_minutes=20)

 # For a more detailed view of current cluster status, use the 'status' property
 print(compute_target.status.serialize())

More details and sample code for working with datasets and pipeline data can be found in Moving data into and

between ML pipeline steps (Python).

In Azure Machine Learning, the term compute (or compute target) refers to the machines or clusters that

perform the computational steps in your machine learning pipeline. See compute targets for model training for

a full list of compute targets and how to create and attach them to your workspace. The process for creating and

or attaching a compute target is the same regardless of whether you are training a model or running a pipeline

step. After you create and attach your compute target, use the ComputeTarget object in your pipeline step.

Performing management operations on compute targets is not supported from inside remote jobs. Since machine learning

pipelines are submitted as a remote job, do not use management operations on compute targets from inside the pipeline.

Below are examples of creating and attaching compute targets for :

Azure Machine Learning Compute

Azure Databricks

Azure Data Lake Analytics

You can create an Azure Machine Learning compute for running your steps.

Azure Databricks

import os
from azureml.core.compute import ComputeTarget, DatabricksCompute
from azureml.exceptions import ComputeTargetException

databricks_compute_name = os.environ.get(
 "AML_DATABRICKS_COMPUTE_NAME", "<databricks_compute_name>")
databricks_workspace_name = os.environ.get(
 "AML_DATABRICKS_WORKSPACE", "<databricks_workspace_name>")
databricks_resource_group = os.environ.get(
 "AML_DATABRICKS_RESOURCE_GROUP", "<databricks_resource_group>")
databricks_access_token = os.environ.get(
 "AML_DATABRICKS_ACCESS_TOKEN", "<databricks_access_token>")

try:
 databricks_compute = ComputeTarget(
 workspace=ws, name=databricks_compute_name)
 print('Compute target already exists')
except ComputeTargetException:
 print('compute not found')
 print('databricks_compute_name {}'.format(databricks_compute_name))
 print('databricks_workspace_name {}'.format(databricks_workspace_name))
 print('databricks_access_token {}'.format(databricks_access_token))

 # Create attach config
 attach_config = DatabricksCompute.attach_configuration(resource_group=databricks_resource_group,
 workspace_name=databricks_workspace_name,
 access_token=databricks_access_token)
 databricks_compute = ComputeTarget.attach(
 ws,
 databricks_compute_name,
 attach_config
)

 databricks_compute.wait_for_completion(True)

Azure Data Lake Analytics

Azure Databricks is an Apache Spark-based environment in the Azure cloud. It can be used as a compute target

with an Azure Machine Learning pipeline.

Create an Azure Databricks workspace before using it. To create a workspace resource, see the Run a Spark job

on Azure Databricks document.

To attach Azure Databricks as a compute target, provide the following information:

Databricks compute name: The name you want to assign to this compute resource.

Databricks workspace name: The name of the Azure Databricks workspace.

Databricks access token: The access token used to authenticate to Azure Databricks. To generate an access

token, see the Authentication document.

The following code demonstrates how to attach Azure Databricks as a compute target with the Azure Machine

Learning SDK (The Databricks workspace need to be present in the same subscr iption as your AML

workspace):

For a more detailed example, see an example notebook on GitHub.

Azure Data Lake Analytics is a big data analytics platform in the Azure cloud. It can be used as a compute target

with an Azure Machine Learning pipeline.

Create an Azure Data Lake Analytics account before using it. To create this resource, see the Get started with

Azure Data Lake Analytics document.

https://docs.microsoft.com/azure/azure-databricks/quickstart-create-databricks-workspace-portal
https://docs.azuredatabricks.net/dev-tools/api/latest/authentication.html
https://aka.ms/pl-databricks
https://docs.microsoft.com/azure/data-lake-analytics/data-lake-analytics-get-started-portal

import os
from azureml.core.compute import ComputeTarget, AdlaCompute
from azureml.exceptions import ComputeTargetException

adla_compute_name = os.environ.get(
 "AML_ADLA_COMPUTE_NAME", "<adla_compute_name>")
adla_resource_group = os.environ.get(
 "AML_ADLA_RESOURCE_GROUP", "<adla_resource_group>")
adla_account_name = os.environ.get(
 "AML_ADLA_ACCOUNT_NAME", "<adla_account_name>")

try:
 adla_compute = ComputeTarget(workspace=ws, name=adla_compute_name)
 print('Compute target already exists')
except ComputeTargetException:
 print('compute not found')
 print('adla_compute_name {}'.format(adla_compute_name))
 print('adla_resource_id {}'.format(adla_resource_group))
 print('adla_account_name {}'.format(adla_account_name))
 # create attach config
 attach_config = AdlaCompute.attach_configuration(resource_group=adla_resource_group,
 account_name=adla_account_name)
 # Attach ADLA
 adla_compute = ComputeTarget.attach(
 ws,
 adla_compute_name,
 attach_config
)

 adla_compute.wait_for_completion(True)

TIP

Construct your pipeline steps

To attach Data Lake Analytics as a compute target, you must use the Azure Machine Learning SDK and provide

the following information:

Compute name: The name you want to assign to this compute resource.

Resource Group: The resource group that contains the Data Lake Analytics account.

Account name: The Data Lake Analytics account name.

The following code demonstrates how to attach Data Lake Analytics as a compute target:

For a more detailed example, see an example notebook on GitHub.

Azure Machine Learning pipelines can only work with data stored in the default data store of the Data Lake Analytics

account. If the data you need to work with is in a non-default store, you can use a DataTransferStep to copy the data

before training.

Once you create and attach a compute target to your workspace, you are ready to define a pipeline step. There

are many built-in steps available via the Azure Machine Learning SDK. The most basic of these steps is a

PythonScriptStep, which runs a Python script in a specified compute target:

https://aka.ms/pl-adla
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.data_transfer_step.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py

from azureml.pipeline.steps import PythonScriptStep

ds_input = my_dataset.as_named_input('input1')

trainStep = PythonScriptStep(
 script_name="train.py",
 arguments=["--input", ds_input.as_download(), "--output", output_data1],
 inputs=[ds_input],
 outputs=[output_data1],
 compute_target=compute_target,
 source_directory=project_folder,
 allow_reuse=True
)

NOTE

list of steps to run
compareModels = [trainStep, extractStep, compareStep]

from azureml.pipeline.core import Pipeline

Build the pipeline
pipeline1 = Pipeline(workspace=ws, steps=[compareModels])

from azureml.pipeline.steps import DatabricksStep

dbStep = DatabricksStep(
 name="databricksmodule",
 inputs=[step_1_input],
 outputs=[step_1_output],
 num_workers=1,
 notebook_path=notebook_path,
 notebook_params={'myparam': 'testparam'},
 run_name='demo run name',
 compute_target=databricks_compute,
 allow_reuse=False
)
List of steps to run
steps = [dbStep]

Build the pipeline
pipeline1 = Pipeline(workspace=ws, steps=steps)

Use a dataset

Reuse of previous results (allow_reuse) is key when using pipelines in a collaborative environment since

eliminating unnecessary reruns offers agility. Reuse is the default behavior when the script_name, inputs, and

the parameters of a step remain the same. When the output of the step is reused, the job is not submitted to the

compute, instead, the results from the previous run are immediately available to the next step's run. If

allow_reuse is set to false, a new run will always be generated for this step during pipeline execution.

After you define your steps, you build the pipeline by using some or all of those steps.

No file or data is uploaded to Azure Machine Learning when you define the steps or build the pipeline.

The following example uses the Azure Databricks compute target created earlier :

Datasets created from Azure Blob storage, Azure Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage

Gen2, Azure SQL Database, and Azure Database for PostgreSQL can be used as input to any pipeline step. With

dataset_consuming_step = PythonScriptStep(
 script_name="iris_train.py",
 inputs=[iris_tabular_dataset.as_named_input("iris_data")],
 compute_target=compute_target,
 source_directory=project_folder
)

iris_train.py
from azureml.core import Run, Dataset

run_context = Run.get_context()
iris_dataset = run_context.input_datasets['iris_data']
dataframe = iris_dataset.to_pandas_dataframe()

Within a PythonScriptStep

ws = Run.get_context().experiment.workspace

Submit the pipeline

IMPORTANT

from azureml.core import Experiment

Submit the pipeline to be run
pipeline_run1 = Experiment(ws, 'Compare_Models_Exp').submit(pipeline1)
pipeline_run1.wait_for_completion()

the exception of writing output to a DataTransferStep or DatabricksStep, output data (PipelineData) can only be

written to Azure Blob and Azure File share datastores.

You then retrieve the dataset in your pipeline by using the Run.input_datasets dictionary.

The line Run.get_context() is worth highlighting. This function retrieves a Run representing the current

experimental run. In the above sample, we use it to retrieve a registered dataset. Another common use of the

Run object is to retrieve both the experiment itself and the workspace in which the experiment resides:

For more detail, including alternate ways to pass and access data, see Moving data into and between ML pipeline

steps (Python).

When you submit the pipeline, Azure Machine Learning checks the dependencies for each step and uploads a

snapshot of the source directory you specified. If no source directory is specified, the current local directory is

uploaded. The snapshot is also stored as part of the experiment in your workspace.

To prevent files from being included in the snapshot, create a .gitignore or .amlignore file in the directory and add the

files to it. The .amlignore file uses the same syntax and patterns as the .gitignore file. If both files exist, the .amlignore

file takes precedence.

For more information, see Snapshots.

When you first run a pipeline, Azure Machine Learning:

Downloads the project snapshot to the compute target from the Blob storage associated with the workspace.

Builds a Docker image corresponding to each step in the pipeline.

Downloads the Docker image for each step to the compute target from the container registry.

https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run?view=azure-ml-py#input-datasets
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore

View results of a pipeline

Git tracking and integration

Configures access to Dataset and PipelineData objects. For as as_mount() access mode, FUSE is used to

provide virtual access. If mount is not supported or if the user specified access as as_download() , the data is

instead copied to the compute target.

Runs the step in the compute target specified in the step definition.

Creates artifacts, such as logs, stdout and stderr, metrics, and output specified by the step. These artifacts are

then uploaded and kept in the user's default datastore.

For more information, see the Experiment class reference.

See the list of all your pipelines and their run details in the studio:

1. Sign in to Azure Machine Learning studio.

2. View your workspace.

3. On the left, select Pipelines to see all your pipeline runs.

4. Select a specific pipeline to see the run results.

When you start a training run where the source directory is a local Git repository, information about the

repository is stored in the run history. For more information, see Git integration for Azure Machine Learning.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py
https://ml.azure.com

Publish a pipeline

Run a published pipeline

from azureml.pipeline.core import PublishedPipeline
import requests

response = requests.post(published_pipeline1.endpoint,
 headers=aad_token,
 json={"ExperimentName": "My_Pipeline",
 "ParameterAssignments": {"pipeline_arg": 20}})

Create a versioned pipeline endpoint

You can publish a pipeline to run it with different inputs later. For the REST endpoint of an already published

pipeline to accept parameters, you must parameterize the pipeline before publishing.

from azureml.pipeline.core.graph import PipelineParameter

pipeline_param = PipelineParameter(
 name="pipeline_arg",
 default_value=10)

compareStep = PythonScriptStep(
 script_name="compare.py",
 arguments=["--comp_data1", comp_data1, "--comp_data2", comp_data2, "--output_data", out_data3, "--
param1", pipeline_param],
 inputs=[comp_data1, comp_data2],
 outputs=[out_data3],
 compute_target=compute_target,
 source_directory=project_folder)

published_pipeline1 = pipeline_run1.publish_pipeline(
 name="My_Published_Pipeline",
 description="My Published Pipeline Description",
 version="1.0")

1. To create a pipeline parameter, use a PipelineParameter object with a default value.

2. Add this PipelineParameter object as a parameter to any of the steps in the pipeline as follows:

3. Publish this pipeline that will accept a parameter when invoked.

All published pipelines have a REST endpoint. This endpoint invokes the run of the pipeline from external

systems, such as non-Python clients. This endpoint enables "managed repeatability" in batch scoring and

retraining scenarios.

To invoke the run of the preceding pipeline, you need an Azure Active Directory authentication header token, as

described in AzureCliAuthentication class reference or get more details in the Authentication in Azure Machine

Learning notebook.

You can create a Pipeline Endpoint with multiple published pipelines behind it. This can be used like a published

pipeline but gives you a fixed REST endpoint as you iterate on and update your ML pipelines.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.pipelineparameter?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.authentication.azurecliauthentication?view=azure-ml-py
https://aka.ms/pl-restep-auth

from azureml.pipeline.core import PipelineEndpoint

published_pipeline = PublishedPipeline.get(workspace="ws", name="My_Published_Pipeline")
pipeline_endpoint = PipelineEndpoint.publish(workspace=ws, name="PipelineEndpointTest",
 pipeline=published_pipeline, description="Test description
Notebook")

Submit a job to a pipeline endpoint

pipeline_endpoint_by_name = PipelineEndpoint.get(workspace=ws, name="PipelineEndpointTest")
run_id = pipeline_endpoint_by_name.submit("PipelineEndpointExperiment")
print(run_id)

run_id = pipeline_endpoint_by_name.submit("PipelineEndpointExperiment", pipeline_version="0")
print(run_id)

rest_endpoint = pipeline_endpoint_by_name.endpoint
response = requests.post(rest_endpoint,
 headers=aad_token,
 json={"ExperimentName": "PipelineEndpointExperiment",
 "RunSource": "API",
 "ParameterAssignments": {"1": "united", "2":"city"}})

Use published pipelines in the studio

You can submit a job to the default version of a pipeline endpoint:

You can also submit a job to a specific version:

The same can be accomplished using the REST API:

You can also run a published pipeline from the studio:

1. Sign in to Azure Machine Learning studio.

2. View your workspace.

3. On the left, select Endpoints .

4. On the top, select Pipeline endpoints .

https://ml.azure.com

Disable a published pipeline

Get the pipeline by using its ID from Azure Machine Learning studio
p = PublishedPipeline.get(ws, id="068f4885-7088-424b-8ce2-eeb9ba5381a6")
p.disable()

Caching & reuse

step = PythonScriptStep(name="Hello World",
 script_name="hello_world.py",
 compute_target=aml_compute,
 source_directory=source_directory,
 allow_reuse=False,
 hash_paths=['hello_world.ipynb'])

Next steps

5. Select a specific pipeline to run, consume, or review results of previous runs of the pipeline endpoint.

To hide a pipeline from your list of published pipelines, you disable it, either in the studio or from the SDK:

You can enable it again with p.enable() . For more information, see PublishedPipeline class reference.

In order to optimize and customize the behavior of your pipelines, you can do a few things around caching and

reuse. For example, you can choose to:

Turn off the default reuse of the step run output by setting allow_reuse=False during step definition.

Reuse is key when using pipelines in a collaborative environment since eliminating unnecessary runs offers

agility. However, you can opt out of reuse.

Force output regeneration for all steps in a run with

pipeline_run = exp.submit(pipeline, regenerate_outputs=False)

By default, allow_reuse for steps is enabled and the source_directory specified in the step definition is hashed.

So, if the script for a given step remains the same (script_name , inputs, and the parameters), and nothing else in

the source_directory has changed, the output of a previous step run is reused, the job is not submitted to the

compute, and the results from the previous run are immediately available to the next step instead.

Use these Jupyter notebooks on GitHub to explore machine learning pipelines further.

See the SDK reference help for the azureml-pipelines-core package and the azureml-pipelines-steps package.

See the how-to for tips on debugging and troubleshooting pipelines.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.publishedpipeline?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/?view=azure-ml-py
https://aka.ms/aml-pipeline-readme
https://docs.microsoft.com/python/api/azureml-pipeline-core/?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/?view=azure-ml-py

Moving data into and between ML pipeline steps
(Python)
4/7/2020 • 6 minutes to read • Edit Online

Prerequisites

Use Dataset objects for pre-existing data

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Data is central to machine learning pipelines. This article provides code for importing, transforming, and moving

data between steps in an Azure Machine Learning pipeline. For an overview of how data works in Azure Machine

Learning, see Access data in Azure storage services. For the benefits and structure of Azure Machine Learning

pipelines, see What are Azure Machine Learning pipelines?.

This article will show you how to:

Use Dataset objects for pre-existing data

Access data within your steps

Split Dataset data into subsets, such as training and validation subsets

Create PipelineData objects to transfer data to the next pipeline step

Use PipelineData objects as input to pipeline steps

Create new Dataset objects from PipelineData you wish to persist

You'll need:

import azureml.core
from azureml.core import Workspace, Datastore

ws = Workspace.from_config()

An Azure subscription. If you don't have an Azure subscription, create a free account before you begin. Try

the free or paid version of Azure Machine Learning.

The Azure Machine Learning SDK for Python, or access to Azure Machine Learning studio.

An Azure Machine Learning workspace.

Either create an Azure Machine Learning workspace or use an existing one via the Python SDK. Import the

Workspace and Datastore class, and load your subscription information from the file config.json using

the function from_config() . This function looks for the JSON file in the current directory by default, but you

can also specify a path parameter to point to the file using from_config(path="your/file/path") .

Some pre-existing data. This article briefly shows the use of an Azure blob container.

Optional: An existing machine learning pipeline, such as the one described in Create and run machine

learning pipelines with Azure Machine Learning SDK.

The preferred way to ingest data into a pipeline is to use a Dataset object. Dataset objects represent persistent

data available throughout a workspace.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-move-data-in-out-of-pipelines.md
https://aka.ms/AMLFree
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://ml.azure.com/
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py

datastore = Datastore.get(workspace, 'training_data')
iris_dataset = Dataset.Tabular.from_delimited_files(DataPath(datastore, 'iris.csv'))

cats_dogs_dataset = Dataset.File.from_files(
 paths='https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-
6DEBA77B919F/kagglecatsanddogs_3367a.zip',
 archive_options=ArchiveOptions(archive_type=ArchiveType.ZIP, entry_glob='**/*.jpg')
)

Pass datasets to your script

train_step = PythonScriptStep(
 name="train_data",
 script_name="train.py",
 compute_target=cluster,
 inputs=[iris_dataset.as_named_inputs('iris').as_mount()]
)

There are many ways to create and register Dataset objects. Tabular datasets are for delimited data available in

one or more files. File datasets are for binary data (such as images) or for data that you'll parse. The simplest

programmatic ways to create Dataset objects are to use existing blobs in workspace storage or public URLs:

For more options on creating datasets with different options and from different sources, registering them and

reviewing them in the Azure Machine Learning UI, understanding how data size interacts with compute capacity,

and versioning them, see Create Azure Machine Learning datasets.

To pass the dataset's path to your script, use the Dataset object's as_named_input() method. You can either pass

the resulting DatasetConsumptionConfig object to your script as an argument or, by using the inputs argument to

your pipeline script, you can retrieve the dataset using Run.get_context().input_datasets[] .

Once you've created a named input, you can choose its access mode: as_mount() or as_download() . If your script

processes all the files in your dataset and the disk on your compute resource is large enough for the dataset, the

download access mode is the better choice. The download access mode will avoid the overhead of streaming the

data at runtime. If your script accesses a subset of the dataset or it's too large for your compute, use the mount

access mode. For more information, read Mount vs. Download

To pass a dataset to your pipeline step:

1. Use TabularDataset.as_named_inputs() or FileDataset.as_named_input() (no 's' at end) to create a

DatasetConsumptionConfig object

2. Use as_mount() or as_download() to set the access mode

3. Pass the datasets to your pipeline steps using either the arguments or the inputs argument

The following snippet shows the common pattern of combining these steps within the PythonScriptStep

constructor :

You can also use methods such as random_split() and take_sample() to create multiple inputs or reduce the

amount of data passed to your pipeline step:

https://docs.microsoft.com/azure/machine-learning/how-to-train-with-datasets#mount-vs-download

seed = 42 # PRNG seed
smaller_dataset = iris_dataset.take_sample(0.1, seed=seed) # 10%
train, test = smaller_dataset.random_split(percentage=0.8, seed=seed)

train_step = PythonScriptStep(
 name="train_data",
 script_name="train.py",
 compute_target=cluster,
 inputs=[train.as_named_inputs('train').as_download(), test.as_named_inputs('test').as_download()]
)

Access datasets within your script

In pipeline definition script:
Code for demonstration only: It would be very confusing to split datasets between `arguments` and `inputs`
train_step = PythonScriptStep(
 name="train_data",
 script_name="train.py",
 compute_target=cluster,
 arguments=['--training-folder', train.as_named_inputs('train').as_download()]
 inputs=[test.as_named_inputs('test').as_download()]
)

In pipeline script
parser = argparse.ArgumentParser()
parser.add_argument('--training-folder', type=str, dest='train_folder', help='training data folder mounting
point')
args = parser.parse_args()
training_data_folder = args.train_folder

testing_data_folder = Run.get_context().input_datasets['test']

run = Run.get_context()
ws = run.experiment.workspace
ds = Dataset.get_by_name(workspace=ws, name='mnist_opendataset')

Use PipelineData for intermediate data

Named inputs to your pipeline step script are available as a dictionary within the Run object. Retrieve the active

Run object using Run.get_context() and then retrieve the dictionary of named inputs using input_datasets . If

you passed the DatasetConsumptionConfig object using the arguments argument rather than the inputs

argument, access the data using ArgParser code. Both techniques are demonstrated in the following snippet.

The passed value will be the path to the dataset file(s).

It's also possible to access a registered Dataset directly. Since registered datasets are persistent and shared across

a workspace, you can retrieve them directly:

While Dataset objects represent persistent data, PipelineData objects are used for temporary data that is output

from pipeline steps. Because the lifespan of a PipelineData object is longer than a single pipeline step, you define

them in the pipeline definition script. When you create a PipelineData object, you must provide a name and a

datastore at which the data will reside. Pass your PipelineData object(s) to your PythonScriptStep using both the

arguments and the outputs arguments:

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py

default_datastore = workspace.get_default_datastore()
dataprep_output = PipelineData("clean_data", datastore=default_datastore)

dataprep_step = PythonScriptStep(
 name="prep_data",
 script_name="dataprep.py",
 compute_target=cluster,
 arguments=["--output-path", dataprep_output]
 inputs=[Dataset.get_by_name(workspace, 'raw_data')],
 outputs=[dataprep_output]
)

PipelineData("clean_data", datastore=def_blob_store, output_mode="upload",
output_path_on_compute="clean_data_output/")

Use PipelineData as outputs of a training step

parser = argparse.ArgumentParser()
parser.add_argument('--output_path', dest='output_path', required=True)
args = parser.parse_args()

Make directory for file
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, 'w') as f:
 f.write("Step 1's output")

Read PipelineData as inputs to non-initial steps

You may choose to create your PipelineData object using an access mode that provides an immediate upload. In

that case, when you create your PipelineData , set the upload_mode to "upload" and use the

output_path_on_compute argument to specify the path to which you'll be writing the data:

Within your pipeline's PythonScriptStep , you can retrieve the available output paths using the program's

arguments. If this step is the first and will initialize the output data, you must create the directory at the specified

path. You can then write whatever files you wish to be contained in the PipelineData .

If you created your PipelineData with the is_directory argument set to True , it would be enough to just

perform the os.makedirs() call and then you would be free to write whatever files you wished to the path. For

more details, see the PipelineData reference documentation.

After the initial pipeline step writes some data to the PipelineData path and it becomes an output of that initial

step, it can be used as an input to a later step:

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py

step1_output_data = PipelineData("processed_data", datastore=def_blob_store, output_mode="upload")

step1 = PythonScriptStep(
 name="generate_data",
 script_name="step1.py",
 runconfig = aml_run_config,
 arguments = ["--output_path", step1_output_data],
 inputs=[],
 outputs=[step1_output_data]
)

step2 = PythonScriptStep(
 name="read_pipeline_data",
 script_name="step2.py",
 compute_target=compute,
 runconfig = aml_run_config,
 arguments = ["--pd", step1_output_data],
 inputs=[step1_output_data]
)

pipeline = Pipeline(workspace=ws, steps=[step1, step2])

parser = argparse.ArgumentParser()
parser.add_argument('--pd', dest='pd', required=True)
args = parser.parse_args()

with open(args.pd) as f:
 print(f.read())

Convert PipelineData objects to Dataset s

step1_output_ds = step1_output_data.as_dataset()
step1_output_ds.register(name="processed_data", create_new_version=True)

Next steps

The value of a PipelineData input is the path to the previous output. If, as shown previously, the first step wrote a

single file, consuming it might look like:

If you'd like to make your PipelineData available for longer than the duration of a run, use its as_dataset()

function to convert it to a Dataset . You may then register the Dataset , making it a first-class citizen in your

workspace. Since your PipelineData object will have a different path every time the pipeline runs, it's highly

recommended that you set create_new_version to True when registering a Dataset created from a

PipelineData object.

Create an Azure machine learning dataset

Create and run machine learning pipelines with Azure Machine Learning SDK

Schedule machine learning pipelines with Azure
Machine Learning SDK for Python
4/22/2020 • 4 minutes to read • Edit Online

Prerequisites

Initialize the workspace & get data

import azureml.core
from azureml.core import Workspace
from azureml.pipeline.core import Pipeline, PublishedPipeline
from azureml.core.experiment import Experiment

ws = Workspace.from_config()

experiments = Experiment.list(ws)
for experiment in experiments:
 print(experiment.name)

published_pipelines = PublishedPipeline.list(ws)
for published_pipeline in published_pipelines:
 print(f"{published_pipeline.name},'{published_pipeline.id}'")

experiment_name = "MyExperiment"
pipeline_id = "aaaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee"

Create a schedule

In this article, you'll learn how to programmatically schedule a pipeline to run on Azure. You can choose to create a

schedule based on elapsed time or on file-system changes. Time-based schedules can be used to take care of

routine tasks, such as monitoring for data drift. Change-based schedules can be used to react to irregular or

unpredictable changes, such as new data being uploaded or old data being edited. After learning how to create

schedules, you'll learn how to retrieve and deactivate them.

An Azure subscription. If you don’t have an Azure subscription, create a free account.

A Python environment in which the Azure Machine Learning SDK for Python is installed. For more

information, see Create and manage reusable environments for training and deployment with Azure

Machine Learning.

A Machine Learning workspace with a published pipeline. You can use the one built in Create and run

machine learning pipelines with Azure Machine Learning SDK.

To schedule a pipeline, you'll need a reference to your workspace, the identifier of your published pipeline, and the

name of the experiment in which you wish to create the schedule. You can get these values with the following code:

To run a pipeline on a recurring basis, you'll create a schedule. A Schedule associates a pipeline, an experiment, and

a trigger. The trigger can either be a ScheduleRecurrence that describes the wait between runs or a Datastore path

that specifies a directory to watch for changes. In either case, you'll need the pipeline identifier and the name of the

experiment in which to create the schedule.

At the top of your python file, import the Schedule and ScheduleRecurrence classes:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-schedule-pipelines.md
https://aka.ms/AMLFree

from azureml.pipeline.core.schedule import ScheduleRecurrence, Schedule

Create a time-based schedule

recurrence = ScheduleRecurrence(frequency="Minute", interval=15)
recurring_schedule = Schedule.create(ws, name="MyRecurringSchedule",
 description="Based on time",
 pipeline_id=pipeline_id,
 experiment_name=experiment_name,
 recurrence=recurrence)

Create a change-based schedule

datastore = Datastore(workspace=ws, name="workspaceblobstore")

reactive_schedule = Schedule.create(ws, name="MyReactiveSchedule", description="Based on input file change.",
 pipeline_id=pipeline_id, experiment_name=experiment_name, datastore=datastore,
data_path_parameter_name="input_data")

Optional arguments when creating a schedule

Use Azure Logic Apps for more complex workflows

View your scheduled pipelines

The ScheduleRecurrence constructor has a required frequency argument that must be one of the following strings:

"Minute", "Hour", "Day", "Week", or "Month". It also requires an integer interval argument specifying how many

of the frequency units should elapse between schedule starts. Optional arguments allow you to be more specific

about starting times, as detailed in the ScheduleRecurrence SDK docs.

Create a Schedule that begins a run every 15 minutes:

Pipelines that are triggered by file changes may be more efficient than time-based schedules. For instance, you may

want to perform a preprocessing step when a file is changed, or when a new file is added to a data directory. You

can monitor any changes to a datastore or changes within a specific directory within the datastore. If you monitor a

specific directory, changes within subdirectories of that directory will not trigger a run.

To create a file-reactive Schedule , you must set the datastore parameter in the call to Schedule.create. To monitor

a folder, set the path_on_datastore argument.

The polling_interval argument allows you to specify, in minutes, the frequency at which the datastore is checked

for changes.

If the pipeline was constructed with a DataPath PipelineParameter, you can set that variable to the name of the

changed file by setting the data_path_parameter_name argument.

In addition to the arguments discussed previously, you may set the status argument to "Disabled" to create an

inactive schedule. Finally, the continue_on_step_failure allows you to pass a Boolean that will override the

pipeline's default failure behavior.

Azure Logic Apps supports more complex workflows and is far more broadly integrated than Azure Machine

Learning pipelines. See Trigger a run of a Machine Learning pipeline from a Logic App for more information.

In your Web browser, navigate to Azure Machine Learning. From the Endpoints section of the navigation panel,

choose Pipeline endpoints . This takes you to a list of the pipelines published in the Workspace.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.schedule.schedulerecurrence?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.schedule.schedule?view=azure-ml-py#create-workspace--name--pipeline-id--experiment-name--recurrence-none--description-none--pipeline-parameters-none--wait-for-provisioning-false--wait-timeout-3600--datastore-none--polling-interval-5--data-path-parameter-name-none--continue-on-step-failure-none--path-on-datastore-none---workflow-provider-none---service-endpoint-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.data.datapath.datapath?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py

Deactivate the pipeline

pipeline = PublishedPipeline.get(ws, id=pipeline_id)
pipeline.disable()

ss = Schedule.list(ws)
for s in ss:
 print(s)

def stop_by_schedule_id(ws, schedule_id):
 s = next(s for s in Schedule.list(ws) if s.id == schedule_id)
 s.disable()
 return s

stop_by_schedule_id(ws, schedule_id)

Next steps

In this page you can see summary information about all the pipelines in the Workspace: names, descriptions, status,

and so forth. Drill in by clicking in your pipeline. On the resulting page, there are more details about your pipeline

and you may drill down into individual runs.

If you have a Pipeline that is published, but not scheduled, you can disable it with:

If the pipeline is scheduled, you must cancel the schedule first. Retrieve the schedule's identifier from the portal or

by running:

Once you have the schedule_id you wish to disable, run:

If you then run Schedule.list(ws) again, you should get an empty list.

In this article, you used the Azure Machine Learning SDK for Python to schedule a pipeline in two different ways.

One schedule recurs based on elapsed clock time. The other schedule runs if a file is modified on a specified

Datastore or within a directory on that store. You saw how to use the portal to examine the pipeline and individual

runs. Finally, you learned how to disable a schedule so that the pipeline stops running.

For more information, see:

Use Azure Machine Learning Pipelines for batch scoring

Learn more about pipelines

Learn more about exploring Azure Machine Learning with Jupyter

Trigger a run of a Machine Learning pipeline from a
Logic App
2/10/2020 • 2 minutes to read • Edit Online

Prerequisites

Create a Logic App

Trigger the run of your Azure Machine Learning Pipeline when new data appears. For example, you may want to

trigger the pipeline to train a new model when new data appears in the blob storage account. Set up the trigger

with Azure Logic Apps.

You can find the pipeline ID in Azure Machine Learning studio

published_pipeline = PublishedPipeline.get(ws, id="<pipeline-id-here>")
published_pipeline.endpoint

An Azure Machine Learning workspace. For more information, see Create an Azure Machine Learning

workspace.

The REST endpoint for a published Machine Learning pipeline. Create and publish your pipeline. Then find

the REST endpoint of your PublishedPipeline by using the pipeline ID:

Azure blob storage to store your data.

A datastore in your workspace that contains the details of your blob storage account.

Now create an Azure Logic App instance. If you wish, use an integration service environment (ISE) and set up a

customer-managed key for use by your Logic App.

Once your Logic App has been provisioned, use these steps to configure a trigger for your pipeline:

1. Create a system-assigned managed identity to give the app access to your Azure Machine Learning

Workspace.

2. Navigate to the Logic App Designer view and select the Blank Logic App template.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-trigger-published-pipeline.md
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/logic-apps/connect-virtual-network-vnet-isolated-environment
https://docs.microsoft.com/en-us/azure/logic-apps/customer-managed-keys-integration-service-environment
https://docs.microsoft.com/en-us/azure/logic-apps/create-managed-service-identity

NOTE

3. In the Designer, search for blob. Select the When a blob is added or modified (proper ties only)

trigger and add this trigger to your Logic App.

4. Fill in the connection info for the Blob storage account you wish to monitor for blob additions or

modifications. Select the Container to monitor.

Choose the Inter val and Frequency to poll for updates that work for you.

This trigger will monitor the selected Container but will not monitor subfolders.

5. Add an HTTP action that will run when a new or modified blob is detected. Select + New Step, then search

for and select the HTTP action.

SET T IN G VA L UE

HTTP action POST

URI the endpoint to the published pipeline that you found as a
Prerequisite

Authentication mode Managed Identity

Use the following settings to configure your action:

"DataPathAssignments":{
 "input_datapath":{
 "DataStoreName":"<datastore-name>",
"RelativePath":"@triggerBody()?['Name']"
}
},
"ExperimentName":"MyRestPipeline",
"ParameterAssignments":{
"input_string":"sample_string3"
},

1. Set up your schedule to set the value of any DataPath PipelineParameters you may have:

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-showcasing-datapath-and-pipelineparameter.ipynb

Use the DataStoreName you added to your workspace as a Prerequisite.

2. Select Save and your schedule is now ready.

Debug and troubleshoot machine learning pipelines
4/10/2020 • 12 minutes to read • Edit Online

Debug and troubleshoot in the Azure Machine Learning SDK

Testing scripts locally

TIP

Debugging scripts from remote context

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to debug and troubleshoot machine learning pipelines in the Azure Machine Learning

SDK and Azure Machine Learning designer (preview). Information is provided on how to:

Debug using the Azure Machine Learning SDK

Debug using the Azure Machine Learning designer

Debug using Application Insights

Debug interactively using Visual Studio Code (VS Code) and the Python Tools for Visual Studio (PTVSD)

The following sections provide an overview of common pitfalls when building pipelines, and different strategies for

debugging your code that's running in a pipeline. Use the following tips when you're having trouble getting a

pipeline to run as expected.

One of the most common failures in a pipeline is that an attached script (data cleansing script, scoring script, etc.) is

not running as intended, or contains runtime errors in the remote compute context that are difficult to debug in

your workspace in the Azure Machine Learning studio.

Pipelines themselves cannot be run locally, but running the scripts in isolation on your local machine allows you to

debug faster because you don't have to wait for the compute and environment build process. Some development

work is required to do this:

If your data is in a cloud datastore, you will need to download data and make it available to your script. Using a

small sample of your data is a good way to cut down on runtime and quickly get feedback on script behavior

If you are attempting to simulate an intermediate pipeline step, you may need to manually build the object

types that the particular script is expecting from the prior step

You will also need to define your own environment, and replicate the dependencies defined in your remote

compute environment

Once you have a script setup to run on your local environment, it is much easier to do debugging tasks like:

Attaching a custom debug configuration

Pausing execution and inspecting object-state

Catching type or logical errors that won't be exposed until runtime

Once you can verify that your script is running as expected, a good next step is running the script in a single-step pipeline

before attempting to run it in a pipeline with multiple steps.

Testing scripts locally is a great way to debug major code fragments and complex logic before you start building a

pipeline, but at some point you will likely need to debug scripts during the actual pipeline run itself, especially

when diagnosing behavior that occurs during the interaction between pipeline steps. We recommend liberal use of

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-debug-pipelines.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/concept-designer

print() statements in your step scripts so that you can see object state and expected values during remote

execution, similar to how you would debug JavaScript code.

The log file 70_driver_log.txt contains:

All printed statements during your script's execution

The stack trace for the script

To find this and other log files in the portal, first click on the pipeline run in your workspace.

Navigate to the pipeline run detail page.

Click on the module for the specific step. Navigate to the Logs tab. Other logs include information about your

environment image build process and step preparation scripts.

TIP

Troubleshooting tips

P RO B L EM P O SSIB L E SO L UT IO N

Unable to pass data to PipelineData directory Ensure you have created a directory in the script that
corresponds to where your pipeline expects the step output
data. In most cases, an input argument will define the output
directory, and then you create the directory explicitly. Use
os.makedirs(args.output_dir, exist_ok=True) to create

the output directory. See the tutorial for a scoring script
example that shows this design pattern.

Dependency bugs If you have developed and tested scripts locally but find
dependency issues when running on a remote compute in the
pipeline, ensure your compute environment dependencies and
versions match your test environment. (See Environment
building, caching, and reuse

Ambiguous errors with compute targets Deleting and re-creating compute targets can solve certain
issues with compute targets.

Pipeline not reusing steps Step reuse is enabled by default, but ensure you haven't
disabled it in a pipeline step. If reuse is disabled, the
allow_reuse parameter in the step will be set to False .

Pipeline is rerunning unnecessarily To ensure that steps only rerun when their underlying data or
scripts change, decouple your directories for each step. If you
use the same source directory for multiple steps, you may
experience unnecessary reruns. Use the source_directory

parameter on a pipeline step object to point to your isolated
directory for that step, and ensure you aren't using the same
source_directory path for multiple steps.

Runs for published pipelines can be found in the Endpoints tab in your workspace. Runs for non-published pipelines can be

found in Experiments or Pipelines .

The following table contains common problems during pipeline development, with potential solutions.

https://docs.microsoft.com/azure/machine-learning/concept-environments#environment-building-caching-and-reuse

Logging options and behavior

L IB RA RY T Y P E EXA M P L E DEST IN AT IO N RESO URC ES

Azure Machine
Learning SDK

Metric run.log(name,
val)

Azure Machine
Learning Portal UI

How to track
experiments
azureml.core.Run class

Python
printing/logging

Log print(val)

logging.info(message)

Driver logs, Azure
Machine Learning
designer

How to track
experiments

Python logging

OpenCensus Python Log logger.addHandler(AzureLogHandler())

logging.log(message)

Application Insights -
traces

Debug pipelines in
Application Insights

OpenCensus Azure
Monitor Exporters
Python logging
cookbook

Logging options example

import logging

from azureml.core.run import Run
from opencensus.ext.azure.log_exporter import AzureLogHandler

run = Run.get_context()

Azure ML Scalar value logging
run.log("scalar_value", 0.95)

Python print statement
print("I am a python print statement, I will be sent to the driver logs.")

Initialize python logger
logger = logging.getLogger(__name__)
logger.setLevel(args.log_level)

Plain python logging statements
logger.debug("I am a plain debug statement, I will be sent to the driver logs.")
logger.info("I am a plain info statement, I will be sent to the driver logs.")

handler = AzureLogHandler(connection_string='<connection string>')
logger.addHandler(handler)

Python logging with OpenCensus AzureLogHandler
logger.warning("I am an OpenCensus warning statement, find me in Application Insights!")
logger.error("I am an OpenCensus error statement with custom dimensions", {'step_id': run.id})

Debug and troubleshoot in Azure Machine Learning designer (preview)

Access logs from the authoring page

The table below provides information for different debug options for pipelines. It isn't an exhaustive list, as other

options exist besides just the Azure Machine Learning, Python, and OpenCensus ones shown here.

This section provides an overview of how to troubleshoot pipelines in the designer. For pipelines created in the

designer, you can find the log files on either the authoring page, or in the pipeline run detail page.

When you submit a pipeline run and stay in the authoring page, you can find the log files generated for each

module.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=experimental
https://docs.python.org/2/library/logging.html
https://github.com/census-instrumentation/opencensus-python/tree/master/contrib/opencensus-ext-azure
https://docs.python.org/3/howto/logging-cookbook.html

Access logs from pipeline runs

Debug and troubleshoot in Application Insights

Debug and troubleshoot in Visual Studio Code

Prerequisites

1. Select any module in the authoring canvas.

2. In the right pane of the module, go to the Outputs + logs tab.

3. Select the log file 70_driver_log.txt .

You can also find the log files of specific runs in the pipeline run detail page in either the Pipelines or

Experiments sections.

1. Select a pipeline run created in the designer.

2. Select any module in the preview pane.

3. In the right pane of the module, go to the Outputs + logs tab.

4. Select the log file 70_driver_log.txt .

For more information on using the OpenCensus Python library in this manner, see this guide: Debug and

troubleshoot machine learning pipelines in Application Insights

In some cases, you may need to interactively debug the Python code used in your ML pipeline. By using Visual

Studio Code (VS Code) and the Python Tools for Visual Studio (PTVSD), you can attach to the code as it runs in the

training environment.

An Azure Machine Learning workspace that is configured to use an Azure Vir tual Network .

How it works

Configure Python scripts

An Azure Machine Learning pipeline that uses Python scripts as part of the pipeline steps. For example,

a PythonScriptStep.

An Azure Machine Learning Compute cluster, which is in the vir tual network and is used by the

pipeline for training.

A development environment that is in the vir tual network . The development environment might be

one of the following:

An Azure Virtual Machine in the virtual network

A Compute instance of Notebook VM in the virtual network

A client machine connected to the virtual network by a virtual private network (VPN).

For more information on using an Azure Virtual Network with Azure Machine Learning, see Secure Azure ML

experimentation and inference jobs within an Azure Virtual Network.

Your ML pipeline steps run Python scripts. These scripts are modified to perform the following actions:

1. Log the IP address of the host that they are running on. You use the IP address to connect the debugger to

the script.

2. Start the PTVSD debug component, and wait for a debugger to connect.

3. From your development environment, you monitor the logs created by the training process to find the IP

address where the script is running.

4. You tell VS Code the IP address to connect the debugger to by using a launch.json file.

5. You attach the debugger and interactively step through the script.

To enable debugging, make the following changes to the Python script(s) used by steps in your ML pipeline:

import ptvsd
import socket
from azureml.core import Run

parser.add_argument('--remote_debug', action='store_true')
parser.add_argument('--remote_debug_connection_timeout', type=int,
 default=300,
 help=f'Defines how much time the Azure ML compute target '
 f'will await a connection from a debugger client (VSCODE).')

global run
run = Run.get_context()

1. Add the following import statements:

2. Add the following arguments. These arguments allow you to enable the debugger as needed, and set the

timeout for attaching the debugger:

3. Add the following statements. These statements load the current run context so that you can log the IP

address of the node that the code is running on:

4. Add an if statement that starts PTVSD and waits for a debugger to attach. If no debugger attaches before

the timeout, the script continues as normal.

Copyright (c) Microsoft. All rights reserved.
Licensed under the MIT license.

import argparse
import os
import ptvsd
import socket
from azureml.core import Run

print("In train.py")
print("As a data scientist, this is where I use my training code.")

parser = argparse.ArgumentParser("train")

parser.add_argument("--input_data", type=str, help="input data")
parser.add_argument("--output_train", type=str, help="output_train directory")

Argument check for remote debugging
parser.add_argument('--remote_debug', action='store_true')
parser.add_argument('--remote_debug_connection_timeout', type=int,
 default=300,
 help=f'Defines how much time the AML compute target '
 f'will await a connection from a debugger client (VSCODE).')
Get run object, so we can find and log the IP of the host instance
global run
run = Run.get_context()

args = parser.parse_args()

Start debugger if remote_debug is enabled
if args.remote_debug:
 print(f'Timeout for debug connection: {args.remote_debug_connection_timeout}')
 # Log the IP and port
 ip = socket.gethostbyname(socket.gethostname())
 print(f'ip_address: {ip}')
 ptvsd.enable_attach(address=('0.0.0.0', 5678),
 redirect_output=True)
 # Wait for the timeout for debugger to attach
 ptvsd.wait_for_attach(timeout=args.remote_debug_connection_timeout)
 print(f'Debugger attached = {ptvsd.is_attached()}')

print("Argument 1: %s" % args.input_data)
print("Argument 2: %s" % args.output_train)

if not (args.output_train is None):
 os.makedirs(args.output_train, exist_ok=True)
 print("%s created" % args.output_train)

Configure ML pipeline

if args.remote_debug:
 print(f'Timeout for debug connection: {args.remote_debug_connection_timeout}')
 # Log the IP and port
 ip = socket.gethostbyname(socket.gethostname())
 print(f'ip_address: {ip}')
 ptvsd.enable_attach(address=('0.0.0.0', 5678),
 redirect_output=True)
 # Wait for the timeout for debugger to attach
 ptvsd.wait_for_attach(timeout=args.remote_debug_connection_timeout)
 print(f'Debugger attached = {ptvsd.is_attached()}')

The following Python example shows a basic train.py file that enables debugging:

To provide the Python packages needed to start PTVSD and get the run context, create an environment and set

Use a RunConfiguration to specify some additional requirements for this step.
from azureml.core.runconfig import RunConfiguration
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_CPU_IMAGE

create a new runconfig object
run_config = RunConfiguration()

enable Docker
run_config.environment.docker.enabled = True

set Docker base image to the default CPU-based image
run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE

use conda_dependencies.yml to create a conda environment in the Docker image for execution
run_config.environment.python.user_managed_dependencies = False

specify CondaDependencies obj
run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['scikit-learn'],
 pip_packages=['ptvsd', 'azureml-
sdk==1.0.83'])

Use RunConfig from a pipeline step
step1 = PythonScriptStep(name="train_step",
 script_name="train.py",
 arguments=['--remote_debug', '--remote_debug_connection_timeout', 300],
 compute_target=aml_compute,
 source_directory=source_directory,
 runconfig=run_config,
 allow_reuse=False)

Timeout for debug connection: 300
ip_address: 10.3.0.5

TIP

Configure development environment

pip_packages=['ptvsd', 'azureml-sdk==1.0.83'] . Change the SDK version to match the one you are using. The

following code snippet demonstrates how to create an environment:

In the Configure Python scripts section, two new arguments were added to the scripts used by your ML pipeline

steps. The following code snippet demonstrates how to use these arguments to enable debugging for the

component and set a timeout. It also demonstrates how to use the environment created earlier by setting

runconfig=run_config :

When the pipeline runs, each step creates a child run. If debugging is enabled, the modified script logs information

similar to the following text in the 70_driver_log.txt for the child run:

Save the ip_address value. It is used in the next section.

You can also find the IP address from the run logs for the child run for this pipeline step. For more information on viewing

this information, see Monitor Azure ML experiment runs and metrics.

1. To install the Python Tools for Visual Studio (PTVSD) on your VS Code development environment, use the

following command:

Connect the debugger

python -m pip install --upgrade ptvsd

For more information on using PTVSD with VS Code, see Remote Debugging.

2. To configure VS Code to communicate with the Azure Machine Learning compute that is running the

debugger, create a new debug configuration:

{
 "name": "Azure Machine Learning Compute: remote debug",
 "type": "python",
 "request": "attach",
 "port": 5678,
 "host": "10.3.0.5",
 "redirectOutput": true,
 "pathMappings": [
 {
 "localRoot": "${workspaceFolder}/code/step1",
 "remoteRoot": "."
 }
]
}

IMPORTANT

TIP

a. From VS Code, select the Debug menu and then select Open configurations . A file named

launch.json opens.

b. In the launch.json file, find the line that contains "configurations": [, and insert the following text

after it. Change the "host": "10.3.0.5" entry to the IP address returned in your logs from the

previous section. Change the "localRoot": "${workspaceFolder}/code/step" entry to a local directory

that contains a copy of the script being debugged:

If there are already other entries in the configurations section, add a comma (,) after the code that you

inserted.

The best practice is to keep the resources for scripts in separate directories, which is why the localRoot

example value references /code/step1 .

If you are debugging multiple scripts, in different directories, create a separate configuration section for each

script.

c. Save the launch.json file.

1. Open VS Code and open a local copy of the script.

2. Set breakpoints where you want the script to stop once you've attached.

3. While the child process is running the script, and the Timeout for debug connection is displayed in the logs,

use the F5 key or select Debug. When prompted, select the Azure Machine Learning Compute: remote

debug configuration. You can also select the debug icon from the side bar, the Azure Machine Learning:

remote debug entry from the Debug dropdown menu, and then use the green arrow to attach the

debugger.

https://code.visualstudio.com/docs/python/debugging#_remote-debugging

Next steps

NOTE

At this point, VS Code connects to PTVSD on the compute node and stops at the breakpoint you set

previously. You can now step through the code as it runs, view variables, etc.

If the log displays an entry stating Debugger attached = False , then the timeout has expired and the script

continued without the debugger. Submit the pipeline again and connect the debugger after the

Timeout for debug connection message, and before the timeout expires.

See the SDK reference for help with the azureml-pipelines-core package and the azureml-pipelines-steps

package.

See the list of designer exceptions and error codes.

https://docs.microsoft.com/python/api/azureml-pipeline-core/?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/designer-error-codes

Debug and troubleshoot machine learning pipelines
in Application Insights
4/8/2020 • 4 minutes to read • Edit Online

Prerequisites

Getting Started

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

The OpenCensus python library can be used to route logs to Application Insights from your scripts. Aggregating

logs from pipeline runs in one place allows you to build queries and diagnose issues. Using Application Insights

will allow you to track logs over time and compare pipeline logs across runs.

Having your logs in once place will provide a history of exceptions and error messages. Since Application Insights

integrates with Azure Alerts, you can also create alerts based on Application Insights queries.

Follow the steps to create an Azure Machine Learning workspace and create your first pipeline

Configure your development environment to install the Azure Machine Learning SDK.

Install the OpenCensus Azure Monitor Exporter package locally:

pip install opencensus-ext-azure

Create an Application Insights instance (this doc also contains information on getting the connection string for

the resource)

This section is an introduction specific to using OpenCensus from an Azure Machine Learning pipeline. For a

detailed tutorial, see OpenCensus Azure Monitor Exporters

Add a PythonScriptStep to your Azure ML Pipeline. Configure your RunConfiguration with the dependency on

opencensus-ext-azure. Configure the APPLICATIONINSIGHTS_CONNECTION_STRING environment variable.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-debug-pipelines-application-insights.md
https://opencensus.io/quickstart/python/
https://pypi.org/project/opencensus-ext-azure/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/opencensus-python
https://github.com/census-instrumentation/opencensus-python/tree/master/contrib/opencensus-ext-azure
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py

from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import RunConfiguration
from azureml.pipeline.core import Pipeline
from azureml.pipeline.steps import PythonScriptStep

Connecting to the workspace and compute target not shown

Add pip dependency on OpenCensus
dependencies = CondaDependencies()
dependencies.add_pip_package("opencensus-ext-azure>=1.0.1")
run_config = RunConfiguration(conda_dependencies=dependencies)

Add environment variable with Application Insights Connection String
Replace the value with your own connection string
run_config.environment.environment_variables = {
 "APPLICATIONINSIGHTS_CONNECTION_STRING": 'InstrumentationKey=00000000-0000-0000-0000-000000000000'
}

Configure step with runconfig
sample_step = PythonScriptStep(
 script_name="sample_step.py",
 compute_target=compute_target,
 runconfig=run_config
)

Submit new pipeline run
pipeline = Pipeline(workspace=ws, steps=[sample_step])
pipeline.submit(experiment_name="Logging_Experiment")

from opencensus.ext.azure.log_exporter import AzureLogHandler
import logging

logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler())

Assumes the environment variable APPLICATIONINSIGHTS_CONNECTION_STRING is already set
logger.addHandler(AzureLogHandler())
logger.warning("I will be sent to Application Insights")

Logging with Custom Dimensions

Helpful Context to include

Create a file called sample_step.py . Import the AzureLogHandler class to route logs to Application Insights. You'll

also need to import the Python Logging library.

Next, add the AzureLogHandler to the python logger.

By default, logs forwarded to Application Insights won't have enough context to trace back to the run or

experiment. To make the logs actionable for diagnosing issues, additional fields are needed.

To add these fields, Custom Dimensions can be added to provide context to a log message. One example is when

someone wants to view logs across multiple steps in the same pipeline run.

Custom Dimensions make up a dictionary of key-value (stored as string, string) pairs. The dictionary is then sent to

Application Insights and displayed as a column in the query results. Its individual dimensions can be used as query

parameters.

F IEL D REA SO N IN G/ EXA M P L E

parent_run_id Can query logs for ones with the same parent_run_id to see
logs over time for all steps, instead of having to dive into each
individual step

step_id Can query logs for ones with the same step_id to see where
an issue occurred with a narrow scope to just the individual
step

step_name Can query logs to see step performance over time. Also helps
to find a step_id for recent runs without diving into the portal
UI

experiment_name Can query across logs to see experiment performance over
time. Also helps find a parent_run_id or step_id for recent runs
without diving into the portal UI

run_url Can provide a link directly back to the run for investigation.

F IEL D REA SO N IN G/ EXA M P L E

build_url/build_version If using CI/CD to deploy, this field can correlate logs to the
code version that provided the step and pipeline logic. This
link can further help to diagnose issues, or identify models
with specific traits (log/metric values)

run_type Can differentiate between different model types, or training
vs. scoring runs

Creating a Custom Dimensions dictionary

from azureml.core import Run

run = Run.get_context(allow_offline=False)

custom_dimensions = {
 "parent_run_id": run.parent.id,
 "step_id": run.id,
 "step_name": run.name,
 "experiment_name": run.experiment.name,
 "run_url": run.parent.get_portal_url(),
 "run_type": "training"
}

Assumes AzureLogHandler was already registered above
logger.info("I will be sent to Application Insights with Custom Dimensions", custom_dimensions)

OpenCensus Python logging considerations

Other helpful fields

These fields may require additional code instrumentation, and aren't provided by the run context.

The OpenCensus AzureLogHandler is used to route Python logs to Application Insights. As a result, Python logging

nuances should be considered. When a logger is created, it has a default log level and will show logs greater than

or equal to that level. A good reference for using Python logging features is the Logging Cookbook.

https://docs.python.org/3/howto/logging-cookbook.html

Querying logs in Application Insights

Additional helpful queries

USE C A SE Q UERY

Log results for specific custom dimension, for example
'parent_run_id' traces |

where customDimensions.parent_run_id == '931024c2-
3720-11ea-b247-c49deda841c1

Log results for all training runs over the last 7 days

traces |
where timestamp > ago(7d)
and customDimensions.run_type == 'training'

The APPLICATIONINSIGHTS_CONNECTION_STRING environment variable is needed for the OpenCensus library. We

recommend setting this environment variable instead of passing it in as a pipeline parameter to avoid passing

around plaintext connection strings.

The logs routed to Application Insights will show up under 'traces' or 'exceptions'. Be sure to adjust your time

window to include your pipeline run.

The result in Application Insights will show the log message and level, file path, and code line number. It will also

show any custom dimensions included. In this image, the customDimensions dictionary shows the key/value pairs

from the previous code sample.

Some of the queries below use 'customDimensions.Level'. These severity levels correspond to the level the Python

log was originally sent with. For additional query information, see Azure Monitor Log Queries.

https://docs.microsoft.com/azure/azure-monitor/log-query/query-language

Log results with severityLevel Error from the last 7 days

traces |
where timestamp > ago(7d)
and customDimensions.Level == 'ERROR'

Count of log results with severityLevel Error over the last 7
days traces |

where timestamp > ago(7d)
and customDimensions.Level == 'ERROR' |
summarize count()

USE C A SE Q UERY

Next Steps
Once you have logs in your Application Insights instance, they can be used to set Azure Monitor alerts based on

query results.

You can also add results from queries to an Azure Dashboard for additional insights.

https://docs.microsoft.com/en-us/azure/azure-monitor/platform/alerts-overview
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards#add-logs-analytics-query

Retrain models with Azure Machine Learning
designer (preview)
4/7/2020 • 3 minutes to read • Edit Online

Prerequisites

Sample pipeline

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this how-to article, you learn how to use Azure Machine Learning designer to retrain a machine learning model.

You will use published pipelines to automate your workflow and set parameters to train your model on new data.

In this article, you learn how to:

Train a machine learning model.

Create a pipeline parameter.

Publish your training pipeline.

Retrain your model with new parameters.

An Azure Machine Learning workspace with the Enterprise SKU.

A dataset accessible to the designer. This can be one of the following:

An Azure Machine Learning registered dataset

-or-

A data file stored in an Azure Machine Learning datastore.

For information on data access using the designer see How to import data into the designer.

This article also assumes that you have basic knowledge of building pipelines in the designer. For a guided

introduction, complete the tutorial.

The pipeline used in this article is an altered version of Sample 3: Income prediction. The pipeline uses the Import

Data module instead of the sample dataset to show you how to train models using your own data.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-retrain-designer.md
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/import-data

Create a pipeline parameter
Create pipeline parameters to dynamically set variables at runtime. For this example, you will change the training

data path from a fixed value to a parameter, so that you can retrain your model on different data.

NOTE

1. Select the Impor t Data module.

This example uses the Import Data module to access data in a registered datastore. However, you can follow similar

steps if you use alternative data access patterns.

2. In the module detail pane, to the right of the canvas, select your data source.

3. Enter the path to your data. You can also select Browse path to browse your file tree.

4. Mouseover the Path field, and select the ellipses above the Path field that appear.

Find a trained model

NOTE

5. Select Add to pipeline parameter .

6. Provide a parameter name and a default value.

You can inspect and edit your pipeline parameters by selecting the Settings gear icon next to the title of your

pipeline draft.

7. Select Save.

8. Submit the pipeline run.

The designer saves all pipeline output, including trained models, to the default workspace storage account. You can

also access trained models directly in the designer :

1. Wait for the pipeline to finish running.

2. Select the Train Model module.

3. In the module details pane, to the right of the canvas, select Outputs + logs .

4. You can find your model in Other outputs along with run logs.

5. Alternatively, select the View output icon. From here, you can follow the instruction in the dialog to navigate

directly to your datastore.

Publish a training pipeline

Retrain your model

Submit runs by using the designer

Publish a pipeline to a pipeline endpoint to easily reuse your pipelines in the future. A pipeline endpoint creates a

REST endpoint to invoke pipeline in the future. In this example, your pipeline endpoint lets you reuse your pipeline

to retrain a model on different data.

NOTE

1. Select Publish above the designer canvas.

2. Select or create a pipeline endpoint.

You can publish multiple pipelines to a single endpoint. Each pipeline in a given endpoint is given a version number,

which you can specify when you call the pipeline endpoint.

3. Select Publish .

Now that you have a published training pipeline, you can use it to retrain your model on new data. You can submit

runs from a pipeline endpoint from the studio workspace or programmatically.

Use the following steps to submit a parameterized pipeline endpoint run from the designer :

1. Go to the Endpoints page in your studio workspace.

2. Select the Pipeline endpoints tab. Then, select your pipeline endpoint.

3. Select the Published pipelines tab. Then, select the pipeline version that you want to run.

4. Select Submit.

5. In the setup dialog box, you can specify the parameters values for the run. For this example, update the data

path to train your model using a non-US dataset.

Submit runs by using code

Next steps

You can find the REST endpoint of a published pipeline in the overview panel. By calling the endpoint, you can

retrain the published pipeline.

To make a REST call, you need an OAuth 2.0 bearer-type authentication header. For information about setting up

authentication to your workspace and making a parameterized REST call, see Build an Azure Machine Learning

pipeline for batch scoring.

In this article, you learned how to create a parameterized training pipeline endpoint using the designer.

For a complete walkthrough of how you can deploy a model to make predictions, see the designer tutorial to train

and deploy a regression model.

Run batch predictions using Azure Machine Learning
designer (preview)
3/17/2020 • 3 minutes to read • Edit Online

Prerequisites

Create a batch inference pipeline

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise)

In this article, you learn how to use the designer to create a batch prediction pipeline. Batch prediction lets you

continuously score large datasets on-demand using a web service that can be triggered from any HTTP library.

In this how-to, you learn to do the following tasks:

Create and publish a batch inference pipeline

Consume a pipeline endpoint

Manage endpoint versions

To learn how to set up batch scoring services using the SDK, see the accompanying how-to.

This how-to assumes you already have a training pipeline. For a guided introduction to the designer, complete part

one of the designer tutorial.

Your training pipeline must be run at least once to be able to create an inferencing pipeline.

1. Go to the Designer tab in your workspace.

2. Select the training pipeline that trains the model you want to use to make prediction.

3. Submit the pipeline.

Now that the training pipeline has been run, you can create a batch inference pipeline.

1. Next to Submit, select the new dropdown Create inference pipeline.

2. Select Batch inference pipeline.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-run-batch-predictions-designer.md
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-run-batch-predictions

Add a pipeline parameter

Publish your batch inferencing pipeline

The result is a default batch inference pipeline.

To create predictions on new data, you can either manually connect a different dataset in this pipeline draft view or

create a parameter for your dataset. Parameters let you change the behavior of the batch inferencing process at

runtime.

In this section, you create a dataset parameter to specify a different dataset to make predictions on.

1. Select the dataset module.

2. A pane will appear to the right of the canvas. At the bottom of the pane, select Set as pipeline parameter .

Enter a name for the parameter, or accept the default value.

Now you're ready to deploy the inferencing pipeline. This will deploy the pipeline and make it available for others

to use.

1. Select the Publish button.

2. In the dialog that appears, expand the drop-down for PipelineEndpoint, and select New

PipelineEndpoint.

3. Provide an endpoint name and optional description.

Near the bottom of the dialog, you can see the parameter you configured with a default value of the dataset

ID used during training.

4. Select Publish .

Consume an endpoint

Submit a pipeline run

Now, you have a published pipeline with a dataset parameter. The pipeline will use the trained model created in the

training pipeline to score the dataset you provide as a parameter.

In this section, you will set up a manual pipeline run and alter the pipeline parameter to score new data.

1. After the deployment is complete, go to the Endpoints section.

2. Select Pipeline endpoints .

3. Select the name of the endpoint you created.

1. Select Published pipelines .

This screen shows all published pipelines published under this endpoint.

2. Select the pipeline you published.

The pipeline details page shows you a detailed run history and connection string information for your

pipeline.

3. Select Submit to create a manual run of the pipeline.

Use the REST endpoint

4. Change the parameter to use a different dataset.

5. Select Submit to run the pipeline.

You can find information on how to consume pipeline endpoints and published pipeline in the Endpoints section.

You can find the REST endpoint of a pipeline endpoint in the run overview panel. By calling the endpoint, you are

consuming its default published pipeline.

You can also consume a published pipeline in the Published pipelines page. Select a published pipeline and find

the REST endpoint of it.

Versioning endpoints

To make a REST call, you will need an OAuth 2.0 bearer-type authentication header. See the following tutorial

section for more detail on setting up authentication to your workspace and making a parameterized REST call.

The designer assigns a version to each subsequent pipeline that you publish to an endpoint. You can specify the

pipeline version that you want to execute as a parameter in your REST call. If you don't specify a version number,

the designer will use the default pipeline.

When you publish a pipeline, you can choose to make it the new default pipeline for that endpoint.

Next steps

You can also set a new default pipeline in the Published pipelines tab of your endpoint.

Follow the designer tutorial to train and deploy a regression model. ''

Execute Python code in Azure Machine Learning
designer
3/17/2020 • 2 minutes to read • Edit Online

Execute Python written in the designer
Add the Execute Python Script module

Connect input datasets

In this article, you learn how to use the Execute Python Script module to add custom logic to Azure Machine

Learning designer. In the following how-to, you use the Pandas library to do simple feature engineering.

You can use the in-built code editor to quickly add simple Python logic. If you want to add more complex code or

upload additional Python libraries, you should use the zip file method.

The default execution environment uses the Anacondas distribution of Python. For a complete list of pre-installed

packages, see the Execute Python Script module reference page.

1. Find the Execute Python Scr ipt module in the designer palette. It can be found in the Python Language

section.

2. Drag and drop the module onto the pipeline canvas.

This article uses the sample dataset, Automobile pr ice data (Raw) .

1. Drag and drop your dataset to the pipeline canvas.

2. Connect the output port of the dataset to the top-left input port of the Execute Python Scr ipt module. The

designer exposes the input as a parameter to the entry point script.

The right input port is reserved for zipped python libraries.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-designer-python.md
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/execute-python-script
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/execute-python-script

Write your Python code

3. Take note of which input port you use. The designer assigns the left input port to the variable dataset1 and

the middle input port to dataset2 .

Input modules are optional since you can generate or import data directly in the Execute Python Scr ipt module.

The designer provides an initial entry point script for you to edit and enter your own Python code.

In this example, you use Pandas to combine two columns found in the automobile dataset, Pr ice and Horsepower ,

to create a new column, Dollars per horsepower . This column represents how much you pay for each

horsepower, which could be a useful feature to decide if a car is a good deal for the money.

import pandas as pd

def azureml_main(dataframe1 = None, dataframe2 = None):
 dataframe1['Dollar/HP'] = dataframe1.price / dataframe1.horsepower
 return dataframe1

1. Select the Execute Python Scr ipt module.

2. In the pane that appears to the right of the canvas, select the Python scr ipt text box.

3. Copy and paste the following code into the text box.

Your pipeline should look the following image:

The entry point script must contain the function azureml_main . There are two function parameters that map

to the two input ports for the Execute Python Scr ipt module.

Next steps

The return value must be a Pandas Dataframe. You can return up to two dataframes as module outputs.

4. Submit the pipeline.

Now, you have a dataset with the new feature Dollars/HP, which could be useful in training a car recommender.

This is an example of feature extraction and dimensionality reduction.

Learn how to import your own data in Azure Machine Learning designer.

Run batch inference on large amounts of data by
using Azure Machine Learning
3/17/2020 • 10 minutes to read • Edit Online

Prerequisites

Set up machine learning resources

Create a datastore with sample images

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

Learn how to process large amounts of data asynchronously and in parallel by using Azure Machine Learning.

The ParallelRunStep capability described here is in public preview. It's a high-performance and high-throughput

way to generate inferences and processing data. It provides asynchronous capabilities out of the box.

With ParallelRunStep, it's straightforward to scale offline inferences to large clusters of machines on terabytes of

production data resulting in improved productivity and optimized cost.

In this article, you learn the following tasks:

Create a remote compute resource.

Write a custom inference script.

Create a machine learning pipeline to register a pre-trained image classification model based on the

MNIST dataset.

Use the model to run batch inference on sample images available in your Azure Blob storage account.

If you don't have an Azure subscription, create a free account before you begin. Try the free or paid

version of the Azure Machine Learning.

For a guided quickstart, complete the setup tutorial if you don't already have an Azure Machine Learning

workspace or notebook virtual machine.

To manage your own environment and dependencies, see the how-to guide on configuring your own

environment. Run

pip install azureml-sdk[notebooks] azureml-pipeline-core azureml-contrib-pipeline-steps in your

environment to download the necessary dependencies.

The following actions set up the resources that you need to run a batch inference pipeline:

Create a datastore that points to a blob container that has images to inference.

Set up data references as inputs and outputs for the batch inference pipeline step.

Set up a compute cluster to run the batch inference step.

Get the MNIST evaluation set from the public blob container sampledata on an account named pipelinedata .

Create a datastore with the name mnist_datastore , which points to this container. In the following call to

register_azure_blob_container , setting the overwrite flag to True overwrites any datastore that was created

previously with that name.

You can change this step to point to your blob container by providing your own values for datastore_name ,

container_name , and account_name .

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-parallel-run-step.md
https://publicdataset.azurewebsites.net/dataDetail/mnist/
https://aka.ms/AMLFree

from azureml.core import Datastore
from azureml.core import Workspace

Load workspace authorization details from config.json
ws = Workspace.from_config()

mnist_blob = Datastore.register_azure_blob_container(ws,
 datastore_name="mnist_datastore",
 container_name="sampledata",
 account_name="pipelinedata",
 overwrite=True)

def_data_store = ws.get_default_datastore()

Configure data inputs and outputs

NOTE

from azureml.core.dataset import Dataset

mnist_ds_name = 'mnist_sample_data'

path_on_datastore = mnist_blob.path('mnist/')
input_mnist_ds = Dataset.File.from_files(path=path_on_datastore, validate=False)
registered_mnist_ds = input_mnist_ds.register(ws, mnist_ds_name, create_new_version=True)
named_mnist_ds = registered_mnist_ds.as_named_input(mnist_ds_name)

output_dir = PipelineData(name="inferences",
 datastore=def_data_store,
 output_path_on_compute="mnist/results")

Next, specify the workspace default datastore as the output datastore. You'll use it for inference output.

When you create your workspace, Azure Files and Blob storage are attached to the workspace by default. Azure

Files is the default datastore for a workspace, but you can also use Blob storage as a datastore. For more

information, see Azure storage options.

Now you need to configure data inputs and outputs, including:

The directory that contains the input images.

The directory where the pre-trained model is stored.

The directory that contains the labels.

The directory for output.

Dataset is a class for exploring, transforming, and managing data in Azure Machine Learning. This class has

two types: TabularDataset and FileDataset . In this example, you'll use FileDataset as the inputs to the batch

inference pipeline step.

FileDataset support in batch inference is restricted to Azure Blob storage for now.

You can also reference other datasets in your custom inference script. For example, you can use it to access

labels in your script for labeling images by using Dataset.register and Dataset.get_by_name .

For more information about Azure Machine Learning datasets, see Create and access datasets (preview).

PipelineData objects are used for transferring intermediate data between pipeline steps. In this example, you

use it for inference outputs.

https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/storage/common/storage-decide-blobs-files-disks
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.filedataset?view=azure-ml-py
https://docs.microsoft.com/azure/machine-learning/how-to-create-register-datasets
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py

Set up a compute target

from azureml.core.compute import AmlCompute, ComputeTarget
from azureml.core.compute_target import ComputeTargetException

choose a name for your cluster
compute_name = os.environ.get("AML_COMPUTE_CLUSTER_NAME", "cpu-cluster")
compute_min_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MIN_NODES", 0)
compute_max_nodes = os.environ.get("AML_COMPUTE_CLUSTER_MAX_NODES", 4)

This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("AML_COMPUTE_CLUSTER_SKU", "STANDARD_D2_V2")

if compute_name in ws.compute_targets:
 compute_target = ws.compute_targets[compute_name]
 if compute_target and type(compute_target) is AmlCompute:
 print('found compute target. just use it. ' + compute_name)
else:
 print('creating a new compute target...')
 provisioning_config = AmlCompute.provisioning_configuration(vm_size = vm_size,
 min_nodes = compute_min_nodes,
 max_nodes = compute_max_nodes)

 # create the cluster
 compute_target = ComputeTarget.create(ws, compute_name, provisioning_config)

 # can poll for a minimum number of nodes and for a specific timeout.
 # if no min node count is provided it will use the scale settings for the cluster
 compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20)

 # For a more detailed view of current AmlCompute status, use get_status()
 print(compute_target.get_status().serialize())

Prepare the model

import os
import tarfile
import urllib.request

model_dir = 'models'
if not os.path.isdir(model_dir):
 os.mkdir(model_dir)

url="https://pipelinedata.blob.core.windows.net/mnist-model/mnist-tf.tar.gz"
response = urllib.request.urlretrieve(url, "model.tar.gz")
tar = tarfile.open("model.tar.gz", "r:gz")
tar.extractall(model_dir)

In Azure Machine Learning, compute (or compute target) refers to the machines or clusters that perform the

computational steps in your machine learning pipeline. Run the following code to create a CPU based

AmlCompute target.

Download the pre-trained image classification model, and then extract it to the models directory.

Then register the model with your workspace so it's available to your remote compute resource.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute?view=azure-ml-py
https://pipelinedata.blob.core.windows.net/mnist-model/mnist-tf.tar.gz

from azureml.core.model import Model

Register the downloaded model
model = Model.register(model_path="models/",
 model_name="mnist",
 tags={'pretrained': "mnist"},
 description="Mnist trained tensorflow model",
 workspace=ws)

Write your inference script

WARNING
The following code is only a sample that the sample notebook uses. You'll need to create your own script for your

scenario.

The script must contain two functions:

init() : Use this function for any costly or common preparation for later inference. For example, use it to

load the model into a global object. This function will be called only once at beginning of process.

run(mini_batch) : The function will run for each mini_batch instance.

mini_batch : Parallel run step will invoke run method and pass either a list or Pandas DataFrame as an

argument to the method. Each entry in min_batch will be - a file path if input is a FileDataset, a Pandas

DataFrame if input is a TabularDataset.

response : run() method should return a Pandas DataFrame or an array. For append_row

output_action, these returned elements are appended into the common output file. For

summary_only, the contents of the elements are ignored. For all output actions, each returned output

element indicates one successful run of input element in the input mini-batch. You should make sure

that enough data is included in run result to map input to run result. Run output will be written in

output file and not guaranteed to be in order, you should use some key in the output to map it to

input.

https://aka.ms/batch-inference-notebooks

Snippets from a sample script.
Refer to the accompanying digit_identification.py
(https://aka.ms/batch-inference-notebooks)
for the implementation script.

import os
import numpy as np
import tensorflow as tf
from PIL import Image
from azureml.core import Model

def init():
 global g_tf_sess

 # Pull down the model from the workspace
 model_path = Model.get_model_path("mnist")

 # Construct a graph to execute
 tf.reset_default_graph()
 saver = tf.train.import_meta_graph(os.path.join(model_path, 'mnist-tf.model.meta'))
 g_tf_sess = tf.Session()
 saver.restore(g_tf_sess, os.path.join(model_path, 'mnist-tf.model'))

def run(mini_batch):
 print(f'run method start: {__file__}, run({mini_batch})')
 resultList = []
 in_tensor = g_tf_sess.graph.get_tensor_by_name("network/X:0")
 output = g_tf_sess.graph.get_tensor_by_name("network/output/MatMul:0")

 for image in mini_batch:
 # Prepare each image
 data = Image.open(image)
 np_im = np.array(data).reshape((1, 784))
 # Perform inference
 inference_result = output.eval(feed_dict={in_tensor: np_im}, session=g_tf_sess)
 # Find the best probability, and add it to the result list
 best_result = np.argmax(inference_result)
 resultList.append("{}: {}".format(os.path.basename(image), best_result))

 return resultList

How to access other files in source directory in entry_script

script_dir = os.path.realpath(os.path.join(__file__, '..',))
file_path = os.path.join(script_dir, "<file_name>")

Build and run the pipeline containing ParallelRunStep

Prepare the run environment

If you have another file or folder in the same directory as your entry script, you can reference it by finding the

current working directory.

Now you have everything you need to build the pipeline.

First, specify the dependencies for your script. You use this object later when you create the pipeline step.

from azureml.core.environment import Environment
from azureml.core.conda_dependencies import CondaDependencies
from azureml.core.runconfig import DEFAULT_GPU_IMAGE

batch_conda_deps = CondaDependencies.create(pip_packages=["tensorflow==1.13.1", "pillow"])

batch_env = Environment(name="batch_environment")
batch_env.python.conda_dependencies = batch_conda_deps
batch_env.docker.enabled = True
batch_env.docker.base_image = DEFAULT_GPU_IMAGE
batch_env.spark.precache_packages = False

Specify the parameters for your batch inference pipeline step
ParallelRunConfig is the major configuration for the newly introduced batch inference ParallelRunStep

instance within the Azure Machine Learning pipeline. You use it to wrap your script and configure necessary

parameters, including all of the following parameters:

entry_script : A user script as a local file path that will be run in parallel on multiple nodes. If

source_directory is present, use a relative path. Otherwise, use any path that's accessible on the machine.

mini_batch_size : The size of the mini-batch passed to a single run() call. (optional; the default value is 10

files for FileDataset and 1MB for TabularDataset.)

error_threshold : The number of record failures for TabularDataset and file failures for FileDataset that

should be ignored during processing. If the error count for the entire input goes above this value, the job will

be aborted. The error threshold is for the entire input and not for individual mini-batches sent to the run()

method. The range is [-1, int.max] . The -1 part indicates ignoring all failures during processing.

output_action : One of the following values indicates how the output will be organized:

source_directory : Paths to folders that contain all files to execute on the compute target (optional).

compute_target : Only AmlCompute is supported.

node_count : The number of compute nodes to be used for running the user script.

process_count_per_node : The number of processes per node.

environment : The Python environment definition. You can configure it to use an existing Python environment

or to set up a temporary environment for the experiment. The definition is also responsible for setting the

required application dependencies (optional).

logging_level : Log verbosity. Values in increasing verbosity are: WARNING , INFO , and DEBUG . (optional; the

default value is INFO)

run_invocation_timeout : The run() method invocation timeout in seconds. (optional; default value is 60)

For FileDataset , it's the number of files with a minimum value of 1 . You can combine multiple files

into one mini-batch.

For TabularDataset , it's the size of data. Example values are 1024 , 1024KB , 10MB , and 1GB . The

recommended value is 1MB . The mini-batch from TabularDataset will never cross file boundaries. For

example, if you have .csv files with various sizes, the smallest file is 100 KB and the largest is 10 MB. If

you set mini_batch_size = 1MB , then files with a size smaller than 1 MB will be treated as one mini-

batch. Files with a size larger than 1 MB will be split into multiple mini-batches.

summary_only : The user script will store the output. ParallelRunStep will use the output only for the

error threshold calculation.

append_row : For all input files, only one file will be created in the output folder to append all outputs

separated by line. The file name will be parallel_run_step.txt .

from azureml.contrib.pipeline.steps import ParallelRunConfig

parallel_run_config = ParallelRunConfig(
 source_directory=scripts_folder,
 entry_script="digit_identification.py",
 mini_batch_size="5",
 error_threshold=10,
 output_action="append_row",
 environment=batch_env,
 compute_target=compute_target,
 node_count=4)

Create the pipeline step

from azureml.contrib.pipeline.steps import ParallelRunStep

parallelrun_step = ParallelRunStep(
 name="batch-mnist",
 models=[model],
 parallel_run_config=parallel_run_config,
 inputs=[named_mnist_ds],
 output=output_dir,
 arguments=[],
 allow_reuse=True
)

NOTE

Submit the pipeline

Create the pipeline step by using the script, environment configuration, and parameters. Specify the compute

target that you already attached to your workspace as the target of execution for the script. Use

ParallelRunStep to create the batch inference pipeline step, which takes all the following parameters:

name : The name of the step, with the following naming restrictions: unique, 3-32 characters, and regex ^[a-

z]([-a-z0-9]*[a-z0-9])?$.

models : Zero or more model names already registered in the Azure Machine Learning model registry.

parallel_run_config : A ParallelRunConfig object, as defined earlier.

inputs : One or more single-typed Azure Machine Learning datasets.

output : A PipelineData object that corresponds to the output directory.

arguments : A list of arguments passed to the user script (optional).

allow_reuse : Whether the step should reuse previous results when run with the same settings/inputs. If this

parameter is False , a new run will always be generated for this step during pipeline execution. (optional; the

default value is True .)

The above step depends on azureml-contrib-pipeline-steps , as described in Prerequisites.

Now, run the pipeline. First, create a Pipeline object by using your workspace reference and the pipeline step

that you created. The steps parameter is an array of steps. In this case, there's only one step for batch scoring.

To build pipelines that have multiple steps, place the steps in order in this array.

Next, use the Experiment.submit() function to submit the pipeline for execution.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline%28class%29?view=azure-ml-py

from azureml.pipeline.core import Pipeline
from azureml.core.experiment import Experiment

pipeline = Pipeline(workspace=ws, steps=[parallelrun_step])
pipeline_run = Experiment(ws, 'digit_identification').submit(pipeline)

Monitor the parallel run job

from azureml.widgets import RunDetails
RunDetails(pipeline_run).show()

pipeline_run.wait_for_completion(show_output=True)

Next steps

A batch inference job can take a long time to finish. This example monitors progress by using a Jupyter widget.

You can also manage the job's progress by using:

Azure Machine Learning Studio.

Console output from the PipelineRun object.

To see this process working end to end, try the batch inference notebook.

For debugging and troubleshooting guidance for ParallelRunStep, see the how-to guide.

For debugging and troubleshooting guidance for pipelines, see the how-to guide.

Learn how to run notebooks by following the article Use Jupyter notebooks to explore this service.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.run.pipelinerun?view=azure-ml-py
https://aka.ms/batch-inference-notebooks

Debug and troubleshoot ParallelRunStep
1/16/2020 • 3 minutes to read • Edit Online

Testing scripts locally

Debugging scripts from remote context

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In this article, you learn how to debug and troubleshoot the ParallelRunStep class from the Azure Machine Learning

SDK.

See the Testing scripts locally section for machine learning pipelines. Your ParallelRunStep runs as a step in ML

pipelines so the same answer applies to both.

The transition from debugging a scoring script locally to debugging a scoring script in an actual pipeline can be a

difficult leap. For information on finding your logs in the portal, the machine learning pipelines section on

debugging scripts from a remote context. The information in that section also applies to a parallel step run.

For example, the log file 70_driver_log.txt contains information from the controller that launches parallel run step

code.

Because of the distributed nature of parallel run jobs, there are logs from several different sources. However, two

consolidated files are created that provide high-level information:

~/logs/overview.txt : This file provides a high-level info about the number of mini-batches (also known as

tasks) created so far and number of mini-batches processed so far. At this end, it shows the result of the job.

If the job failed, it will show the error message and where to start the troubleshooting.

~/logs/sys/master.txt : This file provides the master node (also known as the orchestrator) view of the

running job. Includes task creation, progress monitoring, the run result.

Logs generated from entry script using EntryScript.logger and print statements will be found in following files:

~/logs/user/<ip_address>/Process-*.txt : This file contains logs written from entry_script using

EntryScript.logger. It also contains print statement (stdout) from entry_script.

When you need a full understanding of how each node executed the score script, look at the individual process logs

for each node. The process logs can be found in the sys/worker folder, grouped by worker nodes:

~/logs/sys/worker/<ip_address>/Process-*.txt : This file provides detailed info about each mini-batch as it is

picked up or completed by a worker. For each mini-batch, this file includes:

The IP address and the PID of the worker process.

The total number of items, successfully processed items count, and failed item count.

The start time, duration, process time and run method time.

You can also find information on the resource usage of the processes for each worker. This information is in CSV

format and is located at ~/logs/sys/perf/<ip_address>/ . For a single node, job files will be available under

~logs/sys/perf . For example, when checking for resource utilization, look at the following files:

Process-*.csv : Per worker process resource usage.

sys.csv : Per node log.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-debug-parallel-run-step.md
https://docs.microsoft.com/python/api/azureml-contrib-pipeline-steps/azureml.contrib.pipeline.steps.parallel_run_step.parallelrunstep?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

How do I log from my user script from a remote context?

from entry_script import EntryScript

def init():
 """ Initialize the node."""
 entry_script = EntryScript()
 logger = entry_script.logger
 logger.debug("This will show up in files under logs/user on the Azure portal.")

def run(mini_batch):
 """ Accept and return the list back."""
 # This class is in singleton pattern and will return same instance as the one in init()
 entry_script = EntryScript()
 logger = entry_script.logger
 logger.debug(f"{__file__}: {mini_batch}.")
 ...

 return mini_batch

How could I pass a side input such as, a file or file(s) containing a lookup table, to all my workers?

from azureml.core.run import Run
from azureml.core.dataset import Dataset

ws = Run.get_context().experiment.workspace
lookup_ds = Dataset.get_by_name(ws, "<registered-name>")
lookup_ds.download(target_path='.', overwrite=True)

Next steps

You can get a logger from EntryScript as shown in below sample code to make the logs show up in logs/user

folder in the portal.

A sample entr y scr ipt using the logger :

Construct a Dataset object containing the side input and register with your workspace. After that you can access it

in your inference script (for example, in your init() method) as follows:

See the SDK reference for help with the azureml-contrib-pipeline-step package and the documentation for

ParallelRunStep class.

Follow the advanced tutorial on using pipelines with parallel run step.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-contrib-pipeline-steps/azureml.contrib.pipeline.steps?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-contrib-pipeline-steps/azureml.contrib.pipeline.steps.parallelrunstep?view=azure-ml-py

Manage and request quotas for Azure resources
4/6/2020 • 10 minutes to read • Edit Online

Special considerations

Default resource quotas

IMPORTANT

Virtual machines

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

This article provides details on preconfigured limits on Azure resources for your subscription. Also included are

instructions on how to request quota enhancements for each type of resource. These limits are put in place to

prevent budget over-runs due to fraud, and to honor Azure capacity constraints.

As with other Azure services, there are limits on certain resources associated with Azure Machine Learning. These

limits range from a cap on the number of workspaces to limits on the actual underlying compute that gets used for

model training or inference/scoring.

As you design and scale your Azure Machine Learning resources for production workloads, consider these limits.

For example, if your cluster doesn't reach the target number of nodes, then you may have reached an Azure

Machine Learning Compute cores limit for your subscription. If you want to raise the limit or quota above the

Default Limit, open an online customer support request at no charge. The limits can't be raised above the

Maximum Limit value shown in the following tables due to Azure Capacity constraints. If there is no Maximum

Limit column, then the resource doesn't have adjustable limits.

A quota is a credit limit, not a capacity guarantee. If you have large-scale capacity needs, contact Azure

support.

Your quota is shared across all the services in your subscriptions including Azure Machine Learning. The

only exception is Azure Machine Learning compute which has a separate quota from the core compute

quota. Be sure to calculate the quota usage across all services when evaluating your capacity needs.

Default limits vary by offer Category Type, such as Free Trial, Pay-As-You-Go, and VM series, such as Dv2, F,

G, and so on.

Here is a breakdown of the quota limits by various resource types within your Azure subscription.

Limits are subject to change. The latest can always be found at the service-level quota document for all of Azure.

For each Azure subscription, there is a limit on the number of virtual machines you can have across your services

or standalone. This limit is at the region level both on the total cores and also on a per family basis.

Virtual machine cores have a regional total limit and a regional per size series (Dv2, F, etc.) limit, both of which are

separately enforced. For example, consider a subscription with a US East total VM core limit of 30, an A series core

limit of 30, and a D series core limit of 30. This subscription would be allowed to deploy 30 A1 VMs, or 30 D1 VMs,

or a combination of the two not to exceed a total of 30 cores (for example, 10 A1 VMs and 20 D1 VMs).

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-manage-quotas.md
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits/

RESO URC E L IM IT

Subscriptions per Azure Active Directory tenant Unlimited.

Coadministrators per subscription Unlimited.

Resource groups per subscription 980

Azure Resource Manager API request size 4,194,304 bytes.

Tags per subscription 50

Unique tag calculations per subscription 10,000

Subscription-level deployments per location 800

Azure Machine Learning Compute

RESO URC E M A XIM UM L IM IT

Maximum workspaces per resource group 800

1

1

2

You can apply up to 50 tags directly to a subscription. However, the subscription can contain an unlimited number

of tags that are applied to resource groups and resources within the subscription. The number of tags per resource

or resource group is limited to 50. Resource Manager returns a list of unique tag name and values in the

subscription only when the number of tags is 10,000 or less. You still can find a resource by tag when the number

exceeds 10,000.

1

If you reach the limit of 800 deployments, delete deployments from the history that are no longer needed. To

delete subscription level deployments, use Remove-AzDeployment or az deployment sub delete.

2

For a more detailed and up-to-date list of quota limits, check the Azure-wide quota article here.

For Azure Machine Learning Compute, there is a default quota limit on both the number of cores and number of

unique compute resources allowed per region in a subscription. This quota is separate from the VM core quota

above and the core limits are not shared between the two resource types since AmlCompute is a managed service

that deploys resources in a hosted-on-behalf-of model.

Available resources:

Dedicated cores per region have a default limit of 24 - 300 depending on your subscription offer type with

higher defaults for EA and CSP offer types. The number of dedicated cores per subscription can be increased

and is different for each VM family. Certain specialized VM families like NCv2, NCv3, or ND series start with

a default of zero cores. Contact Azure support by raising a quota request to discuss increase options.

Low-priority cores per region have a default limit of 100 - 3000 depending on your subscription offer type

with higher defaults for EA and CSP offer types. The number of low-priority cores per subscription can be

increased and is a single value across VM families. Contact Azure support to discuss increase options.

Clusters per region have a default limit of 200. These are shared between a training cluster and a compute

instance (which is considered as a single node cluster for quota purposes). Contact Azure support if you

want to request an increase beyond this limit.

There are other strict limits that cannot be exceeded once hit.

https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/add-change-subscription-administrator
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-to-subscription
https://docs.microsoft.com/rest/api/resources/tags
https://docs.microsoft.com/powershell/module/az.resources/remove-azdeployment
https://docs.microsoft.com/cli/azure/deployment/sub?view=azure-cli-latest#az-deployment-sub-delete
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits

Maximum nodes in a single Azure Machine Learning Compute
(AmlCompute) resource

100 nodes

Maximum GPU MPI processes per node 1-4

Maximum GPU workers per node 1-4

Maximum job lifetime 90 days

Maximum job lifetime on a Low-Priority Node 7 days

Maximum parameter servers per node 1

RESO URC E M A XIM UM L IM IT

Azure Machine Learning Pipelines

NOTE

Container instances

RESO URC E L IM IT

Standard sku container groups per region per subscription 100

Dedicated sku container groups per region per subscription 0

Number of containers per container group 60

Number of volumes per container group 20

Ports per IP 5

Container instance log size - running instance 4 MB

Container instance log size - stopped instance 16 KB or 1,000 lines

Container creates per hour 300

1

2

 The maximum lifetime refers to the time that a run start and when it finishes. Completed runs persist indefinitely;

data for runs not completed within the maximum lifetime is not accessible. Jobs on a Low-Priority node could be

preempted anytime there is a capacity constraint. We recommend you implement checkpointing in your job.

1

2

For Azure Machine Learning Pipelines, there is a quota limit on the number of steps in a pipeline and on the

number of schedule-based runs of published pipelines per region in a subscription.

Maximum number of steps allowed in a pipeline is 30,000

Maximum number of the sum of schedule-based runs and blob pulls for blog-triggered schedules of published

pipelines per subscription per month is 100,000

If you want to increase this limit, contact Microsoft Support.

There is also a limit on the number of container instances that you can spin up in a given time period (scoped

hourly) or across your entire subscription.

1

1

1

https://azure.microsoft.com/support/options/
https://docs.microsoft.com/en-us/azure/billing-buy-sign-up-azure-subscription
https://docs.microsoft.com/en-us/azure/billing-buy-sign-up-azure-subscription

Container creates per 5 minutes 100

Container deletes per hour 300

Container deletes per 5 minutes 100

RESO URC E L IM IT

Storage

Workspace level quota

1

1

1

To request a limit increase, create an Azure Support request.1

For a more detailed and up-to-date list of quota limits, check the Azure-wide quota article here.

There is a limit on the number of storage accounts per region as well in a given subscription. The default limit is

250 and includes both Standard and Premium Storage accounts. If you require more than 250 storage accounts in

a given region, make a request through Azure Support. The Azure Storage team will review your business case and

may approve up to 250 storage accounts for a given region.

To better manage resource allocations for Amlcompute between various workspaces, we have introduced a feature

that allows you to distribute subscription level quotas (by VM family) and configure them at the workspace level.

The default behavior is that all workspaces have the same quota as the subscription level quota for any VM family.

However, as the number of workspaces increases, and workloads of varying priority start sharing the same

resources, users want a way to better share capacity and avoid resource contention issues. Azure Machine Learning

provides a solution with its managed compute offering by allowing users to set a maximum quota for a particular

VM family on each workspace. This is analogous to distributing your capacity between workspaces, and the users

can choose to also over-allocate to drive maximum utilization.

To set quotas at the workspace level, go to any workspace in your subscription, and click on Usages + quotas in

the left pane. Then select the Configure quotas tab to view the quotas, expand any VM family, and set a quota

limit on any workspace listed under that VM family. Remember that you cannot set a negative value or a value

higher than the subscription level quota. Also, as you would observe, by default all workspaces are assigned the

entire subscription quota to allow for full utilization of the allocated quota.

https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest
https://docs.microsoft.com/azure/azure-resource-manager/management/azure-subscription-service-limits#container-instances-limits
https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest/

NOTE

View your usage and quotas

This is an Enterprise edition feature only. If you have both a Basic and an Enterprise edition workspace in your subscription,

you can use this to only set quotas on your Enterprise workspaces. Your Basic workspaces will continue to have the

subscription level quota which is the default behavior.

You need subscription level permissions to set quota at the workspace level. This is enforced so that individual workspace

owners do not edit or increase their quotas and start encroaching onto resources set aside for another workspace. Thus a

subscription admin is best suited to allocate and distribute these quotas across workspaces.

Viewing your quota for various resources, such as Virtual Machines, Storage, Network, is easy through the Azure

portal.

1. On the left pane, select All ser vices and then select Subscr iptions under the General category.

2. From the list of subscriptions, select the subscription whose quota you are looking for.

There is a caveat, specifically for viewing the Azure Machine Learning Compute quota. As mentioned

above, that quota is separate from the compute quota on your subscription.

3. On the left pane, select Machine Learning ser vice and then select any workspace from the list shown

4. On the next blade, under the Suppor t + troubleshooting section select Usage + quotas to view your

current quota limits and usage.

5. Select a subscription to view the quota limits. Remember to filter to the region you are interested in.

6. You can now toggle between a subscription level view and a workspace level view:

Subscr iption view: This allows you to view your usage of core quota by VM family, expanding it by

workspace, and further expanding it by the actual cluster names. This view is optimal for quickly

getting into the details of core usage for a particular VM family to see the break-up by workspaces

and further by the underlying clusters for each of those workspaces. The general convention in this

file:///T:/i2pk/machine-learning/media/how-to-manage-quotas/azure-machine-learning-workspace-quota.png

Request quota increases

NOTE

view is (usage/quota), where the usage is the current number of scaled up cores, and quota is the

logical maximum number of cores that the resource can scale to. For each workspace, the quota

would be the workspace level quota (as explained above) which denotes the maximum number of

cores that you can scale to for a particular VM family. For a cluster similarly, the quota is actually the

cores corresponding to the maximum number of nodes that the cluster can scale to defined by the

max_nodes property.

Workspace view: This allows you to view your usage of core quota by Workspace, expanding it by

VM family, and further expanding it by the actual cluster names. This view is optimal for quickly

getting into the details of core usage for a particular workspace to see the break-up by VM families

and further by the underlying clusters for each of those families.

If you want to raise the limit or quota above the default limit, open an online customer support request at no

charge.

The limits can't be raised above the maximum limit value shown in the tables. If there is no maximum limit, then

the resource doesn't have adjustable limits. This article covers the quota increase process in more detail.

When requesting a quota increase, you need to select the service you are requesting to raise the quota against,

which could be services such as Machine Learning service quota, Container instances or Storage quota. In addition

for Azure Machine Learning Compute, you can click on the Request Quota button while viewing the quota

following the steps above.

Free Trial subscriptions are not eligible for limit or quota increases. If you have a Free Trial subscription, you can upgrade to a

Pay-As-You-Go subscription. For more information, see Upgrade Azure Free Trial to Pay-As-You-Go and Free Trial

subscription FAQ.

https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest/
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-quota-errors
https://azure.microsoft.com/offers/ms-azr-0044p
https://azure.microsoft.com/offers/ms-azr-0044p
https://azure.microsoft.com/offers/ms-azr-0003p/
https://docs.microsoft.com/en-us/azure/billing/billing-upgrade-azure-subscription
https://azure.microsoft.com/free/free-account-faq

Export or delete your Machine Learning service
workspace data
3/12/2020 • 4 minutes to read • Edit Online

NOTE

NOTE

Control your workspace data

Delete workspace data with the REST API

Delete an entire workspace

WARNING

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Micros
oft.MachineLearningServices/workspaces/{workspaceName}?api-version=2019-11-01

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

In Azure Machine Learning, you can export or delete your workspace data with the authenticated REST API. This

article tells you how.

For information about viewing or deleting personal data, see Azure Data Subject Requests for the GDPR. For more

information about GDPR, see the GDPR section of the Service Trust portal.

This article provides steps for how to delete personal data from the device or service and can be used to support your

obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

In-product data stored by Azure Machine Learning is available for export and deletion through Azure Machine

Learning studio, CLI, SDK, and authenticated REST APIs. Telemetry data can be accessed through the Azure Privacy

portal.

In Azure Machine Learning, personal data consists of user information in run history documents and telemetry

records of some user interactions with the service.

In order to delete data, the following API calls can be made with the HTTP DELETE verb. These are authorized by

having an Authorization: Bearer <arm-token> header in the request, where <arm-token> is the AAD access token

for the https://management.core.windows.net/ endpoint.

To learn how to get this token and call Azure endpoints, see Use REST to manage ML resources and Azure REST API

documentation.

In the examples following, replace the text in {} with the instance names that determine the associated resource.

Use this call to delete an entire workspace.

All information will be deleted and the workspace will no longer be usable.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-export-delete-data.md
https://docs.microsoft.com/microsoft-365/compliance/gdpr-dsr-azure
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://docs.microsoft.com/rest/api/azure/

Delete models

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/models?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/models/{id}?api-version=2019-11-01

Delete assets

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/assets?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/assets/{id}?api-version=2019-11-01

Delete images

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/images?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/images/{id}?api-version=2019-11-01

Delete services

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/services?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/services/{id}?api-version=2019-11-01

Export service data with the REST API

Use this call to get a list of models and their IDs:

Individual models can be deleted with:

Use this call to get a list of assets and their IDs:

Individual assets can be deleted with:

Use this call to get a list of images and their IDs:

Individual images can be deleted with:

Use this call to get a list of services and their IDs:

Individual services can be deleted with:

In order to export data, the following API calls can be made with the HTTP GET verb. These are authorized by having

an Authorization: Bearer <arm-token> header in the request, where <arm-token> is the AAD access token for the

endpoint https://management.core.windows.net/

Export Workspace information

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Micros
oft.MachineLearningServices/workspaces?api-version=2019-11-01

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Micros
oft.MachineLearningServices/workspaces/{workspaceName}?api-version=2019-11-01

Export Compute Information

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroup/{resourceGroupName}/providers/Microso
ft.MachineLearningServices/workspaces/{workspaceName}/computes?api-version=2019-11-01

https://management.azure.com/subscriptions/{subscriptionId}/resourceGroup/{resourceGroupName}/providers/Microso
ft.MachineLearningServices/workspaces/{workspaceName}/computes/{computeName}?api-version=2019-11-01

Export run history data

https://{location}.experiments.azureml.net/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resource
GroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments

https://{location}.experiments.azureml.net/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resource
GroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/
runs

https://{location}.experiments.azureml.net/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resource
GroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/
runs/{runId}

https://{location}.experiments.azureml.net/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resource
GroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/
metrics

To learn how to get this token and call Azure endpoints, see Use REST to manage ML resources and Azure REST API

documentation..

In the examples following, replace the text in {} with the instance names that determine the associated resource.

Use this call to get a list of all workspaces:

Information about an individual workspace can be obtained by:

All compute targets attached to a workspace can be obtained by:

Information about a single compute target can be obtained by:

Use this call to get a list of all experiments and their information:

All the runs for a particular experiment can be obtained by:

Run history items can be obtained by:

All run metrics for an experiment can be obtained by:

https://docs.microsoft.com/rest/api/azure/

https://{location}.experiments.azureml.net/history/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resource
GroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/experiments/{experimentName}/
metrics/{metricId}

Export artifacts

https://{location}.experiments.azureml.net/artifact/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourc
eGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/artifacts/origins/Experiment
Run/containers/{runId}

Export notifications

https://{location}.experiments.azureml.net/notification/v1.0/subscriptions/{subscriptionId}/resourceGroups/{res
ourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/tasks

https://{location}.experiments.azureml.net/notification/v1.0/subscriptions/{subscriptionId}/resourceGroups/{res
ourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}tasks/{taskId}

Export data stores

https://{location}.experiments.azureml.net/datastore/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resour
ceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datastores

https://{location}.experiments.azureml.net/datastore/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resour
ceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datastores/{name}

Export models

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/models?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/models/{id}?api-version=2019-11-01

Export assets

A single run metric can be obtained by:

Use this call to get a list of artifacts and their paths:

Use this call to get a list of stored tasks:

Notifications for a single task can be obtained by:

Use this call to get a list of data stores:

Individual data stores can be obtained by:

Use this call to get a list of models and their IDs:

Individual models can be obtained by:

Use this call to get a list of assets and their IDs:

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/assets?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/assets/{id}?api-version=2019-11-01

Export images

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/images?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/images/{id}?api-version=2019-11-01

Export services

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/services?api-version=2019-11-01

https://{location}.modelmanagement.azureml.net/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroup
Name}/providers/Microsoft.MachineLearningServices/workspaces/{workspace}/services/{id}?api-version=2019-11-01

Export Pipeline Experiments

https://{location}.aether.ms/api/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provide
rs/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Experiments/{experimentId}

Export Pipeline Graphs

https://{location}.aether.ms/api/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provide
rs/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Graphs/{graphId}

Export Pipeline Modules

https://{location}.aether.ms/api/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provide
rs/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Modules/{id}

Export Pipeline Templates

Individual assets can be obtained by:

Use this call to get a list of images and their IDs:

Individual images can be obtained by:

Use this call to get a list of services and their IDs:

Individual services can be obtained by:

Individual experiments can be obtained by:

Individual graphs can be obtained by:

Modules can be obtained by:

https://{location}.aether.ms/api/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provide
rs/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Templates/{templateId}

Export Pipeline Data Sources

https://{location}.aether.ms/api/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/provide
rs/Microsoft.MachineLearningServices/workspaces/{workspaceName}/DataSources/{id}

Delete assets in the designer

Delete datasets in the designer

Export data in the designer

Templates can be obtained by:

Data Sources can be obtained by:

In the designer where you created your experiment, delete individual assets:

1. Go to designer

2. In the list, select the individual pipeline draft to delete.

3. Select Delete.

To delete datasets in the designer, use the Azure portal or Storage Explorer to navigate to connected storage

accounts and delete datasets there. Unregistering datasets in the designer only removes the reference point in

storage.

In the designer where you created your experiment, export data you have added:

1. On the left, select Datasets .

2. In the list, select the dataset to export

Create event driven machine learning workflows
(Preview)
4/24/2020 • 5 minutes to read • Edit Online

NOTE

Prerequisites

Configure EventGrid using the Azure portal

Azure Event Grid supports Azure Machine Learning events. You can subscribe and consume events such as run

status changed, run completion, model registration, model deployment, and data drift detection within a

workspace.

For more information on event types, see Azure Machine Learning integration with Event Grid and the Azure

Machine Learning event grid schema.

Use Event Grid to enable common scenarios such as:

Send emails on run failure and run completion

Use an Azure function after a model is registered

Streaming events from Azure Machine Learning to various of endpoints

Trigger an ML pipeline when drift is detected

Currently, runStatusChanged events only trigger when the run status is failed

Contributor or owner access to the Azure Machine Learning workspace you will create events for.

1. Open the Azure portal and go to your Azure Machine Learning workspace.

2. From the left bar, select Events and then select Event Subscr iptions .

3. Select the event type to consume. For example, the following screenshot has selected Model registered,

Model deployed, Run completed, and Dataset dr ift detected :

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/how-to-use-event-grid.md
https://docs.microsoft.com/azure/event-grid/
https://docs.microsoft.com/azure/event-grid/event-schema-machine-learning
https://portal.azure.com

4. Select the endpoint to publish the event to. In the following screenshot, Event hub is the selected endpoint:

Configure EventGrid using the CLI

az add extension --name eventgrid

Select the Azure subscription that contains the workspace
az account set --subscription "<name or ID of the subscription>"

Subscribe to the machine learning workspace.
az eventgrid event-subscription create \
 --name {eventGridFilterName} \
 --source-resource-id "/subscriptions/{subId}/resourceGroups/{rgName}/
\providers/Microsoft.MachineLearningServices/workspaces/{wsName}" \
 --endpoint {event handler endpoint} \
 --included-event-types Microsoft.MachineLearningServices.ModelRegistered \
 --subject-begins-with "models/mymodelname"

Filter Events

Once you have confirmed your selection, click Create. After configuration, these events will be pushed to your

endpoint.

You can either install the latest Azure CLI, or use the Azure Cloud Shell that is provided as part of your Azure

subscription.

To install the Event Grid extension, use the following command from the CLI:

The following example demonstrates how to select an Azure subscription and creates e a new event subscription

for Azure Machine Learning:

https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest

Sample: Send email alerts

When setting up your events, you can apply filters to only trigger on specific event data. In the example below, for

run status changed events, you can filter by run types. The event only triggers when the criteria is met. Refer to the

Azure Machine Learning event grid schema to learn about event data you can filter by.

1. Go to the Azure portal, select a new subscription or an existing one.

2. Select the filters tab and scroll down to Advanced filters. For the Key and Value, provide the property types

you want to filter by. Here you can see the event will only trigger when the run type is a pipeline run or

pipeline step run.

Use Azure Logic Apps to configure emails for all your events. Customize with conditions and specify recipients to

enable collaboration and awareness across teams working together.

1. In the Azure portal, go to your Azure Machine Learning workspace and select the events tab from the left

bar. From here, select Logic apps .

2. Sign into the Logic App UI and select Machine Learning service as the topic type.

https://docs.microsoft.com/azure/event-grid/event-schema-machine-learning
https://docs.microsoft.com/azure/logic-apps/

3. Select which event(s) to be notified for. For example, the following screenshot RunCompleted.

4. You can use the filtering method in the section above or add filters to only trigger the logic app on a subset

of event types. In the following screenshot, a prefix filter of /datadriftID/runs/ is used.

5. Next, add a step to consume this event and search for email. There are several different mail accounts you

can use to receive events. You can also configure conditions on when to send an email alert.

6. Select Send an email and fill in the parameters. In the subject, you can include the Event Type and Topic

Sample: Trigger retraining when data drift occurs

to help filter events. You can also include a link to the workspace page for runs in the message body.

7. To save this action, select Save As on the left corner of the page. From the right bar that appears, confirm

creation of this action.

Models go stale over time, and not remain useful in the context it is running in. One way to tell if it's time to

retrain the model is detecting data drift.

This example shows how to use event grid with an Azure Logic App to trigger retraining. The example triggers an

Azure Data Factory pipeline when data drift occurs between a model's training and serving datasets.

Before you begin, perform the following actions:

Set up a dataset monitor to detect data drift in a workspace

Create a published Azure Data Factory pipeline.

In this example, a simple Data Factory pipeline is used to copy files into a blob store and run a published Machine

Learning pipeline. For more information on this scenario, see how to set up a Machine Learning step in Azure Data

Factory

https://aka.ms/datadrift
https://docs.microsoft.com/azure/data-factory/
https://docs.microsoft.com/azure/data-factory/transform-data-machine-learning-service

1. Start with creating the logic app. Go to the Azure portal, search for Logic Apps, and select create.

2. Fill in the requested information. To simplify the experience, use the same subscription and resource group

as your Azure Data Factory Pipeline and Azure Machine Learning workspace.

3. Once you have created the logic app, select When an Event Grid resource event occurs .

https://portal.azure.com

4. Login and fill in the details for the event. Set the Resource Name to the workspace name. Set the Event

Type to DatasetDriftDetected.

5. Add a new step, and search for Azure Data Factor y . Select Create a pipeline run.

6. Login and specify the published Azure Data Factory pipeline to run.

7. Save and create the logic app using the save button on the top left of the page. To view your app, go to

your workspace in the Azure portal and click on Events .

https://portal.azure.com

Sample: Deploy a model based on tags

Next steps

Now the data factory pipeline is triggered when drift occurs. View details on your data drift run and machine

learning pipeline on the new workspace portal.

An Azure Machine Learning model object contains parameters you can pivot deployments on such as model

name, version, tag, and property. The model registration event can trigger an endpoint and you can use an Azure

Function to deploy a model based on the value of those parameters.

For an example, see the https://github.com/Azure-Samples/MachineLearningSamples-

NoCodeDeploymentTriggeredByEventGrid repository and follow the steps in the readme file.

To learn more about available events, see the Azure Machine Learning event schema

https://ml.azure.com
https://github.com/Azure-Samples/MachineLearningSamples-NoCodeDeploymentTriggeredByEventGrid
https://docs.microsoft.com/azure/event-grid/event-schema-machine-learning

Use the CLI extension for Azure Machine Learning
4/17/2020 • 15 minutes to read • Edit Online

Prerequisites

Full reference docs

Connect the CLI to your Azure subscription

IMPORTANT

az login

APPLIES TO: Basic edition Enterprise edition (Upgrade to Enterprise edition)

The Azure Machine Learning CLI is an extension to the Azure CLI, a cross-platform command-line interface

for the Azure platform. This extension provides commands for working with Azure Machine Learning. It

allows you to automate your machine learning activities. The following list provides some example actions

that you can do with the CLI extension:

Run experiments to create machine learning models

Register machine learning models for customer usage

Package, deploy, and track the lifecycle of your machine learning models

The CLI is not a replacement for the Azure Machine Learning SDK. It is a complementary tool that is

optimized to handle highly parameterized tasks which suit themselves well to automation.

To use the CLI, you must have an Azure subscription. If you don't have an Azure subscription, create a

free account before you begin. Try the free or paid version of Azure Machine Learning today.

To use the CLI commands in this document from your local environment, you need the Azure CLI.

If you use the Azure Cloud Shell, the CLI is accessed through the browser and lives in the cloud.

Find the full reference docs for the azure-cli-ml extension of Azure CLI.

If you are using the Azure Cloud Shell, you can skip this section. The cloud shell automatically authenticates you using

the account you log into your Azure subscription.

There are several ways that you can authenticate to your Azure subscription from the CLI. The most basic is

to interactively authenticate using a browser. To authenticate interactively, open a command line or terminal

and use the following command:

If the CLI can open your default browser, it will do so and load a sign-in page. Otherwise, you need to open a

browser and follow the instructions on the command line. The instructions involve browsing to

https://aka.ms/devicelogin and entering an authorization code.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/reference-azure-machine-learning-cli.md
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest
https://aka.ms/AMLFree
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://azure.microsoft.com//features/cloud-shell/
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/?view=azure-cli-latest
https://aka.ms/devicelogin

TIP

Install the extension

az extension add -n azure-cli-ml

TIP

az ml -h

Update the extension

az extension update -n azure-cli-ml

Remove the extension

az extension remove -n azure-cli-ml

Resource management

After logging in, you see a list of subscriptions associated with your Azure account. The subscription information with

isDefault: true is the currently activated subscription for Azure CLI commands. This subscription must be the

same one that contains your Azure Machine Learning workspace. You can find the subscription ID from the Azure

portal by visiting the overview page for your workspace. You can also use the SDK to get the subscription ID from the

workspace object. For example, Workspace.from_config().subscription_id .

To select another subscription, use the az account set -s <subscription name or ID> command and specify the

subscription name or ID to switch to. For more information about subscription selection, see Use multiple Azure

Subscriptions.

For other methods of authenticating, see Sign in with Azure CLI.

To install the Machine Learning CLI extension, use the following command:

Example files you can use with the commands below can be found here.

When prompted, select y to install the extension.

To verify that the extension has been installed, use the following command to display a list of ML-specific

subcommands:

To update the Machine Learning CLI extension, use the following command:

To remove the CLI extension, use the following command:

The following commands demonstrate how to use the CLI to manage resources used by Azure Machine

Learning.

If you do not already have one, create a resource group:

https://portal.azure.com
https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://aka.ms/azml-deploy-cloud

Run experiments

az group create -n myresourcegroup -l westus2

az ml workspace create -w myworkspace -g myresourcegroup

TIP

az ml folder attach -w myworkspace -g myresourcegroup

az ml datastore attach-blob -n datastorename -a accountname -c containername

az ml datastore upload -n datastorename -p sourcepath

az ml computetarget attach aks -n myaks -i myaksresourceid -g myresourcegroup -w myworkspace

az ml computetarget create amlcompute -n cpu --min-nodes 1 --max-nodes 1 -s STANDARD_D3_V2

Create an Azure Machine Learning workspace:

This command creates a basic edition workspace. To create an enterprise workspace, use the

--sku enterprise switch with the az ml workspace create command. For more information on Azure

Machine Learning editions, see What is Azure Machine Learning.

For more information, see az ml workspace create.

Attach a workspace configuration to a folder to enable CLI contextual awareness.

This command creates a .azureml subdirectory that contains example runconfig and conda

environment files. It also contains a config.json file that is used to communicate with your Azure

Machine Learning workspace.

For more information, see az ml folder attach.

Attach an Azure blob container as a Datastore.

For more information, see az ml datastore attach-blob.

Upload files to a Datastore.

For more information, see az ml datastore upload.

Attach an AKS cluster as a Compute Target.

For more information, see az ml computetarget attach aks

Create a new AMLcompute target.

For more information, see az ml computetarget create amlcompute.

Start a run of your experiment. When using this command, specify the name of the runconfig file (the

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/workspace?view=azure-cli-latest#ext-azure-cli-ml-az-ml-workspace-create
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/folder?view=azure-cli-latest#ext-azure-cli-ml-az-ml-folder-attach
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/datastore?view=azure-cli-latest#ext-azure-cli-ml-az-ml-datastore-attach-blob
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/datastore?view=azure-cli-latest#ext-azure-cli-ml-az-ml-datastore-upload
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/attach?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-attach-aks
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/create?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-create-amlcompute

Dataset management

az ml run submit-script -c sklearn -e testexperiment train.py

TIP

az ml experiment list

text before *.runconfig if you are looking at your file system) against the -c parameter.

The az ml folder attach command creates a .azureml subdirectory, which contains two example

runconfig files.

If you have a Python script that creates a run configuration object programmatically, you can use

RunConfig.save() to save it as a runconfig file.

The full runconfig schema can be found in this JSON file. The schema is self-documenting through the

description key of each object. Additionally, there are enums for possible values, and a template snippet at

the end.

For more information, see az ml run submit-script.

View a list of experiments:

For more information, see az ml experiment list.

The following commands demonstrate how to work with datasets in Azure Machine Learning:

az ml dataset register -f mydataset.json

az ml dataset archive -n dataset-name

az ml dataset deprecate -d replacement-dataset-id -n dataset-to-deprecate

az ml dataset list

Register a dataset:

For information on the format of the JSON file used to define the dataset, use

az ml dataset register --show-template .

For more information, see az ml dataset register.

Archive an active or deprecated dataset:

For more information, see az ml dataset archive.

Deprecate a dataset:

For more information, see az ml dataset deprecate.

List all datasets in a workspace:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py#save-path-none--name-none--separate-environment-yaml-false-
https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-submit-script
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/experiment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-experiment-list
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive

Environment management

Environment configuration schema

az ml dataset show -n dataset-name

az ml dataset reactivate -n dataset-name

az ml dataset unregister -n dataset-name

For more information, see az ml dataset list.

Get details of a dataset:

For more information, see az ml dataset show.

Reactivate an archived or deprecated dataset:

For more information, see az ml dataset reactivate.

Unregister a dataset:

For more information, see az ml dataset unregister.

The following commands demonstrate how to create, register, and list Azure Machine Learning

environments for your workspace:

az ml environment scaffold -n myenv -d myenvdirectory

az ml environment register -d myenvdirectory

az ml environment list

az ml environment download -n myenv -d downloaddirectory

Create scaffolding files for an environment:

For more information, see az ml environment scaffold.

Register an environment:

For more information, see az ml environment register.

List registered environments:

For more information, see az ml environment list.

Download a registered environment:

For more information, see az ml environment download.

If you used the az ml environment scaffold command, it generates a template azureml_environment.json file

that can be modified and used to create custom environment configurations with the CLI. The top level

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/dataset?view=azure-cli-latest#ext-azure-cli-ml-az-ml-dataset-archive
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/environment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-environment-scaffold
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/environment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-environment-register
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/environment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-environment-list
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/environment?view=azure-cli-latest#ext-azure-cli-ml-az-ml-environment-download

{
 "name": "testenv",
 "version": null,
 "environmentVariables": {
 "EXAMPLE_ENV_VAR": "EXAMPLE_VALUE"
 },
 "python": {
 "userManagedDependencies": false,
 "interpreterPath": "python",
 "condaDependenciesFile": null,
 "baseCondaEnvironment": null
 },
 "docker": {
 "enabled": false,
 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
 "baseDockerfile": null,
 "sharedVolumes": true,
 "shmSize": "2g",
 "arguments": [],
 "baseImageRegistry": {
 "address": null,
 "username": null,
 "password": null
 }
 },
 "spark": {
 "repositories": [],
 "packages": [],
 "precachePackages": true
 },
 "databricks": {
 "mavenLibraries": [],
 "pypiLibraries": [],
 "rcranLibraries": [],
 "jarLibraries": [],
 "eggLibraries": []
 },
 "inferencingStackVersion": null
}

JSO N F IEL D T Y P E DESC RIP T IO N

name string Name of the environment. Do not
start name with Microsoft or
AzureML .

version string Version of the environment.

environmentVariables {string: string} A hash-map of environment variable
names and values.

object loosely maps to the Environment class in the Python SDK.

The following table details each top-level field in the JSON file, it's type, and a description. If an object type is

linked to a class from the Python SDK, there is a loose 1:1 match between each JSON field and the public

variable name in the Python class. In some cases the field may map to a constructor argument rather than a

class variable. For example, the environmentVariables field maps to the environment_variables variable in

the Environment class.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment(class)?view=azure-ml-py

python PythonSection Object that defines the Python
environment and interpreter to use
on target compute resource.

docker DockerSection Defines settings to customize the
Docker image built to the
environment's specifications.

spark SparkSection The section configures Spark settings.
It is only used when framework is set
to PySpark.

databricks DatabricksSection Configures Databricks library
dependencies.

inferencingStackVersion string Specifies the inferencing stack version
added to the image. To avoid adding
an inferencing stack, leave this field
null . Valid value: "latest".

JSO N F IEL D T Y P E DESC RIP T IO N

ML pipeline management

Model registration, profiling, deployment

The following commands demonstrate how to work with machine learning pipelines:

az ml pipeline create -n mypipeline -y mypipeline.yml

az ml run submit-pipeline -n myexperiment -y mypipeline.yml

az ml pipeline create-schedule -n myschedule -e myexpereiment -i mypipelineid -y myschedule.yml

Create a machine learning pipeline:

For more information, see az ml pipeline create.

For more information on the pipeline YAML file, see Define machine learning pipelines in YAML.

Run a pipeline:

For more information, see az ml run submit-pipeline.

For more information on the pipeline YAML file, see Define machine learning pipelines in YAML.

Schedule a pipeline:

For more information, see az ml pipeline create-schedule.

For more information on the pipeline schedule YAML file, see Define machine learning pipelines in

YAML.

The following commands demonstrate how to register a trained model, and then deploy it as a production

service:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.pythonsection?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.dockersection?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.sparksection?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.databricks.databrickssection?view=azure-ml-py
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/pipeline?view=azure-cli-latest#ext-azure-cli-ml-az-ml-pipeline-create
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/run?view=azure-cli-latest#ext-azure-cli-ml-az-ml-run-submit-pipeline
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/pipeline?view=azure-cli-latest#ext-azure-cli-ml-az-ml-pipeline-create-schedule

 Inference configuration schema

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

entryScript entry_script Path to a local file that contains the
code to run for the image.

sourceDirectory source_directory Optional. Path to folders that contain
all files to create the image, which
makes it easy to access any files
within this folder or subfolder. You
can upload an entire folder from your
local machine as dependencies for
the Webservice. Note: your
entry_script, conda_file, and
extra_docker_file_steps paths are
relative paths to the source_directory
path.

environment environment Optional. Azure Machine Learning
environment.

az ml model register -n mymodel -p sklearn_regression_model.pkl

az ml model profile -n myprofile -m mymodel:1 --ic inferenceconfig.json -d "{\"data\":
[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}" -t myprofileresult.json

az ml model deploy -n myservice -m mymodel:1 --ic inferenceconfig.json --dc deploymentconfig.json
--ct akscomputetarget

Register a model with Azure Machine Learning:

For more information, see az ml model register.

OPTIONAL Profile your model to get optimal CPU and memory values for deployment.

For more information, see az ml model profile.

Deploy your model to AKS

For more information on the inference configuration file schema, see Inference configuration schema.

For more information on the deployment configuration file schema, see Deployment configuration

schema.

For more information, see az ml model deploy.

The entries in the inferenceconfig.json document map to the parameters for the InferenceConfig class. The

following table describes the mapping between entities in the JSON document and the parameters for the

method:

You can include full specifications of an Azure Machine Learning environment in the inference configuration

file. If this environment doesn't exist in your workspace, Azure Machine Learning will create it. Otherwise,

Azure Machine Learning will update the environment if necessary. The following JSON is an example:

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-register
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-profile
https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/model?view=azure-cli-latest#ext-azure-cli-ml-az-ml-model-deploy
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

{
 "entryScript": "score.py",
 "environment": {
 "docker": {
 "arguments": [],
 "baseDockerfile": null,
 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
 "enabled": false,
 "sharedVolumes": true,
 "shmSize": null
 },
 "environmentVariables": {
 "EXAMPLE_ENV_VAR": "EXAMPLE_VALUE"
 },
 "name": "my-deploy-env",
 "python": {
 "baseCondaEnvironment": null,
 "condaDependencies": {
 "channels": [
 "conda-forge"
],
 "dependencies": [
 "python=3.6.2",
 {
 "pip": [
 "azureml-defaults",
 "azureml-telemetry",
 "scikit-learn",
 "inference-schema[numpy-support]"
]
 }
],
 "name": "project_environment"
 },
 "condaDependenciesFile": null,
 "interpreterPath": "python",
 "userManagedDependencies": false
 },
 "version": "1"
 }
}

{
 "entryScript": "score.py",
 "sourceDirectory": null
}

az ml model deploy -m mymodel:1 --ic myInferenceConfig.json -e AzureML-Minimal --dc
deploymentconfig.json

You can also use an existing Azure Machine Learning environment in separated CLI parameters and remove

the "environment" key from the inference configuration file. Use -e for the environment name, and --ev for

the environment version. If you don't specify --ev, the latest version will be used. Here is an example of an

inference configuration file:

The following command demonstrates how to deploy a model using the previous inference configuration

file (named myInferenceConfig.json).

It also uses the latest version of an existing Azure Machine Learning environment (named AzureML-

Minimal).

https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

 Deployment configuration schema
Local deployment configuration schema

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For local targets,
the value must be local .

port port The local port on which to expose the
service's HTTP endpoint.

{
 "computeType": "local",
 "port": 32267
}

Azure Container Instance deployment configuration schema

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For ACI, the
value must be ACI .

containerResourceRequirements NA Container for the CPU and memory
entities.

   cpu cpu_cores The number of CPU cores to allocate.
Defaults, 0.1

   memoryInGB memory_gb The amount of memory (in GB) to
allocate for this web service. Default,
0.5

location location The Azure region to deploy this
Webservice to. If not specified the
Workspace location will be used.
More details on available regions can
be found here: ACI Regions

authEnabled auth_enabled Whether to enable auth for this
Webservice. Defaults to False

sslEnabled ssl_enabled Whether to enable SSL for this
Webservice. Defaults to False.

The entries in the deploymentconfig.json document map to the parameters for

LocalWebservice.deploy_configuration. The following table describes the mapping between the entities in

the JSON document and the parameters for the method:

This JSON is an example deployment configuration for use with the CLI:

The entries in the deploymentconfig.json document map to the parameters for

AciWebservice.deploy_configuration. The following table describes the mapping between the entities in the

JSON document and the parameters for the method:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.local.localwebservicedeploymentconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aci.aciservicedeploymentconfiguration?view=azure-ml-py
https://azure.microsoft.com/global-infrastructure/services/?regions=all&products=container-instances

appInsightsEnabled enable_app_insights Whether to enable AppInsights for
this Webservice. Defaults to False

sslCertificate ssl_cert_pem_file The cert file needed if SSL is enabled

sslKey ssl_key_pem_file The key file needed if SSL is enabled

cname ssl_cname The cname for if SSL is enabled

dnsNameLabel dns_name_label The dns name label for the scoring
endpoint. If not specified a unique
dns name label will be generated for
the scoring endpoint.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

{
 "computeType": "aci",
 "containerResourceRequirements":
 {
 "cpu": 0.5,
 "memoryInGB": 1.0
 },
 "authEnabled": true,
 "sslEnabled": false,
 "appInsightsEnabled": false
}

Azure Kubernetes Service deployment configuration schema

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

computeType NA The compute target. For AKS, the
value must be aks .

autoScaler NA Contains configuration elements for
autoscale. See the autoscaler table.

   autoscaleEnabled autoscale_enabled Whether to enable autoscaling for
the web service. If numReplicas =

0 , True ; otherwise, False .

   minReplicas autoscale_min_replicas The minimum number of containers
to use when autoscaling this web
service. Default, 1 .

   maxReplicas autoscale_max_replicas The maximum number of containers
to use when autoscaling this web
service. Default, 10 .

The following JSON is an example deployment configuration for use with the CLI:

The entries in the deploymentconfig.json document map to the parameters for

AksWebservice.deploy_configuration. The following table describes the mapping between the entities in the

JSON document and the parameters for the method:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aks.aksservicedeploymentconfiguration?view=azure-ml-py

   refreshPeriodInSeconds autoscale_refresh_seconds How often the autoscaler attempts to
scale this web service. Default, 1 .

   targetUtilization autoscale_target_utilization The target utilization (in percent out
of 100) that the autoscaler should
attempt to maintain for this web
service. Default, 70 .

dataCollection NA Contains configuration elements for
data collection.

   storageEnabled collect_model_data Whether to enable model data
collection for the web service.
Default, False .

authEnabled auth_enabled Whether or not to enable key
authentication for the web service.
Both tokenAuthEnabled and

authEnabled cannot be True .

Default, True .

tokenAuthEnabled token_auth_enabled Whether or not to enable token
authentication for the web service.
Both tokenAuthEnabled and

authEnabled cannot be True .

Default, False .

containerResourceRequirements NA Container for the CPU and memory
entities.

   cpu cpu_cores The number of CPU cores to allocate
for this web service. Defaults, 0.1

   memoryInGB memory_gb The amount of memory (in GB) to
allocate for this web service. Default,
0.5

appInsightsEnabled enable_app_insights Whether to enable Application
Insights logging for the web service.
Default, False .

scoringTimeoutMs scoring_timeout_ms A timeout to enforce for scoring calls
to the web service. Default, 60000 .

maxConcurrentRequestsPerContainer replica_max_concurrent_requests The maximum concurrent requests
per node for this web service.
Default, 1 .

maxQueueWaitMs max_request_wait_time The maximum time a request will stay
in thee queue (in milliseconds) before
a 503 error is returned. Default, 500

.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

numReplicas num_replicas The number of containers to allocate
for this web service. No default value.
If this parameter is not set, the
autoscaler is enabled by default.

keys NA Contains configuration elements for
keys.

   primaryKey primary_key A primary auth key to use for this
Webservice

   secondaryKey secondary_key A secondary auth key to use for this
Webservice

gpuCores gpu_cores The number of GPU cores (per-
container replica) to allocate for this
Webservice. Default is 1. Only
supports whole number values.

livenessProbeRequirements NA Contains configuration elements for
liveness probe requirements.

   periodSeconds period_seconds How often (in seconds) to perform
the liveness probe. Default to 10
seconds. Minimum value is 1.

   initialDelaySeconds initial_delay_seconds Number of seconds after the
container has started before liveness
probes are initiated. Defaults to 310

   timeoutSeconds timeout_seconds Number of seconds after which the
liveness probe times out. Defaults to
2 seconds. Minimum value is 1

   successThreshold success_threshold Minimum consecutive successes for
the liveness probe to be considered
successful after having failed. Defaults
to 1. Minimum value is 1.

   failureThreshold failure_threshold When a Pod starts and the liveness
probe fails, Kubernetes will try
failureThreshold times before giving
up. Defaults to 3. Minimum value is
1.

namespace namespace The Kubernetes namespace that the
webservice is deployed into. Up to 63
lowercase alphanumeric ('a'-'z', '0'-'9')
and hyphen ('-') characters. The first
and last characters can't be hyphens.

JSO N EN T IT Y M ET H O D PA RA M ET ER DESC RIP T IO N

The following JSON is an example deployment configuration for use with the CLI:

{
 "computeType": "aks",
 "autoScaler":
 {
 "autoscaleEnabled": true,
 "minReplicas": 1,
 "maxReplicas": 3,
 "refreshPeriodInSeconds": 1,
 "targetUtilization": 70
 },
 "dataCollection":
 {
 "storageEnabled": true
 },
 "authEnabled": true,
 "containerResourceRequirements":
 {
 "cpu": 0.5,
 "memoryInGB": 1.0
 }
}

Next steps
Command reference for the Machine Learning CLI extension.

Train and deploy machine learning models using Azure Pipelines

https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml?view=azure-cli-latest
https://docs.microsoft.com/azure/devops/pipelines/targets/azure-machine-learning

Algorithm & module reference for Azure Machine
Learning designer (preview)
4/16/2020 • 2 minutes to read • Edit Online

TIP

Data preparation modules

F UN C T IO N A L IT Y DESC RIP T IO N M O DUL E

Data input and output Move data from cloud sources into
your pipeline. Write your results or
intermediate data to Azure Storage, a
SQL database, or Hive, while running a
pipeline, or use cloud storage to
exchange data between pipelines.

Enter Data Manually
Export Data
Import Data

Data transformation Operations on data that are unique to
machine learning, such as normalizing
or binning data, dimensionality
reduction, and converting data among
various file formats.

Add Columns
Add Rows
Apply Math Operation
Apply SQL Transformation
Clean Missing Data
Clip Values
Convert to CSV
Convert to Dataset
Convert to Indicator Values
Edit Metadata
Join Data
Normalize Data
Partition and Sample
Remove Duplicate Rows
SMOTE
Select Columns Transform
Select Columns in Dataset
Split Data

This reference content provides the technical background on each of the machine learning algorithms and modules

available in Azure Machine Learning designer (preview).

Each module represents a set of code that can run independently and perform a machine learning task, given the

required inputs. A module might contain a particular algorithm, or perform a task that is important in machine

learning, such as missing value replacement, or statistical analysis.

For help with choosing algorithms, see

How to select algorithms

Azure Machine Learning Algorithm Cheat Sheet

In any pipeline in the designer, you can get information about a specific module. Select the module, then select the more

help link in the Quick Help pane.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/algorithm-module-reference/module-reference.md
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-select-algorithms
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/enter-data-manually
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/export-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/import-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/add-columns
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/add-rows
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/apply-math-operation
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/apply-sql-transformation
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/clean-missing-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/clip-values
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/convert-to-csv
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/convert-to-dataset
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/convert-to-indicator-values
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/edit-metadata
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/join-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/normalize-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/partition-and-sample
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/remove-duplicate-rows
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/smote
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/select-columns-transform
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/select-columns-in-dataset
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/split-data

Feature Selection Select a subset of relevant, useful
features to use in building an analytical
model.

Filter Based Feature Selection
Permutation Feature Importance

Statistical Functions Provide a wide variety of statistical
methods related to data science.

Summarize Data

F UN C T IO N A L IT Y DESC RIP T IO N M O DUL E

Machine learning algorithms

F UN C T IO N A L IT Y DESC RIP T IO N M O DUL E

Regression Predict a value. Boosted Decision Tree Regression
Decision Forest Regression
Linear Regression
Neural Network Regression

Clustering Group data together. K-Means Clustering

Classification Predict a class. Choose from binary
(two-class) or multiclass algorithms.

Multiclass Boosted Decision Tree
Multiclass Decision Forest
Multiclass Logistic Regression
Multiclass Neural Network
One vs. All Multiclass
Two-Class Averaged Perceptron
Two-Class Boosted Decision Tree
Two-Class Decision Forest
Two-Class Logistic Regression
Two-Class Neural Network
Two Class Support Vector Machine

Modules for building and evaluating models

F UN C T IO N A L IT Y DESC RIP T IO N M O DUL E

Model training Run data through the algorithm. Train Clustering Model
Train Model
Tune Model Hyperparameters

Model Scoring and Evaluation Measure the accuracy of the trained
model.

Apply Transformation
Assign Data to Clusters
Cross Validate Model
Evaluate Model
Score Model

Python language Write code and embed it in a module to
integrate Python with your pipeline.

Create Python Model
Execute Python Script

R language Write code and embed it in a module to
integrate R with your pipeline.

Execute R Script

Text Analytics Provide specialized computational tools
for working with both structured and
unstructured text.

Extract N Gram Features from Text
Feature Hashing
Preprocess Text
Latent Dirichlet Allocation

https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/filter-based-feature-selection
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/permutation-feature-importance
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/summarize-data
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/boosted-decision-tree-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/decision-forest-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/linear-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/neural-network-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/k-means-clustering
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/multiclass-boosted-decision-tree
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/multiclass-decision-forest
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/multiclass-logistic-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/multiclass-neural-network
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/one-vs-all-multiclass
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-averaged-perceptron
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-boosted-decision-tree
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-decision-forest
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-logistic-regression
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-neural-network
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/two-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-clustering-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/tune-model-hyperparameters
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/apply-transformation
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/assign-data-to-clusters
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/cross-validate-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/evaluate-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/score-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/create-python-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/execute-python-script
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/execute-r-script
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/extract-n-gram-features-from-text
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/feature-hashing
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/preprocess-text
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/latent-dirichlet-allocation

Recommendation Build recommendation models. Evaluate Recommender
Score SVD Recommender
Train SVD Recommender

Anomaly Detection Build anomaly detection models. PCA-Based Anomaly Detection
Train Anomaly Detection Model

F UN C T IO N A L IT Y DESC RIP T IO N M O DUL E

Web Service

Error messages

Next steps

Learn about the web service modules which are necessary for real-time inference in Azure Machine Learning

designer.

Learn about the error messages and exception codes you might encounter using modules in Azure Machine

Learning designer.

Tutorial: Build a model in designer to predict auto prices

https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/evaluate-recommender
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/score-svd-recommender
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-svd-recommender
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/pca-based-anomaly-detection
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/train-anomaly-detection-model
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/web-service-input-output
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-module-reference/designer-error-codes
https://docs.microsoft.com/en-us/azure/machine-learning/tutorial-designer-automobile-price-train-score

Azure machine learning monitoring data reference
3/8/2020 • 5 minutes to read • Edit Online

Resource logs

AmlComputeJobEvents table

P RO P ERT Y DESC RIP T IO N

TimeGenerated Time when the log entry was generated

OperationName Name of the operation associated with the log event

Category Name of the log event, AmlComputeClusterNodeEvent

JobId ID of the Job submitted

ExperimentId ID of the Experiment

ExperimentName Name of the Experiment

CustomerSubscriptionId SubscriptionId where Experiment and Job as submitted

WorkspaceName Name of the machine learning workspace

ClusterName Name of the Cluster

ProvisioningState State of the Job submission

ResourceGroupName Name of the resource group

JobName Name of the Job

ClusterId ID of the cluster

EventType Type of the Job event, e.g., JobSubmitted, JobRunning,
JobFailed, JobSucceeded, etc.

ExecutionState State of the job (the Run), e.g., Queued, Running, Succeeded,
Failed

ErrorDetails Details of job error

CreationApiVersion Api version used to create the job

Learn about the data and resources collected by Azure Monitor from your Azure Machine Learning workspace. See

Monitoring Azure Machine Learning for details on collecting and analyzing monitoring data.

The following table lists the properties for Azure Machine Learning resource logs when they're collected in Azure

Monitor Logs or Azure Storage.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/monitor-resource-reference.md

ClusterResourceGroupName Resource group name of the cluster

TFWorkerCount Count of TF workers

TFParameterServerCount Count of TF parameter server

ToolType Type of tool used

RunInContainer Flag describing if job should be run inside a container

JobErrorMessage detailed message of Job error

NodeId ID of the node created where job is running

P RO P ERT Y DESC RIP T IO N

AmlComputeClusterEvents table

P RO P ERT Y DESC RIP T IO N

TimeGenerated Time when the log entry was generated

OperationName Name of the operation associated with the log event

Category Name of the log event, AmlComputeClusterNodeEvent

ProvisioningState Provisioning state of the cluster

ClusterName Name of the cluster

ClusterType Type of the cluster

CreatedBy User who created the cluster

CoreCount Count of the cores in the cluster

VmSize Vm size of the cluster

VmPriority Priority of the nodes created inside a cluster
Dedicated/LowPriority

ScalingType Type of cluster scaling manual/auto

InitialNodeCount Initial node count of the cluster

MinimumNodeCount Minimum node count of the cluster

MaximumNodeCount Maximum node count of the cluster

NodeDeallocationOption How the node should be deallocated

Publisher Publisher of the cluster type

Offer Offer with which the cluster is created

Sku Sku of the Node/VM created inside cluster

Version Version of the image used while Node/VM is created

SubnetId SubnetId of the cluster

AllocationState Cluster allocation state

CurrentNodeCount Current node count of the cluster

TargetNodeCount Target node count of the cluster while scaling up/down

EventType Type of event during cluster creation.

NodeIdleTimeSecondsBeforeScaleDown Idle time in seconds before cluster is scaled down

PreemptedNodeCount Preempted node count of the cluster

IsResizeGrow Flag indicating that cluster is scaling up

VmFamilyName Name of the VM family of the nodes that can be created
inside cluster

LeavingNodeCount Leaving node count of the cluster

UnusableNodeCount Unusable node count of the cluster

IdleNodeCount Idle node count of the cluster

RunningNodeCount Running node count of the cluster

PreparingNodeCount Preparing node count of the cluster

QuotaAllocated Allocated quota to the cluster

QuotaUtilized Utilized quota of the cluster

AllocationStateTransitionTime Transition time from one state to another

ClusterErrorCodes Error code received during cluster creation or scaling

CreationApiVersion Api version used while creating the cluster

P RO P ERT Y DESC RIP T IO N

AmlComputeClusterNodeEvents table

P RO P ERT Y DESC RIP T IO N

TimeGenerated Time when the log entry was generated

OperationName Name of the operation associated with the log event

Category Name of the log event, AmlComputeClusterNodeEvent

ClusterName Name of the cluster

NodeId ID of the cluster node created

VmSize Vm size of the node

VmFamilyName Vm family to which the node belongs

VmPriority Priority of the node created Dedicated/LowPriority

Publisher Publisher of the vm image, e.g., microsoft-dsvm

Offer Offer associated with the VM creation

Sku Sku of the Node/VM created

Version Version of the image used while Node/VM is created

ClusterCreationTime Time when cluster was created

ResizeStartTime Time when cluster scale up/down started

ResizeEndTime Time when cluster scale up/down ended

NodeAllocationTime Time when Node was allocated

NodeBootTime Time when Node was booted up

StartTaskStartTime Time when task was assigned to a node and started

StartTaskEndTime Time when task assigned to a node ended

TotalE2ETimeInSeconds Total time node was active

P RO P ERT Y DESC RIP T IO N

Metrics

M ET RIC UN IT DESC RIP T IO N

Model deploy failed Count The number of model deployments that
failed.

Model deploy started Count The number of model deployments
started.

The following tables list the platform metrics collected for Azure Machine Learning All metrics are stored in the

namespace Azure Machine Learning Workspace.

Model

Model deploy succeeded Count The number of model deployments that
succeeded.

Model register failed Count The number of model registrations that
failed.

Model register succeeded Count The number of model registrations that
succeeded.

M ET RIC UN IT DESC RIP T IO N

M ET RIC UN IT DESC RIP T IO N

Active cores Count The number of active compute cores.

Active nodes Count The number of active nodes.

Idle cores Count The number of idle compute cores.

Idle nodes Count The number of idle compute nodes.

Leaving cores Count The number of leaving cores.

Leaving nodes Count The number of leaving nodes.

Preempted cores Count The number of preempted cores.

Preempted nodes Count The number of preempted nodes.

Quota utilization percentage Percent The percentage of quota used.

Total cores Count The total cores.

Total nodes Count The total nodes.

Unusable cores Count The number of unusable cores.

Unusable nodes Count The number of unusable nodes.

DIM EN SIO N M ET RIC (S) AVA IL A B L E W IT H DESC RIP T IO N

Cluster Name All quota metrics The name of the compute instance.

Vm Family Name Quota utilization percentage The name of the VM family used by the
cluster.

Vm Priority Quota utilization percentage The priority of the VM.

Quota

Quota information is for Azure Machine Learning compute only.

The following are dimensions that can be used to filter quota metrics:

M ET RIC UN IT DESC RIP T IO N

Completed runs Count The number of completed runs.

Failed runs Count The number of failed runs.

Started runs Count The number of started runs.

DIM EN SIO N DESC RIP T IO N

ComputeType The compute type that the run used.

PipelineStepType The type of PipelineStep used in the run.

PublishedPipelineId The ID of the published pipeline used in the run.

RunType The type of run.

VA L UE DESC RIP T IO N

Experiment Non-pipeline runs.

PipelineRun A pipeline run, which is the parent of a StepRun.

StepRun A run for a pipeline step.

ReusedStepRun A run for a pipeline step that reuses a previous run.

See Also

Run

Information on training runs.

The following are dimensions that can be used to filter run metrics:

The valid values for the RunType dimension are:

See Monitoring Azure Machine Learning for a description of monitoring Azure Machine Learning.

See Monitoring Azure resources with Azure Monitor for details on monitoring Azure resources.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinestep?view=azure-ml-py
https://docs.microsoft.com/azure/azure-monitor/insights/monitor-azure-resource

Define machine learning pipelines in YAML
4/17/2020 • 9 minutes to read • Edit Online

ST EP T Y P E SUP P O RT ED?

PythonScriptStep Yes

AdlaStep Yes

AzureBatchStep Yes

DatabricksStep Yes

DataTransferStep Yes

AutoMLStep No

HyperDriveStep No

ModuleStep Yes

MPIStep No

EstimatorStep No

Pipeline definition

YA M L KEY DESC RIP T IO N

name The description of the pipeline.

parameters Parameter(s) to the pipeline.

data_reference Defines how and where data should be made available in a
run.

default_compute Default compute target where all steps in the pipeline run.

steps The steps used in the pipeline.

Parameters

Learn how to define your machine learning pipelines in YAML. When using the machine learning extension for the

Azure CLI, many of the pipeline-related commands expect a YAML file that defines the pipeline.

The following table lists what is and is not currently supported when defining a pipeline in YAML:

A pipeline definition uses the following keys, which correspond to the Pipelines class:

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/reference-pipeline-yaml.md
https://yaml.org/
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline.pipeline?view=azure-ml-py

YA M L KEY DESC RIP T IO N

type The value type of the parameter. Valid types are string ,

int , float , bool , or datapath .

default The default value.

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 NumIterationsParameter:
 type: int
 default: 40
 DataPathParameter:
 type: datapath
 default:
 datastore: workspaceblobstore
 path_on_datastore: sample2.txt
 NodeCountParameter:
 type: int
 default: 4

Data reference

YA M L KEY DESC RIP T IO N

datastore The datastore to reference.

path_on_datastore The relative path in the backing storage for the data reference.

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 employee_data:
 datastore: adftestadla
 path_on_datastore: "adla_sample/sample_input.csv"

Steps

The parameters section uses the following keys, which correspond to the PipelineParameter class:

Each parameter is named. For example, the following YAML snippet defines three parameters named

NumIterationsParameter , DataPathParameter , and NodeCountParameter :

The data_references section uses the following keys, which correspond to the DataReference:

Each data reference is contained in a key. For example, the following YAML snippet defines a data reference stored

in the key named employee_data :

Steps define a computational environment, along with the files to run on the environment. To define the type of a

step, use the type key:

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelineparameter?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.data_reference.datareference?view=azure-ml-py

ST EP T Y P E DESC RIP T IO N

AdlaStep Runs a U-SQL script with Azure Data Lake Analytics.
Corresponds to the AdlaStep class.

AzureBatchStep Runs jobs using Azure Batch. Corresponds to the
AzureBatchStep class.

DatabricsStep Adds a Databricks notebook, Python script, or JAR.
Corresponds to the DatabricksStep class.

DataTransferStep Transfers data between storage options. Corresponds to the
DataTransferStep class.

PythonScriptStep Runs a Python script. Corresponds to the PythonScriptStep
class.

ADLA step

YA M L KEY DESC RIP T IO N

script_name The name of the U-SQL script (relative to the
source_directory).

compute_target The Azure Data Lake compute target to use for this step.

parameters Parameters to the pipeline.

inputs Inputs can be InputPortBinding, DataReference,
PortDataReference, PipelineData, Dataset, DatasetDefinition,
or PipelineDataset.

outputs Outputs can be either PipelineData or OutputPortBinding.

source_directory Directory that contains the script, assemblies, etc.

priority The priority value to use for the current job.

params Dictionary of name-value pairs.

degree_of_parallelism The degree of parallelism to use for this job.

runtime_version The runtime version of the Data Lake Analytics engine.

allow_reuse Determines whether the step should reuse previous results
when run again with the same settings.

The following example contains an ADLA Step definition:

https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.adlastep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.azurebatchstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricksstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.datatransferstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.inputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.portdatareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_definition.datasetdefinition?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.outputportbinding?view=azure-ml-py

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 employee_data:
 datastore: adftestadla
 path_on_datastore: "adla_sample/sample_input.csv"
 default_compute: adlacomp
 steps:
 Step1:
 runconfig: "D:\\Yaml\\default_runconfig.yml"
 parameters:
 NUM_ITERATIONS_2:
 source: PipelineParam1
 NUM_ITERATIONS_1: 7
 type: "AdlaStep"
 name: "MyAdlaStep"
 script_name: "sample_script.usql"
 source_directory: "D:\\scripts\\Adla"
 inputs:
 employee_data:
 source: employee_data
 outputs:
 OutputData:
 destination: Output4
 datastore: adftestadla
 bind_mode: mount

Azure Batch step

YA M L KEY DESC RIP T IO N

compute_target The Azure Batch compute target to use for this step.

inputs Inputs can be InputPortBinding, DataReference,
PortDataReference, PipelineData, Dataset, DatasetDefinition,
or PipelineDataset.

outputs Outputs can be either PipelineData or OutputPortBinding.

source_directory Directory that contains the module binaries, executable,
assemblies, etc.

executable Name of the command/executable that will be ran as part of
this job.

create_pool Boolean flag to indicate whether to create the pool before
running the job.

delete_batch_job_after_finish Boolean flag to indicate whether to delete the job from the
Batch account after it's finished.

delete_batch_pool_after_finish Boolean flag to indicate whether to delete the pool after the
job finishes.

is_positive_exit_code_failure Boolean flag to indicate if the job fails if the task exits with a
positive code.

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.inputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.portdatareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_definition.datasetdefinition?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.outputportbinding?view=azure-ml-py

vm_image_urn If create_pool is True , and VM uses

VirtualMachineConfiguration .

pool_id The ID of the pool where the job will run.

allow_reuse Determines whether the step should reuse previous results
when run again with the same settings.

YA M L KEY DESC RIP T IO N

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 input:
 datastore: workspaceblobstore
 path_on_datastore: "input.txt"
 default_compute: testbatch
 steps:
 Step1:
 runconfig: "D:\\Yaml\\default_runconfig.yml"
 parameters:
 NUM_ITERATIONS_2:
 source: PipelineParam1
 NUM_ITERATIONS_1: 7
 type: "AzureBatchStep"
 name: "MyAzureBatchStep"
 pool_id: "MyPoolName"
 create_pool: true
 executable: "azurebatch.cmd"
 source_directory: "D:\\scripts\\AureBatch"
 allow_reuse: false
 inputs:
 input:
 source: input
 outputs:
 output:
 destination: output
 datastore: workspaceblobstore

Databricks step

YA M L KEY DESC RIP T IO N

compute_target The Azure Databricks compute target to use for this step.

inputs Inputs can be InputPortBinding, DataReference,
PortDataReference, PipelineData, Dataset, DatasetDefinition,
or PipelineDataset.

outputs Outputs can be either PipelineData or OutputPortBinding.

run_name The name in Databricks for this run.

The following example contains an Azure Batch step definition:

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.inputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.portdatareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_definition.datasetdefinition?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.outputportbinding?view=azure-ml-py

source_directory Directory that contains the script and other files.

num_workers The static number of workers for the Databricks run cluster.

runconfig The path to a .runconfig file. This file is a YAML

representation of the RunConfiguration class. For more
information on the structure of this file, see
runconfigschema.json.

allow_reuse Determines whether the step should reuse previous results
when run again with the same settings.

YA M L KEY DESC RIP T IO N

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 adls_test_data:
 datastore: adftestadla
 path_on_datastore: "testdata"
 blob_test_data:
 datastore: workspaceblobstore
 path_on_datastore: "dbtest"
 default_compute: mydatabricks
 steps:
 Step1:
 runconfig: "D:\\Yaml\\default_runconfig.yml"
 parameters:
 NUM_ITERATIONS_2:
 source: PipelineParam1
 NUM_ITERATIONS_1: 7
 type: "DatabricksStep"
 name: "MyDatabrickStep"
 run_name: "DatabricksRun"
 python_script_name: "train-db-local.py"
 source_directory: "D:\\scripts\\Databricks"
 num_workers: 1
 allow_reuse: true
 inputs:
 blob_test_data:
 source: blob_test_data
 outputs:
 OutputData:
 destination: Output4
 datastore: workspaceblobstore
 bind_mode: mount

Data transfer step

YA M L KEY DESC RIP T IO N

compute_target The Azure Data Factory compute target to use for this step.

The following example contains a Databricks step:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py
https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json

source_data_reference Input connection that serves as the source of data transfer
operations. Supported values are InputPortBinding,
DataReference, PortDataReference, PipelineData, Dataset,
DatasetDefinition, or PipelineDataset.

destination_data_reference Input connection that serves as the destination of data
transfer operations. Supported values are PipelineData and
OutputPortBinding.

allow_reuse Determines whether the step should reuse previous results
when run again with the same settings.

YA M L KEY DESC RIP T IO N

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 adls_test_data:
 datastore: adftestadla
 path_on_datastore: "testdata"
 blob_test_data:
 datastore: workspaceblobstore
 path_on_datastore: "testdata"
 default_compute: adftest
 steps:
 Step1:
 runconfig: "D:\\Yaml\\default_runconfig.yml"
 parameters:
 NUM_ITERATIONS_2:
 source: PipelineParam1
 NUM_ITERATIONS_1: 7
 type: "DataTransferStep"
 name: "MyDataTransferStep"
 adla_compute_name: adftest
 source_data_reference:
 adls_test_data:
 source: adls_test_data
 destination_data_reference:
 blob_test_data:
 source: blob_test_data

Python script step

YA M L KEY DESC RIP T IO N

inputs Inputs can be InputPortBinding, DataReference,
PortDataReference, PipelineData, Dataset, DatasetDefinition,
or PipelineDataset.

outputs Outputs can be either PipelineData or OutputPortBinding.

script_name The name of the Python script (relative to
source_directory).

The following example contains a data transfer step:

https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.inputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.portdatareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_definition.datasetdefinition?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.outputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.inputportbinding?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.portdatareference?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_definition.datasetdefinition?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedataset?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipelinedata?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.graph.outputportbinding?view=azure-ml-py

source_directory Directory that contains the script, Conda environment, etc.

runconfig The path to a .runconfig file. This file is a YAML

representation of the RunConfiguration class. For more
information on the structure of this file, see runconfig.json.

allow_reuse Determines whether the step should reuse previous results
when run again with the same settings.

YA M L KEY DESC RIP T IO N

pipeline:
 name: SamplePipelineFromYaml
 parameters:
 PipelineParam1:
 type: int
 default: 3
 data_references:
 DataReference1:
 datastore: workspaceblobstore
 path_on_datastore: testfolder/sample.txt
 default_compute: cpu-cluster
 steps:
 Step1:
 runconfig: "D:\\Yaml\\default_runconfig.yml"
 parameters:
 NUM_ITERATIONS_2:
 source: PipelineParam1
 NUM_ITERATIONS_1: 7
 type: "PythonScriptStep"
 name: "MyPythonScriptStep"
 script_name: "train.py"
 allow_reuse: True
 source_directory: "D:\\scripts\\PythonScript"
 inputs:
 InputData:
 source: DataReference1
 outputs:
 OutputData:
 destination: Output4
 datastore: workspaceblobstore
 bind_mode: mount

Pipeline with multiple steps

YA M L KEY DESC RIP T IO N

steps Sequence of one or more PipelineStep definitions. Note that
the destination of one step's outputs become the keys

to the inputs of the .

The following example contains a Python script step:

https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfiguration?view=azure-ml-py
https://github.com/microsoft/MLOps/blob/b4bdcf8c369d188e83f40be8b748b49821f71cf2/infra-as-code/runconfigschema.json

pipeline:
 name: SamplePipelineFromYAML
 description: Sample multistep YAML pipeline
 data_references:
 TitanicDS:
 dataset_name: 'titanic_ds'
 bind_mode: download
 default_compute: cpu-cluster
 steps:
 Dataprep:
 type: "PythonScriptStep"
 name: "DataPrep Step"
 compute: cpu-cluster
 runconfig: ".\\default_runconfig.yml"
 script_name: "prep.py"
 arguments:
 - '--train_path'
 - output:train_path
 - '--test_path'
 - output:test_path
 allow_reuse: True
 inputs:
 titanic_ds:
 source: TitanicDS
 bind_mode: download
 outputs:
 train_path:
 destination: train_csv
 datastore: workspaceblobstore
 test_path:
 destination: test_csv
 Training:
 type: "PythonScriptStep"
 name: "Training Step"
 compute: cpu-cluster
 runconfig: ".\\default_runconfig.yml"
 script_name: "train.py"
 arguments:
 - "--train_path"
 - input:train_path
 - "--test_path"
 - input:test_path
 inputs:
 train_path:
 source: train_csv
 bind_mode: download
 test_path:
 source: test_csv
 bind_mode: download

Schedules

YA M L KEY DESC RIP T IO N

description A description of the schedule.

recurrence Contains recurrence settings, if the schedule is recurring.

When defining the schedule for a pipeline, it can be either datastore-triggered or recurring based on a time

interval. The following are the keys used to define a schedule:

pipeline_parameters Any parameters that are required by the pipeline.

wait_for_provisioning Whether to wait for provisioning of the schedule to complete.

wait_timeout The number of seconds to wait before timing out.

datastore_name The datastore to monitor for modified/added blobs.

polling_interval How long, in minutes, between polling for modified/added
blobs. Default value: 5 minutes. Only supported for datastore
schedules.

data_path_parameter_name The name of the data path pipeline parameter to set with the
changed blob path. Only supported for datastore schedules.

continue_on_step_failure Whether to continue execution of other steps in the
submitted PipelineRun if a step fails. If provided, will override
the continue_on_step_failure setting of the pipeline.

path_on_datastore Optional. The path on the datastore to monitor for
modified/added blobs. The path is under the container for the
datastore, so the actual path the schedule monitors is
container/ path_on_datastore . If none, the datastore

container is monitored. Additions/modifications made in a
subfolder of the path_on_datastore are not monitored.

Only supported for datastore schedules.

YA M L KEY DESC RIP T IO N

Schedule:
 description: "Test create with datastore"
 recurrence: ~
 pipeline_parameters: {}
 wait_for_provisioning: True
 wait_timeout: 3600
 datastore_name: "workspaceblobstore"
 polling_interval: 5
 data_path_parameter_name: "input_data"
 continue_on_step_failure: None
 path_on_datastore: "file/path"

YA M L KEY DESC RIP T IO N

frequency How often the schedule recurs. Valid values are "Minute" ,

"Hour" , "Day" , "Week" , or "Month" .

interval How often the schedule fires. The integer value is the number
of time units to wait until the schedule fires again.

The following example contains the definition for a datastore-triggered schedule:

When defining a recurr ing schedule , use the following keys under recurrence :

start_time The start time for the schedule. The string format of the value
is YYYY-MM-DDThh:mm:ss . If no start time is provided, the

first workload is run instantly and future workloads are run
based on the schedule. If the start time is in the past, the first
workload is run at the next calculated run time.

time_zone The time zone for the start time. If no time zone is provided,
UTC is used.

hours If frequency is "Day" or "Week" , you can specify one or

more integers from 0 to 23, separated by commas, as the
hours of the day when the pipeline should run. Only
time_of_day or hours and minutes can be used.

minutes If frequency is "Day" or "Week" , you can specify one or

more integers from 0 to 59, separated by commas, as the
minutes of the hour when the pipeline should run. Only
time_of_day or hours and minutes can be used.

time_of_day If frequency is "Day" or "Week" , you can specify a time

of day for the schedule to run. The string format of the value
is hh:mm . Only time_of_day or hours and minutes can

be used.

week_days If frequency is "Week" , you can specify one or more days,

separated by commas, when the schedule should run. Valid
values are "Monday" , "Tuesday" , "Wednesday" ,

"Thursday" , "Friday" , "Saturday" , and "Sunday" .

YA M L KEY DESC RIP T IO N

Schedule:
 description: "Test create with recurrence"
 recurrence:
 frequency: Week # Can be "Minute", "Hour", "Day", "Week", or "Month".
 interval: 1 # how often fires
 start_time: 2019-06-07T10:50:00
 time_zone: UTC
 hours:
 - 1
 minutes:
 - 0
 time_of_day: null
 week_days:
 - Friday
 pipeline_parameters:
 'a': 1
 wait_for_provisioning: True
 wait_timeout: 3600
 datastore_name: ~
 polling_interval: ~
 data_path_parameter_name: ~
 continue_on_step_failure: None
 path_on_datastore: ~

Next steps

The following example contains the definition for a recurring schedule:

Learn how to use the CLI extension for Azure Machine Learning.

Azure Machine Learning release notes
4/19/2020 • 87 minutes to read • Edit Online

2020-04-13
Azure Machine Learning SDK for Python v1.3.0

In this article, learn about Azure Machine Learning releases. For the full SDK reference content, visit the Azure

Machine Learning's main SDK for Python reference page.

See the list of known issues to learn about known bugs and workarounds.

Bug fixes and improvements

azureml-automl-core

azureml-automl-runtime

azureml-contr ib-pipeline-steps

azureml-core

Added additional telemetry around post-training operations.

Speeds up automatic ARIMA training by using conditional sum of squares (CSS) training for series

of length longer than 100. Note that the length used is stored as the constant

ARIMA_TRIGGER_CSS_TRAINING_LENGTH w/in the TimeSeriesInternal class at /src/azureml-

automl-core/azureml/automl/core/shared/constants.py

The user logging of forecasting runs was improved, now more information on what phase is

currently running will be shown in the log

Disallowed target_rolling_window_size to be set to values less then 2

Improved the error message shown when duplicated timestamps are found.

Disallowed target_rolling_window_size to be set to values less then 2.

Fixed the lag imputation failure. The issue was caused by the insufficient number of observations

needed to seasonally decompose a series. The "de-seasonalized" data is used to compute a partial

autocorrelation function (PACF) to determine the lag length.

Enabled column purpose featurization customization for forecasting tasks by featurization config.

Numerical and Categorical as column purpose for forecasting tasks are now supported.

Enabled drop column featurization customization for forecasting tasks by featurization config.

Enabled imputation customization for forecasting tasks by featurization config. Constant value

imputation for target column and mean, median, most_frequent and constant value imputation for

training data are now supported.

Accept string compute names to be passed to ParallelRunConfig

Added Environment.clone(new_name) API to create a copy of Environment object

Environment.docker.base_dockerfile accepts filepath. If able to resolve a file, the content will be

read into base_dockerfile environment property

Automatically reset mutually exclusive values for base_image and base_dockerfile when user

manually sets a value in Environment.docker

Dataset: fixed dataset download failure if data path containing unicode characters

Dataset: improved dataset mount caching mechanism to respect the minimum disk space

requirement in Azure Machine Learning Compute, which avoids making the node unusable and

causing the job to be canceled

Added user_managed flag in RSection which indicates whether the environment is managed by

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/azure-machine-learning-release-notes.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

2020-03-23
Azure Machine Learning SDK for Python v1.2.0

azureml-dataprep

azureml-interpret

azureml-pipeline-core

azureml-train-automl-client

azureml-train-automl-runtime

azureml-opendatasets

user or by AzureML.

Dataset: we add an index for the timeseries column when you access a timeseries dataset as a

pandas dataframes, which is used to speed up access to timeseries based data access. Previously,

the index was given the same name as the timestamp column, confusing users about which is the

actual timestamp column and which is the index. We now don't give any specific name to the

index since it should not be used as a column.

Fixed dataset authentication issue in sovereign cloud

Fixed Dataset.to_spark_dataframe failure for datasets created from Azure PostgreSQL datastores

Added global scores to visualization if local importance values are sparse

Updated azureml-interpret to use interpret-community 0.9.*

Fixed issue with downloading explanation that had sparse evaluation data

Added support of sparse format of the explanation object in AutoML

Support ComputeInstance as compute target in pipelines

Added additional telemetry around post-training operations.

Fixed the regression in early stopping

Deprecated azureml.dprep.Dataflow as a valid type for input data.

Changing default AutoML experiment timeout to 6 days.

Added additional telemetry around post-training operations.

added sparse automl e2e support

Added additional telemetry for service monitor.

Enable frontdoor for blob to increase stability

Breaking changes

Drop support for python 2.7

Bug fixes and improvements

azure-cli-ml

azureml-automl-core

azureml-automl-runtime

azureml-core

Adds "--subscription-id" to az ml model/computetarget/service commands in the CLI

Adding support for passing customer managed key(CMK) vault_url, key_name and key_version

for ACI deployment

Enabled customized imputation with constant value for both X and y data forecasting tasks.

Fixed the issue in with showing error messages to user.

Fixed the issue in with forecasting on the data sets, containing grains with only one row

Decreased the amount of memory required by the forecasting tasks.

Added better error messages if time column has incorrect format.

Enabled customized imputation with constant value for both X and y data forecasting tasks.

2020-03-11
Azure Machine Learning SDK for Python v1.1.5

azureml-interpret

azureml-sdk

Add support for loading ServicePrincipal from environment variables:

AZUREML_SERVICE_PRINCIPAL_ID, AZUREML_SERVICE_PRINCIPAL_TENANT_ID, and

AZUREML_SERVICE_PRINCIPAL_PASSWORD

Introduced a new parameter support_multi_line to Dataset.Tabular.from_delimited_files : By

default (support_multi_line=False), all line breaks, including those in quoted field values, will be

interpreted as a record break. Reading data this way is faster and more optimized for parallel

execution on multiple CPU cores. However, it may result in silently producing more records with

misaligned field values. This should be set to True when the delimited files are known to contain

quoted line breaks.

Added the ability to register ADLS Gen2 in the Azure Machine Learning CLI

Renamed parameter 'fine_grain_timestamp' to 'timestamp' and parameter

'coarse_grain_timestamp' to 'partition_timestamp' for the with_timestamp_columns() method in

TabularDataset to better reflect the usage of the parameters.

Increased max experiment name length to 255.

Updated azureml-interpret to interpret-community 0.7.*

Changing to dependencies with compatible version Tilde for the support of patching in pre-

release and stable releases.

Feature deprecation

Python 2.7

Last version to support python 2.7

Breaking changes

Semantic Versioning 2.0 .0

Starting with version 1.1 Azure ML Python SDK adopts Semantic Versioning 2.0.0. Read more here.

All subsequent versions will follow new numbering scheme and semantic versioning contract.

Bug fixes and improvements

azure-cli-ml

azureml-automl-core

azureml-automl-runtime

Change the endpoint CLI command name from 'az ml endpoint aks' to 'az ml endpoint realtime'

for consistency.

update CLI installation instructions for stable and experimental branch CLI

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

Enabled the Batch mode inference (taking multiple rows once) for automl ONNX models

Improved the detection of frequency on the data sets, lacking data or containing irregular data

points

Added the ability to remove data points not complying with the dominant frequency.

Changed the input of the constructor to take a list of options to apply the imputation options for

corresponding columns.

The error logging has been improved.

Fixed the issue with the error thrown if the grain which was not present in the training set

https://semver.org/

azureml-cli-common

azureml-contr ib-mir

azureml-contr ib-pipeline-steps

azureml-core

appeared in the test set

Removed the y_query requirement during scoring on forecasting service

Fixed the issue with forecasting when the data set contains short grains with long time gaps.

Fixed the issue when the auto max horizon is turned on and the date column contains dates in

form of strings. Proper conversion and error messages were added for when conversion to date is

not possible

Using native NumPy and SciPy for serializing and deserializing intermediate data for

FileCacheStore (used for local AutoML runs)

Fixed a bug where failed child runs could get stuck in Running state.

Increased speed of featurization.

Fixed the frequency check during scoring, now the forecasting tasks do not require strict

frequency equivalence between train and test set.

Changed the input of the constructor to take a list of options to apply the imputation options for

corresponding columns.

Fixed errors related to lag type selection.

Fixed the unclassified error raised on the data sets, having grains with the single row

Fixed the issue with frequency detection slowness.

Fixes a bug in AutoML exception handling that caused the real reason for training failure to be

replaced by an AttributeError.

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

Adds functionality in the MirWebservice class to retrieve the Access Token

Use token auth for MirWebservice by default during MirWebservice.run() call - Only refresh if call

fails

Mir webservice deployment now requires proper Skus [Standard_DS2_v2, Standard_F16,

Standard_A2_v2] instead of [Ds2v2, A2v2, and F16] respectively.

Optional parameter side_inputs added to ParallelRunStep. This parameter can be used to mount

folder on the container. Currently supported types are DataReference and PipelineData.

Parameters passed in ParallelRunConfig can be overwritten by passing pipeline parameters now.

New pipeline parameters supported aml_mini_batch_size, aml_error_threshold, aml_logging_level,

aml_run_invocation_timeout (aml_node_count and aml_process_count_per_node are already part

of earlier release).

Deployed AzureML Webservices will now default to INFO logging. This can be controlled by

setting the AZUREML_LOG_LEVEL environment variable in the deployed service.

Python sdk uses discovery service to use 'api' endpoint instead of 'pipelines'.

Swap to the new routes in all SDK calls

Changes routing of calls to the ModelManagementService to a new unified structure

Added deprecation messages to the old profiling workflow. Fixed profiling cpu and memory limits

Added RSection as part of Environment to run R jobs

Added validation to Dataset.mount to raise error when source of the dataset is not accessible or

does not contain any data.

Made workspace update method publicly available.

Added image_build_compute parameter in workspace update method to allow user

updating the compute for image build

2020-03-02
Azure Machine Learning SDK for Python v1.1.2rc0 (Pre-release)

azureml-defaults

azureml-interpret

azureml-mlflow

azureml-pipeline-core

azureml-pipeline-steps

azureml-tensorboard

azureml-train-automl-client

azureml-train-automl-runtime

azureml-train-core

Added --grant-workspace-msi-access as an additional parameter for the Datastore CLI for

registering Azure Blob Container which will allow you to register Blob Container that is behind a

VNet

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

Fixed the issue in aks.py _deploy

Validates the integrity of models being uploaded to avoid silent storage failures.

User may now specify a value for the auth key when regenerating keys for webservices.

Fixed bug where uppercase letters cannot be used as dataset's input name

azureml-dataprep will now be installed as part of azureml-defaults . It is no longer required to

install dataprep[fuse] manually on compute targets to mount datasets.

Updated azureml-interpret to interpret-community 0.6.*

Updated azureml-interpret to depend on interpret-community 0.5.0

Added azureml-style exceptions to azureml-interpret

Fixed DeepScoringExplainer serialization for keras models

Add support for sovereign clouds to azureml.mlflow

Pipeline batch scoring notebook now uses ParallelRunStep

Fixed a bug where PythonScriptStep results could be incorrectly reused despite changing the

arguments list

Added the ability to set columns' type when calling the parse_* methods on

PipelineOutputFileDataset

Moved the AutoMLStep to the azureml-pipeline-steps package. Deprecated the AutoMLStep

within azureml-train-automl-runtime .

Added documentation example for dataset as PythonScriptStep input

updated azureml-tensorboard to support tensorflow 2.0

Show correct port number when using a custom Tensorboard port on a Compute Instance

Fixed an issue where certain packages may be installed at incorrect versions on remote runs.

fixed FeaturizationConfig overriding issue that filters custom featurization config.

Fixed the issue with frequency detection in the remote runs

Moved the AutoMLStep in the azureml-pipeline-steps package. Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Supporting PyTorch version 1.4 in the PyTorch Estimator

Bug fixes and improvements

azureml-automl-core

2020-02-18
Azure Machine Learning SDK for Python v1.1.1rc0 (Pre-release)

azureml-automl-runtime

azureml-contr ib-mir

azureml-core

azureml-interpret

azureml-mlflow

azureml-pipeline-steps

azureml-train-automl-client

azureml-train-automl-runtime

azureml-train-core

Enabled the Batch mode inference (taking multiple rows once) for automl ONNX models

Improved the detection of frequency on the data sets, lacking data or containing irregular data

points

Added the ability to remove data points not complying with the dominant frequrncy.

Fixed the issue with the error thrown if the grain which was not present in the training set

appeared in the test set

Removed the y_query requirement during scoring on forecasting service

Adds functionality in the MirWebservice class to retrieve the Access Token

Deployed AzureML Webservices will now default to INFO logging. This can be controlled by

setting the AZUREML_LOG_LEVEL environment variable in the deployed service.

Fix iterating on Dataset.get_all to return all datasets registered with the workspace.

Improve error message when invalid type is passed to path argument of dataset creation APIs.

Python sdk uses discovery service to use 'api' endpoint instead of 'pipelines'.

Swap to the new routes in all SDK calls

Changes routing of calls to the ModelManagementService to a new unified structure

Added deprecation messages to the old profiling workflow. Fixed profiling cpu and memory limits

Made workspace update method publicly available.

Added image_build_compute parameter in workspace update method to allow user

updating the compute for image build

update azureml-interpret to interpret-community 0.6.*

Add support for sovereign clouds to azureml.mlflow

Moved the AutoMLStep to the azureml-pipeline-steps package . Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Fixed an issue where certain packages may be installed at incorrect versions on remote runs.

Fixed the issue with frequency detection in the remote runs

Moved the AutoMLStep to the azureml-pipeline-steps package . Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Moved the AutoMLStep to the azureml-pipeline-steps package . Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Bug fixes and improvements

azure-cli-ml

azureml-automl-core

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

The error logging has been improved.

2020-02-04
Azure Machine Learning SDK for Python v1.1.0rc0 (Pre-release)

azureml-automl-runtime

azureml-cli-common

azureml-core

azureml-interpret

azureml-pipeline-core

azureml-pipeline-steps

azureml-contr ib-pipeline-steps

azureml-tensorboard

azureml-train-automl-client

azureml-train-automl-runtime

azureml-train-core

The error logging has been improved.

Fixed the issue with forecasting when the data set contains short grains with long time gaps.

Fixed the issue when the auto max horizon is turned on and the date column contains dates in

form of strings. We added proper conversion and sensible error if conversion to date is not

possible

Using native NumPy and SciPy for serializing and deserializing intermediate data for

FileCacheStore (used for local AutoML runs)

Fixed a bug where failed child runs could get stuck in Running state.

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

Added --grant-workspace-msi-access as an additional parameter for the Datastore CLI for

registering Azure Blob Container which will allow you to register Blob Container that is behind a

VNet

Single instance profiling was fixed to produce a recommendation and was made available in core

sdk.

Fixed the issue in aks.py _deploy

Validates the integrity of models being uploaded to avoid silent storage failures.

added azureml-style exceptions to azureml-interpret

fixed DeepScoringExplainer serialization for keras models

Pipeline batch scoring notebook now uses ParallelRunStep

Moved the AutoMLStep in the azureml-pipeline-steps package. Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Optional parameter side_inputs added to ParallelRunStep. This parameter can be used to mount

folder on the container. Currently supported types are DataReference and PipelineData.

updated azureml-tensorboard to support tensorflow 2.0

fixed FeaturizationConfig overriding issue that filters custom featurization config.

Moved the AutoMLStep in the azureml-pipeline-steps package. Deprecated the AutoMLStep within

azureml-train-automl-runtime .

Supporting PyTorch version 1.4 in the PyTorch Estimator

Breaking changes

Semantic Versioning 2.0 .0

Starting with version 1.1 Azure ML Python SDK adopts Semantic Versioning 2.0.0. Read more here.

All subsequent versions will follow new numbering scheme and semantic versioning contract.

https://semver.org/

2020-01-21
Azure Machine Learning SDK for Python v1.0.85

Bug fixes and improvements

azureml-automl-runtime

azureml-core

azureml-interpret

azureml-pipeline-core

azureml-pipeline-steps

azureml-contr ib-pipeline-steps

Increased speed of featurization.

Fixed the frequency check during scoring, now in the forecasting tasks we do not require strict

frequency equivalence between train and test set.

User may now specify a value for the auth key when regenerating keys for webservices.

Updated azureml-interpret to depend on interpret-community 0.5.0

Fixed a bug where PythonScriptStep results could be incorrectly reused despite changing the

arguments list

Added documentation example for dataset as PythonScriptStep input

Parameters passed in ParallelRunConfig can be overwritten by passing pipeline parameters now.

New pipeline parameters supported aml_mini_batch_size, aml_error_threshold, aml_logging_level,

aml_run_invocation_timeout (aml_node_count and aml_process_count_per_node are already part

of earlier release).

New features

azureml-core

Get the current core usage and quota limitation for AmlCompute resources in a given workspace

and subscription

azureml-contr ib-pipeline-steps

Enable user to pass tabular dataset as intermediate result from previous step to parallelrunstep

Bug fixes and improvements

azureml-automl-runtime

azureml-contr ib-interpret

azureml-core

Removed the requirement of y_query column in the request to the deployed forecasting service.

The 'y_query' was removed from the Dominick's Orange Juice notebook service request section.

Fixed the bug preventing forecasting on the deployed models, operating on data sets with date

time columns.

Added Matthews Correlation Coefficient as a classification metric, for both binary and multiclass

classification.

Removed text explainers from azureml-contrib-interpret as text explanation has been moved to

the interpret-text repo which will be released soon.

Dataset: usages for file dataset no longer depends on numpy and pandas to be installed in the

python env.

Changed LocalWebservice.wait_for_deployment() to check the status of the local Docker container

before trying to ping its health endpoint, greatly reducing the amount of time it takes to report a

failed deployment.

2020-01-06
Azure Machine Learning SDK for Python v1.0.83

azureml-explain-model

azureml-interpret

azureml-train-automl-runtime

Fixed the initialization of an internal property used in LocalWebservice.reload() when the service

object is created from an existing deployment using the LocalWebservice() constructor.

Edited error message for clarification.

Added a new method called get_access_token() to AksWebservice that will return

AksServiceAccessToken object, which contains access token, refresh after timestamp, expiry on

timestamp and token type.

Deprecated existing get_token() method in AksWebservice as the new method returns all of the

information this method returns.

Modified output of az ml service get-access-token command. Renamed token to accessToken and

refreshBy to refreshAfter. Added expiryOn and tokenType properties.

Fixed get_active_runs

updated shap to 0.33.0 and interpret-community to 0.4.*

updated shap to 0.33.0 and interpret-community to 0.4.*

Added Matthews Correlation Coefficient as a classification metric, for both binary and multiclass

classification.

Deprecate preprocess flag from code and replaced with featurization -featurization is on by

default

New features

Dataset: Add two options on_error and out_of_range_datetime for to_pandas_dataframe to fail when

data has error values instead of filling them with None .

Workspace: Added the hbi_workspace flag for workspaces with sensitive data that enables further

encryption and disables advanced diagnostics on workspaces. We also added support for bringing your

own keys for the associated Cosmos DB instance, by specifying the cmk_keyvault and resource_cmk_uri

parameters when creating a workspace, which creates a Cosmos DB instance in your subscription while

provisioning your workspace. Read more here.

Bug fixes and improvements

azureml-automl-runtime

azureml-core

azureml-interpret

Fixed a regression that caused a TypeError to be raised when running AutoML on Python versions

below 3.5.4.

Fixed bug in datastore.upload_files where relative path that didn't start with ./ was not able to

be used.

Added deprecation messages for all Image class codepaths

Fixed Model Management URL construction for Mooncake region.

Fixed issue where models using source_dir couldn't be packaged for Azure Functions.

Added an option to Environment.build_local() to push an image into AzureML workspace

container registry

Updated the SDK to use new token library on azure synapse in a back compatible manner.

Fixed bug where None was returned when no explanations were available for download. Now

raises an exception, matching behavior elsewhere.

https://docs.microsoft.com/azure/machine-learning/concept-enterprise-security#azure-cosmos-db
https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py

2019-12-23
Azure Machine Learning SDK for Python v1.0.81

2019-12-09
Azure Machine Learning SDK for Python v1.0.79

azureml-pipeline-steps

azureml-sdk

azureml-train-automl-client

Disallowed passing DatasetConsumptionConfig s to Estimator 's inputs parameter when the

Estimator will be used in an EstimatorStep .

Added AutoML client to azureml-sdk package, enabling remote AutoML runs to be submitted

without installing the full AutoML package.

Corrected alignment on console output for automl runs

Fixed a bug where incorrect version of pandas may be installed on remote amlcompute.

Bug fixes and improvements

azureml-contr ib-interpret

azureml-core

azureml-explain-model

azureml-pipeline-core

azureml-train-automl-client

defer shap dependency to interpret-community from azureml-interpret

Compute target can now be specified as a parameter to the corresponding deployment config

objects. This is specifically the name of the compute target to deploy to, not the SDK object.

Added CreatedBy information to Model and Service objects. May be accessed through .created_by

Fixed ContainerImage.run(), which was not correctly setting up the Docker container's HTTP port.

Make azureml-dataprep optional for az ml dataset register cli command

Fixed a bug where TabularDataset.to_pandas_dataframe would incorrectly fall back to an alternate

reader and print out a warning.

defer shap dependency to interpret-community from azureml-interpret

Added new pipeline step NotebookRunnerStep , to run a local notebook as a step in pipeline.

Removed deprecated get_all functions for PublishedPipelines, Schedules, and PipelineEndpoints

Started deprecation of data_script as an input to AutoML.

Bug fixes and improvements

azureml-automl-core

azureml-automl-runtime

azureml-contr ib-dataset

azureml-core

Removed featurizationConfig to be logged

Updated logging to log "auto"/"off"/"customized" only.

Added support for pandas. Series and pandas. Categorical for detecting column data type.

Previously only supported numpy.ndarray

The forecast function interface was improved: the y_pred parameter was made optional. -The

docstrings were improved.

Added related code changes to handle categorical dtype correctly.

Fixed a bug where labeled datasets could not be mounted.

2019-11-25
Azure Machine Learning SDK for Python v1.0.76

azureml-train-automl-client

Bug fix for Environment.from_existing_conda_environment(name, conda_environment_name) . User can

create an instance of Environment that is exact replica of the local environment

Changed time series-related Datasets methods to include_boundary=True by default.

Fixed issue where validation results are not printed when show output is set to false.

Breaking changes

Azureml-Train-AutoML upgrade issues

Upgrading to azureml-train-automl>=1.0.76 from azureml-train-automl<1.0.76 can cause partial

installations, causing some automl imports to fail. To resolve this, you can run the setup script

found at https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-

azureml/automated-machine-learning/automl_setup.cmd. Or if you are using pip directly you can:

or you can uninstall the old version before upgrading

"pip install --upgrade azureml-train-automl"

"pip install --ignore-installed azureml-train-automl-client"

"pip uninstall azureml-train-automl"

"pip install azureml-train-automl"

Bug fixes and improvements

azureml-automl-runtime

azureml-contr ib-dataset

azureml-contr ib-interpret

azureml-core

azureml-interpret

azureml-pipeline-steps

AutoML will now take into account both true and false classes when calculating averaged scalar

metrics for binary classification tasks.

Moved Machine learning and training code in AzureML-AutoML-Core to a new package AzureML-

AutoML-Runtime.

When calling to_pandas_dataframe on a labeled dataset with the download option, you can now

specify whether to overwrite existing files or not.

When calling keep_columns or drop_columns that results in a timeseries, label, or image column

being dropped, the corresponding capabilities will be dropped for the dataset as well.

Fixed an issue with pytorch loader for the object detection task.

Removed explanation dashboard widget from azureml-contrib-interpret, changed package to

reference the new one in interpret_community

Updated version of interpret-community to 0.2.0

Improve performance of workspace.datasets .

Added the ability to register Azure SQL Database Datastore using username and password

authentication

Fix for loading RunConfigurations from relative paths.

When calling keep_columns or drop_columns that results in a timeseries column being dropped,

the corresponding capabilities will be dropped for the dataset as well.

updated version of interpret-community to 0.2.0

Documented supported values for runconfig_pipeline_params for azure machine learning pipeline

https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/automl_setup.cmd

2019-11-11
Azure Machine Learning SDK for Python v1.0.74

azureml-pipeline-core

azureml-train-automl

azureml-train-automl-client

azureml-train-automl-runtime

azureml-contr ib-train-r l

steps.

Added CLI option to download output in json format for Pipeline commands.

Split AzureML-Train-AutoML into 2 packages, an client package AzureML-Train-AutoML-Client and

a ML training package AzureML-Train-AutoML-Runtime

Added a thin client for submitting AutoML experiments without needing to install any machine

learning dependencies locally.

Fixed logging of automatically detected lags, rolling window sizes and maximal horizons in the

remote runs.

Added a new AutoML package to isolate machine learning and runtime components from the

client.

Added reinforcement learning support in SDK.

Added AmlWindowsCompute support in RL SDK.

Preview features

azureml-contr ib-dataset

After importing azureml-contrib-dataset, you can call Dataset.Labeled.from_json_lines instead of

._Labeled to create a labeled dataset.

When calling to_pandas_dataframe on a labeled dataset with the download option, you can now

specify whether to overwrite existing files or not.

When calling keep_columns or drop_columns that results in a time series, label, or image column

being dropped, the corresponding capabilities will be dropped for the dataset as well.

Fixed issues with PyTorch loader when calling dataset.to_torchvision() .

Bug fixes and improvements

azure-cli-ml

azureml-automl-core

azureml-contr ib-mir

azureml-core

Added Model Profiling to the preview CLI.

Fixes breaking change in Azure Storage causing AzureML CLI to fail.

Added Load Balancer Type to MLC for AKS types

Fixed the issue with detection of maximal horizon on time series, having missing values and

multiple grains.

Fixed the issue with failures during generation of cross validation splits.

Replace this section with a message in markdown format to appear in the release notes: -

Improved handling of short grains in the forecasting data sets.

Fixed the issue with masking of some user information during logging. -Improved logging of the

errors during forecasting runs.

Adding psutil as a conda dependency to the auto-generated yml deployment file.

Fixes breaking change in Azure Storage causing AzureML CLI to fail.

2019-11-04
Web experience

W EB -B A SED TO O L DESC RIP T IO N EDIT IO N

Notebook VM(preview) Fully managed cloud-based workstation Basic & Enterprise

Automated machine learning (preview) No code experience for automating
machine learning model development

Enterprise

Designer (preview) Drag-and-drop machine learning
modeling tool formerly known as the
the designer

Enterprise

Azure Machine Learning designer enhancements

azureml-interpret

azureml-train-automl

azureml-train-core

azureml-pipeline-core

Fixes a bug which caused models deployed on Azure Functions to produce 500s.

Fixed an issue where the amlignore file was not applied on snapshots.

Added a new API amlcompute.get_active_runs that returns a generator for running and queued

runs on a given amlcompute.

Added Load Balancer Type to MLC for AKS types.

Added append_prefix bool parameter to download_files in run.py and

download_artifacts_from_prefix in artifacts_client. This flag is used to selectively flatten the origin

filepath so only the file or folder name is added to the output_directory

Fix deserialization issue for run_config.yml with dataset usage.

When calling keep_columns or drop_columns that results in a time series column being dropped,

the corresponding capabilities will be dropped for the dataset as well.

Updated interpret-community version to 0.1.0.3

Fixed an issue where automl_step might not print validation issues.

Fixed register_model to succeed even if the model's environment is missing dependencies locally.

Fixed an issue where some remote runs were not docker enabled.

Add logging of the exception that is causing a local run to fail prematurely.

Consider resume_from runs in the calculation of automated hyperparameter tuning best child

runs.

Fixed parameter handling in pipeline argument construction.

Added pipeline description and step type yaml parameter.

New yaml format for Pipeline step and added deprecation warning for old format.

The collaborative workspace landing page at https://ml.azure.com has been enhanced and rebranded as the Azure

Machine Learning studio (preview).

From the studio, you can train, test, deploy, and manage Azure Machine Learning assets such as datasets, pipelines,

models, endpoints, and more.

Access the following web-based authoring tools from the studio:

Formerly known as the visual interface

11 new modules including recommenders, classifiers, and training utilities including feature engineering, cross

https://ml.azure.com

R SDK

Azure Machine Learning integration with Event Grid

2019-10-31
Azure Machine Learning SDK for Python v1.0.72

validation, and data transformation.

Data scientists and AI developers use the Azure Machine Learning SDK for R to build and run machine learning

workflows with Azure Machine Learning.

The Azure Machine Learning SDK for R uses the reticulate package to bind to the Python SDK. By binding directly

to Python, the SDK for R allows you access to core objects and methods implemented in the Python SDK from any

R environment you choose.

Main capabilities of the SDK include:

Manage cloud resources for monitoring, logging, and organizing your machine learning experiments.

Train models using cloud resources, including GPU-accelerated model training.

Deploy your models as webservices on Azure Container Instances (ACI) and Azure Kubernetes Service (AKS).

See the package website for complete documentation.

Azure Machine Learning is now a resource provider for Event Grid, you can configure machine learning events

through the Azure portal or Azure CLI. Users can create events for run completion, model registration, model

deployment and data drift detected. These events can be routed to event handlers supported by Event Grid for

consumption. See machine learning event schema, concepts and tutorial articles for more details.

New features

Added dataset monitors through the azureml-datadrift package, allowing for monitoring time

series datasets for data drift or other statistical changes over time. Alerts and events can be triggered

if drift is detected or other conditions on the data are met. See our documentation for details.

Announcing two new editions (also referred to as a SKU interchangeably) in Azure Machine Learning.

With this release you can now create either a Basic or Enterprise Azure Machine Learning workspace.

All existing workspaces will be defaulted to the Basic edition, and you can go to the Azure portal or to

the studio to upgrade the workspace anytime. You can create either a Basic or Enterprise workspace

from the Azure portal. Please read our documentation to learn more. From the SDK, the edition of

your workspace can be determined using the "sku" property of your workspace object.

We have also made enhancements to Azure Machine Learning Compute - you can now view metrics

for your clusters (like total nodes, running nodes, total core quota) in Azure Monitor, besides viewing

Diagnostic logs for debugging. In addition you can also view currently running or queued runs on

your cluster and details such as the IPs of the various nodes on your cluster. You can view these either

in the portal or by using corresponding functions in the SDK or CLI.

Preview features

We are releasing preview support for disk encryption of your local SSD in Azure Machine

Learning Compute. Please raise a technical support ticket to get your subscription whitelisted to

use this feature.

Public Preview of Azure Machine Learning Batch Inference. Azure Machine Learning Batch

Inference targets large inference jobs that are not time-sensitive. Batch Inference provides cost-

effective inference compute scaling, with unparalleled throughput for asynchronous applications.

It is optimized for high-throughput, fire-and-forget inference over large collections of data.

azureml-contr ib-dataset

https://azure.github.io/azureml-sdk-for-r
https://docs.microsoft.com/azure/event-grid/event-schema-machine-learning
https://docs.microsoft.com/azure/machine-learning/concept-event-grid-integration
https://docs.microsoft.com/azure/machine-learning/how-to-use-event-grid
https://docs.microsoft.com/python/api/azureml-datadrift
https://aka.ms/datadrift
https://docs.microsoft.com/azure/machine-learning/how-to-manage-workspace
https://docs.microsoft.com/python/api/azureml-contrib-dataset

import azureml.core
from azureml.core import Workspace, Datastore, Dataset
import azureml.contrib.dataset
from azureml.contrib.dataset import FileHandlingOption, LabeledDatasetTask

create a labeled dataset by passing in your JSON lines file
dataset = Dataset._Labeled.from_json_lines(datastore.path('path/to/file.jsonl'),
LabeledDatasetTask.IMAGE_CLASSIFICATION)

download or mount the files in the `image_url` column
dataset.download()
dataset.mount()

get a pandas dataframe
from azureml.data.dataset_type_definitions import FileHandlingOption
dataset.to_pandas_dataframe(FileHandlingOption.DOWNLOAD)
dataset.to_pandas_dataframe(FileHandlingOption.MOUNT)

get a Torchvision dataset
dataset.to_torchvision()

Enabled functionalities for labeled dataset

Bug fixes and improvements

azure-cli-ml

azureml-automl-core

azureml-cli-common

CLI now supports model packaging.

Added dataset CLI. For more information: az ml dataset --help

Added support for deploying and packaging supported models (ONNX, scikit-learn, and

TensorFlow) without an InferenceConfig instance.

Added overwrite flag for service deployment (ACI and AKS) in SDK and CLI. If provided, will

overwrite the existing service if service with name already exists. If service doesn't exist, will create

new service.

Models can be registered with two new frameworks, Onnx and Tensorflow. - Model registration

accepts sample input data, sample output data and resource configuration for the model.

Training an iteration would run in a child process only when runtime constraints are being set.

Added a guardrail for forecasting tasks, to check whether a specified max_horizon will cause a

memory issue on the given machine or not. If it will, a guardrail message will be displayed.

Added support for complex frequencies like 2 years and 1 month. -Added comprehensible error

message if frequency can not be determined.

Add azureml-defaults to auto generated conda env to solve the model deployment failure

Allow intermediate data in Azure Machine Learning Pipeline to be converted to tabular dataset

and used in AutoMLStep .

Implemented column purpose update for streaming.

Implemented transformer parameter update for Imputer and HashOneHotEncoder for streaming.

Added the current data size and the minimum required data size to the validation error messages.

Updated the minimum required data size for Cross-validation to guarantee a minimum of two

samples in each validation fold.

CLI now supports model packaging.

Models can be registered with two new frameworks, Onnx and Tensorflow.

Model registration accepts sample input data, sample output data and resource configuration for

the model.

azureml-contr ib-gbdt

azureml-core

azureml-datadrift

azureml-pipeline-core

azureml-train-automl

azureml-train-core

fixed the release channel for the notebook

Added a warning for non AmlCompute compute target that we don't support

Added LightGMB Estimator to azureml-contrib-gbdt package

CLI now supports model packaging.

Add deprecation warning for deprecated Dataset APIs. See Dataset API change notice at

https://aka.ms/tabular-dataset.

Change Dataset.get_by_id to return registration name and version if the dataset is registered.

Fix a bug that ScriptRunConfig with dataset as argument cannot be used repeatedly to submit

experiment run.

Datasets retrieved during a run will be tracked and can be seen in the run details page or by

calling run.get_details() after the run is complete.

Allow intermediate data in Azure Machine Learning Pipeline to be converted to tabular dataset

and used in AutoMLStep .

Added support for deploying and packaging supported models (ONNX, scikit-learn, and

TensorFlow) without an InferenceConfig instance.

Added overwrite flag for service deployment (ACI and AKS) in SDK and CLI. If provided, will

overwrite the existing service if service with name already exists. If service doesn't exist, will create

new service.

Models can be registered with two new frameworks, Onnx and Tensorflow. Model registration

accepts sample input data, sample output data and resource configuration for the model.

Added new datastore for Azure Database for MySQL. Added example for using Azure Database for

MySQL in DataTransferStep in Azure Machine Learning Pipelines.

Added functionality to add and remove tags from experiments Added functionality to remove tags

from runs

Added overwrite flag for service deployment (ACI and AKS) in SDK and CLI. If provided, will

overwrite the existing service if service with name already exists. If service doesn't exist, will create

new service.

Moved from azureml-contrib-datadrift into azureml-datadrift

Added support for monitoring time series datasets for drift and other statistical measures

New methods create_from_model() and create_from_dataset() to the DataDriftDetector class.

The create() method will be deprecated.

Adjustments to the visualizations in Python and UI in the Azure Machine Learning studio.

Support weekly and monthly monitor scheduling, in addition to daily for dataset monitors.

Support backfill of data monitor metrics to analyze historical data for dataset monitors.

Various bug fixes

azureml-dataprep is no longer needed to submit an Azure Machine Learning Pipeline run from the

pipeline yaml file.

Add azureml-defaults to auto generated conda env to solve the model deployment failure

AutoML remote training now includes azureml-defaults to allow reuse of training env for

inference.

Added PyTorch 1.3 support in PyTorch estimator

https://docs.microsoft.com/python/api/azureml-core
https://aka.ms/tabular-dataset
https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset%28class%29#get-by-id-workspace--id-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29#get-details--
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlstep
https://docs.microsoft.com/python/api/azureml-datadrift
https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift.datadriftdetector(class)
https://docs.microsoft.com/python/api/azureml-pipeline-core
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch

2019-10-21
Visual interface (preview)

2019-10-14
Azure Machine Learning SDK for Python v1.0.69

The Azure Machine Learning visual interface (preview) has been overhauled to run on Azure Machine

Learning pipelines. Pipelines (previously known as experiments) authored in the visual interface are now

fully integrated with the core Azure Machine Learning experience.

Unified management experience with SDK assets

Versioning and tracking for visual interface models, pipelines, and endpoints

Redesigned UI

Added batch inference deployment

Added Azure Kubernetes Service (AKS) support for inference compute targets

New Python-step pipeline authoring workflow

New landing page for visual authoring tools

New modules

Apply math operation

Apply SQL transformation

Clip values

Summarize data

Import from SQL database

Bug fixes and improvements

azureml-automl-core

azureml-contr ib-datadrift

azureml-contr ib-interpret

azureml-core

azureml-core

Limiting model explanations to best run rather than computing explanations for every run.

Making this behavior change for local, remote and ADB.

Added support for on-demand model explanations for UI

Added psutil as a dependency of automl and included psutil as a conda dependency in

amlcompute.

Fixed the issue with heuristic lags and rolling window sizes on the forecasting data sets some

series of which can cause linear algebra errors

Added print out for the heuristically determined parameters in the forecasting runs.

Added protection while creating output metrics if dataset level drift is not in the first section.

azureml-contrib-explain-model package has been renamed to azureml-contrib-interpret

Added API to unregister datasets. dataset.unregister_all_versions()

azureml-contrib-explain-model package has been renamed to azureml-contrib-interpret.

Added API to unregister datasets. dataset.unregister_all_versions().

Added Dataset API to check data changed time. dataset.data_changed_time .

Being able to consume FileDataset and TabularDataset as inputs to PythonScriptStep ,

EstimatorStep , and HyperDriveStep in Azure Machine Learning Pipeline

Performance of FileDataset.mount has been improved for folders with a large number of files

Being able to consume FileDataset and TabularDataset as inputs to PythonScriptStep,

https://ml.azure.com
https://docs.microsoft.com/python/api/azureml-core
https://docs.microsoft.com/python/api/azureml-core/azureml.data.abstract_datastore.abstractdatastore#unregister--
https://docs.microsoft.com/python/api/azureml-core/azureml.data.filedataset
https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep

azureml-datadrift

azureml-explain-model

azureml-pipeline-core

azureml-train-core

azureml-train-automl

EstimatorStep, and HyperDriveStep in the Azure Machine Learning Pipeline.

Performance of FileDataset.mount() has been improved for folders with a large number of files

Added URL to known error recommendations in run details.

Fixed a bug in run.get_metrics where requests would fail if a run had too many children

Fixed a bug in run.get_metrics where requests would fail if a run had too many children

Added support for authentication on Arcadia cluster.

Creating an Experiment object gets or creates the experiment in the Azure Machine Learning

workspace for run history tracking. The experiment ID and archived time are populated in the

Experiment object on creation. Example: experiment = Experiment(workspace, "New Experiment")

experiment_id = experiment.id archive() and reactivate() are functions that can be called on an

experiment to hide and restore the experiment from being shown in the UX or returned by default

in a call to list experiments. If a new experiment is created with the same name as an archived

experiment, you can rename the archived experiment when reactivating by passing a new name.

There can only be one active experiment with a given name. Example: experiment1 =

Experiment(workspace, "Active Experiment") experiment1.archive() # Create new active

experiment with the same name as the archived. experiment2. = Experiment(workspace, "Active

Experiment") experiment1.reactivate(new_name="Previous Active Experiment") The static method

list() on Experiment can take a name filter and ViewType filter. ViewType values are

"ACTIVE_ONLY", "ARCHIVED_ONLY" and "ALL" Example: archived_experiments =

Experiment.list(workspace, view_type="ARCHIVED_ONLY") all_first_experiments =

Experiment.list(workspace, name="First Experiment", view_type="ALL")

Support using environment for model deploy, and service update

The show attribute of DataDriftDector class won't support optional argument 'with_details' any

more. The show attribute will only present data drift coefficient and data drift contribution of

feature columns.

DataDriftDetector attribute 'get_output' behavior changes:

Support retrieving Dataset-based Data Drift outputs.

Input parameter start_time, end_time are optional instead of mandatory;

Input specific start_time and/or end_time with a specific run_id in the same invoking will

result in value error exception because they are mutually exclusive

By input specific start_time and/or end_time, only results of scheduled runs will be

returned;

Parameter 'daily_latest_only' is deprecated.

Renames AzureML-explain-model package to AzureML-interpret, keeping the old package for

backwards compatibility for now

fixed automl bug with raw explanations set to classification task instead of regression by default

on download from ExplanationClient

Add support for ScoringExplainer to be created directly using MimicWrapper

Improved performance for large Pipeline creation

Added TensorFlow 2.0 support in TensorFlow Estimator

Creating an Experiment object gets or creates the experiment in the Azure Machine Learning

workspace for run history tracking. The experiment ID and archived time are populated in the

Experiment object on creation. Example:

https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimatorstep
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.hyperdrivestep
https://docs.microsoft.com/python/api/azureml-core/azureml.data.filedataset#mount-mount-point-none----kwargs-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run.run#get-metrics-name-none--recursive-false--run-type-none--populate-false-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment

azureml-datadrift

azureml-explain-model

azureml-pipeline-core

azureml-train-core

azureml-train-automl

experiment = Experiment(workspace, "New Experiment")
experiment_id = experiment.id

experiment1 = Experiment(workspace, "Active Experiment")
experiment1.archive()
Create new active experiment with the same name as the archived.
experiment2 = Experiment(workspace, "Active Experiment")
experiment1.reactivate(new_name="Previous Active Experiment")

archived_experiments = Experiment.list(workspace, view_type="ARCHIVED_ONLY")
all_first_experiments = Experiment.list(workspace, name="First Experiment",
view_type="ALL")

archive() and reactivate() are functions that can be called on an experiment to hide and restore

the experiment from being shown in the UX or returned by default in a call to list experiments.

If a new experiment is created with the same name as an archived experiment, you can rename

the archived experiment when reactivating by passing a new name. There can only be one

active experiment with a given name. Example:

The static method list() on Experiment can take a name filter and ViewType filter. ViewType

values are "ACTIVE_ONLY", "ARCHIVED_ONLY" and "ALL". Example:

Support using environment for model deploy, and service update.

The show attribute of DataDriftDetector class won't support optional argument 'with_details' any

more. The show attribute will only present data drift coefficient and data drift contribution of

feature columns.

DataDriftDetector function [get_output]https://docs.microsoft.com/python/api/azureml-

datadrift/azureml.datadrift.datadriftdetector.datadriftdetector#get-output-start-time-none--end-

time-none--run-id-none-) behavior changes:

Support retrieving Dataset-based Data Drift outputs.

Input parameter start_time, end_time are optional instead of mandatory;

Input specific start_time and/or end_time with a specific run_id in the same invoking will

result in value error exception because they are mutually exclusive;

By input specific start_time and/or end_time, only results of scheduled runs will be

returned;

Parameter 'daily_latest_only' is deprecated.

Renames AzureML-explain-model package to AzureML-interpret, keeping the old package for

backwards compatibility for now.

fixed AutoML bug with raw explanations set to classification task instead of regression by default

on download from ExplanationClient.

Add support for ScoringExplainer to be created directly using MimicWrapper

Improved performance for large Pipeline creation.

Added TensorFlow 2.0 support in TensorFlow Estimator.

The parent run will no longer be failed when setup iteration failed, as the orchestration already

https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment#archive--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment#reactivate-new-name-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment#list-workspace--experiment-name-none--view-type--activeonly---tags-none-
https://docs.microsoft.com/python/api/azureml-datadrift
https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift.datadriftdetector.datadriftdetector
https://docs.microsoft.com/python/api/azureml-interpret/azureml.interpret.scoring.scoring_explainer.scoringexplainer?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-core
https://docs.microsoft.com/python/api/azureml-train-core
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/

2019-10-08
New web experience (preview) for Azure Machine Learning workspaces

2019-09-30
Azure Machine Learning SDK for Python v1.0.65

takes care of it.

Added local-docker and local-conda support for AutoML experiments

Added local-docker and local-conda support for AutoML experiments.

The Experiment tab in the new workspace portal has been been updated so data scientists can monitor

experiments in a more performant way. You can explore the following features:

Experiment metadata to easily filter and sort your list of experiments

Simplified and performant experiment details pages which allow you to visualize and compare your runs

New design to run details pages to understand and monitor your training runs

New features

Added curated environments. These environments have been pre-configured with libraries for common

machine learning tasks, and have been pre-build and cached as Docker images for faster execution. They

appear by default in Workspace's list of environment, with prefix "AzureML".

Added curated environments. These environments have been pre-configured with libraries for common

machine learning tasks, and have been pre-build and cached as Docker images for faster execution. They

appear by default in Workspace's list of environment, with prefix "AzureML".

azureml-train-automl

azureml-train-automl

Added the ONNX conversion support for the ADB and HDI

Preview features

azureml-train-automl

azureml-train-automl

Supported BERT and BiLSTM as text featurizer (preview only)

Supported featurization customization for column purpose and transformer parameters (preview

only)

Supported raw explanations when user enables model explanation during training (preview only)

Added Prophet for timeseries forecasting as a trainable pipeline (preview only)

azureml-contr ib-datadrift

Packages relocated from azureml-contrib-datadrift to azureml-datadrift; the contrib package will

be removed in a future release

Bug fixes and improvements

azureml-automl-core

Introduced FeaturizationConfig to AutoMLConfig and AutoMLBaseSettings

Introduced FeaturizationConfig to AutoMLConfig and AutoMLBaseSettings

Added deprecation message for explain_model() and retrieve_model_explanations()

Override Column Purpose for Featurization with given column and feature type

Override transformer parameters

https://ml.azure.com
https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace%28class%29
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/
https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig

azureml-core

azureml-explain-model

azureml-core

azureml-explain-model

Added Prophet as a trainable pipeline (preview only)

Added deprecation message for explain_model() and retrieve_model_explanations().

Added Prophet as a trainable pipeline (preview only).

Added support for automatic detection of target lags, rolling window size and maximal horizon. If

one of target_lags, target_rolling_window_size or max_horizon is set to 'auto', the heuristics will be

applied to estimate the value of corresponding parameter based on training data.

Fixed forecasting in the case when data set contains one grain column, this grain is of a numeric

type and there is a gap between train and test set

Fixed the error message about the duplicated index in the remote run in forecasting tasks

Fixed forecasting in the case when data set contains one grain column, this grain is of a numeric

type and there is a gap between train and test set.

Fixed the error message about the duplicated index in the remote run in forecasting tasks.

Added a guardrail to check whether a dataset is imbalanced or not. If it is, a guardrail message

would be written to the console.

Added ability to retrieve SAS URL to model in storage through the model object. Ex:

model.get_sas_url()

Introduce run.get_details()['datasets'] to get datasets associated with the submitted run

Add API Dataset.Tabular.from_json_lines_files to create a TabularDataset from JSON Lines files.

To learn about this tabular data in JSON Lines files on TabularDataset, please visit

https://aka.ms/azureml-data for documentation.

Added additional VM size fields (OS Disk, number of GPUs) to the supported_vmsizes () function

Added additional fields to the list_nodes () function to show the run, the private and the public IP,

the port etc.

Ability to specify a new field during cluster provisioning --remotelogin_port_public_access which

can be set to enabled or disabled depending on whether you would like to leave the SSH port

open or closed at the time of creating the cluster. If you do not specify it, the service will smartly

open or close the port depending on whether you are deploying the cluster inside a VNet.

Added ability to retrieve SAS URL to model in storage through the model object. Ex:

model.get_sas_url()

Introduce run.get_details['datasets'] to get datasets associated with the submitted run

Add API Dataset.Tabular .from_json_lines_files() to create a TabularDataset from JSON Lines files.

To learn about this tabular data in JSON Lines files on TabularDataset, please visit

https://aka.ms/azureml-data for documentation.

Added additional VM size fields (OS Disk, number of GPUs) to the supported_vmsizes() function

Added additional fields to the list_nodes() function to show the run, the private and the public IP,

the port etc.

Ability to specify a new field during cluster provisioning --remotelogin_port_public_access which

can be set to enabled or disabled depending on whether you would like to leave the SSH port

open or closed at the time of creating the cluster. If you do not specify it, the service will smartly

open or close the port depending on whether you are deploying the cluster inside a VNet.

Improved documentation for Explanation outputs in the classification scenario.

Added the ability to upload the predicted y values on the explanation for the evaluation examples.

Unlocks more useful visualizations.

Added explainer property to MimicWrapper to enable getting the underlying MimicExplainer.

https://aka.ms/azureml-data
https://docs.microsoft.com/python/api/azureml-core/azureml.core
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.model#get-sas-urls--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run%28class%29#get-details--
https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#from-json-lines-files-path--validate-true--include-path-false--set-column-types-none--partition-format-none-
https://aka.ms/azureml-data
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute#supported-vmsizes-workspace--location-none-
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute#list-nodes--
https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute#provisioning-configuration-vm-size-----vm-priority--dedicated---min-nodes-0--max-nodes-none--idle-seconds-before-scaledown-none--admin-username-none--admin-user-password-none--admin-user-ssh-key-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--tags-none--description-none--remote-login-port-public-access--notspecified--

2019-09-16
Azure Machine Learning SDK for Python v1.0.62

azureml-pipeline-core

azureml-pipeline-steps

azureml-train-automl

azureml-pipeline-core

azureml-pipeline-steps

azureml-train-automl

Added notebook to describe Module, ModuleVersion and ModuleStep

Added RScriptStep to support R script run via AML pipeline.

Fixed metadata parameters parsing in AzureBatchStep which was causing the error message

"assignment for parameter SubscriptionId is not specified."

Supported training_data, validation_data, label_column_name, weight_column_name as data input

format

Added deprecation message for explain_model() and retrieve_model_explanations()

Added a notebook to describe Module, ModuleVersion and ModuleStep.

Added RScriptStep to support R script run via AML pipeline.

Fixed metadata parameters parsing in AzureBatchStep which was causing the error message

"assignment for parameter SubscriptionId is not specified".

Supported training_data, validation_data, label_column_name, weight_column_name as data input

format.

Added deprecation message for explain_model() and retrieve_model_explanations().

New features

Introduced the timeseries trait on TabularDataset. This trait enables easy timestamp filtering on data

a TabularDataset, such as taking all data between a range of time or the most recent data. To learn

about this the timeseries trait on TabularDataset, please visit https://aka.ms/azureml-data for

documentation or https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-

azureml/work-with-data/datasets-tutorial/timeseries-datasets/tabular-timeseries-dataset-

filtering.ipynb for an example notebook.

Enabled training with TabularDataset and FileDataset. Please visit https://aka.ms/dataset-tutorial for

an example notebook.

azureml-train-core

Added Nccl and Gloo support in PyTorch estimator

Bug fixes and improvements

azureml-automl-core

azureml-core

Deprecated the AutoML setting 'lag_length' and the LaggingTransformer.

Fixed correct validation of input data if they are specified in a Dataflow format

Modified the fit_pipeline.py to generate the graph json and upload to artifacts.

Rendered the graph under userrun using Cytoscape .

Revisited the exception handling in ADB code and make changes to as per new error handling

Added automatic MSI authentication for Notebook VMs.

Fixes bug where corrupt or empty models could be uploaded because of failed retries.

Fixed the bug where DataReference name changes when the DataReference mode changes (e.g.

https://docs.microsoft.com/python/api/azureml-pipeline-core
https://aka.ms/pl-modulestep
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.module(class)
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.moduleversion
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.modulestep
https://docs.microsoft.com/python/api/azureml-pipeline-steps
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.rscriptstep
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.azurebatchstep
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlexplainer#explain-model-fitted-model--x-train--x-test--best-run-none--features-none--y-train-none----kwargs-
https://docs.microsoft.com/python/api/azureml-train-automl-runtime/azureml.train.automl.runtime.automlexplainer#retrieve-model-explanation-child-run-
https://aka.ms/azureml-data
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/work-with-data/datasets-tutorial/timeseries-datasets/tabular-timeseries-dataset-filtering.ipynb
https://aka.ms/dataset-tutorial

2019-09-09
New web experience (preview) for Azure Machine Learning workspaces

azureml-explain-model

azureml-train-automl

azureml-train-core

when calling as_upload , as_download , or as_mount).

Make mount_point and target_path optional for FileDataset.mount and FileDataset.download .

Exception that timestamp column cannot be found will be throw out if the time serials related API

is called without fine timestamp column assigned or the assigned timestamp columns are

dropped.

Time serials columns should be assigned with column whose type is Date, otherwise exception is

expected

Time serials columns assigning API 'with_timestamp_columns' can take None value fine/coarse

timestamp column name, which will clear previously assigned timestamp columns.

Exception will be thrown out when either coarse grain or fine grained timestamp column is

dropped with indication for user that dropping can be done after either excluding timestamp

column in dropping list or call with_time_stamp with None value to release timestamp columns

Exception will be thrown out when either coarse grain or fine grained timestamp column is not

included in keep columns list with indication for user that keeping can be done after either

including timestamp column in keep column list or call with_time_stamp with None value to

release timestamp columns.

Added logging for the size of a registered model.

Fixed warning printed to console when "packaging" python package is not installed: "Using older

than supported version of lightgbm, please upgrade to version greater than 2.2.1"

Fixed download model explanation with sharding for global explanations with many features

Fixed mimic explainer missing initialization examples on output explanation

Fixed immutable error on set properties when uploading with explanation client using two

different types of models

Added a get_raw param to scoring explainer .explain() so one scoring explainer can return both

engineered and raw values.

Introduced public APIs from AutoML for supporting explanations from automl explain SDK -

Newer way of supporting AutoML explanations by decoupling AutoML featurization and explain

SDK - Integrated raw explanation support from azureml explain SDK for AutoML models.

Removing azureml-defaults from remote training environments.

Changed default cache store location from FileCacheStore based one to AzureFileCacheStore one

for AutoML on Azure Databricks code path.

Fixed correct validation of input data if they are specified in a Dataflow format

from azureml.train.dnn import TensorFlow, Mpi, ParameterServer

Reverted source_directory_data_store deprecation.

Added ability to override azureml installed package versions.

Added dockerfile support in environment_definition parameter in estimators.

Simplified distributed training parameters in estimators.

The new web experience enables data scientists and data engineers to complete their end-to-end machine learning

lifecycle from prepping and visualizing data to training and deploying models in a single location.

2019-09-03
Azure Machine Learning SDK for Python v1.0.60

Key features:

Using this new Azure Machine Learning interface, you can now:

Manage your notebooks or link out to Jupyter

Run automated ML experiments

Create datasets from local files, datastores, & web files

Explore & prepare datasets for model creation

Monitor data drift for your models

View recent resources from a dashboard

At the time of this release, the following browsers are supported: Chrome, Firefox, Safari, and Microsoft Edge

Preview.

Known issues:

1. Refresh your browser if you see "Something went wrong! Error loading chunk files" when deployment is in

progress.

2. Can't delete or rename file in Notebooks and Files. During Public Preview you can use Jupyter UI or Terminal

in Notebook VM to perform update file operations. Because it is a mounted network file system all changes

you make on Notebook VM are immediately reflected in the Notebook Workspace.

3. To SSH into the Notebook VM:

a. Find the SSH keys that were created during VM setup. Or, find the keys in the Azure Machine Learning

workspace > open Compute tab > locate Notebook VM in the list > open it's properties : copy the keys

from the dialog.

b. Import those public and private SSH keys to your local machine.

c. Use them to SSH into the Notebook VM.

New features

Introduced FileDataset, which references single or multiple files in your datastores or public urls. The files

can be of any format. FileDataset provides you with the ability to download or mount the files to your

compute. To learn about FileDataset, please visit https://aka.ms/file-dataset.

Added Pipeline Yaml Support for PythonScript Step, Adla Step, Databricks Step, DataTransferStep, and

AzureBatch Step

Bug fixes and improvements

workspace = Workspace.from_config()
all_datasets = Dataset.get_all(workspace)
mydata = all_datasets['my-data']

azureml-automl-core

AutoArima is now a suggestable pipeline for preview only.

Improved error reporting for forecasting.

Improved the logging by using custom exceptions instead of generic in the forecasting tasks.

Removed the check on max_concurrent_iterations to be less than total number of iterations.

AutoML models now return AutoMLExceptions

This release improves the execution performance of automated machine learning local runs.

azureml-core

Introduce Dataset.get_all(workspace), which returns a dictionary of TabularDataset and

FileDataset objects keyed by their registration name.

workspace = Workspace.from_config()
all_datasets = Dataset.get_all(workspace)
mydata = all_datasets['my-data']

Introduce parition_format as argument to Dataset.Tabular.from_delimited_files and

Dataset.Tabular.from_parquet.files . The partition information of each data path will be

extracted into columns based on the specified format. '{column_name}' creates string column,

and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM',

'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute, and second for the

datetime type. The partition_format should start from the position of first partition key until

the end of file path. For example, given the path '../USA/2019/01/01/data.csv' where the

partition is by country and time,

partition_format='/{Country}/{PartitionDate:yyyy/MM/dd}/data.csv' creates string column

'Country' with value 'USA' and datetime column 'PartitionDate' with value '2019-01-01'.

Introduce partition_format as argument to Dataset.Tabular.from_delimited_files and

Dataset.Tabular.from_parquet.files . The partition information of each data path will be

extracted into columns based on the specified format. '{column_name}' creates string column,

and '{column_name:yyyy/MM/dd/HH/mm/ss}' creates datetime column, where 'yyyy', 'MM',

'dd', 'HH', 'mm' and 'ss' are used to extract year, month, day, hour, minute, and second for the

datetime type. The partition_format should start from the position of first partition key until

the end of file path. For example, given the path '../USA/2019/01/01/data.csv' where the

partition is by country and time,

partition_format='/{Country}/{PartitionDate:yyyy/MM/dd}/data.csv' creates string column

'Country' with value 'USA' and datetime column 'PartitionDate' with value '2019-01-01'.

to_csv_files and to_parquet_files methods have been added to TabularDataset . These

https://aka.ms/file-dataset

Azure Machine Learning Data Prep SDK v1.1.14

2019-08-19
Azure Machine Learning SDK for Python v1.0.57

methods enable conversion between a TabularDataset and a FileDataset by converting the

data to files of the specified format.

Automatically log into the base image registry when saving a Dockerfile generated by

Model.package().

'gpu_support' is no longer necessary; AML now automatically detects and uses the nvidia

docker extension when it is available. It will be removed in a future release.

Added support to create, update, and use PipelineDrafts.

This release improves the execution performance of automated machine learning local runs.

Users can query metrics from run history by name.

Improved the logging by using custom exceptions instead of generic in the forecasting tasks.

azureml-explain-model

Added feature_maps parameter to the new MimicWrapper, allowing users to get raw feature

explanations.

Dataset uploads are now off by default for explanation upload, and can be re-enabled with

upload_datasets=True

Added "is_law" filtering parameters to explanation list and download functions.

Adds method get_raw_explanation(feature_maps) to both global and local explanation objects.

Added version check to lightgbm with printed warning if below supported version

Optimized memory usage when batching explanations

AutoML models now return AutoMLExceptions

azureml-pipeline-core

Added support to create, update, and use PipelineDrafts - can be used to maintain mutable

pipeline definitions and use them interactively to run

azureml-train-automl

Created feature to install specific versions of gpu-capable pytorch v1.1.0, cuda toolkit 9.0, pytorch-

transformers, which is required to enable BERT/ XLNet in the remote python runtime environment.

azureml-train-core

Early failure of some hyperparameter space definition errors directly in the sdk instead of server

side.

Bug fixes and improvements

Enabled writing to ADLS/ADLSGen2 using raw path and credentials.

Fixed a bug that caused include_path=True to not work for read_parquet .

Fixed to_pandas_dataframe() failure caused by exception "Invalid property value: hostSecret".

Fixed a bug where files could not be read on DBFS in Spark mode.

New features

Enabled TabularDataset to be consumed by AutomatedML. To learn more about TabularDataset , please

visit https://aka.ms/azureml/howto/createdatasets.

https://aka.ms/azureml/howto/createdatasets

Bug fixes and improvements

automl-client-core-nativeclient

azure-cli-ml

azureml-automl-core

azureml-core

Fixed the error, raised when training and/or validation labels (y and y_valid) are provided in the

form of pandas dataframe but not as numpy array.

Updated interface to create a RawDataContext to only require the data and the AutoMLBaseSettings

object.

Allow AutoML users to drop training series that are not long enough when forecasting. - Allow

AutoML users to drop grains from the test set that does not exist in the training set when

forecasting.

You can now update the TLS/SSL certificate for the scoring endpoint deployed on AKS cluster both

for Microsoft generated and customer certificate.

Fixed an issue in AutoML where rows with missing labels were not removed properly.

Improved error logging in AutoML; full error messages will now always be written to the log file.

AutoML has updated its package pinning to include azureml-defaults , azureml-explain-model ,

and azureml-dataprep . AutoML will no longer warn on package mismatches (except for

azureml-train-automl package).

Fixed an issue in timeseries where cv splits are of unequal size causing bin calculation to fail.

When running ensemble iteration for the Cross-Validation training type, if we ended up having

trouble downloading the models trained on the entire dataset, we were having an inconsistency

between the model weights and the models that were being fed into the voting ensemble.

Fixed the error, raised when training and/or validation labels (y and y_valid) are provided in the

form of pandas dataframe but not as numpy array.

Fixed the issue with the forecasting tasks when None was encountered in the Boolean columns of

input tables.

Allow AutoML users to drop training series that are not long enough when forecasting. - Allow

AutoML users to drop grains from the test set that does not exist in the training set when

forecasting.

Fixed issue with blob_cache_timeout parameter ordering.

Added external fit and transform exception types to system errors.

Added support for Key Vault secrets for remote runs. Add a azureml.core.keyvault.Keyvault class to

add, get, and list secrets from the keyvault associated with your workspace. Supported operations

are:

Additional methods to obtain default keyvault and get secrets during remote run:

Added additional override parameters to submit-hyperdrive CLI command.

Improve reliability of API calls be expanding retries to common requests library exceptions.

azureml.core.workspace.Workspace.get_default_keyvault()

azureml.core.keyvault.Keyvault.set_secret(name, value)

azureml.core.keyvault.Keyvault.set_secrets(secrets_dict)

azureml.core.keyvault.Keyvault.get_secret(name)

azureml.core.keyvault.Keyvault.get_secrets(secrets_list)

azureml.core.keyvault.Keyvault.list_secrets()

azureml.core.workspace.Workspace.get_default_keyvault()

azureml.core.run.Run.get_secret(name)

azureml.core.run.Run.get_secrets(secrets_list)

Azure Machine Learning Data Prep SDK v1.1.12

Azure portal

azureml-explain-model

azureml-opendatasets

azureml-pipeline-core

azureml-telemetr y

azureml-train-automl

azureml-train-core

azureml-widgets

Add support for submitting runs from a submitted run.

Fixed expiring SAS token issue in FileWatcher, which caused files to stop being uploaded after their

initial token had expired.

Supported importing HTTP csv/tsv files in dataset python SDK.

Deprecated the Workspace.setup() method. Warning message shown to users suggests using

create() or get()/from_config() instead.

Added Environment.add_private_pip_wheel(), which enables uploading private custom python

packages whl to the workspace and securely using them to build/materialize the environment.

You can now update the TLS/SSL certificate for the scoring endpoint deployed on AKS cluster both

for Microsoft generated and customer certificate.

Added parameter to add a model ID to explanations on upload.

Added is_raw tagging to explanations in memory and upload.

Added pytorch support and tests for azureml-explain-model package.

Support detecting and logging auto test environment.

Added classes to get US population by county and zip.

Added label property to input and output port definitions.

Fixed an incorrect telemetry configuration.

Fixed the bug where on setup failure, error was not getting logged in "errors" field for the setup

run and hence was not stored in parent run "errors".

Fixed an issue in AutoML where rows with missing labels were not removed properly.

Allow AutoML users to drop training series that are not long enough when forecasting.

Allow AutoML users to drop grains from the test set that do not exist in the training set when

forecasting.

Now AutoMLStep passes through automl config to backend to avoid any issues on changes or

additions of new config parameters.

AutoML Data Guardrail is now in public preview. User will see a Data Guardrail report (for

classification/regression tasks) after training and also be able to access it through SDK API.

Added torch 1.2 support in PyTorch Estimator.

Improved confusion matrix charts for classification training.

New features

Lists of strings can now be passed in as input to read_* methods.

Bug fixes and improvements

The performance of read_parquet has been significantly improved when running in Spark.

Fixed an issue where column_type_builder failed in case of a single column with ambiguous date

formats.

Preview Feature

2019-08-05
Azure Machine Learning SDK for Python v1.0.55

Log and output file streaming is now available for run details pages. The files will stream updates in real

time when the preview toggle is turned on.

Ability to set quota at a workspace level is released in preview. AmlCompute quotas are allocated at the

subscription level, but we now allow you to distribute that quota between workspaces and allocate it for

fair sharing and governance. Just click on the Usages+Quotas blade in the left navigation bar of your

workspace and select the Configure Quotas tab. Note that you must be a subscription admin to be able

to set quotas at the workspace level since this is a cross-workspace operation.

New features

Token based authentication is now supported for the calls made to the scoring endpoint deployed on

AKS. We will continue to support the current key based authentication and users can use one of these

authentication mechanisms at a time.

Ability to register a blob storage that is behind the virtual network (VNet) as a datastore.

Bug fixes and improvements

azureml-automl-core

azureml-contr ib-explain-model

azureml-core

Fixes a bug where validation size for CV splits is small and results in bad predicted vs. true charts

for regression and forecasting.

The logging of forecasting tasks on the remote runs improved, now user is provided with

comprehensive error message if the run was failed.

Fixed failures of Timeseries if preprocess flag is True.

Made some forecasting data validation error messages more actionable.

Reduced memory consumption of AutoML runs by dropping and/or lazy loading of datasets,

especially in between process spawns

Added model_task flag to explainers to allow user to override default automatic inference logic for

model type

Widget changes: Automatically installs with contrib , no more nbextension install/enable -

support explanation with just global feature importance (eg Permutative)

Dashboard changes: - Box plots and violin plots in addition to beeswarm plot on summary page -

Much faster rerendering of beeswarm plot on 'Top -k' slider change - helpful message explaining

how top-k is computed - Useful customizable messages in place of charts when data not provided

Added Model.package() method to create Docker images and Dockerfiles that encapsulate models

and their dependencies.

Updated local webservices to accept InferenceConfigs containing Environment objects.

Fixed Model.register() producing invalid models when '.' (for the current directory) is passed as

the model_path parameter.

Add Run.submit_child, the functionality mirrors Experiment.submit while specifying the run as the

parent of the submitted child run.

Support configuration options from Model.register in Run.register_model.

Ability to run JAR jobs on existing cluster.

Now supporting instance_pool_id and cluster_log_dbfs_path parameters.

Added support for using an Environment object when deploying a Model to a Webservice. The

Environment object can now be provided as a part of the InferenceConfig object.

Add appinsifht mapping for new regions - centralus - westus - northcentralus

Azure Machine Learning Data Prep SDK v1.1.10

2019-07-23
Azure Machine Learning SDK for Python v1.0.53

azureml-explain-model

azureml-mlflow

azureml-pipeline-steps

azureml-train-automl

Added documentation for all the attributes in all the Datastore classes.

Added blob_cache_timeout parameter to Datastore.register_azure_blob_container .

Added save_to_directory and load_from_directory methods to

azureml.core.environment.Environment.

Added the "az ml environment download" and "az ml environment register" commands to the CLI.

Added Environment.add_private_pip_wheel method.

Added dataset tracking to Explanations using the Dataset service (preview).

Decreased default batch size when streaming global explanations from 10k to 100.

Added model_task flag to explainers to allow user to override default automatic inference logic for

model type.

Fixed bug in mlflow.azureml.build_image where nested directories are ignored.

Added ability to run JAR jobs on existing Azure Databricks cluster.

Added support instance_pool_id and cluster_log_dbfs_path parameters for DatabricksStep step.

Added support for pipeline parameters in DatabricksStep step.

Added docstrings for the Ensemble related files.

Updated docs to more appropriate language for max_cores_per_iteration and

max_concurrent_iterations

The logging of forecasting tasks on the remote runs improved, now user is provided with

comprehensive error message if the run was failed.

Removed get_data from pipeline automlstep notebook.

Started support dataprep in automlstep .

New features

You can now request to execute specific inspectors (e.g. histogram, scatter plot, etc.) on specific columns.

Added a parallelize argument to append_columns . If True, data will be loaded into memory but execution

will run in parallel; if False, execution will be streaming but single-threaded.

New features

Automated Machine Learning now supports training ONNX models on the remote compute target

Azure Machine Learning now provides ability to resume training from a previous run, checkpoint or

model files.

Learn how to use estimators to resume training from a previous run

Bug fixes and improvements

automl-client-core-nativeclient

azure-cli-ml

Fix the bug about loosing columns types after the transformation (bug linked);

Allow y_query to be an object type containing None(s) at the begin (#459519).

CLI commands "model deploy" and "service update" now accept parameters, config files, or a

combination of the two. Parameters have precedence over attributes in files.

https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training-with-deep-learning/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb

azureml-automl-core

azureml-contr ib-datadrift

azureml-contr ib-explain-model

azureml-contr ib-featureengineering

azureml-core

Model description can now be updated after registration

Update NimbusML dependency to 1.2.0 version (current latest).

Adding support for NimbusML estimators & pipelines to be used within AutoML estimators.

Fixing a bug in the Ensemble selection procedure which was unnecessarily growing the resulting

ensemble even if the scores remained constant.

Enable re-use of some featurizations across CV Splits for forecasting tasks. This speeds up the run-

time of the setup run by roughly a factor of n_cross_validations for expensive featurizations like

lags and rolling windows.

Addressing an issue if time is out of pandas supported time range. We now raise a DataException

if time is less than pd.Timestamp.min or greater than pd.Timestamp.max

Forecasting now allows different frequencies in train and test sets if they can be aligned. For

example, "quarterly starting in January" and at "quarterly starting in October" can be aligned.

The property "parameters" was added to the TimeSeriesTransformer.

Remove old exception classes.

In forecasting tasks, the target_lags parameter now accepts a single integer value or a list of

integers. If the integer was provided, only one lag will be created. If a list is provided, the unique

values of lags will be taken. target_lags=[1, 2, 2, 4] will create lags of one, 2 and 4 periods.

Fix the bug about losing columns types after the transformation (bug linked);

In model.forecast(X, y_query) , allow y_query to be an object type containing None(s) at the begin

(#459519).

Add expected values to automl output

Improvements to example notebook including switch to azureml-opendatasets instead of

azureml-contrib-opendatasets and performance improvements when enriching data

Fixed transformations argument for LIME explainer for raw feature importance in azureml-

contrib-explain-model package

Added segmentations to image explanations in image explainer for the AzureML-contrib-explain-

model package

Add scipy sparse support for LimeExplainer

Added batch_size to mimic explainer when include_local=False , for streaming global

explanations in batches to improve execution time of DecisionTreeExplainableModel

Fix for calling set_featurizer_timeseries_params(): dict value type change and null check - Add

notebook for timeseries featurizer

Update NimbusML dependency to 1.2.0 version (current latest).

Added the ability to attach DBFS datastores in the AzureML CLI

Fixed the bug with datastore upload where an empty folder is created if target_path started with

/

Fixed deepcopy issue in ServicePrincipalAuthentication.

Added the "az ml environment show" and "az ml environment list" commands to the CLI.

Environments now support specifying a base_dockerfile as an alternative to an already-built

base_image.

The unused RunConfiguration setting auto_prepare_environment has been marked as deprecated.

Model description can now be updated after registration

Bugfix: Model and Image delete now provides more information about retrieving upstream

azureml-explain-model

azureml-mlflow

azureml-opendatasets

objects that depend on them if delete fails due to an upstream dependency.

Fixed bug that printed blank duration for deployments that occur when creating a workspace for

some environments.

Improved workspace create failure exceptions. Such that users don't see "Unable to create

workspace. Unable to find..." as the message and instead see the actual creation failure.

Add support for token authentication in AKS webservices.

Add get_token() method to Webservice objects.

Added CLI support to manage machine learning datasets.

Datastore.register_azure_blob_container now optionally takes a blob_cache_timeout value (in

seconds) which configures blobfuse's mount parameters to enable cache expiration for this

datastore. The default is no timeout, i.e. when a blob is read, it will stay in the local cache until the

job is finished. Most jobs will prefer this setting, but some jobs need to read more data from a

large dataset than will fit on their nodes. For these jobs, tuning this parameter will help them

succeed. Take care when tuning this parameter : setting the value too low can result in poor

performance, as the data used in an epoch may expire before being used again. This means that all

reads will be done from blob storage (i.e. the network) rather than the local cache, which

negatively impacts training times.

Model description can now properly be updated after registration

Model and Image deletion now provides more information about upstream objects that depend

on them which causes the delete to fail

Improve resource utilization of remote runs using azureml.mlflow.

Fixed transformations argument for LIME explainer for raw feature importance in azureml-

contrib-explain-model package

add scipy sparse support for LimeExplainer

added shape linear explainer wrapper, as well as another level to tabular explainer for explaining

linear models

for mimic explainer in explain model library, fixed error when include_local=False for sparse data

input

add expected values to automl output

fixed permutation feature importance when transformations argument supplied to get raw feature

importance

added batch_size to mimic explainer when include_local=False , for streaming global

explanations in batches to improve execution time of DecisionTreeExplainableModel

for model explainability library, fixed blackbox explainers where pandas dataframe input is

required for prediction

Fixed a bug where explanation.expected_values would sometimes return a float rather than a list

with a float in it.

Improve performance of mlflow.set_experiment(experiment_name)

Fix bug in use of InteractiveLoginAuthentication for mlflow tracking_uri

Improve resource utilization of remote runs using azureml.mlflow.

Improve the documentation of the azureml-mlflow package

Patch bug where mlflow.log_artifacts("my_dir") would save artifacts under "my_dir/" instead of ""

Pin pyarrow of opendatasets to old versions (<0.14.0) because of memory issue newly

introduced there.

Move azureml-contrib-opendatasets to azureml-opendatasets.

Azure Machine Learning Data Prep SDK v1.1.9

2019-07-09
Visual Interface

Azure Machine Learning SDK for Python v1.0.48

azureml-pipeline-steps

azureml-telemetr y

azureml-train-automl

azureml-train-core

Allow open dataset classes to be registered to Azure Machine Learning workspace and leverage

AML Dataset capabilities seamlessly.

Improve NoaaIsdWeather enrich performance in non-SPARK version significantly.

DBFS Datastore is now supported for Inputs and Outputs in DatabricksStep.

Updated documentation for Azure Batch Step with regards to inputs/outputs.

In AzureBatchStep, changed delete_batch_job_after_finish default value to true.

Move azureml-contrib-opendatasets to azureml-opendatasets.

Allow open dataset classes to be registered to Azure Machine Learning workspace and leverage

AML Dataset capabilities seamlessly.

Improve NoaaIsdWeather enrich performance in non-SPARK version significantly.

Updated documentation on get_output to reflect the actual return type and provide additional

notes on retrieving key properties.

Update NimbusML dependency to 1.2.0 version (current latest).

add expected values to automl output

Strings are now accepted as compute target for Automated Hyperparameter Tuning

The unused RunConfiguration setting auto_prepare_environment has been marked as deprecated.

New features

Added support for reading a file directly from a http or https url.

Bug fixes and improvements

Improved error message when attempting to read a Parquet Dataset from a remote source (which is not

currently supported).

Fixed a bug when writing to Parquet file format in ADLS Gen 2, and updating the ADLS Gen 2 container

name in the path.

Preview features

Added "Execute R script" module in visual interface.

New features

azureml-opendatasets

azureml-contr ib-opendatasets is now available as azureml-opendatasets . The old package

can still work, but we recommend you using azureml-opendatasets moving forward for richer

capabilities and improvements.

This new package allows you to register open datasets as Dataset in Azure Machine Learning

workspace, and leverage whatever functionalities that Dataset offers.

It also includes existing capabilities such as consuming open datasets as Pandas/SPARK

dataframes, and location joins for some dataset like weather.

Preview features

HyperDriveConfig can now accept pipeline object as a parameter to support hyperparameter tuning

using a pipeline.

Bug fixes and improvements

azureml-train-automl

azureml-opendatasets

azureml-explain-model

azureml-core

azureml-mlflow

azureml-pipeline-core

azureml-pipeline-steps

Fixed the bug about losing columns types after the transformation.

Fixed the bug to allow y_query to be an object type containing None(s) at the beginning.

Fixed the issue in the Ensemble selection procedure which was unnecessarily growing the

resulting ensemble even if the scores remained constant.

Fixed the issue with whitelist_models and blacklist_models settings in AutoMLStep.

Fixed the issue that prevented the usage of preprocessing when AutoML would have been used in

the context of Azure ML Pipelines.

Moved azureml-contrib-opendatasets to azureml-opendatasets.

Allowed open dataset classes to be registered to Azure Machine Learning workspace and leverage

AML Dataset capabilities seamlessly.

Improved NoaaIsdWeather enrich performance in non-SPARK version significantly.

Updated online documentation for interpretability objects.

Added batch_size to mimic explainer when include_local=False , for streaming global

explanations in batches to improve execution time of DecisionTreeExplainableModel for model

explainability library.

Fixed the issue where explanation.expected_values would sometimes return a float rather than a

list with a float in it.

Added expected values to automl output for mimic explainer in explain model library.

Fixed permutation feature importance when transformations argument supplied to get raw

feature importance.

Added the ability to attach DBFS datastores in the AzureML CLI.

Fixed the issue with datastore upload where an empty folder is created if target_path started

with / .

Enabled comparison of two datasets.

Model and Image delete now provides more information about retrieving upstream objects that

depend on them if delete fails due to an upstream dependency.

Deprecated the unused RunConfiguration setting in auto_prepare_environment.

Improved resource utilization of remote runs that use azureml.mlflow.

Improved the documentation of the azureml-mlflow package.

Fixed the issue where mlflow.log_artifacts("my_dir") would save artifacts under "my_dir/artifact-

paths" instead of "artifact-paths".

Parameter hash_paths for all pipeline steps is deprecated and will be removed in future. By default

contents of the source_directory is hashed (except files listed in .amlignore or .gitignore)

Continued improving Module and ModuleStep to support compute type specific modules, to

prepare for RunConfiguration integration and other changes to unlock compute type specific

module usage in pipelines.

AzureBatchStep: Improved documentation with regards to inputs/outputs.

Azure Machine Learning Data Prep SDK v1.1.8

2019-07-01
Azure Machine Learning Data Prep SDK v1.1.7

2019-06-25
Azure Machine Learning SDK for Python v1.0.45

azureml-train-core

azureml-opendatasets

AzureBatchStep: Changed delete_batch_job_after_finish default value to true.

Strings are now accepted as compute target for Automated Hyperparameter Tuning.

Deprecated the unused RunConfiguration setting in auto_prepare_environment.

Deprecated parameters conda_dependencies_file_path and pip_requirements_file_path in favor of

conda_dependencies_file and pip_requirements_file respectively.

Improve NoaaIsdWeather enrich performance in non-SPARK version significantly.

New features

Dataflow objects can now be iterated over, producing a sequence of records. See documentation for

Dataflow.to_record_iterator .

Dataflow objects can now be iterated over, producing a sequence of records. See documentation for

Dataflow.to_record_iterator .

Bug fixes and improvements

Increased the robustness of DataPrep SDK.

Improved handling of pandas DataFrames with non-string Column Indexes.

Improved the performance of to_pandas_dataframe in Datasets.

Fixed a bug where Spark execution of Datasets failed when run in a multi-node environment.

Increased the robustness of DataPrep SDK.

Improved handling of pandas DataFrames with non-string Column Indexes.

Improved the performance of to_pandas_dataframe in Datasets.

Fixed a bug where Spark execution of Datasets failed when run in a multi-node environment.

We reverted a change that improved performance, as it was causing issues for some customers using Azure

Databricks. If you experienced an issue on Azure Databricks, you can upgrade to version 1.1.7 using one of the

methods below:

1. Run this script to upgrade: %sh /home/ubuntu/databricks/python/bin/pip install azureml-dataprep==1.1.7

2. Recreate the cluster, which will install the latest Data Prep SDK version.

New features

Add decision tree surrogate model to mimic explainer in azureml-explain-model package

Ability to specify a CUDA version to be installed on Inferencing images. Support for CUDA 9.0, 9.1, and

10.0.

Information about Azure ML training base images are now available at Azure ML Containers GitHub

Repository and DockerHub

https://github.com/Azure/AzureML-Containers
https://hub.docker.com/_/microsoft-azureml

2019-06-24
Azure Machine Learning Data Prep SDK v1.1.6

2019-06-10
Azure Machine Learning SDK for Python v1.0.43

Added CLI support for pipeline schedule. Run "az ml pipeline -h" to learn more

Added custom Kubernetes namespace parameter to AKS webservice deployment configuration and CLI.

Deprecated hash_paths parameter for all pipeline steps

Model.register now supports registering multiple individual files as a single model with use of the

child_paths parameter.

Preview features

Scoring explainers can now optionally save conda and pip information for more reliable serialization and

deserialization.

Bug Fix for Auto Feature Selector.

Updated mlflow.azureml.build_image to the new api, patched bugs exposed by the new implementation.

Bug fixes and improvements

Removed paramiko dependency from azureml-core. Added deprecation warnings for legacy compute

target attach methods.

Improve performance of run.create_children

In mimic explainer with binary classifier, fix the order of probabilities when teacher probability is used for

scaling shape values.

Improved error handling and message for Automated machine learning.

Fixed the iteration timeout issue for Automated machine learning.

Improved the time-series transformation performance for Automated machine learning.

New features

Added summary functions for top values (SummaryFunction.TOPVALUES) and bottom values (

SummaryFunction.BOTTOMVALUES).

Bug fixes and improvements

Significantly improved the performance of read_pandas_dataframe .

Fixed a bug that would cause get_profile() on a Dataflow pointing to binary files to fail.

Exposed set_diagnostics_collection() to allow for programmatic enabling/disabling of the telemetry

collection.

Changed the behavior of get_profile() . NaN values are now ignored for Min, Mean, Std, and Sum,

which aligns with the behavior of Pandas.

New features

Azure Machine Learning now provides first-class support for popular machine learning and data analysis

framework Scikit-learn. Using SKLearn estimator, users can easily train and deploy Scikit-learn models.

Added support for creating ModuleStep in pipelines along with Module and ModuleVersion classes to

manage reusable compute units.

ACI webservices now support persistent scoring_uri through updates. The scoring_uri will change from

IP to FQDN. The Dns Name Label for FQDN can be configured by setting the dns_name_label on

deploy_configuration.

Learn how to run hyperparameter tuning with Scikit-learn using HyperDrive.

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn.sklearn?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb

Azure Machine Learning Data Prep SDK v1.1.5

2019-05-28
Azure Machine Learning Data Prep SDK v1.1.4

Automated machine learning new features:

AmlCompute Quota approvals just became faster! We have now automated the process to approve your

quota requests within a threshold. For more information on how quotas work, learn how to manage

quotas.

STL featurizer for forecasting

KMeans clustering is enabled for feature sweeping

Preview features

Integration with MLflow 1.0.0 tracking through azureml-mlflow package (example notebooks).

Submit Jupyter notebook as a run. API Reference Documentation

Public Preview of Data Drift Detector through azureml-contrib-datadrift package (example notebooks).

Data Drift is one of the top reasons where model accuracy degrades over time. It happens when data

served to model in production is different from the data that the model was trained on. AML Data Drift

detector helps customer to monitor data drift and sends alert whenever drift is detected.

Breaking changes

Bug fixes and improvements

RunConfiguration load and save supports specifying a full file path with full back-compat for previous

behavior.

Added caching in ServicePrincipalAuthentication, turned off by default.

Enable logging of multiple plots under the same metric name.

Model class now properly importable from azureml.core (from azureml.core import Model).

In pipeline steps, hash_path parameter is now deprecated. New behavior is to hash complete

source_directory, except files listed in .amlignore or .gitignore.

In pipeline packages, various get_all and get_all_* methods have been deprecated in favor of list

and list_* , respectively.

azureml.core.get_run no longer requires classes to be imported before returning the original run type.

Fixed an issue where some calls to WebService Update did not trigger an update.

Scoring timeout on AKS webservices should be between 5ms and 300000ms. Max allowed

scoring_timeout_ms for scoring requests has been bumped from 1 min to 5 min.

LocalWebservice objects now have scoring_uri and swagger_uri properties.

Moved outputs directory creation and outputs directory upload out of the user process. Enabled run

history SDK to run in every user process. This should resolve some synchronization issues experienced

by distributed training runs.

The name of the azureml log written from the user process name will now include process name (for

distributed training only) and PID.

Bug fixes and improvements

For interpreted datetime values that have a 2-digit year format, the range of valid years has been

updated to match Windows May Release. The range has been changed from 1930-2029 to 1950-2049.

When reading in a file and setting handleQuotedLineBreaks=True , \r will be treated as a new line.

Fixed a bug that caused read_pandas_dataframe to fail in some cases.

Improved performance of get_profile .

Improved error messages.

https://docs.microsoft.com/azure/machine-learning/how-to-manage-quotas
https://mlflow.org
https://aka.ms/azureml-mlflow-examples
https://docs.microsoft.com/python/api/azureml-contrib-notebook/azureml.contrib.notebook?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-datadrift/azureml.datadrift.datadriftdetector(class)
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/monitor-models/data-drift

2019-05-14
Azure Machine Learning SDK for Python v1.0.39

2019-05-08
Azure Machine Learning Data Prep SDK v1.1.3

2019-05-06
Azure portal

New features

You can now use the following expression language functions to extract and parse datetime values into

new columns.

When calling get_profile() , you can now see that quantile columns are labeled as (est.) to clearly

indicate that the values are approximations.

You can now use ** globbing when reading from Azure Blob Storage.

RegEx.extract_record() extracts datetime elements into a new column.

create_datetime() creates datetime objects from separate datetime elements.

e.g. dprep.read_csv(path='https://yourblob.blob.core.windows.net/yourcontainer/**/data/*.csv')

Bug fixes

Fixed a bug related to reading a Parquet file from a remote source (Azure Blob).

Changes

Run configuration auto_prepare_environment option is being deprecated, with auto prepare becoming

the default.

New features

Added support to read from a PostgresSQL database, either by calling read_postgresql or using a

Datastore.

See examples in how-to guides:

Data Ingestion notebook

Datastore notebook

Bug fixes and improvements

Fixed issues with column type conversion:

Now correctly converts a boolean or numeric column to a boolean column.

Now does not fail when attempting to set a date column to be date type.

Improved JoinType types and accompanying reference documentation. When joining two dataflows, you

can now specify one of these types of join:

Improved data type inferencing to recognize more date formats.

NONE, MATCH, INNER, UNMATCHLEFT, LEFTANTI, LEFTOUTER, UNMATCHRIGHT, RIGHTANTI,

RIGHTOUTER, FULLANTI, FULL.

In Azure portal, you can now:

Create and run automated ML experiments

Create a Notebook VM to try out sample Jupyter notebooks or your own.

Brand new Authoring section (Preview) in the Azure Machine Learning workspace, which includes Automated

Machine Learning, Visual Interface and Hosted Notebook VMs

https://aka.ms/aml-data-prep-ingestion-nb
https://aka.ms/aml-data-prep-datastore-nb

2019-04-26
Azure Machine Learning SDK for Python v1.0.33

Notebook Virtual Machine

2019-04-26
Azure Machine Learning SDK for Python v1.0.33 released.

Automated Machine Learning

Live chart and metric updating in run reports and run details pages

Updated file viewer for logs, outputs, and snapshots in Run details pages.

New and improved report creation experience in the Experiments tab.

Added ability to download the config.json file from the Overview page of the Azure Machine Learning

workspace.

Support Azure Machine Learning workspace creation from the Azure Databricks workspace.

Automatically create a model using Automated machine learning

Use a drag and drop Visual Interface to run experiments

Create a Notebook VM to explore data, create models, and deploy services.

New features

The Workspace.create method now accepts default cluster configurations for CPU and GPU clusters.

If Workspace creation fails, depended resources are cleaned.

Default Azure Container Registry SKU was switched to basic.

Azure Container Registry is created lazily, when needed for run or image creation.

Support for Environments for training runs.

Use a Notebook VM as a secure, enterprise-ready hosting environment for Jupyter notebooks in which you can

program machine learning experiments, deploy models as web endpoints and perform all other operations

supported by Azure Machine Learning SDK using Python. It provides several capabilities:

Quickly spin up a preconfigured notebook VM that has the latest version of Azure Machine Learning SDK and

related packages.

Access is secured through proven technologies, such as HTTPS, Azure Active Directory authentication and

authorization.

Reliable cloud storage of notebooks and code in your Azure Machine Learning Workspace blob storage

account. You can safely delete your notebook VM without losing your work.

Preinstalled sample notebooks to explore and experiment with Azure Machine Learning features.

Full customization capabilities of Azure VMs, any VM type, any packages, any drivers.

Azure ML Hardware Accelerated Models on FPGAs is generally available.

You can now use the azureml-accel-models package to:

Deploy the container to an Azure Data Box Edge server device

Score your data with the gRPC endpoint with this sample

Train the weights of a supported deep neural network (ResNet 50, ResNet 152, DenseNet-121,

VGG-16, and SSD-VGG)

Use transfer learning with the supported DNN

Register the model with Model Management Service and containerize the model

Deploy the model to an Azure VM with an FPGA in an Azure Kubernetes Service (AKS) cluster

Feature sweeping to enable dynamically adding featurizers for performance optimization. New featurizers:

work embeddings, weight of evidence, target encodings, text target encoding, cluster distance

https://docs.microsoft.com/azure/databox-online/data-box-edge-overview
https://github.com/Azure-Samples/aml-hardware-accelerated-models

MLOps

Smart CV to handle train/valid splits inside automated ML

Few memory optimization changes and runtime performance improvement

Performance improvement in model explanation

ONNX model conversion for local run

Added Subsampling support

Intelligent Stopping when no exit criteria defined

Stacked ensembles

Time Series Forecasting

New predict forecast function

You can now use rolling-origin cross validation on time series data

New functionality added to configure time series lags

New functionality added to support rolling window aggregate features

New Holiday detection and featurizer when country code is defined in experiment settings

Azure Databricks

Enabled time series forecasting and model explainabilty/interpretability capability

You can now cancel and resume (continue) automated ML experiments

Added support for multicore processing

Local deployment & debugging for scoring containers

You can now deploy an ML model locally and iterate quickly on your scoring file and dependencies to ensure

they behave as expected.

Introduced InferenceConfig & Model.deploy()

Model deployment now supports specifying a source folder with an entry script, the same as a RunConfig.

Additionally, model deployment has been simplified to a single command.

Git reference tracking

Customers have been requesting basic Git integration capabilities for some time as it helps maintain an end-

to-end audit trail. We have implemented tracking across major entities in Azure ML for Git-related metadata

(repo, commit, clean state). This information will be collected automatically by the SDK and CLI.

Model profiling & validation ser vice

Customers frequently complain of the difficulty to properly size the compute associated with their inference

service. With our model profiling service, the customer can provide sample inputs and we will profile across

16 different CPU / memory configurations to determine optimal sizing for deployment.

Br ing your own base image for inference

Another common complaint was the difficulty in moving from experimentation to inference RE sharing

dependencies. With our new base image sharing capability, you can now reuse your experimentation base

images, dependencies and all, for inference. This should speed up deployments and reduce the gap from the

inner to the outer loop.

Improved Swagger schema generation experience

Our previous swagger generation method was error prone and impossible to automate. We have a new in-

line way of generating swagger schemas from any Python function via decorators. We have open-sourced

this code and our schema generation protocol is not coupled to the Azure ML platform.

Azure ML CLI is generally available (GA)

2019-04-22

2019-04-17
Azure Machine Learning Data Prep SDK v1.1.2

2019-04-15
Azure portal

2019-04-08
Azure Machine Learning SDK for Python v1.0.23

Models can now be deployed with a single CLI command. We got common customer feedback that no one

deploys an ML model from a Jupyter notebook. The CLI reference documentation has been updated.

Azure Machine Learning SDK for Python v1.0.30 released.

The PipelineEndpoint was introduce to add a new version of a published pipeline while maintaining same

endpoint.

Note: Data Prep Python SDK will no longer install numpy and pandas packages. See updated installation

instructions.

New features

You can now use the Pivot transform.

You can now use regular expressions in native functions.

You can now use to_upper and to_lower functions in expression language.

You can now see the number of unique values of each column in a data profile.

For some of the commonly used reader steps, you can now pass in the infer_column_types argument. If

it is set to True , Data Prep will attempt to detect and automatically convert column types.

You can now call Dataflow.shape .

How-to guide: Pivot notebook

Examples:

dflow.filter(dprep.RegEx('pattern').is_match(dflow['column_name']))

dflow.assert_value('column_name', dprep.RegEx('pattern').is_match(dprep.value))

inference_arguments is now deprecated.

Bug fixes and improvements

keep_columns now accepts an additional optional argument validate_column_exists , which checks if the

result of keep_columns will contain any columns.

All reader steps (which read from a file) now accept an additional optional argument verify_exists .

Improved performance of reading from pandas dataframe and getting data profiles.

Fixed a bug where slicing a single step from a Dataflow failed with a single index.

You can now resubmit an existing Script run on an existing remote compute cluster.

You can now run a published pipeline with new parameters on the Pipelines tab.

Run details now supports a new Snapshot file viewer. You can view a snapshot of the directory when you

submitted a specific run. You can also download the notebook that was submitted to start the run.

You can now cancel parent runs from the Azure portal.

New features

https://aka.ms/azmlcli
https://docs.microsoft.com/python/api/azureml-pipeline-core/azureml.pipeline.core.pipeline_endpoint.pipelineendpoint?view=azure-ml-py
https://github.com/Microsoft/AMLDataPrepDocs
https://aka.ms/aml-data-prep-pivot-nb

Azure Machine Learning Data Prep SDK v1.1.1

2019-03-25
Azure Machine Learning SDK for Python v1.0.21

Azure Machine Learning Data Prep SDK v1.1.0

The Azure Machine Learning SDK now supports Python 3.7.

Azure Machine Learning DNN Estimators now provide built-in multi-version support. For example,

TensorFlow estimator now accepts a framework_version parameter, and users can specify version '1.10'

or '1.12'. For a list of the versions supported by your current SDK release, call get_supported_versions()

on the desired framework class (for example, TensorFlow.get_supported_versions()). For a list of the

versions supported by the latest SDK release, see the DNN Estimator documentation.

New features

You can read multiple Datastore/DataPath/DataReference sources using read_* transforms.

You can perform the following operations on columns to create a new column: division, floor, modulo,

power, length.

Data Prep is now part of the Azure ML diagnostics suite and will log diagnostic information by default.

To turn this off, set this environment variable to true: DISABLE_DPREP_LOGGER

Bug fixes and improvements

Improved code documentation for commonly used classes and functions.

Fixed a bug in auto_read_file that failed to read Excel files.

Added option to overwrite the folder in read_pandas_dataframe.

Improved performance of dotnetcore2 dependency installation, and added support for Fedora 27/28 and

Ubuntu 1804.

Improved the performance of reading from Azure Blobs.

Column type detection now supports columns of type Long.

Fixed a bug where some date values were being displayed as timestamps instead of Python datetime

objects.

Fixed a bug where some type counts were being displayed as doubles instead of integers.

New features

The azureml.core.Run.create_children method allows low-latency creation of multiple child runs with a

single call.

Breaking changes

The concept of the Data Prep Package has been deprecated and is no longer supported. Instead of

persisting multiple Dataflows in one Package, you can persist Dataflows individually.

How-to guide: Opening and Saving Dataflows notebook

New features

Data Prep can now recognize columns that match a particular Semantic Type, and split accordingly. The

STypes currently supported include: email address, geographic coordinates (latitude & longitude), IPv4

and IPv6 addresses, US phone number, and US zip code.

Data Prep now supports the following operations to generate a resultant column from two numeric

columns: subtract, multiply, divide, and modulo.

You can call verify_has_data() on a Dataflow to check whether the Dataflow would produce records if

executed.

How-to guide: Semantic Types notebook

Bug fixes and improvements

https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn?view=azure-ml-py
https://aka.ms/aml-data-prep-open-save-dataflows-nb
https://aka.ms/aml-data-prep-semantic-types-nb

2019-03-11
Azure Machine Learning SDK for Python v1.0.18

Azure Machine Learning Data Prep SDK v1.0.17

2019-02-27
Azure Machine Learning Data Prep SDK v1.0.16

2019-02-25
Azure Machine Learning SDK for Python v1.0.17

Azure portal

You can now specify the number of bins to use in a histogram for numeric column profiles.

The read_pandas_dataframe transform now requires the DataFrame to have string- or byte- typed column

names.

Fixed a bug in the fill_nulls transform, where values were not correctly filled in if the column was

missing.

Changes

The azureml-tensorboard package replaces azureml-contrib-tensorboard.

With this release, you can set up a user account on your managed compute cluster (amlcompute), while

creating it. This can be done by passing these properties in the provisioning configuration. You can find

more details in the SDK reference documentation.

New features

Now supports adding two numeric columns to generate a resultant column using the expression

language.

Bug fixes and improvements

Improved the documentation and parameter checking for random_split.

Bug fix

Fixed a Service Principal authentication issue that was caused by an API change.

New features

Azure Machine Learning now provides first class support for popular DNN framework Chainer. Using

Chainer class users can easily train and deploy Chainer models.

Azure Machine Learning Pipelines added ability to trigger a Pipeline run based on datastore

modifications. The pipeline schedule notebook is updated to showcase this feature.

Learn how to run distributed training with ChainerMN

Learn how to run hyperparameter tuning with Chainer using HyperDrive

Bug fixes and improvements

We have added support in Azure Machine Learning pipelines for setting the source_directory_data_store

property to a desired datastore (such as a blob storage) on RunConfigurations that are supplied to the

PythonScriptStep. By default Steps use Azure File store as the backing datastore, which may run into

throttling issues when a large number of steps are executed concurrently.

New features

New drag and drop table editor experience for reports. Users can drag a column from the well to the

table area where a preview of the table will be displayed. The columns can be rearranged.

https://docs.microsoft.com/python/api/azureml-core/azureml.core.compute.amlcompute.amlcompute#provisioning-configuration-vm-size-----vm-priority--dedicated---min-nodes-0--max-nodes-none--idle-seconds-before-scaledown-none--admin-username-none--admin-user-password-none--admin-user-ssh-key-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--tags-none--description-none--remote-login-port-public-access--notspecified--
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/distributed-chainer/distributed-chainer.ipynb
https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training-with-deep-learning/train-hyperparameter-tune-deploy-with-chainer/train-hyperparameter-tune-deploy-with-chainer.ipynb
https://aka.ms/pl-schedule
https://docs.microsoft.com/python/api/azureml-core/azureml.core.runconfig.runconfiguration?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.python_script_step.pythonscriptstep?view=azure-ml-py

Azure Machine Learning Data Prep SDK v1.0.15

2019-02-11
Azure Machine Learning SDK for Python v1.0.15

Azure Machine Learning Data Prep SDK v1.0.12

2019-01-28
Azure Machine Learning SDK for Python v1.0.10

New Logs file viewer

Links to experiment runs, compute, models, images, and deployments from the activities tab

New features

Data Prep now supports writing file streams from a dataflow. Also provides the ability to manipulate the

file stream names to create new file names.

How-to guide: Working With File Streams notebook

Bug fixes and improvements

Improved performance of t-Digest on large data sets.

Data Prep now supports reading data from a DataPath.

One hot encoding now works on boolean and numeric columns.

Other miscellaneous bug fixes.

New features

Azure Machine Learning Pipelines added AzureBatchStep (notebook), HyperDriveStep (notebook), and

time-based scheduling functionality (notebook).

DataTranferStep updated to work with Azure SQL Server and Azure database for PostgreSQL (notebook).

Changes

Deprecated PublishedPipeline.get_published_pipeline in favor of PublishedPipeline.get .

Deprecated Schedule.get_schedule in favor of Schedule.get .

New features

Data Prep now supports reading from an Azure SQL database using Datastore.

Changes

Improved the memory performance of certain operations on large data.

read_pandas_dataframe() now requires temp_folder to be specified.

The name property on ColumnProfile has been deprecated - use column_name instead.

Changes :

Azure ML SDK no longer has azure-cli packages as dependency. Specifically, azure-cli-core and azure-cli-

profile dependencies have been removed from azureml-core. These are the user impacting changes:

If you are performing "az login" and then using azureml-sdk, the SDK will do the browser or

device code log in one more time. It won't use any credentials state created by "az login".

For Azure CLI authentication, such as using "az login", use

azureml.core.authentication.AzureCliAuthentication class. For Azure CLI authentication, do pip

install azure-cli in the Python environment where you have installed azureml-sdk.

If you are doing "az login" using a service principal for automation, we recommend using

azureml.core.authentication.ServicePrincipalAuthentication class, as azureml-sdk won't use

https://aka.ms/aml-data-prep-file-stream-nb
https://aka.ms/pl-azbatch
https://aka.ms/pl-schedule
https://aka.ms/pl-data-trans

Azure Machine Learning Data Prep SDK v1.0.8

Azure portal: new features

2019-01-14
Azure Machine Learning SDK for Python v1.0.8

Azure Machine Learning Data Prep SDK v1.0.7

2019-01-09
Azure Machine Learning Data Prep SDK v1.0.6

2018-12-20
Azure Machine Learning SDK for Python v1.0.6

Azure Machine Learning Data Prep SDK v1.0.4

credentials state created by azure CLI.

Bug fixes : This release mostly contains minor bug fixes

Bug fixes

Improved the performance of getting data profiles.

Fixed minor bugs related to error reporting.

New drag and drop charting experience for reports. Users can drag a column or attribute from the well to

the chart area where the system will automatically select an appropriate chart type for the user based on the

type of data. Users can change the chart type to other applicable types or add additional attributes.

Supported Chart Types:

Line Chart

Histogram

Stacked Bar Chart

Box Plot

Scatter Plot

Bubble Plot

The portal now dynamically generates reports for experiments. When a user submits a run to an

experiment, a report will automatically be generated with logged metrics and graphs to allow comparison

across different runs.

Bug fixes : This release mostly contains minor bug fixes

New features

Datastore improvements (documented in Datastore how-to-guide)

Added ability to read from and write to Azure File Share and ADLS Datastores in scale-up.

When using Datastores, Data Prep now supports using service principal authentication instead of

interactive authentication.

Added support for wasb and wasbs urls.

Bug fixes

Fixed bug with reading from public readable Azure Blob containers on Spark

Bug fixes : This release mostly contains minor bug fixes

New features

https://aka.ms/aml-data-prep-datastore-nb

2018-12-04: General Availability

Azure Machine Learning Compute

WARNING

Azure Machine Learning SDK for Python v1.0.2

to_bool function now allows mismatched values to be converted to Error values. This is the new default

mismatch behavior for to_bool and set_column_types , whereas the previous default behavior was to

convert mismatched values to False.

When calling to_pandas_dataframe , there is a new option to interpret null/missing values in numeric

columns as NaN.

Added ability to check the return type of some expressions to ensure type consistency and fail early.

You can now call parse_json to parse values in a column as JSON objects and expand them into multiple

columns.

Bug fixes

Fixed a bug that crashed set_column_types in Python 3.5.2.

Fixed a bug that crashed when connecting to Datastore using an AML image.

Updates

Example Notebooks for getting started tutorials, case studies, and how-to guides.

Azure Machine Learning is now generally available.

With this release, we are announcing a new managed compute experience through the Azure Machine Learning

Compute. This compute target replaces Azure Batch AI compute for Azure Machine Learning.

This compute target:

Is used for model training and batch inference/scoring

Is single- to multi-node compute

Does the cluster management and job scheduling for the user

Autoscales by default

Support for both CPU and GPU resources

Enables use of low-priority VMs for reduced cost

Azure Machine Learning Compute can be created in Python, using Azure portal, or the CLI. It must be created in the

region of your workspace, and cannot be attached to any other workspace. This compute target uses a Docker

container for your run, and packages your dependencies to replicate the same environment across all your nodes.

We recommend creating a new workspace to use Azure Machine Learning Compute. There is a remote chance that users

trying to create Azure Machine Learning Compute from an existing workspace might see an error. Existing compute in your

workspace should continue to work unaffected.

Breaking changes

With this release, we are removing support for creating a VM from Azure Machine Learning. You can still

attach an existing cloud VM or a remote on-premises server.

We are also removing support for BatchAI, all of which should be supported through Azure Machine

Learning Compute now.

New

For machine learning pipelines:

https://aka.ms/aml-data-prep-notebooks

Azure Machine Learning Data Prep SDK v0.5.2

Docs and notebooks

Azure portal: new features

2018-11-20

EstimatorStep

HyperDriveStep

MpiStep

Updated

For machine learning pipelines:

DatabricksStep now accepts runconfig

DataTransferStep now copies to and from a SQL datasource

Schedule functionality in SDK to create and update schedules for running published pipelines

Breaking changes

SummaryFunction.N was renamed to SummaryFunction.Count .

Bug Fixes

Use the latest AML Run Token when reading from and writing to datastores on remote runs. Previously, if

the AML Run Token is updated in Python, the Data Prep runtime will not be updated with the updated

AML Run Token.

Additional clearer error messages

to_spark_dataframe() will no longer crash when Spark uses Kryo serialization

Value Count Inspector can now show more than 1000 unique values

Random Split no longer fails if the original Dataflow doesn't have a name

More information

Azure Machine Learning Data Prep SDK

ML Pipelines

Azure Machine Learning compute target

New and updated notebooks for getting started with pipelines, batch scoping, and style transfer

examples: https://aka.ms/aml-pipeline-notebooks

Learn how to create your first pipeline

Learn how to run batch predictions using pipelines

Sample notebooks are now updated to use the new managed compute.

Learn about this compute

Create and manage Azure Machine Learning Compute types in the portal.

Monitor quota usage and request quota for Azure Machine Learning Compute.

View Azure Machine Learning Compute cluster status in real time.

Virtual network support was added for Azure Machine Learning Compute and Azure Kubernetes Service

creation.

Rerun your published pipelines with existing parameters.

New automated machine learning charts for classification models (lift, gains, calibration, feature importance

chart with model explainability) and regression models (residuals and feature importance chart with model

explainability).

Pipelines can be viewed in Azure portal

https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.estimator_step.estimatorstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.hyper_drive_step.hyperdrivestep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.mpi_step.mpistep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.databricks_step.databricksstep?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-pipeline-steps/azureml.pipeline.steps.data_transfer_step.datatransferstep?view=azure-ml-py
https://aka.ms/data-prep-sdk
https://aka.ms/aml-pipeline-notebooks
https://aka.ms/aml-notebooks

Azure Machine Learning SDK for Python v0.1.80

Azure Machine Learning Data Prep SDK v0.5.1

2018-11-05
Azure portal

Azure Machine Learning SDK for Python v0.1.74

Breaking changes

azureml.train.widgets namespace has moved to azureml.widgets.

azureml.core.compute.AmlCompute deprecates the following classes -

azureml.core.compute.BatchAICompute and azureml.core.compute.DSVMCompute. The latter class will

be removed in subsequent releases. The AmlCompute class has an easier definition now, and simply

needs a vm_size and the max_nodes, and will automatically scale your cluster from 0 to the max_nodes

when a job is submitted. Our sample notebooks have been updated with this information and should

give you usage examples. We hope you like this simplification and lots of more exciting features to come

in a later release!

Learn more about the Data Prep SDK by reading reference docs.

New Features

Created a new DataPrep CLI to execute DataPrep packages and view the data profile for a dataset or

dataflow

Redesigned SetColumnType API to improve usability

Renamed smart_read_file to auto_read_file

Now includes skew and kurtosis in the Data Profile

Can sample with stratified sampling

Can read from zip files that contain CSV files

Can split datasets row-wise with Random Split (for example, into test-train sets)

Can get all the column data types from a dataflow or a data profile by calling .dtypes

Can get the row count from a dataflow or a data profile by calling .row_count

Bug Fixes

Fixed long to double conversion

Fixed assert after any add column

Fixed an issue with FuzzyGrouping, where it would not detect groups in some cases

Fixed sort function to respect multi-column sort order

Fixed and/or expressions to be similar to how pandas handles them

Fixed reading from dbfs path

Made error messages more understandable

Now no longer fails when reading on remote compute target using an AML token

Now no longer fails on Linux DSVM

Now no longer crashes when non-string values are in string predicates

Now handles assertion errors when Dataflow should fail correctly

Now supports dbutils mounted storage locations on Azure Databricks

The Azure portal for Azure Machine Learning has the following updates:

A new Pipelines tab for published pipelines.

Added support for attaching an existing HDInsight cluster as a compute target.

Breaking changes

https://github.com/Azure/MachineLearningNotebooks/tree/master/training
https://aka.ms/data-prep-sdk

Azure Machine Learning Data Prep SDK v0.4.0

2018-10-12
Azure Machine Learning SDK for Python v0.1.68

Azure Machine Learning Data Prep SDK v0.3.0

2018-10-01
Azure Machine Learning SDK for Python v0.1.65

*Workspace.compute_targets, datastores, experiments, images, models, and webservices are properties

instead of methods. For example, replace Workspace.compute_targets() with

Workspace.compute_targets.

Run.get_context deprecates Run.get_submitted_run. The latter method will be removed in subsequent

releases.

PipelineData class now expects a datastore object as a parameter rather than datastore_name. Similarly,

Pipeline accepts default_datastore rather than default_datastore_name.

New features

The Azure Machine Learning Pipelines sample notebook now uses MPI steps.

The RunDetails widget for Jupyter notebooks is updated to show a visualization of the pipeline.

New features

Type Count added to Data Profile

Value Count and Histogram is now available

More percentiles in Data Profile

The Median is available in Summarize

Python 3.7 is now supported

When you save a dataflow that contains datastores to a DataPrep package, the datastore information will

be persisted as part of the DataPrep package

Writing to datastore is now supported

Bug fixed

64-bit unsigned integer overflows are now handled properly on Linux

Fixed incorrect text label for plain text files in smart_read

String column type now shows up in metrics view

Type count now is fixed to show ValueKinds mapped to single FieldType instead of individual ones

Write_to_csv no longer fails when path is provided as a string

When using Replace, leaving "find" blank will no longer fail

New features

Multi-tenant support when creating new workspace.

Bugs fixed

You no longer need to pin the pynacl library version when deploying web service.

New features

Added method transform_partition_with_file(script_path), which allows users to pass in the path of a

Python file to execute

Version 0.1.65 includes new features, more documentation, bug fixes, and more sample notebooks.

See the list of known issues to learn about known bugs and workarounds.

https://github.com/Azure/MachineLearningNotebooks/tree/master/pipeline/pipeline-mpi-batch-prediction.ipynb
https://pypi.org/project/azureml-sdk/0.1.65
https://aka.ms/aml-notebooks

Azure Machine Learning Data Prep SDK v0.2.0

Breaking changes

Workspace.experiments, Workspace.models, Workspace.compute_targets, Workspace.images,

Workspace.web_services return dictionary, previously returned list. See azureml.core.Workspace API

documentation.

Automated Machine Learning removed normalized mean square error from the primary metrics.

HyperDrive

Various HyperDrive bug fixes for Bayesian, Performance improvements for get Metrics calls.

Tensorflow 1.10 upgrade from 1.9

Docker image optimization for cold start.

Jobs now report correct status even if they exit with error code other than 0.

RunConfig attribute validation in SDK.

HyperDrive run object supports cancel similar to a regular run: no need to pass any parameters.

Widget improvements for maintaining state of drop-down values for distributed runs and HyperDrive

runs.

TensorBoard and other log files support fixed for Parameter server.

Intel(R) MPI support on service side.

Bugfix to parameter tuning for distributed run fix during validation in BatchAI.

Context Manager now identifies the primary instance.

Azure por tal experience

log_table() and log_row() are supported in Run details.

Automatically create graphs for tables and rows with 1, 2 or 3 numerical columns and an optional

categorical column.

Automated Machine Learning

Improved error handling and documentation

Fixed run property retrieval performance issues.

Fixed continue run issue.

Fixed ensembling iteration issues.

Fixed training hanging bug on MAC OS.

Downsampling macro average PR/ROC curve in custom validation scenario.

Removed extra index logic.

Removed filter from get_output API.

Pipelines

Added a method Pipeline.publish() to publish a pipeline directly, without requiring an execution run first.

Added a method PipelineRun.get_pipeline_runs() to fetch the pipeline runs that were generated from a

published pipeline.

Project Brainwave

Updated support for new AI models available on FPGAs.

Version 0.2.0 includes following features and bug fixes:

New features

Support for one-hot encoding

Support for quantile transform

https://docs.microsoft.com/python/api/azureml-core/azureml.core.workspace(class)?view=azure-ml-py
https://pypi.org/project/azureml-dataprep/0.2.0/

2018-09 (Public preview refresh)

Next steps

Bug fixed:

Works with any Tornado version, no need to downgrade your Tornado version

Value counts for all values, not just the top three

A new, refreshed release of Azure Machine Learning: Read more about this release:

https://azure.microsoft.com/blog/what-s-new-in-azure-machine-learning-service/

Read the overview for Azure Machine Learning.

https://azure.microsoft.com/blog/what-s-new-in-azure-machine-learning-service/

Known issues and troubleshooting Azure Machine
Learning
4/24/2020 • 11 minutes to read • Edit Online

Diagnostic logs

NOTE

Resource quotas

Installation and import

This article helps you find and correct errors or failures you may encounter when using Azure Machine Learning.

Sometimes it can be helpful if you can provide diagnostic information when asking for help. To see some logs:

1. Visit Azure Machine Learning studio.

2. On the left-hand side, select Experiment

3. Select an experiment.

4. Select a run.

5. On the top, select Outputs + logs .

Azure Machine Learning logs information from a variety of sources during training, such as AutoML or the Docker container

that runs the training job. Many of these logs are not documented. If you encounter problems and contact Microsoft

support, they may be able to use these logs during troubleshooting.

Learn about the resource quotas you might encounter when working with Azure Machine Learning.

 pip install azure-ml-datadrift, azureml-train-automl

 pip install azure-ml-datadrift
 pip install azureml-train-automl

Pip Installation: Dependencies are not guaranteed to be consistent with single line installation:

This is a known limitation of pip, as it does not have a functioning dependency resolver when you install as

a single line. The first unique dependency is the only one it looks at.

In the following code azure-ml-datadrift and azureml-train-automl are both installed using a single line

pip install.

For this example, let's say azure-ml-datadrift requires version > 1.0 and azureml-train-automl requires

version < 1.2. If the latest version of azure-ml-datadrift is 1.3, then both packages get upgraded to 1.3,

regardless of the azureml-train-automl package requirement for an older version.

To ensure the appropriate versions are installed for your packages, install using multiple lines like in the

following code. Order isn't an issue here, since pip explicitly downgrades as part of the next line call. And so,

the appropriate version dependencies are applied.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/resource-known-issues.md
https://ml.azure.com

Create and manage workspaces

WARNING

pip install --upgrade azureml-sdk[notebooks,automl] --ignore-installed PyYAML

psutil cryptography==1.5 pyopenssl==16.0.0 ipython==2.2.0

%sh rm -rf /databricks/python/lib/python3.7/site-packages/pandas-0.23.4.dist-info
/databricks/python/lib/python3.7/site-packages/pandas
%sh /databricks/python/bin/pip install pandas==0.23.4

Error message: Cannot uninstall 'PyYAML'

Azure Machine Learning SDK for Python: PyYAML is a distutils installed project. Therefore, we cannot

accurately determine which files belong to it if there is a partial uninstall. To continue installing the SDK

while ignoring this error, use:

Databricks failure when installing packages

Azure Machine Learning SDK installation fails on Azure Databricks when more packages are installed. Some

packages, such as psutil , can cause conflicts. To avoid installation errors, install packages by freezing the

library version. This issue is related to Databricks and not to the Azure Machine Learning SDK. You might

experience this issue with other libraries, too. Example:

Alternatively, you can use init scripts if you keep facing install issues with Python libraries. This approach

isn't officially supported. For more information, see Cluster-scoped init scripts.

Databricks impor t error : cannot impor t name 'Timedelta' from 'pandas._ libs.tslibs' : If you see

this error when you use automated machine learning, run the two following lines in your notebook:

Databricks impor t error : No module named 'pandas.core.indexes' : If you see this error when you

use automated machine learning:

scikit-learn==0.19.1
pandas==0.22.0

1. Run this command to install two packages in your Azure Databricks cluster :

2. Detach and then reattach the cluster to your notebook.

If these steps don't solve the issue, try restarting the cluster.

Databricks FailToSendFeather : If you see a FailToSendFeather error when reading data on Azure

Databricks cluster, refer to the following solutions:

Upgrade azureml-sdk[automl] package to the latest version.

Add azureml-dataprep version 1.1.8 or above.

Add pyarrow version 0.11 or above.

Moving your Azure Machine Learning workspace to a different subscription, or moving the owning subscription to a new

tenant, is not supported. Doing so may cause errors.

https://docs.azuredatabricks.net/user-guide/clusters/init-scripts.html#cluster-scoped-init-scripts

Set up your environment

Work with data
Overloaded AzureFile storage

Passing data as input

Data labeling projects

ISSUE RESO L UT IO N

Only datasets created on blob datastores can be used this is a known limitation of the current release.

After creation, the project shows "Initializing" for a long time Manually refresh the page. Initialization should proceed at
roughly 20 datapoints per second. The lack of autorefresh is a
known issue.

When reviewing images, newly labeled images are not shown To load all labeled images, choose the First button. The First
button will take you back to the front of the list, but loads all
labeled data.

Pressing Esc key while labeling for object detection creates a
zero size label on the top-left corner. Submitting labels in this
state fails.

Delete the label by clicking on the cross mark next to it.

Azure por tal : If you go directly to view your workspace from a share link from the SDK or the portal, you will

not be able to view the normal Over view page with subscription information in the extension. You will also not

be able to switch into another workspace. If you need to view another workspace, go directly to Azure Machine

Learning studio and search for the workspace name.

Trouble creating AmlCompute: There is a rare chance that some users who created their Azure Machine

Learning workspace from the Azure portal before the GA release might not be able to create AmlCompute in

that workspace. You can either raise a support request against the service or create a new workspace through

the portal or the SDK to unblock yourself immediately.

If you receive an error

Unable to upload project files to working directory in AzureFile because the storage is overloaded , apply

following workarounds.

If you are using file share for other workloads, such as data transfer, the recommendation is to use blobs so that

file share is free to be used for submitting runs. You may also split the workload between two different workspaces.

Note the leading / in '/tmp/dataset'
script_params = {
 '--data-folder': dset.as_named_input('dogscats_train').as_mount('/tmp/dataset'),
}

TypeError : FileNotFound: No such file or director y : This error occurs if the file path you provide isn't

where the file is located. You need to make sure the way you refer to the file is consistent with where you

mounted your dataset on your compute target. To ensure a deterministic state, we recommend using the

abstract path when mounting a dataset to a compute target. For example, in the following code we mount

the dataset under the root of the filesystem of the compute target, /tmp .

If you don't include the leading forward slash, '/', you'll need to prefix the working directory e.g.

/mnt/batch/.../tmp/dataset on the compute target to indicate where you want the dataset to be mounted.

https://ml.azure.com

Azure Machine Learning designer

Train models

Known issues:

Long compute preparation time: It may be a few minutes or even longer when you first connect to or create

a compute target.

NOTE

ModuleErrors (No module named) : If you are running into ModuleErrors while submitting experiments

in Azure ML, it means that the training script is expecting a package to be installed but it isn't added. Once

you provide the package name, Azure ML will install the package in the environment used for your training

run.

If you are using Estimators to submit experiments, you can specify a package name via pip_packages or

conda_packages parameter in the estimator based on from which source you want to install the package.

You can also specify a yml file with all your dependencies using conda_dependencies_file or list all your pip

requirements in a txt file using pip_requirements_file parameter. If you have your own Azure ML

Environment object that you want to override the default image used by the estimator, you can specify that

environment via the environment parameter of the estimator constructor.

Azure ML also provides framework-specific estimators for Tensorflow, PyTorch, Chainer and SKLearn. Using

these estimators will make sure that the core framework dependencies are installed on your behalf in the

environment used for training. You have the option to specify extra dependencies as described above.

Azure ML maintained docker images and their contents can be seen in AzureML Containers. Framework-

specific dependencies are listed in the respective framework documentation - Chainer, PyTorch, TensorFlow,

SKLearn.

If you think a particular package is common enough to be added in Azure ML maintained images and environments

please raise a GitHub issue in AzureML Containers.

NameError (Name not defined), Attr ibuteError (Object has no attr ibute) : This exception should

come from your training scripts. You can look at the log files from Azure portal to get more information

about the specific name not defined or attribute error. From the SDK, you can use run.get_details() to look

at the error message. This will also list all the log files generated for your run. Please make sure to take a

look at your training script and fix the error before resubmitting your run.

Horovod has been shut down: In most cases if you encounter "AbortedError : Horovod has been shut

down" this exception means there was an underlying exception in one of the processes that caused Horovod

to shut down. Each rank in the MPI job gets it own dedicated log file in Azure ML. These logs are named

70_driver_logs . In case of distributed training, the log names are suffixed with _rank to make it easier to

differentiate the logs. To find the exact error that caused Horovod to shut down, go through all the log files

and look for Traceback at the end of the driver_log files. One of these files will give you the actual

underlying exception.

Run or experiment deletion: Experiments can be archived by using the Experiment.archive method, or

from the Experiment tab view in Azure Machine Learning studio client via the "Archive experiment" button.

This action hides the experiment from list queries and views, but does not delete it.

Permanent deletion of individual experiments or runs is not currently supported. For more information on

deleting Workspace assets, see Export or delete your Machine Learning service workspace data.

https://github.com/Azure/AzureML-Containers
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py#remarks
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py#remarks
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py#remarks
https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.sklearn.sklearn?view=azure-ml-py#remarks
https://github.com/Azure/AzureML-Containers
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment(class)?view=azure-ml-py#archive--

Automated machine learning

Deploy & serve models

ERRO R RESO L UT IO N

Image building failure when deploying web service Add "pynacl==1.2.1" as a pip dependency to Conda file for
image configuration

['DaskOnBatch:context_managers.DaskOnBatch',
'setup.py']' died with <Signals.SIGKILL: 9>

Change the SKU for VMs used in your deployment to one
that has more memory.

FPGA failure You will not be able to deploy models on FPGAs until you
have requested and been approved for FPGA quota. To
request access, fill out the quota request form:
https://aka.ms/aml-real-time-ai

Updating Azure Machine Learning components in AKS cluster

run.log_list("my metric name", my_metric[:N])
run.log_list("my metric name", my_metric[N:])

Metric Document is too large : Azure Machine Learning has internal limits on the size of metric objects

that can be logged at once from a training run. If you encounter a "Metric Document is too large" error

when logging a list-valued metric, try splitting the list into smaller chunks, for example:

Internally, Azure ML concatenates the blocks with the same metric name into a contiguous list.

displayHTML("Azure Portal: {}".format(local_run.get_portal_url(),
local_run.id))

Tensor Flow : Automated machine learning does not currently support tensor flow version 1.13. Installing

this version will cause package dependencies to stop working. We are working to fix this issue in a future

release.

Experiment Char ts : Binary classification charts (precision-recall, ROC, gain curve etc.) shown in

automated ML experiment iterations are not rendering correctly in user interface since 4/12. Chart plots are

currently showing inverse results, where better performing models are shown with lower results. A

resolution is under investigation.

Databricks cancel an automated machine learning run: When you use automated machine learning

capabilities on Azure Databricks, to cancel a run and start a new experiment run, restart your Azure

Databricks cluster.

Databricks >10 iterations for automated machine learning: In automated machine learning settings,

if you have more than 10 iterations, set show_output to False when you submit the run.

Databricks widget for the Azure Machine Learning SDK and automated machine learning: The

Azure Machine Learning SDK widget isn't supported in a Databricks notebook because the notebooks can't

parse HTML widgets. You can view the widget in the portal by using this Python code in your Azure

Databricks notebook cell:

Take these actions for the following errors:

Updates to Azure Machine Learning components installed in an Azure Kubernetes Service cluster must be

https://aka.ms/aml-real-time-ai

compute_target = ComputeTarget(workspace=ws, name=clusterWorkspaceName)
compute_target.detach()
compute_target.wait_for_completion(show_output=True)

attach_config = AksCompute.attach_configuration(resource_group=resourceGroup,
cluster_name=kubernetesClusterName)

If SSL is enabled.
attach_config.enable_ssl(
 ssl_cert_pem_file="cert.pem",
 ssl_key_pem_file="key.pem",
 ssl_cname=sslCname)

attach_config.validate_configuration()

compute_target = ComputeTarget.attach(workspace=ws, name=args.clusterWorkspaceName,
attach_configuration=attach_config)
compute_target.wait_for_completion(show_output=True)

kubectl get secret/azuremlfessl -o yaml

NOTE

Webservices in Azure Kubernetes Service failures

az aks get-credentials -g <rg> -n <aks cluster name>

Authentication errors

{"code":"Unauthorized","statusCode":401,"message":"Unauthorized","details":
[{"code":"InvalidOrExpiredToken","message":"The request token was either invalid or expired. Please try again
with a valid token."}]}

{"error":{"code":"AuthenticationFailed","message":"Authentication failed."}}

manually applied.

You can apply these updates by detaching the cluster from the Azure Machine Learning workspace, and then

reattaching the cluster to the workspace. If TLS is enabled in the cluster, you will need to supply the TLS/SSL

certificate and private key when reattaching the cluster.

If you no longer have the TLS/SSL certificate and private key, or you are using a certificate generated by Azure

Machine Learning, you can retrieve the files prior to detaching the cluster by connecting to the cluster using

kubectl and retrieving the secret azuremlfessl .

Kubernetes stores the secrets in base-64 encoded format. You will need to base-64 decode the cert.pem and key.pem

components of the secrets prior to providing them to attach_config.enable_ssl .

Many webservice failures in Azure Kubernetes Service can be debugged by connecting to the cluster using

kubectl . You can get the kubeconfig.json for an Azure Kubernetes Service Cluster by running

If you perform a management operation on a compute target from a remote job, you will receive one of the

following errors:

For example, you will receive an error if you try to create or attach a compute target from an ML Pipeline that is

submitted for remote execution.

What happened to Azure Machine Learning
Workbench?
3/10/2020 • 4 minutes to read • Edit Online

WARNING

What changed?

Support timeline

What about run histories?

The Azure Machine Learning Workbench application and some other early features were deprecated and replaced

in the September 2018 release to make way for an improved architecture.

To improve your experience, the release contains many significant updates prompted by customer feedback. The

core functionality from experiment runs to model deployment hasn't changed. But now, you can use the robust

Python SDK, R SDK, and the Azure CLI to accomplish your machine learning tasks and pipelines.

Most of the artifacts that were created in the earlier version of Azure Machine Learning are stored in your own local

or cloud storage. These artifacts won't ever disappear.

In this article, you learn about what changed and how it affects your pre-existing work with the Azure Machine

Learning Workbench and its APIs.

This article is not for Azure Machine Learning Studio users. It is for Azure Machine Learning customers who have installed the

Workbench (preview) application and/or have experimentation and model management preview accounts.

The latest release of Azure Machine Learning includes the following features:

A simplified Azure resources model.

A new portal UI to manage your experiments and compute targets.

A new, more comprehensive Python SDK.

The new expanded Azure CLI extension for machine learning.

The architecture was redesigned for ease of use. Instead of multiple Azure resources and accounts, you only need

an Azure Machine Learning Workspace. You can create workspaces quickly in the Azure portal. By using a

workspace, multiple users can store training and deployment compute targets, model experiments, Docker images,

deployed models, and so on.

Although there are new improved CLI and SDK clients in the current release, the desktop workbench application

itself has been retired. Experiments can be managed in the workspace dashboard in Azure Machine Learning studio.

Use the dashboard to get your experiment history, manage the compute targets attached to your workspace,

manage your models and Docker images, and even deploy web services.

On January 9th, 2019 support for Machine Learning Workbench, Azure Machine Learning Experimentation and

Model Management accounts, and their associated SDK and CLI ended.

All the latest capabilities are available by using this SDK, the CLI, and the portal.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/overview-what-happened-to-workbench.md
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py
https://docs.microsoft.com/python/api/overview/azure/ml/intro?view=azure-ml-py

Will projects persist?

run = exp.submit(source_directory=script_folder,
 script='train.py', run_config=run_config_system_managed)

What about my registered models and images?

Older run histories are no longer accessible, how you can still see your runs in the latest version.

Run histories are now called experiments . You can collect your model's experiments and explore them by using

the SDK, the CLI, or the Azure Machine Learning studio.

The portal's workspace dashboard is supported on Microsoft Edge, Chrome, and Firefox browsers only:

Start training your models and tracking the run histories using the new CLI and SDK. You can learn how with the

Tutorial: train models with Azure Machine Learning.

You won't lose any code or work. In the older version, projects are cloud entities with a local directory. In the latest

version, you attach local directories to the Azure Machine Learning workspace by using a local config file. See a

diagram of the latest architecture.

Much of the project content was already on your local machine. So you just need to create a config file in that

directory and reference it in your code to connect to your workspace. To continue using the local directory

containing your files and scripts, specify the directory's name in the 'experiment.submit' Python command or using

the az ml project attach CLI command. For example:

Create a workspace to get started.

The models that you registered in your old model registry must be migrated to your new workspace if you want to

continue to use them. To migrate your models, download the models and re-register them in your new workspace.

file:///T:/i2pk/machine-learning/media/overview-what-happened-to-workbench/image001.png#lightbox
https://docs.microsoft.com/python/api/azureml-core/azureml.core.experiment.experiment?view=azure-ml-py

What about deployed web services?

Next steps

The images that you created in your old image registry cannot be directly migrated to the new workspace. In most

cases, the model can be deployed without having to create an image. If needed, you can create an image for the

model in the new workspace. For more information, see Manage, register, deploy, and monitor machine learning

models.

Now that support for the old CLI has ended, you can no longer redeploy models or manage the web services you

originally deployed with your Model Management account. However, those web services will continue to work for

as long as Azure Container Service (ACS) is still supported.

In the latest version, models are deployed as web services to Azure Container Instances (ACI) or Azure Kubernetes

Service (AKS) clusters. You can also deploy to FPGAs and to Azure IoT Edge.

Learn more in these articles:

Where and how to deploy models

Tutorial: Deploy models with Azure Machine Learning

Learn about the latest architecture for Azure Machine Learning.

For an overview of the service, read What is Azure Machine Learning?.

Create your first experiment with your preferred method:

Use Python notebooks

Use R Markdown

Use automated machine learning

Use the designer's drag & drop capabilities

Use the ML extension to the CLI

Use a keyboard to use Azure Machine Learning
designer (preview)
2/14/2020 • 2 minutes to read • Edit Online

Navigate the pipeline graph

Edit the pipeline graph
Add a module to the graph

Edit a module

Navigation shortcuts

KEY ST RO KE DESC RIP T IO N

Ctrl + F6 Toggle focus between canvas and module tree

Ctrl + F1 Open the information card when focusing on a node in
module tree

Ctrl + Shift + H Open the connection helper when focus is on a node

Ctrl + Shift + E Open module properties when focus is on a node

Learn how to use a keyboard and screen reader to use Azure Machine Learning designer. For a list of keyboard

shortcuts that work everywhere in the Azure portal, see Keyboard shortcuts in the Azure portal

This workflow has been tested with Narrator and JAWS, but it should work with other standard screen readers.

The pipeline graph is organized as a nested list. The outer list is a module list, which describes all the modules in the

pipeline graph. The inner list is a connection list, which describes all the connections of a specific module.

1. In the module list, use the arrow key to switch modules.

2. Use tab to open the connection list for the target module.

3. Use arrow key to switch between the connection ports for the module.

4. Use “G” to go to the target module.

1. Use Ctrl+F6 to switch focus from the canvas to the module tree.

2. Find the desired module in the module tree using standard treeview control.

To connect a module to another module:

1. Use Ctrl + Shift + H when targeting a module in the module list to open the connection helper.

2. Edit the connection ports for the module.

To adjust module properties:

1. Use Ctrl + Shift + E when targeting a module to open the module properties.

2. Edit the module properties.

https://github.com/Microsoft/azure-docs/blob/master/articles/machine-learning/designer-accessibility.md
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-keyboard-shortcuts
https://support.microsoft.com/help/22798/windows-10-complete-guide-to-narrator
https://www.freedomscientific.com/products/software/jaws/

Ctrl + G Move focus to first failed node if the pipeline run failed

KEY ST RO KE DESC RIP T IO N

Action shortcuts

KEY ST RO KE A C T IO N

Access key + R Run

Access key + P Publish

Access key + C Clone

Access key + D Deploy

Access key + I Create/update inference pipeline

Access key + B Create/update batch inference pipeline

Access key + K Open "Create inference pipeline" dropdown

Access key + U Open "Update inference pipeline" dropdown

Access key + M Open more(...) dropdown

Next steps

Use the following shortcuts with the access key. For more information on access keys, see

https://en.wikipedia.org/wiki/Access_key.

Turn on high contrast or change theme

Accessibility related tools at Microsoft

https://en.wikipedia.org/wiki/Access_key
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-change-theme-high-contrast
https://www.microsoft.com/accessibility

	Cover Page
	Azure Machine Learning Documentation
	Overview
	What is Azure Machine Learning?
	Azure Machine Learning vs Studio
	Architecture & terms

	Tutorials
	Studio
	Designer (drag-n-drop)
	1. Train a regression model
	2. Deploy that model

	Automated ML (UI)
	Create automated ML experiments
	Forecast demand (Bike share data)

	Label image data

	Python SDK
	Create first ML experiment
	1. Set up workspace & dev environment
	2. Train your first model

	Image classification (MNIST data)
	1. Train a model
	2. Deploy a model

	Regression with Automated ML (NYC Taxi data)
	Auto-train an ML model

	Machine Learning pipelines (advanced)
	Batch score a classification model

	Go from experiment to production

	R SDK
	Create first ML experiment (R)

	Machine Learning CLI
	Visual Studio Code
	Set up Azure Machine Learning extension
	Train and deploy a TensorFlow image classification model

	Samples
	Jupyter Notebooks
	Designer datasets
	Designer sample pipelines
	End-to-end MLOps examples
	Open Datasets (public)

	Concepts
	Workspace
	Environments
	Data ingestion
	Data access
	Model training
	Distributed training
	Model management (MLOps)
	Interpretability
	Designer: no-code ML
	Algorithm cheat sheet
	How to select algorithms
	Automated ML
	Overfitting & imbalanced data
	Compute instance
	Compute target
	ML pipelines
	ONNX
	Enterprise readiness & security
	Enterprise security
	Enterprise security overview
	Manage users and roles
	Use virtual networks
	Use Private Link
	Secure web services with TLS
	Use Azure AD identity in AKS deployments
	Regenerate storage access keys

	Set up authentication
	Monitor Azure Machine Learning

	Event grid integration
	Deep learning

	How-to guides
	Create & manage workspaces
	Use Azure portal
	Use Azure CLI
	Use REST
	Use Resource Manager template

	Set up your environment
	Set up dev environments
	Set up software environments
	Enable logging
	Set input & output directories
	Interactive debugging
	Git integration

	Work with data
	Label data
	Get data labeled
	Label images
	Create datasets with labels

	Get data
	Data ingestion with Azure Data Factory
	DevOps for data ingestion
	Import data in the designer

	Access data
	Connect to Azure Storage
	Get data from a datastore

	Manage & consume data
	Train with datasets
	Detect drift on datasets
	Version & track datasets

	Train models
	Use estimators for ML
	Create estimators in training
	Set up training environments
	Tune hyperparameters
	Use Key Vault when training

	Scikit-learn
	TensorFlow
	Keras
	PyTorch

	Explain models
	Explain ML models
	Explain automated ML models

	Automate machine learning
	Use automated ML (Python)
	Use automated ML (interface)
	Use remote compute targets
	Define ML tasks
	Auto-train a forecast model
	Understand charts and metrics

	Track & monitor experiments
	Start, monitor or cancel runs
	Log metrics for training runs
	Track experiments with MLflow
	Visualize runs with TensorBoard

	Deploy & serve models
	Where and how to deploy
	Deployment scenarios
	Azure ML compute instances
	Azure Kubernetes Service
	Azure Container Instances
	GPU inference
	Azure App Service
	Azure Functions
	Azure IoT Edge devices
	FPGA inference
	Custom Docker images
	Non-Azure ML models

	Troubleshoot & debug
	Call service endpoint
	Monitor models
	Collect & evaluate model data
	Detect data drift
	Monitor with Application Insights

	Build & use ML pipelines
	Create ML pipelines (Python)
	Moving data into and between ML pipeline steps (Python)
	Schedule a pipeline (Python)
	Trigger a pipeline
	Debug & troubleshoot pipelines
	Debug pipelines in Application Insights
	Azure Pipelines for CI/CD
	Designer retrain using published pipelines
	Designer batch predictions
	Designer execute Python code
	Use parallel run step
	Debug & troubleshoot parallel run step

	Manage resource quotas
	Export and delete data
	Create event driven workflows

	Reference
	Python SDK
	R SDK
	CLI
	REST API
	Designer module reference
	ML at scale
	Monitor data reference
	Machine learning pipeline YAML reference

	Resources
	Release notes
	Azure roadmap
	Pricing
	Regional availability
	Known issues
	User forum
	Stack Overflow
	Compare our ML products
	What happened to Workbench
	Designer accessibility features

