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The Context

No Need to have a pre-defined GUI Interface
End-to-End Lifecycle and processes

Open to frameworks and tools

Support Deep Learning frameworks

Help with Environment isolations

Better management of models & experiments

Especially on Tracking and Monitoring

Deployment to multiple targets

Help with ease of data preparation

Automated Machine Learning

Distributed Training

Support both for Web Service and Batch modes
Strong support for Spark (Databricks)

Support for more training & deployment platforms

Better Integration with other services
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Azure offers a comprehensive
Al/ML platform that meets—and
exceeds—requirements
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Machine Learning

Typical E2E Process
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DevOps loop for data science
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What is Azure Machine Learning service?

Set of Azure Python
Cloud Services SDK

That enables
you to:

v" Prepare Data v Manage Models

v Build Models v’ Track Experiments
v' Train Models v’ Deploy Models



Azure ML service
Lets you easily implement this Al/ML Lifecycle

Improve model Register Model

Model Creation / Retraining
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Workflow Steps
Develop machine learning training scripts in Python.

Create and configure a compute target.

Submit the scripts to the configured compute target
to run in that environment. During training, the
compute target stores run records to a datastore.
There the records are saved to an experiment.

Query the experiment for logged metrics from the
current and past runs. If the metrics do not indicate a
desired outcome, loop back to step 1 and iterate on
your scripts.

Once a satisfactory run is found, register the
persisted model in the model registry.

Develop a scoring script.
Create an Image and register it in the image registry.

Deploy the image as a web service in Azure.



Data Preparation

Multiple Data Sources

SQL and NoSQL databases, file systems, network attached storage and cloud stores (such as Azure
Blob Storage) and HDFS.

Multiple Formats
Binary, text, CSV, TS, ARFF, etc. and auto detect file types.

Cleansing
Detect and fix NULL values, outliers, out-of-range values, duplicate rows.

Transformation / Filtering

General data transformation (transforming types) and ML-specific transformations (indexing,
encoding, assembling into vectors, normalizing the vectors, binning, normalization and
categorization).

Intelligent time-saving transformations

Derive column by example, fuzzy grouping, auto split columns by example, impute missing values.
Custom Python Transforms

Such as new script column, new script filter, transformation partition



https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#intelligent

Model Building (DEV)

Choice of algorithms

Choice of language
Python

Choice of development tools

Browser-based, REPL-oriented, notebooks such as Jupyter, PyCharm and Spark Notebooks.
Desktop IDEs such as Visual Studio and R-Studio for R development.

Local Testing

To verify correctness before submitting to a more powerful
(and expensive) training infrastructure.



Model Training and Testing

Powerful Compute Environment
Choices include scale-up VMs, auto-scaling scale-out clusters

Preconfigured

The compute environments are pre-setup with all the correct versions
ML frameworks, libraries, executables and container images.

Job Management
Data scientists are able to easily start, stop, monitor and manage Jobs.

Automated Model and Parameter Selection

Solutions are automatically select the best algorithms, and the
corresponding best hyperparameters, for the desired outcome.



Model Registration and Management

Containerization

Automatically convert models to Docker containers so that
they can be deployed into an execution environment.

Versioning

Assign versions numbers to models, to track changes over
time, to identify and retrieve a specific version for
deployment, for A/B testing, rolling back changes etc.

Model Repository

For storing and sharing models, to enable integration into
Cl/CD pipelines.

Track Experiments

For auditing, see changes over time and enable
collaboration between team members.




Model Deployment

Choice of Deployment Environments

Single VM, Cluster of VMs, Spark Clusters, Hadoop Clusters,
In the cloud, On-premises

Edge Deployment

To enable predictions close to the event source-for quicker
response and avoid unnecessary data transfer.

Security

Your data and model is secured. Even when deployed at the
edge, the e2e security is maintained.

Monitoring
Monitor the status, performance and security.
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Azure Machine Learning:
Technical Details




Azure ML service
Key Artifacts
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Azure ML service Artifact
Workspace

The workspace is the top-level resource for the Azure Machine Learning service. It provides a
centralized place to work with all the artifacts you create when using Azure Machine Learning service.

The workspace keeps a list of compute targets that can be used to train your model. It also keeps a
history of the training runs, including logs, metrics, output, and a snapshot of your scripts.

Models are registered with the workspace.
You can create multiple workspaces, and each workspace can be shared by multiple people.

When you create a new workspace, it automatically creates these Azure resources:

Azure Container Registry - Registers docker containers that are used during training and when
deploying a model.

Azure Storage - Used as the default datastore for the workspace.

Azure Application Insights - Stores monitoring information about your model service.

Azure Key Vault - Stores secrets used by compute targets and other sensitive information needed
by the workspace.



https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/key-vault/

Azure ML service Workspace Taxonomy




Azure ML service Artifacts
Models and Model Registry

%

Model

A machine learning model is an artifact that is created by
your training process. You use a model to get predictions
on new data.

A model is produced by a run in Azure Machine Learning.

Note: You can also use a model trained outside of
Azure Machine Learning.

Azure Machine Learning service is framework agnostic —
you can use any popular machine learning framework
when creating a model.

A model can be registered under an Azure Machine
Learning service workspace

iy

Model Registry

Keeps track of all the models in your Azure Machine
Learning service workspace.

Models are identified by name and version.

You can provide additional metadata tags when you
register the model, and then use these tags when searching
for models.

You cannot delete models that are being used by an image.



Azure ML Artifacts

Runs and Experiments

Experiment

Grouping of many runs from a given script.
Always belongs to a workspace.
Stores information about runs

Run
Produced when you submit a script to train a model. Contains:
Metadata about the run (timestamp, duration etc.)
Metrics logged by your script.
Output files autocollected by the experiment, or explicitly uploaded by you.

< > A snapshot of the directory that contains your scripts, prior to the run.

Run configuration

A set of instructions that defines how a script should be run in a given compute
target.



Azure ML service Artifacts
Image and Registry

5 -

Image contains Image Registry
1. A model. Keeps track of images created from models.
2. A scoring script used to pass input to the model and Metadata tags can be attached to images. Metadata tags
return the output of the model. are stored by the image registry and can be used in image
searches

3. Dependencies needed by the model or scoring
script/application.

Two types of images

1. FPGA image: Used when deploying to a field-
programmable gate array in the Azure cloud.

2. Docker image: Used when deploying to compute
targets such as Azure Container Instances and Azure
Kubernetes Service.



Azure ML Concept

Model Management

Model Management in Azure ML
usually involves these four steps (—> a
Create / Retrain Model 1
Step 1: Register Model using the Model Registry ) — L
onitor Register Model
Step 2: Register Image using the Image Registry I |
(the Azure Container Reqistry) =

| o | o E >
Step 3: Deploy the Image to cloud or to edge devices Hght Heawy Creats Scorng Fles
Step 4: Monitor models—you can monitor input, output, DeP"’yt'mage (?\'% = )

and other relevant data from your model.

Create and Register Image



Azure ML Artifact

Deployment

Deployment is an instantiation of an image

Web service

A deployed web service can run on Azure
Container Instances, Azure Kubernetes Service,
or field-programmable gate arrays (FPGA).

Can receive scoring requests via an exposed
a load-balanced, HTTP endpoint.

Can be monitored by collecting Application
Insight telemetry and/or model telemetry.

Azure can automatically scale deployments.

_____________________________________________________________________

loT Module

A deployed loT Module is a Docker container
that includes the model, associated script and
additional dependencies.

Is deployed using Azure loT Edge on
edge devices.

Can be monitored by collecting Application
Insight telemetry and/or model telemetry.

Azure loT Edge will ensure that your module is
running and monitor the device that is hosting it.



Azure ML Artifact

Datastore

A datastore is a storage abstraction over an Azure Storage

w

The datastore can use either an Azure blob container or an Azure
~ file share as the backend storage.
w
~ Each workspace has a default datastore, and you may register
P —— additional datastores.
¥/

Use the Python SDK API or Azure Machine Learning CLI to store
and retrieve files from the datastore.



Azure ML: How to deploy models at scale
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Azure ML Artifact

Pipeline

An Azure ML pipeline consists of a number of steps, where each step can
be performed independently or as part of a single deployment command.

A step is a computational unit in the pipeline.
Diagram shows an example pipeline with multiple steps.

Prepare Data » Build & Train Models » Deploy & Predict

Data Data Model Building Model
Ingestion — Preparation & Training Deployment
T Normalization Hyper-parameter Deployment
" tuning -
—r Transformation
Validation Automatic model
selection

Data storage Featurization
locations Model testing

Maodel validation

Azure ML pipelines enables data scientists, data engineers, and IT
professionals to collaborate on the steps involved in: Data
preparation, Model training, Model evaluation, Deployment

How pipelines help?

v" Using distinct steps makes it possible to rerun only the
steps you need as you tweak and test your workflow.

v~ When you rerun a pipeline, the run jumps to the steps
that need to be rerun, such as an updated training script,
and skips what hasn't changed.

v The same holds true for unchanged scripts used for
the execution of the step

v You can use various toolkits and frameworks for each
step in your pipeline. Azure coordinates between the
various compute targets you use so that your
intermediate data can be shared with the downstream
compute targets easily.



Azure ML Pipeline

Python SDK

The Azure Machine Learning SDK offers imperative constructs
for sequencing and parallelizing the steps in your pipelines
when no data dependency is present.

Using declarative data dependencies, you can optimize your
tasks.

The SDK includes a framework of pre-built modules for common tasks
such as data transfer and model publishing.

The framework can be extended to model your own conventions by
implementing custom steps that are reusable across pipelines.

Compute targets and storage resources can also be managed directly
from the SDK.

Pipelines can be saved as templates and can be deployed to a
REST endpoint so you can schedule batch-scoring or
retraining jobs



Azure ML Pipelines

Advantages

Advantage

Description

Unattended runs

Mixed and diverse compute

Reusability

Tracking and versioning

Schedule a few steps to run in parallel or in sequence in a reliable and unattended
manner. Since data prep and modeling can last days or weeks, you can now focus on
other tasks while your pipeline is running.

Use multiple pipelines that are reliably coordinated across heterogeneous and scalable
computes and storages. Individual pipeline steps can be run on different compute
targets, such as HDInsight, GPU Data Science VMs, and Databricks.

Pipelines can be templatized for specific scenarios such as retraining and batch
scoring. They can be triggered from external systems via simple REST calls.

Instead of manually tracking data and result paths as you iterate, use the pipelines SDK
to explicitly name and version your data sources, inputs, and outputs as well as
manage scripts and data separately for increased productivity



Azure ML Artifact

Compute Target

Compute Targets are the compute resources
used to run training scripts or host your
model when deployed as a web service.

They can be created and managed using the
Azure Machine Learning SDK or CLI.

You can attach to existing resources.

You can start with local runs on your
machine, and then scale up and out to
other environments.

Note: it doesn’t make sense to train models on loT edge, for example.

Currently supported compute targets

Compute Target

Training

Deployment

Local Computer

A Linux VM in Azure (such as the Data
Science Virtual Machine)

Azure ML Compute

Azure Databricks

Azure Data Lake Analytics

Apache Spark for HDInsight

Azure Container Instance

Azure Kubernetes Service

Azure loT Edge

Field-programmable gate array (FPGA)

v

IR EES
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Azure ML

Currently Supported Compute Targets

GPU Automated model Can be used in
Compute target acceleration Hyperdrive selection pipelines
Local computer Maybe v
Data Science Virtual Machine
DSYM; v v v v
Azure ML compute v v v v
Azure Databricks v v v
Azure Data Lake Analytics v
Azure HDInsight v

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets



https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#local
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#dsvm
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.compute.amlcompute(class)?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#databricks
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#adla
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#hdinsight
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

Azure Machine Learning

Track experiments and training metrics

Start logging metrics

start_logging - Add logging functions to your training script and start an interactive logging session in the
specified experiment. start_logging creates an interactive run for use in scenarios such as notebooks. Any
metrics that are logged during the session are added to the run record in the experiment.

run = experiment.start_logging()

run.log(‘alpha’, 0.03)

ScriptRunConfig - Add logging functions to your training script and load the entire script folder with the run.
ScriptRunConfig is a class for setting up configurations for script runs. With this option, you can add
monitoring code to be notified of completion or to get a visual widget to monitor.

src = ScriptRunConfig(source_directory = "./', script = 'train.py’, run_config = run_config_user_managed)

run = experiment.submit(src)



Azure Machine Learning

Track experiments and training metrics

ScriptRunConfig: using ScriptRunConfig method to submit runs,
you can watch the progress of the run with a Jupyter notebook
widget. Like the run submission, the widget is asynchronous and
provides live updates every 10-15 seconds until the job completes.

from azureml.widgets import RunDetails

RunDetails(run).show()

View the experiment in the Azure portal

You can view metrics / loggings for both
start_logging and ScriptRunConfig in

Azure Portal.

from azureml.train.widgets import RunDetails
RunDetails(run).show()
Run Properties Output Logs
Uploading e

Status Running

Start Time 9/15/2018 7:15:37 PM

Duration 0:00:20

Run Id train-on-
local_1537053337_839
d0780

Arguments N/A

alpha mse




Azure Machine Learning

Data Wrangler — DataPrep SDK: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/?view=azure-dataprep-py

« Automatic file type detection.
» Load from many file types with parsing parameter inference (encoding, separator, headers).
« Type-conversion using inference during file loading
« Connection support for MS SQL Server and Azure Data Lake Storage
* Add column using an expression
* Impute missing values
» Derive column by example
* Filtering
« Custom Python transforms
 Scale through streaming — instead of loading all data in memory
* Summary statistics
* Intelligent time-saving transformations:
« Fuzzy grouping
« Derived column by example
» Automatic split columns by example
* Impute missing values
» Automatic join
« Cross-platform functionality with a single code artifact. The SDK also allows for dataflow objects to be
serialized and opened in any Python environment.



https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.fuzzygroupbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.derivecolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.splitcolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.imputemissingvaluesbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.joinbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#cross

Azure Machine Learning
Azure Machine Learning SDK

plip 1nstall —--upgrade azureml-sdk[notebooks,automl]
plp 1nstall azureml-monitoring > azureml-core
from azureml .monitoring import ModelDataCollector > azureml—explain—model

>azureml-monitoring .
> azureml-train-core

N e
bip install --upgrade azureml-pipeline-core

azureml-dataprep > azureml-pipeline-steps
import azureml.dataprep as dprep

> azureml-train-automi
> azureml.dataprep

> azureml-telemet
> azureml.dataprep.api.builders Y

. . > azureml-webservice-schema
> azureml.dataprep.api.expressions

azureml.dataprep.api.functions > azureml-widgets
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How to use the Azure Machine
Learning service:
An example using the Python SDK



Setup for Code Example

This example trains a simple logistic regression
using the MNIST dataset and scikit-learn with
Azure Machine Learning service.

MNIST is a dataset consisting of 70,000 grayscale images.

Each image is a handwritten digit of 28x28 pixels,
representing a number from 0 to 9.

The goal is to create a multi-class classifier to
identify the digit a given image represents.
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http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/

Step 1— Create a workspace

azureml.core import
ws = Workspace.create(name="'myworkspace"',
subscription_id='<azure-subscription-id>"',
resource_group="myresourcegroup’,

create_resource_group=True,
location="eastus2' # or other supported Azure region

)

# see workspace details
ws.get details()

Step 2 — Create an Experiment

Create an experiment to track the runs in the workspace. A workspace can have multiple experiments
experiment_name = ‘my-experiment-1'

azureml.core Experiment
exp = Experiment(workspace=ws, name=experiment name)



Step 3 — Create remote compute target

# choose a name for your cluster, specify min and max nodes

Zero is the default.
If min is zero then
the cluster is

compute name = os.environ.get("BATCHAI CLUSTER_NAME", "cpucluster")
compute min_nodes = os.environ.get("BATCHAI CLUSTER_MIN_ NODES", 0)
compute _max_nodes = os.environ.get("BATCHAI CLUSTER_MAX NODES", 4)

# This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("BATCHAI CLUSTER _SKU", "STANDARD D2 V2")

provisioning config = AmlCompute.provisioning configuration(
vm_size = vm_size,
min_nodes = compute min_nodes,
max_nodes = compute_max_nodes)
# create the cluster
print(€ creating a new compute target... ')
compute_target = ComputeTarget.create(ws, compute name, provisioning config)

# You can poll for a minimum number of nodes and for a specific timeout.
# if no min node count is provided it will use the scale settings for the cluster
compute target.wait for completion(show_output=True,

min_node_count=None, timeout in minutes=20)

»
|

automatically
deleted when no
jobs are running
on it.



Step 4 — Upload data to the cloud

First load the compressed files into numpy arrays. Note the ‘load_data’ is a custom function that simply parses the
compressed files into numpy arrays.

# note that while loading, we are shrinking the intensity values (X) from 0-255 to ©-1 so that the
model converge faster.

X_train = load data('./data/train-images.gz', False) / 255.0

y _train = load data('./data/train-labels.gz', True).reshape(-1)

X _test
y test

load data('./data/test-images.gz', False) / 255.0
load data('./data/test-labels.gz', True).reshape(-1)

Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be
accessed for remote training. The files are uploaded into a directory named mnist at the root of the datastore.

ds = ws.get default datastore()
print(ds.datastore_type, ds.account_name, ds.container_name)

ds.upload(src_dir="./data', target path='mnist', overwrite=True, show_progress=True)

We now have everything you need to start training a model.



Step 5 — Train a local model

Train a simple logistic regression model using scikit-learn locally. This should take a minute or two.

%%time from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train, y train)

# Next, make predictions using the test set and calculate the accuracy
y hat = clf.predict(X test)
print(np.average(y _hat == y test))

You should see the local model accuracy displayed. [It should be a number like 0.915]



Step 6 — Train model on remote cluster

To submit a training job to a remote you have to perform the following tasks:
* 6.1: Create a directory

* 6.2: Create a training script

« 6.3: Create an estimator object

* 6.4: Submit the job

Step 6.1 — Create a directory

Create a directory to deliver the required code from your computer to the remote resource.

import os
script_folder = './sklearn-mnist' os.makedirs(script folder, exist ok=True)



Step 6.2 — Create a Training Script (1/2)

%iwritefile $script folder/train.py

# load train and test set into numpy arrays
# Note: we scale the pixel intensity values to ©0-1 (by dividing it with 255.0) so the model can
# converge faster.

# ‘data _folder’ variable holds the location of the data files (from datastore)
Reg = 0.8 # regularization rate of the logistic regression model.

X_train = load data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0
X _test = load data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0

y train = load data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1)

y test = load data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1)
print(X_train.shape, y train.shape, X test.shape, y test.shape, sep = '\n”’)

# get hold of the current run

run = Run.get context()

#Train a logistic regression model with regularizaion rate of’ ‘reg’
clf = LogisticRegression(C=1.0/reg, random_state=42)
clf.fit(X_train, y train)



Step 6.2 — Create a Training Script (2/2)

print('Predict the test set’)
y hat = clf.predict(X test)

# calculate accuracy on the prediction
acc = np.average(y_hat == y test)

print('Accuracy is', acc)

run.log('regularization rate', np.float(args.reg))
run.log('accuracy', np.float(acc)) os.makedirs('outputs', exist ok=True)

# The training script saves the model into a directory named ‘outputs’. Note files saved in the
# outputs folder are automatically uploaded into experiment record. Anything written in this
# directory is automatically uploaded into the workspace.

joblib.dump(value=clf, filename='outputs/sklearn _mnist model.pkl")



Step 6.3 — Create an Estimator

An estimator object is used to submit the run.

from azureml.train.estimator import Estimator

script _params = { '--data-folder': ds.as_mount(),

'--regularization': 0.8 }

The directory that contains the
scripts. All the files in this
directory are uploaded into
the cluster nodes for execution

est = Estimator(source directory=script folder, -- - - - - - ___________.
| script_params=script_params, ---------oooooooo
| compute_target=compute_target, ----------------------- : i
i entry_script='train.py’, ------------- ; |
i conda_packages=[ 'scikit-learn']) E i E
V v : ; ;
Name of Python Packages Training Script Compute Parameters required
estimator needed for training Name target (Batch Al from the training script
in this case)

Step 6.4 — Submit the job to the cluster for training

run = exp.submit(config=est)



What happens after you submit the job?

NN

Image creation

A Docker image is created matching the Python
environment specified by the estimator. The image
is uploaded to the workspace. Image creation and
uploading takes about 5 minutes.

This happens once for each Python environment
since the container is cached for subsequent runs.
During image creation, logs are streamed to the
run history. You can monitor the image creation
progress using these logs.

Running

In this stage, the necessary scripts and files are
sent to the compute target, then data stores are
mounted/copied, then the entry_script is run.
While the job is running, stdout and the ./logs
directory are streamed to the run history. You can
monitor the run's progress using these logs.

— 01010
— 10101
— 01010

Scaling

If the remote cluster requires more nodes

to execute the run than currently available,
additional nodes are added automatically.
Scaling typically takes about 5 minutes.

Post-Processing

The ./outputs directory of the run is copied
over to the run history in your workspace
SO you can access these results.



Step 7 — Monitor a run

You can watch the progress of the run with a Jupyter widget. The widget is asynchronous and provides live
updates every 10-15 seconds until the job completes.

from azureml.widgets import RunDetails
RunDetails(run).show()

Here is a still snapshot of the widget shown at the end of training:

Run Properties OQutput Logs

Uploading experiment status to history service.

Status Completed ) .
P Adding run profile attachment azuremi-logs/80_driver log.txt
i /10/ 1142 P

Start Time 8/10/2018 12:11:42 PM Data folder: /mnt/batch/tasks/shared/LS rootjobs/gpuciuster225cB131 7743bf5/azureml/sklearn

mnist_1533921100384/mounts/workspacefilestore/mnist
ration 07

Duralio 00720 (60000, 784)
(60000,

Run Id sklearn- o J

(10000, 784)
(10000,)
Train a logistic regression model with regularizaion rate of 0.01

mnist_1533921100384

Arguments N/A
g Predict the test set
L Accuracy is 0.9185
regularization rate 0.01 . . » ) ~
The experiment completed successfully. Starting post-processing steps.
accuracy 0.9185

Click here to see the run in Azure porta



Step 8 — See the results

As model training and monitoring happen in the background. Wait until the model has completed training before
running more code. Use to show when the model training is complete

—————————— * Specify ‘True’ for a verbose log

run.wait for completion(show output=False)

# now there is a trained model on the remote cluster
print(run.get_metrics()) """

_______ » Displays the accuracy of the model. You should see an output that
looks like this.

{'regularization rate': 0.8, 'accuracy': 0.9204}



Step 9 — Register the model

Recall that the last step in the training script is:

joblib.dump(value=clf, filename='outputs/sklearn mnist model.pkl")

This wrote the file ’ "in a directory named "in the VM of the cluster where
the job is executed.

is a special directory in that all content in this directory is automatically uploaded to your workspace.
« This content appears in the run record in the experiment under your workspace.
* Hence, the model file is now also available in your workspace.

# register the model in the workspace
model = run.register _model (
model name='sklearn_mnist’,
model path='outputs/sklearn _mnist model.pkl”’)

The model is now available to query, examine, or deploy



Step 9 — Deploy the Model

Deploy the model registered in the previous slide, to Azure Container Instance (ACI) as a Web Service

There are 4 steps involved in model deployment
Step 9.1 - Create scoring script

Step 9.2 — Create environment file

Step 9.3 — Create configuration file

Step 9.4 — Deploy to ACI!



Step 9.1 — Create the scoring script

Create the scoring script, called score.py, used by the web service call to show how to use the model.
It requires two functions — init() and run (input data)

The init() function, typically loads the model
S » into a global object. This function is run only
! once when the Docker container is started.

def init(): ---------=mmmmmmmmmmmmmmmmooooo- '
global model
# retreive the path to the model file using the model name
model path = Model.get model path('sklearn mnist”’)
model = joblib.load(model path)

from azureml.core.model import Model

def run(raw_data):

data = np.array(json.loads(raw_data)[ 'data’])
# make prediction

y hat = model.predict(data)

return json.dumps(y hat.tolist())

The run(input_data) function uses the model to predict a value
based on the input data. Inputs and outputs to the run typically use
JSON for serialization and de-serialization, but other formats are
supported



Step 9.2 — Create environment file

Create an environment file, called myenv.yml, that specifies all of the script's package dependencies. This file is
used to ensure that all of those dependencies are installed in the Docker image. This example needs scikit-learn
and azureml|-sdk.

from azureml.core.conda dependencies import CondaDependencies

myenv = CondaDependencies()
myenv.add conda_package("scikit-learn")

with open("myenv.yml","w") as f:
f.write(myenv.serialize to_string())

Step 9.3 — Create configuration file

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for the
ACI container. Here we will use the defaults (1 core and 1 gigabyte of RAM)

from azureml.core.webservice import AcilWebservice

aciconfig = AcilWebservice.deploy configuration(cpu_cores=1, memory_ gb=1,
tags={"data": "MNIST", "method" : "sklearn"},
description="Predict MNIST with sklearn')



Step 9.4 — Deploy the model to ACI

Build an image using:
 The scoring file (score.py)

%ntime « The environment file (myenv.yml)
from azureml.core.webservice import Webservice e The model file
from azureml.core.image import ContainerImage A

# configure the image .
image config = ContainerImage.image configuration(
execution_script ="score.py",
runtime ="python",
conda_file ="myenv.yml")

Register that image under the
workspace and send the image

to the ACI container.
A

service = Webservice.deploy from model(workspace=ws, name='sklearn-mnist-svc’,
deployment config=aciconfig, models=[model],
image config=image_ config)

service.wait for_deployment(show output=True) ------ + Start up a container in ACI using the image



Step 10 — Test the deployed model using the HTTP end point

Test the deployed model by sending images to be classified to the HTTP endpoint

import requests
import json

# send a random row from the test set to score
random_index = np.random.randint(@, len(X test)-1)
input_data = "{\"data\": [" + str(list(X_test[random index])) + "]}"

headers = {'Content-Type':'application/json’}

resp = requests.post(service.scoring uri, input_data, headers=headers)
print("POST to url", service.scoring uri)
#print("input data:", input_data)
print("label:", y test[random_index]) Send the data to the HTTP end-point for
print("prediction:", resp.text) scoring

v

https://github.com/Azure/MachinelLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml



https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml
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Azure Automated Machine Learning
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of the optimal model




Typical ‘manual’ approach to hyperparameter tuning

_____________________________ Complex
Dataset Tedious
v Repetitive
Time consuming
Model Expensive
- Training |
Training [~ Infrastructure  J s > | |
| Algorithm 2 .
| T Model 4
| L
| |
CH | i e00
\Vl\| Hyperparameter |- ...

Values — config 4




What are Hyperparameters?

Adjustable parameters that govern model training
Chosen prior to training, stay constant during training

Model performance heavily depends on hyperparameter

Setting 32 "
Number Of Leaves

Minimum Leaf Instances

Learning Rate

Number Of Trees



Challenges with Hyperparameter Selection

The search space to explore—i.e. evaluating all possible
combinations—is huge.

Sparsity of good configurations.
Very few of all possible configurations are optimal.

Evaluating each configuration is resource and time
consuming.

Time and resources are limited.



Azure Automated ML: Sampling to generate new runs
HyperDrive

Define hyperparameter search space

/ \ Configl= {“learning_rate”:

“num_layers”: 2, ..}

Sampling

{ algorithm Config2= {“learning_rate”:
“num_layers”: 4, ..}

“learning_rate”: uniform(@, 1),
“num_layer\s”: Choice(z, 4, 8) ................................................. »

Config3= {“learning rate”:
“num_layers”: 8, ..}

- /

Supported sampling algorithms:
Grid Sampling

Random Sampling

Bayesian Optimization



Azure Automated ML

HyperDrive

HyperDrive Run Primary Metric : accuracy

— 163
114
— 115
— 147
— 124
— 146
151
— 108
116
=117
— 110
113
—_— 127
— 150
— 134
—_— 122
158
— 142
131

Evaluate training runs for
specified primary metric

Use resources to explore new Lol
configurations

3 4 5 6 7 8 9 10 11 12 i3 14 15 16 17 i8 19 20 21 22 23 24

Early terminate poor performing *Define the parameter search space

training runs. Early termination -Specify a primary metric to optimize

policies include: *Specify early termination criteria for poorly performing runs
Bandit policy *Allocate resources for hyperparameter tuning

sLaunch an experiment with the above configuration

Visualize the training runs

Truncation Selection policy Select the best performing configuration for your model

Median Stopping policy



Complexity of Machine Learning

scikit-learn
algorithm cheat-sheet

classification

get

NOT
WORKING

more
data NO

=
predicting a
category

regression

number of
categories
known

looking
WORKING ing
NOT
WORKING
YES

: s dimensionality
redicing app n :
@ e reduction

Source: http://scikit-learn.org/stable/tutorial/machine learning map/index.html



http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Azure Automated ML

Conceptual Overview

Dataset

Optimization Automated ML
Metric

Automated ML Tuning (CT?;S;;E’LTS
Specifications

Candidate Algorithms
Optimization metric

Early Termination Policy
Budget — Time / Compute

High Quality ML
# parallel runs |nputs

Model!

\ 4

A

Azure Automated ML

Recommended

hyperparameter
configuration

Training script
+

Run metrics

Training data




Azure Automated ML

How It Works

Automated ML User Compute (Local, bsvMm etc.)

UserScript.py

Jupyter | configure and Generate Algo 2, Hypet High Quality
Submit Intelligent “Return: Mode Model

Automated MLL|
) pipeline
Experiment parameters

Algo n, Hyper|Parameter set n [ \4L810 =111

eturn: Mode| (rﬁ;.rmance Training

During training, the Azure Machine Learning service creates a number of pipelines that try different algorithms and parameters.
It will stop once it hits the iteration limit you provide, or when it reaches the target value for the metric you specify.



Azure Automated ML — Sample Output

AutoML_ab755820-4bfd-4e8a-8b4b-9e0a2446b1c2:
Status: Completed

i L] ] ] ] ] 1 i ] ]
1} 10 20 30 40 50 60 70 a0 90

Iteration Pipeline v Iteration metric Best metric Status Duration Started Run Id o

99 Ensemble 0.93702349 0.93702349 Completed 0:02:18 Dec 4, 2018 12:18 AM | &) .
10 MaxAbsScaler, LightGBM 0.93289307 0.93289307 Completed 0:01:22 Dec 3, 2018 7:45 PM | &)
67 SparseNormalizer, LightGBM 0.9154763 0.93289307 Completed 0:01:31 Dec 3, 2018 10:19 PM | &)
64 MaxAbsScaler, LightGBM 0.90148724 0.93289307 Completed 0:01:24 Dec 3, 2018 10:09 PM | &)
69 MaxAbsScaler, LightGBM 0.88975241 0.93289307 Completed 0:00:55 Dec 3, 2018 10:22 PM | &) y

Pagess 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . Next Last [5_v]perpage

[r2_score ~

AutoML Run with metric : r2_score

1
o o 3 °
ooe © [ ® ° ° [ ]
% . . ° o®
0.5 ® ® ® ® ™ o 94,° ® ® ° e
[ ] @ Y L] [ ] [ o ® 9
® ® ® ® L P ® [ ]
[ T [ ] ® ® s 0 (] [ ]
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Azure Automated ML

Use via the Python SDK

Training the Model

You can call the fit method on the AutoML instance and pass the run configuration. For Local runs the execution is synchronous. Depending on the data and
number of iterations this can run for while. You will see the currently running iterations printing to the console.

fit method on Auto ML Regressor triggers the training of the model. It can be called with the following parameters

f— . Parameter Description
— J u pyter 1 OQ.&UtO-mI-regreSSlOn (unsaved changes) P X (sparse) array-like, shape = [n_samples, n_features]
(sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]

File Edit nsert Cel Kernel Help Not Trusted | & | ¥ Multi-class targets. An indicator matrix turns on multilabel classification.
B+ s @B 4 v Hrn B Cwoe e compute_targe sl 1 computs o g oz e el b same oo i e h o ek
show_output True/False to turn onfoff console output

Instantiate Auto ML Regressor

Instantiate a AutoML Object This creates an Experiment in Azure ML. You can reuse this objects 1o trigger muliple runs. Each run will be part of the same 1" [6]: local_run = experiment.submit(automl_config, show_output=True)

experiment. Parent Run ID: AutoML_e7a4236e-8935-4e93-888d-1ea8310abb22
bR R R R R R R R K R R K R R K K R KK
Property Description ITERATION: The iteration being evaluated.
PIPELINE: A summary description of the pipeline being evaluated.
This is the metric that you want to optimize DURATION: Time taken for the current iteration.
Auto ML Regressor supports the following primary metrics METRIC: The result of computing score on the fitted pipeline.
primary_metric spearman_correlation BEST: The best observed score thus far.
normalized_root_mean_squared_error T
re_score
max_time_sec Time limit in seconds for each iterations ITERATION PIPELINE DURATION METRIC BEST
2] Mormalize extra trees regressor 9:00:12.869893 @.688 @.688
iterations MNumber of iterations. In each iteration Auto ML Classifier trains the data with a specific pipeline 1 Hormalize 1ightGBM regressor .192919 0.597 0.688
num cross folds Cross Validation split 2 Mormalize Elastic net .866233 ©.689 9.689
- - 3 Scale @/1 1lightGBM regressor 869764 @.656 @.689
a4 Robust Scaler kNN regressor .890668 @.598 @.689
In [5]: from azureml.train.automl import AutoMLConfig g gzgr:zilgiaﬁghigf‘ll‘P:ZEQEEZ:P ggi?;? gggg gggg
7 Hormalize SGD regressor .e1e672 @.e7e @.689
automl_config = AutoMLConfig(task = 'regression’, 8 Scale @/1 extra trees regressor 9:00:10.442752 8.685 8.689
debug_log = 'automl_errors.log’, 9 Robust Scaler Gradient boosting regres@:00:09.567582 9.651 8.689

primary_metric = ‘spearman_correlation’,
max_time_sec = 12000,

iterations = 160,

n_cross_validations = 3,

verbosity = logging.INFO,

X =X,

Yy =V,

path=project_folder)

https://docs.microsoft.com/en-us/python/api/azureml-train-automl/azureml.train.automl.automlexplainer?view=azure-ml-py



Azure Automated ML

Current Capabilities

Category Value

Classification
ML Problem Spaces Regression

Forecasting

Frameworks Scikit Learn
Languages Python

Numerical
Data Type and Data Formats Text

Scikit-learn supported data formats (Numpy, Pandas)
Data sources Local Files, Azure Blob Storage

Automated Hyperparameter

Compute Tuning
Target

Azure ML Compute (Batch Al), Azure Databricks

Automated Model Selection Local Compute, Azure ML Compute (Batch Al), Azure Databricks


https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

Azure Automated
Algorithms Currently Supported

ML

Classification Regression Forecasting
Logistic Regression Elastic Net Elastic Net
Stochastic Gradient Descent (SGD)  |Light GBM Light GBM

Naive Bayes

Gradient Boosting

Gradient Boosting

C-Support Vector Classification (SVC)

Decision Tree

Decision Tree

Linear SVC

K Nearest Neighbors

K Nearest Neighbors

K Nearest Neighbors

LARS Lasso

LARS Lasso

Decision Tree

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD)

Random Forest

Random Forest

Random Forest

Extremely Randomized Trees

Extremely Randomized Trees

Extremely Randomized Trees

Gradient Boosting

Light GBM



https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/sgd.html#sgd
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#classification
https://lightgbm.readthedocs.io/en/latest/index.html

primary_metric

Classification:

accuracy AUC_weighted precision_score_weighted balanced_accuracy average_precision_score_weighted

Regression:

normalized_mean_absolute_error spearman_correlation normalized_root_mean_squared_error normalized_root_mean_squared_log_error R2_score

Property Description Default Value
task Specify the type of machine learning problem. Allowed values are Classification Regression Forecasting None
Metric that you want to optimize in building your model. For example, if you specify accuracy as the primary_metric, automated machine learning looks to find a model with maximum accuracy. You can only specify  [For Classification:
one primary_metric per experiment. Allowed values are accuracy

For Regression:
spearman_correlati
on

You can set a target value for your primary_metric. Once a model is found that meets the primary_metric target, automated machine learning will stop iterating and the experiment terminates. If this value is not set

experiment_exit_score default), Automated machine learning experiment will continue to run the number of iterations specified in iterations. Takes a double value. If the target never reaches, then Automated machine learning will continue [None
until it reaches the number of iterations specified in iterations.
iterations Maximum number of iterations. Each iteration is equal to a training job that results in a pipeline. Pipeline is data preprocessing and model. To get a high-quality model, use 250 or more 100
max_concurrent _iterations Max number of iterations to run in parallel. This setting works only for remote compute. 1
. . Indicates how many cores on the compute target would be used to train a single pipeline. If the algorithm can leverage multiple cores, then this increases the performance on a multi-core machine. You can set it to -1
max_cores_per_iteration . - 1
to use all the cores available on the machine.
iteration_timeout_minutes Limits the amount of time (minutes) a particular iteration takes. If an iteration exceeds the specified amount, that iteration gets canceled. If not set, then the iteration continues to run until it is finished. None
n _cross_validations Number of cross validation splits None
alidation_size Size of validation set as percentage of all training sample. None
True/False
True enables experiment to perform preprocessing on the input. Following is a subset of preprocessingMissing Data: Imputes the missing data- Numerical with Average, Text with most occurrence Categorical Values: If
preprocess . . - . . > ; ) ) False
data type is numeric and number of unique values is less than 5 percent, Converts into one-hot encoding Etc. for complete list check the GitHub repository
Note : if data is sparse you cannot use preprocess = true
IAutomated machine learning experiment has many different algorithms that it tries. Configure to exclude certain algorithms from the experiment. Useful if you are aware that algorithm(s) do not work well for your
dataset. Excluding algorithms can save you compute resources and training time.
Allowed values for Classification
blacklist models LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier None
- Allowed values for Regression
ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN
Allowed values for Forecasting
ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN
IAutomated machine learning experiment has many different algorithms that it tries. Configure to include certain algorithms for the experiment. Useful if you are aware that algorithm(s) do work well for your dataset.
Allowed values for Classification
LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier
Whitelist_models Allowed values for Regression None
ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN
Allowed values for Forecasting
ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN
erbosity Controls the level of logging with INFO being the most verbose and CRITICAL being the least. Verbosity level takes the same values as defined in the python logging package. Allowed values are: logging INFO
logging.INFOlogging. WARNINGlogging.ERRORIlogging.CRITICAL )
X Al features to train with None
Label data to train with. For classification, should be an array of integers. None
X valid Optional All features to validate with. If not specified, X is split between train and validate None
valid Optional The label data to validate with. If not specified, y is split between train and validate None
sample_weight Optional A weight value for each sample. Use when you would like to assign different weights for your data points None
sample_weight valid Optional A weight value for each validation sample. If not specified, sample_weight is split between train and validate None
run_configuration RunConfiguration object. Used for remote runs. None
data script Path to a file containing the get data method. Required for remote runs. None

model_explainability

Optional True/False
True enables experiment to perform feature importance for every iteration. You can also use explain_model() method on a specific iteration to enable feature importance on-demand for that iteration after experiment is|
complete.

False

lenable_ensembling Flag to enable an ensembling iteration after all the other iterations complete. True
lensemble _iterations Number of iterations during which we choose a fitted pipeline to be part of the final ensemble. 15
lexperiment_timeout_minutes [Limits the amount of time (minues) that the whole experiment run can take None



https://aka.ms/aml-notebooks

Azure Automated ML

Benefits Overview

Azure Automated ML lets you

ML Algorithm & Hyperparameter to try next

Automate the exploration process

Use resources more efficiently

Automated ML

Optimize model for desired outcome x @@
Control resource budget b
Apply it to different models and learning domains cvlate -

Pick training frameworks of choice |

ML Model results: accuracy = 0.75" T

Visualize all configurations in one place

Note about security: on the right side of the automated ML service, the gray part is separated from the training and data, only the result (orange bottom block) is sent
back from training to the service; hence your data and algorithm safely stay within your subscription.



Azure Automated ML

Model Explainability

automl_config = AutoMLConfig(task = 'classification’,
debug_log = 'automl_errors.log’,
primary_metric = 'AUC_weighted',
max_time_sec = 12000,
iterations = 10,
verbosity = logging.INFO,
X = X train,
y = y_train,
X valid = X_test,
y_valid = y_test,
model_explainability=True,
path=project_folder)

You can view it in your workspace in Azure portal
Or you can show it using Jupyter widgets in a notebook:

from azureml.widgets import RunDetails
RunDetails(local_run).show()

from azureml.train.automl.automlexplainer
import retrieve model explanation
shap values, expected values,
overall summary, overall imp,

per class summary, per class imp
retrieve model explanation (best run
#Overall feature importance

print (overall imp) print(overall summary)
#Class-level feature importance

print (per class imp)

print (per class summary)

Feature Importance

\
)

B Overall
petal length (ecm) 0

petal width (em)
sepal length (cm)

sepal width (cm)




Microsoft Research Paper & Examples

For those who wants to find out more about Automated Machine Learning:

https://arxiv.org/abs/1705.05355

https.//github.com/Azure/MachinelLearningNotebooks/tree/master/
how-to-use-azureml/automated-machine-learning



https://arxiv.org/abs/1705.05355
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning
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Distributed Training with
Azure ML Compute




Distributed Training with Azure ML Compute

You submit a model training ‘job’ — the
infrastructure is managed for you.

vi™s
Jobs run on a VM or Docker container. r :o (ﬂ ==
Aand

Supports Low priority (Cheaper) or Dedicated

(Reliable) VMS. *
Auto-scales: Just specify min and max number

docker

of nodes.

If min is set to zero, cluster is deleted when no

Jobs are running; so pay only for job duration. e s Suaz[n] (e o] (B =
Works with most popular frameworks and
m u |ti ple |a ng uages’ @ 174 commits ¥ 7 branches © 0 releases 12,18 contributors s MIT

. i . . . Branch: master  New pull request Crestenew file | Upload files  Find file

Supports distributed training with Horovod. - —
Cluster can be shared; multiple experiments
can be run in parallel. .
Supports most VM Families, including latest i

NVidia GPUs for DL model training.


https://docs.microsoft.com/en-us/azure/batch-ai/tutorial-horovod-tensorflow

m Microsoft

Try it for free!

http://aka.ms/amlfree

THANK YOU!

Learn more:
https://docs.microsoft.com/en-us/azure/machine-learning/service/

Visit the Getting started guide:
https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-
create-workspace-with-python

Fantastic free Azure notebooks (with Azure Machine Learning SDK pre-configured):
https://notebooks.azure.com



https://docs.microsoft.com/en-us/azure/machine-learning/service/
https://na01.safelinks.protection.outlook.com/?url=https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python&data=02|01|Nishant.Thacker@microsoft.com|cf39575eaf38429c5e8a08d656e2e42e|72f988bf86f141af91ab2d7cd011db47|1|0|636791929820843655&sdata=uJ7HkdJQ8JlAneRRmuQF37oxfgEkmIsSFQx%2BQy/5M8o%3D&reserved=0
https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python
https://notebooks.azure.com/
http://aka.ms/amlfree

