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The Context
• Deployment to multiple targets

• Help with ease of data preparation

• Automated Machine Learning

• Distributed Training

• Support both for Web Service and Batch modes

• Strong support for Spark (Databricks)

• Support for more training & deployment platforms

• Better Integration with other services

• No Need to have a pre-defined GUI Interface 

• End-to-End Lifecycle and processes

• Open to frameworks and tools

• Support Deep Learning frameworks

• Help with Environment isolations

• Better management of models & experiments

• Especially on Tracking and Monitoring



Azure offers a comprehensive 
AI/ML platform that meets—and 

exceeds—requirements
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Machine Learning
Typical E2E Process

…

Prepare Experiment Deploy

Orchestrate

…



DevOps loop for data science 
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What is Azure Machine Learning service?

Set of Azure 

Cloud Services
Python 

SDK

✓ Prepare Data

✓ Build Models

✓ Train Models

✓Manage Models

✓ Track Experiments

✓Deploy Models

That enables 

you to:



Azure ML service
Lets you easily implement this AI/ML Lifecycle

Azure 
Machine Learning

Workflow Steps



Data Preparation

Multiple Data Sources 

SQL and NoSQL databases, file systems, network attached storage and cloud stores (such as Azure 
Blob Storage) and HDFS.

Multiple Formats

Binary, text,  CSV, TS, ARFF, etc. and auto detect file types.

Cleansing

Detect and fix NULL values, outliers, out-of-range values, duplicate rows. 

Transformation / Filtering

General data transformation (transforming types) and  ML-specific transformations (indexing, 
encoding, assembling into vectors, normalizing the vectors, binning, normalization and 
categorization). 

Intelligent time-saving transformations

Derive column by example, fuzzy grouping, auto split columns by example, impute missing values.

Custom Python Transforms

Such as new script column, new script filter, transformation partition

https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#intelligent


Model Building (DEV)

Choice of algorithms

Choice of language

Python

Choice of development tools

Browser-based, REPL-oriented, notebooks such as Jupyter, PyCharm and Spark Notebooks.

Desktop IDEs such as Visual Studio and R-Studio for R development.

Local Testing

To verify correctness before submitting to a more powerful 
(and expensive) training infrastructure.



Model Training and Testing

Powerful Compute Environment

Choices include scale-up VMs, auto-scaling scale-out clusters

Preconfigured

The compute environments are pre-setup with all the correct versions 
ML frameworks, libraries, executables and container images.

Job Management

Data scientists are able to easily start, stop, monitor and manage Jobs. 

Automated Model and Parameter Selection

Solutions are automatically select the best algorithms, and the 
corresponding best hyperparameters, for the desired outcome.



Model Registration and Management

Containerization

Automatically convert models to Docker containers so that 
they can be deployed into an execution environment.   

Versioning

Assign versions numbers to models, to track changes over 
time, to identify and retrieve a specific version for 
deployment, for A/B testing, rolling back changes etc.

Model Repository

For storing and sharing models, to enable integration into 
CI/CD pipelines.

Track Experiments

For auditing, see changes over time and enable 
collaboration between team members. 



Model Deployment

Choice of Deployment Environments

Single VM, Cluster of VMs, Spark Clusters, Hadoop Clusters, 
In the cloud, On-premises

Edge Deployment

To enable predictions close to the event source-for quicker 
response and avoid unnecessary data transfer.

Security

Your data and model is secured. Even when deployed at the 
edge, the e2e security is maintained. 

Monitoring

Monitor the status, performance and security.



Azure Machine Learning: 
Technical Details



Azure ML service
Key Artifacts

Workspace



Azure ML service Artifact
Workspace

The workspace is the top-level resource for the Azure Machine Learning service. It provides a 
centralized place to work with all the artifacts you create when using Azure Machine Learning service.

The workspace keeps a list of compute targets that can be used to train your model. It also keeps a 
history of the training runs, including logs, metrics, output, and a snapshot of your scripts. 

Models are registered with the workspace.

You can create multiple workspaces, and each workspace can be shared by multiple people. 

When you create a new workspace, it automatically creates these Azure resources:

Azure Container Registry - Registers docker containers that are used during training and when 

deploying a model.

Azure Storage - Used as the default datastore for the workspace.

Azure Application Insights - Stores monitoring information about your model service.

Azure Key Vault - Stores secrets used by compute targets and other sensitive information needed 

by the workspace.

https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/storage/
https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/key-vault/


Azure ML service Workspace Taxonomy



Azure ML service Artifacts
Models and Model Registry

Model Model Registry



Azure ML Artifacts
Runs and Experiments

Experiment

Run

Run configuration



Azure ML service Artifacts
Image and Registry

Image contains

Two types of images

Image Registry



Azure ML Concept
Model Management

Model Management in Azure ML 

usually involves these four steps

Step 1:  

Step 2: 

Step 3: 

Step 4: 



Azure ML Artifact
Deployment

Deployment is an instantiation of an image

Web service IoT Module 



Azure ML Artifact
Datastore



Azure ML: How to deploy models at scale 



Azure ML Artifact
Pipeline

A step is a computational unit in the pipeline.

How pipelines help?
✓

✓

✓

✓



Azure ML Pipeline
Python SDK

The Azure Machine Learning SDK offers imperative constructs 
for sequencing and parallelizing the steps in your pipelines 
when no data dependency is present.

Using declarative data dependencies, you can optimize your 
tasks. 

The SDK includes a framework of pre-built modules for common tasks 
such as data transfer and model publishing.

The framework can be extended to model your own conventions by 
implementing custom steps that are reusable across pipelines. 

Compute targets and storage resources can also be managed directly 
from the SDK.

Pipelines can be saved as templates and can be deployed to a 
REST endpoint so you can schedule batch-scoring or 
retraining jobs



Azure ML Pipelines
Advantages

Advantage Description



Azure ML Artifact
Compute Target

Compute Target Training Deployment

Local Computer ✓

A Linux VM in Azure (such as the Data 

Science Virtual Machine)
✓

Azure ML Compute ✓

Azure Databricks ✓

Azure Data Lake Analytics ✓

Apache Spark for HDInsight ✓

Azure Container Instance ✓

Azure Kubernetes Service ✓

Azure IoT Edge ✓

Field-programmable gate array (FPGA) ✓

Currently supported compute targets



Azure ML
Currently Supported Compute Targets

Compute target

GPU 

acceleration Hyperdrive

Automated model 

selection

Can be used in 

pipelines

Local computer Maybe ✓

Data Science Virtual Machine 

(DSVM)
✓ ✓ ✓ ✓

Azure ML compute ✓ ✓ ✓ ✓

Azure Databricks ✓ ✓ ✓

Azure Data Lake Analytics ✓

Azure HDInsight ✓

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#local
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#dsvm
https://docs.microsoft.com/en-us/python/api/azureml-core/azureml.core.compute.amlcompute(class)?view=azure-ml-py
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#databricks
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#adla
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#hdinsight
https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets


Azure Machine Learning
Track experiments and training metrics



Azure Machine Learning
Track experiments and training metrics



Azure Machine Learning
Data Wrangler – DataPrep SDK: https://docs.microsoft.com/en-us/python/api/azureml-dataprep/?view=azure-dataprep-py

• Automatic file type detection.

• Load from many file types with parsing parameter inference (encoding, separator, headers).

• Type-conversion using inference during file loading

• Connection support for MS SQL Server and Azure Data Lake Storage

• Add column using an expression

• Impute missing values

• Derive column by example

• Filtering

• Custom Python transforms

• Scale through streaming – instead of loading all data in memory

• Summary statistics

• Intelligent time-saving transformations:

• Fuzzy grouping

• Derived column by example

• Automatic split columns by example

• Impute missing values

• Automatic join

• Cross-platform functionality with a single code artifact. The SDK also allows for dataflow objects to be 

serialized and opened in any Python environment. 

https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.fuzzygroupbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.derivecolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.splitcolumnbyexamplebuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.imputemissingvaluesbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/azureml-dataprep/azureml.dataprep.api.builders.joinbuilder?view=azure-dataprep-py
https://docs.microsoft.com/en-us/python/api/overview/azure/dataprep/intro?view=azure-dataprep-py#cross


Azure Machine Learning
Azure Machine Learning SDK

pip install --upgrade azureml-sdk[notebooks,automl]

pip install azureml-monitoring

from azureml.monitoring import ModelDataCollector

pip install --upgrade 

azureml-dataprep

import azureml.dataprep as dprep



How to use the Azure Machine 
Learning service: 

An example using the Python SDK



Setup for Code Example 

This example trains a simple logistic regression 
using the MNIST dataset and scikit-learn with 
Azure Machine Learning service. 

MNIST is a dataset consisting of 70,000 grayscale images. 

Each image is a handwritten digit of 28x28 pixels, 
representing a number from 0 to 9. 

The goal is to create a multi-class classifier to 
identify the digit a given image represents.

http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/


from azureml.core import Workspace
ws = Workspace.create(name='myworkspace',

subscription_id='<azure-subscription-id>',    
resource_group='myresourcegroup',
create_resource_group=True,
location='eastus2' # or other supported Azure region  
)

# see workspace details
ws.get_details()

Step 2 – Create an Experiment

experiment_name = ‘my-experiment-1'

from azureml.core import Experiment
exp = Experiment(workspace=ws, name=experiment_name)

Step 1 – Create a workspace



Step 3 – Create remote compute target

# choose a name for your cluster, specify min and max nodes
compute_name = os.environ.get("BATCHAI_CLUSTER_NAME", "cpucluster")
compute_min_nodes = os.environ.get("BATCHAI_CLUSTER_MIN_NODES", 0)
compute_max_nodes = os.environ.get("BATCHAI_CLUSTER_MAX_NODES", 4)

# This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6
vm_size = os.environ.get("BATCHAI_CLUSTER_SKU", "STANDARD_D2_V2")

provisioning_config = AmlCompute.provisioning_configuration(
vm_size = vm_size,
min_nodes = compute_min_nodes,
max_nodes = compute_max_nodes)

# create the cluster
print(‘ creating a new compute target... ')
compute_target = ComputeTarget.create(ws, compute_name, provisioning_config)

# You can poll for a minimum number of nodes and for a specific timeout. 
# if no min node count is provided it will use the scale settings for the cluster
compute_target.wait_for_completion(show_output=True,

min_node_count=None, timeout_in_minutes=20)



# note that while loading, we are shrinking the intensity values (X) from 0-255 to 0-1 so that the 
model converge faster.
X_train = load_data('./data/train-images.gz', False) / 255.0 
y_train = load_data('./data/train-labels.gz', True).reshape(-1)

X_test = load_data('./data/test-images.gz', False) / 255.0 
y_test = load_data('./data/test-labels.gz', True).reshape(-1)

First load the compressed files into numpy arrays. Note the ‘load_data’ is a custom function that simply parses the 

compressed files into numpy arrays.

Now make the data accessible remotely by uploading that data from your local machine into Azure so it can be 

accessed for remote training. The files are uploaded into a directory named mnist at the root of the datastore.

ds = ws.get_default_datastore()
print(ds.datastore_type, ds.account_name, ds.container_name) 

ds.upload(src_dir='./data', target_path='mnist', overwrite=True, show_progress=True)

We now have everything you need to start training a model.

Step 4 – Upload data to the cloud



%%time from sklearn.linear_model import LogisticRegression
clf = LogisticRegression() 
clf.fit(X_train, y_train)

# Next, make predictions using the test set and calculate the accuracy
y_hat = clf.predict(X_test) 
print(np.average(y_hat == y_test))

You should see the local model accuracy displayed. [It should be a number like 0.915]

Train a simple logistic regression model using scikit-learn locally. This should take a minute or two.

Step 5 – Train a local model



To submit a training job to a remote you have to perform the following tasks:

• 6.1: Create a directory

• 6.2: Create a training script

• 6.3: Create an estimator object

• 6.4: Submit the job

Step 6.1 – Create a directory

Create a directory to deliver the required code from your computer to the remote resource.

import os
script_folder = './sklearn-mnist' os.makedirs(script_folder, exist_ok=True)

Step 6 – Train model on remote cluster



%%writefile $script_folder/train.py

# load train and test set into numpy arrays

# Note: we scale the pixel intensity values to 0-1 (by dividing it with 255.0) so the model can

# converge faster.

# ‘data_folder’ variable holds the location of the data files (from datastore)

Reg = 0.8 # regularization rate of the logistic regression model.

X_train = load_data(os.path.join(data_folder, 'train-images.gz'), False) / 255.0 

X_test = load_data(os.path.join(data_folder, 'test-images.gz'), False) / 255.0 

y_train = load_data(os.path.join(data_folder, 'train-labels.gz'), True).reshape(-1) 

y_test = load_data(os.path.join(data_folder, 'test-labels.gz'), True).reshape(-1) 

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape, sep = '\n’) 

# get hold of the current run

run = Run.get_context() 

#Train a logistic regression model with regularizaion rate of’ ‘reg’ 

clf = LogisticRegression(C=1.0/reg, random_state=42)

clf.fit(X_train, y_train) 

Step 6.2 – Create a Training Script (1/2)



print('Predict the test set’) 

y_hat = clf.predict(X_test) 

# calculate accuracy on the prediction
acc = np.average(y_hat == y_test) 

print('Accuracy is', acc) 

run.log('regularization rate', np.float(args.reg)) 

run.log('accuracy', np.float(acc)) os.makedirs('outputs', exist_ok=True) 

# The training script saves the model into a directory named ‘outputs’. Note files saved in the 
# outputs folder are automatically uploaded into experiment record. Anything written in this 
# directory is automatically uploaded into the workspace.

joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

Step 6.2 – Create a Training Script (2/2)



An estimator object is used to submit the run.

from azureml.train.estimator import Estimator 

script_params = { '--data-folder': ds.as_mount(), '--regularization': 0.8 }

est = Estimator(source_directory=script_folder, 

script_params=script_params, 

compute_target=compute_target, 

entry_script='train.py’, 

conda_packages=['scikit-learn'])

Step 6.4 – Submit the job  to the cluster for training

run = exp.submit(config=est) 

Step 6.3 – Create an Estimator



What happens after you submit the job?

Post-Processing
The ./outputs directory of the run is copied 
over to the run history in your workspace 
so you can access these results.

Running
In this stage, the necessary scripts and files are 
sent to the compute target, then data stores are 
mounted/copied, then the entry_script is run. 
While the job is running, stdout and the ./logs 
directory are streamed to the run history. You can 
monitor the run's progress using these logs.

Image creation
A Docker image is created matching the Python 
environment specified by the estimator. The image 
is uploaded to the workspace. Image creation and 
uploading takes about 5 minutes.

This happens once for each Python environment 
since the container is cached for subsequent runs. 
During image creation, logs are streamed to the 
run history. You can monitor the image creation 
progress using these logs.

Scaling
If the remote cluster requires more nodes 
to execute the run than currently available, 
additional nodes are added automatically. 
Scaling typically takes about 5 minutes.



Step 7 – Monitor a run

You can watch the progress of the run with a Jupyter widget. The widget is asynchronous and provides live 

updates every 10-15 seconds until the job completes.

from azureml.widgets import RunDetails
RunDetails(run).show()

Here is a still snapshot of the widget shown at the end of training:



Step 8 – See the results

As model training and monitoring happen in the background. Wait until the model has completed training before 

running more code. Use wait_for_completion to show when the model training is complete

run.wait_for_completion(show_output=False)

# now there is a trained model on the remote cluster
print(run.get_metrics())

{'regularization rate': 0.8, 'accuracy': 0.9204}



Step 9 – Register the model

This wrote the file ‘outputs/sklearn_mnist_model.pkl’ in a directory named ‘outputs’ in the VM of the cluster where 

the job is executed. 

• outputs is a special directory in that all content in this directory is automatically uploaded to your workspace.

• This content appears in the run record in the experiment under your workspace. 

• Hence, the model file is now also available in your workspace.

joblib.dump(value=clf, filename='outputs/sklearn_mnist_model.pkl')

Recall that the last step in the training script is:

# register the model in the workspace 
model = run.register_model (

model_name='sklearn_mnist’,
model_path='outputs/sklearn_mnist_model.pkl’)

The model is now available to query, examine, or deploy



Step 9 – Deploy the Model



Step 9.1 – Create the scoring script 

Create the scoring script, called score.py, used by the web service call to show how to use the model. 

It requires two functions – init() and run (input data)

from azureml.core.model import Model 

def init(): 
global model 
# retreive the path to the model file using the model name
model_path = Model.get_model_path('sklearn_mnist’) 
model = joblib.load(model_path) 

def run(raw_data): 
data = np.array(json.loads(raw_data)['data’]) 
# make prediction
y_hat = model.predict(data) 
return json.dumps(y_hat.tolist())



Step 9.2 – Create environment file 

Create an environment file, called myenv.yml, that specifies all of the script's package dependencies. This file is 

used to ensure that all of those dependencies are installed in the Docker image. This example needs scikit-learn

and azureml-sdk.

from azureml.core.conda_dependencies import CondaDependencies

myenv = CondaDependencies() 
myenv.add_conda_package("scikit-learn") 

with open("myenv.yml","w") as f: 
f.write(myenv.serialize_to_string())

Step 9.3 – Create configuration file 

Create a deployment configuration file and specify the number of CPUs and gigabyte of RAM needed for the 

ACI container. Here we will use the defaults (1 core and 1 gigabyte of RAM)

from azureml.core.webservice import AciWebservice

aciconfig = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1, 
tags={"data": "MNIST", "method" : "sklearn"},
description='Predict MNIST with sklearn')



Step 9.4 – Deploy the model to ACI 

%%time 
from azureml.core.webservice import Webservice 
from azureml.core.image import ContainerImage

# configure the image
image_config = ContainerImage.image_configuration(

execution_script ="score.py", 
runtime ="python", 
conda_file ="myenv.yml") 

service = Webservice.deploy_from_model(workspace=ws, name='sklearn-mnist-svc’, 
deployment_config=aciconfig, models=[model],
image_config=image_config) 

service.wait_for_deployment(show_output=True)



Step 10 – Test the deployed model using the HTTP end point

Test the deployed model by sending images to be classified to the HTTP endpoint

import requests 
import json 

# send a random row from the test set to score
random_index = np.random.randint(0, len(X_test)-1) 
input_data = "{\"data\": [" + str(list(X_test[random_index])) + "]}"

headers = {'Content-Type':'application/json’} 

resp = requests.post(service.scoring_uri, input_data, headers=headers) 

print("POST to url", service.scoring_uri) 
#print("input data:", input_data)
print("label:", y_test[random_index]) 
print("prediction:", resp.text)

https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials

https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml

https://github.com/Azure/MachineLearningNotebooks/tree/master/tutorials
https://docs.microsoft.com/en-us/azure/machine-learning/service/tutorial-train-models-with-aml


Azure Automated Machine Learning 
‘simplifies’ the creation and selection 

of the optimal model



Typical ‘manual’ approach to hyperparameter tuning

Dataset

Training 

Algorithm 1

Hyperparameter

Values – config 1

Model 1

Hyperparameter

Values – config 2

Model 2

Hyperparameter

Values – config 3

Model 3

Model 

Training

InfrastructureTraining 

Algorithm 2

Hyperparameter

Values – config 4

Model 4

Complex

Tedious

Repetitive

Time consuming

Expensive



What are Hyperparameters?

Adjustable parameters that govern model training

Chosen prior to training, stay constant during training

Model performance heavily depends on hyperparameter



The search space to explore—i.e. evaluating all possible 
combinations—is huge.

Sparsity of good configurations. 
Very few of all possible configurations are optimal.

Evaluating each configuration is resource and time 
consuming.

Time and resources are limited.

Challenges with Hyperparameter Selection



Azure Automated ML: Sampling to generate new runs

Supported sampling algorithms:
Grid Sampling
Random Sampling
Bayesian Optimization

{
“learning_rate”: uniform(0, 1),
“num_layers”: choice(2, 4, 8)
…

}

Config1= {“learning_rate”: 0.2, 
“num_layers”: 2, …}

Config2= {“learning_rate”: 0.5, 
“num_layers”: 4, …}

Config3= {“learning_rate”: 0.9, 
“num_layers”: 8, …}

…

HyperDrive



Azure Automated ML
HyperDrive

Evaluate training runs for 
specified primary metric

Use resources to explore new 
configurations

Early terminate poor performing 
training runs. Early termination 
policies include:

•Define the parameter search space

•Specify a primary metric to optimize 

•Specify early termination criteria for poorly performing runs

•Allocate resources for hyperparameter tuning

•Launch an experiment with the above configuration

•Visualize the training runs

•Select the best performing configuration for your model



Machine Learning Complexity
Complexity of Machine Learning

Source: http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Azure Automated ML
Conceptual Overview



Azure Automated ML
How It Works

During training, the Azure Machine Learning service creates a number of pipelines that try different algorithms and parameters. 

It will stop once it hits the iteration limit you provide, or when it reaches the target value for the metric you specify.





Azure Automated ML
Use via the Python SDK

https://docs.microsoft.com/en-us/python/api/azureml-train-automl/azureml.train.automl.automlexplainer?view=azure-ml-py



Azure Automated ML
Current Capabilities

Category Value

Compute 

Target

https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets#supported-compute-targets


Azure Automated ML
Algorithms Currently Supported

Logistic Regression Elastic Net Elastic Net

Stochastic Gradient Descent (SGD) Light GBM Light GBM

Naive Bayes Gradient Boosting Gradient Boosting

C-Support Vector Classification (SVC) Decision Tree Decision Tree

Linear SVC K Nearest Neighbors K Nearest Neighbors

K Nearest Neighbors LARS Lasso LARS Lasso

Decision Tree Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD)

Random Forest Random Forest Random Forest

Extremely Randomized Trees Extremely Randomized Trees Extremely Randomized Trees

Gradient Boosting

Light GBM

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/linear_model.html#elastic-net
https://scikit-learn.org/stable/modules/sgd.html#sgd
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/naive_bayes.html#bernoulli-naive-bayes
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/tree.html#regression
https://scikit-learn.org/stable/modules/svm.html#classification
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression
https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso
https://scikit-learn.org/stable/modules/tree.html#decision-trees
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#random-forests
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees
https://scikit-learn.org/stable/modules/ensemble.html#classification
https://lightgbm.readthedocs.io/en/latest/index.html


Property Description Default Value

task Specify the type of machine learning problem. Allowed values are Classification  Regression  Forecasting None

primary_metric

Metric that you want to optimize in building your model. For example, if you specify accuracy as the primary_metric, automated machine learning looks to find a model with maximum accuracy. You can only specify 

one primary_metric per experiment. Allowed values are 

Classification:

accuracy AUC_weighted precision_score_weighted balanced_accuracy average_precision_score_weighted

Regression: 

normalized_mean_absolute_error spearman_correlation normalized_root_mean_squared_error normalized_root_mean_squared_log_error R2_score 

For Classification: 

accuracy 

For Regression: 

spearman_correlati

on 

experiment_exit_score

You can set a target value for your primary_metric. Once a model is found that meets the primary_metric target, automated machine learning will stop iterating and the experiment terminates. If this value is not set 

(default), Automated machine learning experiment will continue to run the number of iterations specified in iterations. Takes a double value. If the target never reaches, then Automated machine learning will continue 

until it reaches the number of iterations specified in iterations.

None

iterations Maximum number of iterations. Each iteration is equal to a training job that results in a pipeline. Pipeline is data preprocessing and model. To get a high-quality model, use 250 or more 100

max_concurrent_iterations Max number of iterations to run in parallel. This setting works only for remote compute. 1

max_cores_per_iteration
Indicates how many cores on the compute target would be used to train a single pipeline. If the algorithm can leverage multiple cores, then this increases the performance on a multi-core machine. You can set it to -1 

to use all the cores available on the machine.
1

iteration_timeout_minutes Limits the amount of time (minutes) a particular iteration takes. If an iteration exceeds the specified amount, that iteration gets canceled. If not set, then the iteration continues to run until it is finished. None

n_cross_validations Number of cross validation splits None

validation_size Size of validation set as percentage of all training sample. None

preprocess

True/False 

True enables experiment to perform preprocessing on the input. Following is a subset of preprocessingMissing Data: Imputes the missing data- Numerical with Average, Text with most occurrence Categorical Values: If 

data type is numeric and number of unique values is less than 5 percent, Converts into one-hot encoding Etc. for complete list check the GitHub repository

Note : if data is sparse you cannot use preprocess = true

False

blacklist_models

Automated machine learning experiment has many different algorithms that it tries. Configure to exclude certain algorithms from the experiment. Useful if you are aware that algorithm(s) do not work well for your 

dataset. Excluding algorithms can save you compute resources and training time.

Allowed values for Classification

LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier

Allowed values for Regression

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

Allowed values for Forecasting

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

None

whitelist_models

Automated machine learning experiment has many different algorithms that it tries. Configure to include certain algorithms for the experiment. Useful if you are aware that algorithm(s) do work well for your dataset. 

Allowed values for Classification

LogisticRegressionSGDMultinomialNaiveBayesBernoulliNaiveBayesSVMLinearSVMKNNDecisionTreeRandomForestExtremeRandomTreesLightGBMGradientBoostingTensorFlowDNNTensorFlowLinearClassifier

Allowed values for Regression

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

Allowed values for Forecasting

ElasticNetGradientBoostingDecisionTreeKNNLassoLarsSGD RandomForestExtremeRandomTreeLightGBMTensorFlowLinearRegressorTensorFlowDNN

None

verbosity
Controls the level of logging with INFO being the most verbose and CRITICAL being the least. Verbosity level takes the same values as defined in the python logging package. Allowed values are:

logging.INFOlogging.WARNINGlogging.ERRORlogging.CRITICAL
logging.INFO

X All features to train with None

y Label data to train with. For classification, should be an array of integers. None

X_valid Optional All features to validate with. If not specified, X is split between train and validate None

y_valid Optional The label data to validate with. If not specified, y is split between train and validate None

sample_weight Optional A weight value for each sample. Use when you would like to assign different weights for your data points None

sample_weight_valid Optional A weight value for each validation sample. If not specified, sample_weight is split between train and validate None

run_configuration RunConfiguration object. Used for remote runs. None

data_script Path to a file containing the get_data method. Required for remote runs. None

model_explainability

Optional True/False 

True enables experiment to perform feature importance for every iteration. You can also use explain_model() method on a specific iteration to enable feature importance on-demand for that iteration after experiment is 

complete.

False

enable_ensembling Flag to enable an ensembling iteration after all the other iterations complete. True

ensemble_iterations Number of iterations during which we choose a fitted pipeline to be part of the final ensemble. 15

experiment_timeout_minutes Limits the amount of time (minues) that the whole experiment run can take None

https://aka.ms/aml-notebooks


Azure Automated ML
Benefits Overview

Azure Automated ML lets you

Automate the exploration process

Use resources more efficiently

Optimize model for desired outcome

Control resource budget

Apply it to different models and learning domains

Pick training frameworks of choice

Visualize all configurations in one place

Note about security: on the right side of the automated ML service, the gray part is separated from the training and data, only the result (orange bottom block) is sent 

back from training to the service; hence your data and algorithm safely stay within your subscription.



Azure Automated ML
Model Explainability

automl_config = AutoMLConfig(task = 'classification',

debug_log = 'automl_errors.log',

primary_metric = 'AUC_weighted',

max_time_sec = 12000,

iterations = 10,

verbosity = logging.INFO,

X = X_train, 

y = y_train,

X_valid = X_test,

y_valid = y_test,

model_explainability=True,

path=project_folder)

from azureml.train.automl.automlexplainer

import retrieve_model_explanation

shap_values, expected_values, 

overall_summary, overall_imp, 

per_class_summary, per_class_imp = \

retrieve_model_explanation(best_run) 

#Overall feature importance 

print(overall_imp) print(overall_summary) 

#Class-level feature importance 

print(per_class_imp) 

print(per_class_summary) 

You can view it in your workspace in Azure portal

Or you can show it using Jupyter widgets in a notebook:

from azureml.widgets import RunDetails

RunDetails(local_run).show()



Microsoft Research Paper & Examples
For those who wants to find out more about Automated Machine Learning:

https://arxiv.org/abs/1705.05355

https://github.com/Azure/MachineLearningNotebooks/tree/master/

how-to-use-azureml/automated-machine-learning

https://arxiv.org/abs/1705.05355
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning


Distributed Training with 
Azure ML Compute



Distributed Training with Azure ML Compute

distributed training with Horovod

https://docs.microsoft.com/en-us/azure/batch-ai/tutorial-horovod-tensorflow
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THANK YOU!

Learn more: 
https://docs.microsoft.com/en-us/azure/machine-learning/service/

Visit the Getting started guide:

https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-

create-workspace-with-python

Fantastic free Azure notebooks (with Azure Machine Learning SDK pre-configured):
https://notebooks.azure.com

http://aka.ms/amlfree

Try it for free!

https://docs.microsoft.com/en-us/azure/machine-learning/service/
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https://docs.microsoft.com/en-us/azure/machine-learning/service/quickstart-create-workspace-with-python
https://notebooks.azure.com/
http://aka.ms/amlfree

