Introduction to Machine Learning

Agenda

- What is Data Science
- Data
- Components of Data Science
- Machine Learning
- Types of Machine Learning
- Steps to do Machine Learning
- Hands-on Problem Solving

Presenter

Mohammed Arif has more than twelve (13) years of working experience in Information Communication and Technology (ICT) industry. The highlights of his career are more than six (7) years of holding various senior management and/or C-Level and had five (5) years of international ICT consultancy exposure in various countries (APAC and Australia), specially on Big Data, Data Engineering, Machine Learning and AI arena.

He is also Certified Trainer for Microsoft.

What is Data Science?

Apply Scientific Methods to extract Knowledge from Data.

Data

Scientific Methods

Statistics

Designed for inference about the relationships between variables

Designed to make the most accurate predictions possible

Designed to mimic human behavior using ML and Deep Learning

Machine (computer) tries to find the pattern (self-learn) from the data without being explicitly programmed.

When we need to apply Machine Learning

Analysis 🚊 Analytics

When we need to apply Machine Learning

We can use different tools to explain the previous trends like, PowerBI, Tableau, Qlikview etc.

When we need to apply Machine Learning

Explore potential future events

Supervised Learning

Unsupervised Learning

In Unsupervised learning, Machine Learning model finds the hidden pattern in an unlabeled data

Reinforcement Learning

Reinforcement learning is an important type of Machine Learning where an agent learns how to behave in an environment by performing actions and seeing the results

Supervised learning, algorithms are trained using marked data, where the input and the output are known.

	Class	Mit	NormNucl	BlandChrom	BareNuc	SingEpiSize	MargAdh	UnifShape	UnifSize	Clump	ID
	benign	1	1	3	1	2	1	1	1	5	1000025
	benign	1	2	3	10	7	5	4	4	5	1002945
	malignant	1	1	3	2	2	1	1	1	3	1015425
	benign	1	7	3	4	3	1	8	8	6	1016277
lab	benign	1	1	3	1	2	3	1	1	4	1017023
	malignant	1	7		10	7	8	10	10	8	1017122
	benign	1	1	3	10	2	1	1	1	1	1018099
	benign	1	1	3	1	2	н	2	1	2	1018561
	benign	5	1	1	1	2	1	1	1	2	1033078
	benign	1	1	2	1	2	1	1	2	4	1033078

Set of inputs ~ [Features] / [Independent Variables] / [X]

Outputs ~ [Labels] / [Dependent Variables] / [Y]

User ID	Gender	Age	Salary	Purchased	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
15624510	Male	19	19000	0	10.69261758	986.882019	54.19337313	195.7150879	3.278597116
15810944	Male	35	20000	1	13.59184184	987.8729248	48.0648859	189.2951202	2.909167767
15668575	Female	26	43000	0	17.70494885	988.1119385	39.11965597	192.9273834	2.973036289
15603246	Female	27	57000	0	20.95430404	987.8500366	30.66273218	202.0752869	2.965289593
15804002	Male	19	76000	1	22.9278274	987.2833862	26.06723423	210.6589203	2.798230886
15728773	Male	27	58000	1	24.04233986	986.2907104	23.46918024	221.1188507	2.627005816
15598044	Female	27	84000	0	24.41475295	985.2338867	22.25082295	233.7911987	2.448749781
15694829	Female	32	150000	1	23.93361956	984.8914795	22.35178837	244.3504333	2.454271793
15600575	Male	25	33000	1	22.68800023	984.8461304	23.7538641	253.0864716	2.418341875
15727311	Female	35	65000	0	20.56425726	984,8380737	27.07867944	264.5071106	2,318677425
15570769	Female	26	80000	1	17 76400389	985 4262085	33 5/190011/	280 7827454	2 3/3950987
15606274	Female	26	52000	0	11.70400385	000.0206507	53.343000114	200.7627404	1.650101406
15746139	Male	20	86000	1	11.25680746	988.9386597	53.74139903	68.15406036	1.650191426
15704987	Male	32	18000	0	14.37810685	989.6819458	40.70884681	72.62069702	1.553469896
15628972	Male	18	82000	0	18.45114201	990.2960205	30.85038484	71.70604706	1.005017161
15697686	Male	29	80000	0	22.54895853	989.9562988	22.81738811	44.66042709	0.264133632
15733883	Male	47	25000	1	24.23155922	988.796875	19.74790765	318.3214111	0.329656571

Figure A: CLASSIFICATION

Figure B: REGRESSION

	DebtIncomeRatio	Address	Other Debt	Card Debt	Income	Years Employed	Edu	Age	Customer Id
	6.3	NBA001	1.073	0.124	19	6	2	41	1
	12.8	NBA021	8.218	4.582	100	26	1	47	2
unlabeled	20.9	NBA013	5.802	6.111	57	10	2	33	3
	6.3	NBA009	0.516	0.681	19	4	2	29	4
	7.2	NBA008	8.908	9.308	253	31	1	47	5
	10.9	NBA016	7.831	0.998	81	23	1	40	6
	1.6	NBA013	0.454	0.442	56	4	2	38	7
	6.6	NBA009	3.945	0.279	64	0	3	42	8
	15.5	NBA006	2.215	0.575	18	5	1	26	9
	4	NBA011	3.947	0.653	115	23	3	47	10
	6.1	NBA010	5.083	0.285	88	8	3	44	11
	1.6	NBA003	0.266	0.374	40	9	2	34	12

Types of Machine Learning (Examples)

Let's walk through the basic machine learning process for a supervised learning problem

Acquire Data from Some Source

Clean and Organize the Data

Train Test Split

Train/Fit Model on Training Data

Evaluate Model on Test Data

Adjust Model Parameters

Deploy Model on New Incoming Data

Unsupervised Learning

Hold Out Sets

Finally let's quickly discuss model evaluation, we'll dive into more details for certain problems later in the course.

- Supervised Learning -Classification Evaluation
 - Accuracy , Recall, Precision
 - Accuracy Correctly Classified divided by total samples.
- Which metric is the most important depends on the specific situation

- Supervised Learning -Regression Eval
 - MAE, MSE, RMSE
 - All are measurements of: On average, how far off are you from the correct continuous value.

Please visit this page to get more intuition on Supervised Learning Model Evaluation

- Unsupervised Learning Evaluation
 - Much harder to evaluate, depends on overall goal of the task
 - Never had "Correct Labels" to compare to
 - Cluster Homogeneity, Rand Index

- Reinforcement Learning Evaluation
 - Usually more obvious, since the "evaluation" is built into the actual training of the model.
 - How well the model performs the task its assigned.

Review

- Machine Learning
- Types of Machine Learning
- Machine Learning Process
- Evaluation Metrics

Major ML supported Languages

Python / R / Java / Scala / Spark / Julia / No Code

These language provide all necessary ML packages

Algorithms

Hands-on

Supervised Machine Learning

IDE : No Code Machine Learning with **Azure Machine Learning Studio (Classic)**

Step 1 : Please go to this site https://studio.azureml.net/

Step 2 : Use any Microsoft Account to Register and Login

Step 3 : Let's do some Prediction

Hands-on

Supervised Machine Learning

IDE : Anaconda

