
Azure Machine Learning

Azure Data Platform

Data Collection Data Processing Data Storage Data Analysis Presentation

Azure Data Factory Azure Data Factory SQL Database
Azure

Machine Learning
Power BI

Azure IoT HDInsight
Table/Blob/File/

Queue Storage
HDInsight Power BI embedded

Import / Export Service
App Service

Cloud Services
Cosmos DB

Azure Data Lake

Analytics
SharePoint

SQL Tools HPC / Batch SQL DWH Azure Analysis
App Service

Cloud Services

Big Data Tools Functions Azure Data Lake Store DSVM / DLVM Azure Notebook

Azure Search Stream Analytics Blockchain (Bletchley) Cognitive Services Excel

Backup/Restore Azure Data Lake Analytics
Azure DB for

MySQL & PostgreSQL
Stream Analytics QlikView / Tableau

Other Tools (AzCopy)
Azure Database for

MySQL / PostgreSQL
VM + SQL Server Azure Databricks SQL / VM (SS*S)

The Context
• Deployment to multiple targets

• Help with ease of data preparation

• Automated Machine Learning

• Distributed Training

• Support both for Web Service and Batch modes

• Strong support for Spark (Databricks)

• Support for more training & deployment platforms

• Better Integration with other services

• No Need to have a pre-defined GUI Interface

• End-to-End Lifecycle and processes

• Open to frameworks and tools

• Support Deep Learning frameworks

• Help with Environment isolations

• Better management of models & experiments

• Especially on Tracking and Monitoring

Azure offers a comprehensive
AI/ML platform that meets—and

exceeds—requirements

A
zu

re
 M

ac
h
in

e
 L

e
ar

n
in

g
 P

la
tf
o
rm

CPU, FPGA, GPU, IoT
Azure Data Lake / Azure Storage

HDICOSMOS
DB

Azure ML
Studio

DSVM
/ DLVM

Batch /
HPC

AKS /
ACI

Edge

Bot
Framework /

services

Cortana and Other AI
Solutions (Graph, TSI, …)

Cognitive
Services

Azure Databricks

ML.NET

AML
Workbench

Jupyter Notebook
& Azure Notebook

VS Code and Tools
for AI Extensions

R &
RStudio

AML Libraries
for Spark

Machine
Learning
Server

AML Model
Management

AML
Experimentation

VSTS
with
TDSP

Azure
Cray

Q# and
QSDK

CNTK

Machine Learning
Typical E2E Process

…

Prepare Experiment Deploy

Orchestrate

…

DevOps loop for data science

Prepare

Data

Prepare

Register and

Manage Model

Build

Image

…

DEVELOPMENT

Deploy Service

Monitor Model

Train &

Test Model

Build model

(your favorite IDE)

TEST

STAGING

PORDUCTION

What is Azure Machine Learning service?

Set of Azure

Cloud Services
Python

SDK

✓ Prepare Data

✓ Build Models

✓ Train Models

✓Manage Models

✓ Track Experiments

✓Deploy Models

That enables

you to:

Azure ML service
Lets you easily implement this AI/ML Lifecycle

Azure
Machine Learning

Workflow Steps

Data Preparation

Multiple Data Sources

SQL and NoSQL databases, file systems, network attached storage and cloud stores (such as Azure
Blob Storage) and HDFS.

Multiple Formats

Binary, text, CSV, TS, ARFF, etc. and auto detect file types.

Cleansing

Detect and fix NULL values, outliers, out-of-range values, duplicate rows.

Transformation / Filtering

General data transformation (transforming types) and ML-specific transformations (indexing,
encoding, assembling into vectors, normalizing the vectors, binning, normalization and
categorization).

Intelligent time-saving transformations

Derive column by example, fuzzy grouping, auto split columns by example, impute missing values.

Custom Python Transforms

Such as new script column, new script filter, transformation partition

https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#intelligent

Model Building (DEV)

Choice of algorithms

Choice of language

Python

Choice of development tools

Browser-based, REPL-oriented, notebooks such as Jupyter, PyCharm and Spark Notebooks.

Desktop IDEs such as Visual Studio and R-Studio for R development.

Local Testing

To verify correctness before submitting to a more powerful
(and expensive) training infrastructure.

Model Training and Testing

Powerful Compute Environment

Choices include scale-up VMs, auto-scaling scale-out clusters

Preconfigured

The compute environments are pre-setup with all the correct versions
ML frameworks, libraries, executables and container images.

Job Management

Data scientists are able to easily start, stop, monitor and manage Jobs.

Automated Model and Parameter Selection

Solutions are automatically select the best algorithms, and the
corresponding best hyperparameters, for the desired outcome.

Model Registration and Management

Containerization

Automatically convert models to Docker containers so that
they can be deployed into an execution environment.

Versioning

Assign versions numbers to models, to track changes over
time, to identify and retrieve a specific version for
deployment, for A/B testing, rolling back changes etc.

Model Repository

For storing and sharing models, to enable integration into
CI/CD pipelines.

Track Experiments

For auditing, see changes over time and enable
collaboration between team members.

Model Deployment

Choice of Deployment Environments

Single VM, Cluster of VMs, Spark Clusters, Hadoop Clusters,
In the cloud, On-premises

Edge Deployment

To enable predictions close to the event source-for quicker
response and avoid unnecessary data transfer.

Security

Your data and model is secured. Even when deployed at the
edge, the e2e security is maintained.

Monitoring

Monitor the status, performance and security.

Azure Machine Learning:
Technical Details

Azure ML service
Key Artifacts

Workspace

Azure ML service Artifact
Workspace

The workspace is the top-level resource for the Azure Machine Learning service. It provides a
centralized place to work with all the artifacts you create when using Azure Machine Learning service.

The workspace keeps a list of compute targets that can be used to train your model. It also keeps a
history of the training runs, including logs, metrics, output, and a snapshot of your scripts.

Models are registered with the workspace.

You can create multiple workspaces, and each workspace can be shared by multiple people.

When you create a new workspace, it automatically creates these Azure resources:

Azure Container Registry - Registers docker containers that are used during training and when

deploying a model.

Azure Storage - Used as the default datastore for the workspace.

Azure Application Insights - Stores monitoring information about your model service.

Azure Key Vault - Stores secrets used by compute targets and other sensitive information needed

by the workspace.

https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/key-vault/

Azure ML service Workspace Taxonomy

Azure ML service Artifacts
Models and Model Registry

Model Model Registry

Azure ML Artifacts
Runs and Experiments

Experiment

Run

Run configuration

Azure ML service Artifacts
Image and Registry

Image contains

Two types of images

Image Registry

Azure ML Concept
Model Management

Model Management in Azure ML

usually involves these four steps

Step 1:

Step 2:

Step 3:

Step 4:

Azure ML Artifact
Deployment

Deployment is an instantiation of an image

Web service IoT Module

Azure ML Artifact
Datastore

Azure ML: How to deploy models at scale

Azure ML Artifact
Pipeline

A step is a computational unit in the pipeline.

How pipelines help?
✓

✓

✓

✓

Azure ML Pipeline
Python SDK

The Azure Machine Learning SDK offers imperative constructs
for sequencing and parallelizing the steps in your pipelines
when no data dependency is present.

Using declarative data dependencies, you can optimize your
tasks.

The SDK includes a framework of pre-built modules for common tasks
such as data transfer and model publishing.

The framework can be extended to model your own conventions by
implementing custom steps that are reusable across pipelines.

Compute targets and storage resources can also be managed directly
from the SDK.

Pipelines can be saved as templates and can be deployed to a
REST endpoint so you can schedule batch-scoring or
retraining jobs

Azure ML Pipelines
Advantages

Advantage Description

Azure ML Artifact
Compute Target

Compute Target Training Deployment

Local Computer ✓

A Linux VM in Azure (such as the Data

Science Virtual Machine)
✓

Azure ML Compute ✓

Azure Databricks ✓

Azure Data Lake Analytics ✓

Apache Spark for HDInsight ✓

Azure Container Instance ✓

Azure Kubernetes Service ✓

Azure IoT Edge ✓

Field-programmable gate array (FPGA) ✓

Currently supported compute targets

Azure ML
Currently Supported Compute Targets

Compute target

GPU

acceleration Hyperdrive

Automated model

selection

Can be used in

pipelines

Local computer Maybe ✓

Data Science Virtual Machine

(DSVM)
✓ ✓ ✓ ✓

Azure ML compute ✓ ✓ ✓ ✓

Azure Databricks ✓ ✓ ✓

Azure Data Lake Analytics ✓

Azure HDInsight ✓

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#local
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#dsvm
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.compute.amlcompute(class)?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#databricks
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#adla
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#hdinsight
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

Azure Machine Learning
Track experiments and training metrics

Azure Machine Learning
Track experiments and training metrics

Azure Machine Learning
Data Wrangler – DataPrep SDK: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/?view=azure-dataprep-py

• Automatic file type detection.

• Load from many file types with parsing parameter inference (encoding, separator, headers).

• Type-conversion using inference during file loading

• Connection support for MS SQL Server and Azure Data Lake Storage

• Add column using an expression

• Impute missing values

• Derive column by example

• Filtering

• Custom Python transforms

• Scale through streaming – instead of loading all data in memory

• Summary statistics

• Intelligent time-saving transformations:

• Fuzzy grouping

• Derived column by example

• Automatic split columns by example

• Impute missing values

• Automatic join

• Cross-platform functionality with a single code artifact. The SDK also allows for dataflow objects to be

serialized and opened in any Python environment.

https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.fuzzygroupbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.derivecolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.splitcolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.imputemissingvaluesbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.joinbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#cross

Azure Machine Learning
Azure Machine Learning SDK

pip install --upgrade azureml-sdk[notebooks,automl]

pip install azureml-monitoring

from azureml.monitoring import ModelDataCollector

pip install --upgrade

azureml-dataprep

import azureml.dataprep as dprep

How to use the Azure Machine
Learning service:

An example using the Python SDK

Setup for Code Example

This example trains a simple logistic regression
using the MNIST dataset and scikit-learn with
Azure Machine Learning service.

MNIST is a dataset consisting of 70,000 grayscale images.

Each image is a handwritten digit of 28x28 pixels,
representing a number from 0 to 9.

The goal is to create a multi-class classifier to
identify the digit a given image represents.

http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/

from azureml.core import Workspace
ws = Workspace.create(name='myworkspace',

subscription_id='<azure-subscription-id>',
resource_group='myresourcegroup',
create_resource_group=True,
location='eastus2' # or other supported Azure region
)

see workspace details
ws.get_details()

Step 2 – Create an Experiment

experiment_name = ‘my-experiment-1'

from azureml.core import Experiment
exp = Experiment(workspace=ws, name=experiment_name)

Step 1 – Create a workspace

Step 3 – Create remote compute target

choose a name for your cluster, specify min and max nodes
compute_name = os.environ.get("BATCHAI_CLUSTER_NAME", "cpucluster")
compute_min_nodes = os.environ.get("BATCHAI_CLUSTER_MIN_NODES", 0)
compute_max_nodes = os.environ.get("BATCHAI_CLUSTER_MAX_NODES", 4)

This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("BATCHAI_CLUSTER_SKU", "STANDARD_D2_V2")

provisioning_config = AmlCompute.provisioning_configuration(
vm_size = vm_size,
min_nodes = compute_min_nodes,
max_nodes = compute_max_nodes)

create the cluster
print(‘ creating a new compute target... ')
compute_target = ComputeTarget.create(ws, compute_name, provisioning_config)

You can poll for a minimum number of nodes and for a specific timeout.
if no min node count is provided it will use the scale settings for the cluster
compute_target.wait_for_completion(show_output=True,

min_node_count=None, timeout_in_minutes=20)

note that while loading, we are shrinking the intensity values (X) from 0-255 to 0-1 so that the
model converge faster.
X_train = load_data('./data/train-images.gz', False) / 255.0
y_train = load_data('./data/train-labels.gz', True).reshape(-1)

X_test = load_data('./data/test-images.gz', False) / 255.0
y_test = load_data('./data/test-labels.gz', True).reshape(-1)

First load the compressed files into numpy arrays. Note the ‘load_data’ is a custom function that simply parses the

compressed files into numpy arrays.

Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be

accessed for remote training. The files are uploaded into a directory named mnist at the root of the datastore.

ds = ws.get_default_datastore()
print(ds.datastore_type, ds.account_name, ds.container_name)

ds.upload(src_dir='./data', target_path='mnist', overwrite=True, show_progress=True)

We now have everything you need to start training a model.

Step 4 – Upload data to the cloud

%%time from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train, y_train)

Next, make predictions using the test set and calculate the accuracy
y_hat = clf.predict(X_test)
print(np.average(y_hat == y_test))

You should see the local model accuracy displayed. [It should be a number like 0.915]

Train a simple logistic regression model using scikit-learn locally. This should take a minute or two.

Step 5 – Train a local model

To submit a training job to a remote you have to perform the following tasks:

• 6.1: Create a directory

• 6.2: Create a training script

• 6.3: Create an estimator object

• 6.4: Submit the job

Step 6.1 – Create a directory

Create a directory to deliver the required code from your computer to the remote resource.

import os
script_folder = './sklearn-mnist' os.makedirs(script_folder, exist_ok=True)

Step 6 – Train model on remote cluster

%%writefile $script_folder/train.py

load train and test set into numpy arrays

Note: we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can

converge faster.

‘data_folder’ variable holds the location of the data files (from datastore)

Reg = 0.8 # regularization rate of the logistic regression model.

X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0

X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0

y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)

y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep = '\n’)

get hold of the current run

run = Run.get_context()

#Train a logistic regression model with regularizaion rate of’ ‘reg’

clf = LogisticRegression(C=1.0/reg, random_state=42)

clf.fit(X_train, y_train)

Step 6.2 – Create a Training Script (1/2)

print('Predict the test set’)

y_hat = clf.predict(X_test)

calculate accuracy on the prediction
acc = np.average(y_hat == y_test)

print('Accuracy is', acc)

run.log('regularization rate', np.float(args.reg))

run.log('accuracy', np.float(acc)) os.makedirs('outputs', exist_ok=True)

The training script saves the model into a directory named ‘outputs’. Note files saved in the
outputs folder are automatically uploaded into experiment record. Anything written in this
directory is automatically uploaded into the workspace.

joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

Step 6.2 – Create a Training Script (2/2)

An estimator object is used to submit the run.

from azureml.train.estimator import Estimator

script_params = { '--data-folder': ds.as_mount(), '--regularization': 0.8 }

est = Estimator(source_directory=script_folder,

script_params=script_params,

compute_target=compute_target,

entry_script='train.py’,

conda_packages=['scikit-learn'])

Step 6.4 – Submit the job to the cluster for training

run = exp.submit(config=est)

Step 6.3 – Create an Estimator

What happens after you submit the job?

Post-Processing
The ./outputs directory of the run is copied
over to the run history in your workspace
so you can access these results.

Running
In this stage, the necessary scripts and files are
sent to the compute target, then data stores are
mounted/copied, then the entry_script is run.
While the job is running, stdout and the ./logs
directory are streamed to the run history. You can
monitor the run's progress using these logs.

Image creation
A Docker image is created matching the Python
environment specified by the estimator. The image
is uploaded to the workspace. Image creation and
uploading takes about 5 minutes.

This happens once for each Python environment
since the container is cached for subsequent runs.
During image creation, logs are streamed to the
run history. You can monitor the image creation
progress using these logs.

Scaling
If the remote cluster requires more nodes
to execute the run than currently available,
additional nodes are added automatically.
Scaling typically takes about 5 minutes.

Step 7 – Monitor a run

You can watch the progress of the run with a Jupyter widget. The widget is asynchronous and provides live

updates every 10-15 seconds until the job completes.

from azureml.widgets import RunDetails
RunDetails(run).show()

Here is a still snapshot of the widget shown at the end of training:

Step 8 – See the results

As model training and monitoring happen in the background. Wait until the model has completed training before

running more code. Use wait_for_completion to show when the model training is complete

run.wait_for_completion(show_output=False)

now there is a trained model on the remote cluster
print(run.get_metrics())

{'regularization rate': 0.8, 'accuracy': 0.9204}

Step 9 – Register the model

This wrote the file ‘outputs/sklearn_mnist_model.pkl’ in a directory named ‘outputs’ in the VM of the cluster where

the job is executed.

• outputs is a special directory in that all content in this directory is automatically uploaded to your workspace.

• This content appears in the run record in the experiment under your workspace.

• Hence, the model file is now also available in your workspace.

joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

Recall that the last step in the training script is:

register the model in the workspace
model = run.register_model (

model_name='sklearn_mnist’,
model_path='outputs/sklearn_mnist_model.pkl’)

The model is now available to query, examine, or deploy

Step 9 – Deploy the Model

Step 9.1 – Create the scoring script

Create the scoring script, called score.py, used by the web service call to show how to use the model.

It requires two functions – init() and run (input data)

from azureml.core.model import Model

def init():
global model
retreive the path to the model file using the model name
model_path = Model.get_model_path('sklearn_mnist’)
model = joblib.load(model_path)

def run(raw_data):
data = np.array(json.loads(raw_data)['data’])
make prediction
y_hat = model.predict(data)
return json.dumps(y_hat.tolist())

Step 9.2 – Create environment file

Create an environment file, called myenv.yml, that specifies all of the script's package dependencies. This file is

used to ensure that all of those dependencies are installed in the Docker image. This example needs scikit-learn

and azureml-sdk.

from azureml.core.conda_dependencies import CondaDependencies

myenv = CondaDependencies()
myenv.add_conda_package("scikit-learn")

with open("myenv.yml","w") as f:
f.write(myenv.serialize_to_string())

Step 9.3 – Create configuration file

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for the

ACI container. Here we will use the defaults (1 core and 1 gigabyte of RAM)

from azureml.core.webservice import AciWebservice

aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1,
tags={"data": "MNIST", "method" : "sklearn"},
description='Predict MNIST with sklearn')

Step 9.4 – Deploy the model to ACI

%%time
from azureml.core.webservice import Webservice
from azureml.core.image import ContainerImage

configure the image
image_config = ContainerImage.image_configuration(

execution_script ="score.py",
runtime ="python",
conda_file ="myenv.yml")

service = Webservice.deploy_from_model(workspace=ws, name='sklearn-mnist-svc’,
deployment_config=aciconfig, models=[model],
image_config=image_config)

service.wait_for_deployment(show_output=True)

Step 10 – Test the deployed model using the HTTP end point

Test the deployed model by sending images to be classified to the HTTP endpoint

import requests
import json

send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1)
input_data = "{\"data\": [" + str(list(X_test[random_index])) + "]}"

headers = {'Content-Type':'application/json’}

resp = requests.post(service.scoring_uri, input_data, headers=headers)

print("POST to url", service.scoring_uri)
#print("input data:", input_data)
print("label:", y_test[random_index])
print("prediction:", resp.text)

https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml

https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml

Azure Automated Machine Learning
‘simplifies’ the creation and selection

of the optimal model

Typical ‘manual’ approach to hyperparameter tuning

Dataset

Training

Algorithm 1

Hyperparameter

Values – config 1

Model 1

Hyperparameter

Values – config 2

Model 2

Hyperparameter

Values – config 3

Model 3

Model

Training

InfrastructureTraining

Algorithm 2

Hyperparameter

Values – config 4

Model 4

Complex

Tedious

Repetitive

Time consuming

Expensive

What are Hyperparameters?

Adjustable parameters that govern model training

Chosen prior to training, stay constant during training

Model performance heavily depends on hyperparameter

The search space to explore—i.e. evaluating all possible
combinations—is huge.

Sparsity of good configurations.
Very few of all possible configurations are optimal.

Evaluating each configuration is resource and time
consuming.

Time and resources are limited.

Challenges with Hyperparameter Selection

Azure Automated ML: Sampling to generate new runs

Supported sampling algorithms:
Grid Sampling
Random Sampling
Bayesian Optimization

{
“learning_rate”: uniform(0, 1),
“num_layers”: choice(2, 4, 8)
…

}

Config1= {“learning_rate”: 0.2,
“num_layers”: 2, …}

Config2= {“learning_rate”: 0.5,
“num_layers”: 4, …}

Config3= {“learning_rate”: 0.9,
“num_layers”: 8, …}

…

HyperDrive

Azure Automated ML
HyperDrive

Evaluate training runs for
specified primary metric

Use resources to explore new
configurations

Early terminate poor performing
training runs. Early termination
policies include:

•Define the parameter search space

•Specify a primary metric to optimize

•Specify early termination criteria for poorly performing runs

•Allocate resources for hyperparameter tuning

•Launch an experiment with the above configuration

•Visualize the training runs

•Select the best performing configuration for your model

Machine Learning Complexity
Complexity of Machine Learning

Source: http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Azure Automated ML
Conceptual Overview

Azure Automated ML
How It Works

During training, the Azure Machine Learning service creates a number of pipelines that try different algorithms and parameters.

It will stop once it hits the iteration limit you provide, or when it reaches the target value for the metric you specify.

Azure Automated ML
Use via the Python SDK

https://docs.microsoft.com/en-us/python/api/azureml-train-automl/azureml.train.automl.automlexplainer?view=azure-ml-py

Azure Automated ML
Current Capabilities

Category Value

Compute

Target

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

Azure Automated ML
Algorithms Currently Supported

Logistic Regression Elastic Net Elastic Net

Stochastic Gradient Descent (SGD) Light GBM Light GBM

Naive Bayes Gradient Boosting Gradient Boosting

C-Support Vector Classification (SVC) Decision Tree Decision Tree

Linear SVC K Nearest Neighbors K Nearest Neighbors

K Nearest Neighbors LARS Lasso LARS Lasso

Decision Tree Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD)

Random Forest Random Forest Random Forest

Extremely Randomized Trees Extremely Randomized Trees Extremely Randomized Trees

Gradient Boosting

Light GBM

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/sgd.html#sgd
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#classification
https://lightgbm.readthedocs.io/en/latest/index.html

Property Description Default Value

task Specify the type of machine learning problem. Allowed values are Classification Regression Forecasting None

primary_metric

Metric that you want to optimize in building your model. For example, if you specify accuracy as the primary_metric, automated machine learning looks to find a model with maximum accuracy. You can only specify

one primary_metric per experiment. Allowed values are

Classification:

accuracy AUC_weighted precision_score_weighted balanced_accuracy average_precision_score_weighted

Regression:

normalized_mean_absolute_error spearman_correlation normalized_root_mean_squared_error normalized_root_mean_squared_log_error R2_score

For Classification:

accuracy

For Regression:

spearman_correlati

on

experiment_exit_score

You can set a target value for your primary_metric. Once a model is found that meets the primary_metric target, automated machine learning will stop iterating and the experiment terminates. If this value is not set

(default), Automated machine learning experiment will continue to run the number of iterations specified in iterations. Takes a double value. If the target never reaches, then Automated machine learning will continue

until it reaches the number of iterations specified in iterations.

None

iterations Maximum number of iterations. Each iteration is equal to a training job that results in a pipeline. Pipeline is data preprocessing and model. To get a high-quality model, use 250 or more 100

max_concurrent_iterations Max number of iterations to run in parallel. This setting works only for remote compute. 1

max_cores_per_iteration
Indicates how many cores on the compute target would be used to train a single pipeline. If the algorithm can leverage multiple cores, then this increases the performance on a multi-core machine. You can set it to -1

to use all the cores available on the machine.
1

iteration_timeout_minutes Limits the amount of time (minutes) a particular iteration takes. If an iteration exceeds the specified amount, that iteration gets canceled. If not set, then the iteration continues to run until it is finished. None

n_cross_validations Number of cross validation splits None

validation_size Size of validation set as percentage of all training sample. None

preprocess

True/False

True enables experiment to perform preprocessing on the input. Following is a subset of preprocessingMissing Data: Imputes the missing data- Numerical with Average, Text with most occurrence Categorical Values: If

data type is numeric and number of unique values is less than 5 percent, Converts into one-hot encoding Etc. for complete list check the GitHub repository

Note : if data is sparse you cannot use preprocess = true

False

blacklist_models

Automated machine learning experiment has many different algorithms that it tries. Configure to exclude certain algorithms from the experiment. Useful if you are aware that algorithm(s) do not work well for your

dataset. Excluding algorithms can save you compute resources and training time.

Allowed values for Classification

LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier

Allowed values for Regression

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

Allowed values for Forecasting

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

None

whitelist_models

Automated machine learning experiment has many different algorithms that it tries. Configure to include certain algorithms for the experiment. Useful if you are aware that algorithm(s) do work well for your dataset.

Allowed values for Classification

LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier

Allowed values for Regression

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

Allowed values for Forecasting

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

None

verbosity
Controls the level of logging with INFO being the most verbose and CRITICAL being the least. Verbosity level takes the same values as defined in the python logging package. Allowed values are:

logging.INFOlogging.WARNINGlogging.ERRORlogging.CRITICAL
logging.INFO

X All features to train with None

y Label data to train with. For classification, should be an array of integers. None

X_valid Optional All features to validate with. If not specified, X is split between train and validate None

y_valid Optional The label data to validate with. If not specified, y is split between train and validate None

sample_weight Optional A weight value for each sample. Use when you would like to assign different weights for your data points None

sample_weight_valid Optional A weight value for each validation sample. If not specified, sample_weight is split between train and validate None

run_configuration RunConfiguration object. Used for remote runs. None

data_script Path to a file containing the get_data method. Required for remote runs. None

model_explainability

Optional True/False

True enables experiment to perform feature importance for every iteration. You can also use explain_model() method on a specific iteration to enable feature importance on-demand for that iteration after experiment is

complete.

False

enable_ensembling Flag to enable an ensembling iteration after all the other iterations complete. True

ensemble_iterations Number of iterations during which we choose a fitted pipeline to be part of the final ensemble. 15

experiment_timeout_minutes Limits the amount of time (minues) that the whole experiment run can take None

https://aka.ms/aml-notebooks

Azure Automated ML
Benefits Overview

Azure Automated ML lets you

Automate the exploration process

Use resources more efficiently

Optimize model for desired outcome

Control resource budget

Apply it to different models and learning domains

Pick training frameworks of choice

Visualize all configurations in one place

Note about security: on the right side of the automated ML service, the gray part is separated from the training and data, only the result (orange bottom block) is sent

back from training to the service; hence your data and algorithm safely stay within your subscription.

Azure Automated ML
Model Explainability

automl_config = AutoMLConfig(task = 'classification',

debug_log = 'automl_errors.log',

primary_metric = 'AUC_weighted',

max_time_sec = 12000,

iterations = 10,

verbosity = logging.INFO,

X = X_train,

y = y_train,

X_valid = X_test,

y_valid = y_test,

model_explainability=True,

path=project_folder)

from azureml.train.automl.automlexplainer

import retrieve_model_explanation

shap_values, expected_values,

overall_summary, overall_imp,

per_class_summary, per_class_imp = \

retrieve_model_explanation(best_run)

#Overall feature importance

print(overall_imp) print(overall_summary)

#Class-level feature importance

print(per_class_imp)

print(per_class_summary)

You can view it in your workspace in Azure portal

Or you can show it using Jupyter widgets in a notebook:

from azureml.widgets import RunDetails

RunDetails(local_run).show()

Microsoft Research Paper & Examples
For those who wants to find out more about Automated Machine Learning:

https://arxiv.org/abs/1705.05355

https://github.com/Azure/MachineLearningNotebooks/tree/master/

how-to-use-azureml/automated-machine-learning

https://arxiv.org/abs/1705.05355
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning

Distributed Training with
Azure ML Compute

Distributed Training with Azure ML Compute

distributed training with Horovod

https://docs.microsoft.com/en-us/azure/batch-ai/tutorial-horovod-tensorflow

© Copyright Microsoft Corporation. All rights reserved.

THANK YOU!

Learn more:
https://docs.microsoft.com/en-us/azure/machine-learning/service/

Visit the Getting started guide:

https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-

create-workspace-with-python

Fantastic free Azure notebooks (with Azure Machine Learning SDK pre-configured):
https://notebooks.azure.com

http://aka.ms/amlfree

Try it for free!

https://docs.microsoft.com/en-us/azure/machine-learning/service/
https://na01.safelinks.protection.outlook.com/?url=https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python&data=02|01|Nishant.Thacker@microsoft.com|cf39575eaf38429c5e8a08d656e2e42e|72f988bf86f141af91ab2d7cd011db47|1|0|636791929820843655&sdata=uJ7HkdJQ8JlAneRRmuQF37oxfgEkmIsSFQx%2BQy/5M8o%3D&reserved=0
https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python
https://notebooks.azure.com/
http://aka.ms/amlfree

