APACHE PIG




Why Pig?

m Writing mappers and reducers by hand
takes a long time.

m Pig introduces Pig Latin, a scripting
language that lets you use SQL-like
syntax to define your map and reduce
steps.

m Highly extensible with user-defined
functions (UDF’s)




MapReduce

YARN

HDFS




Pig

on v
- T
© S~
- e o T
- B

2 T E
D) O »n <
ad " =



An example

m Find the oldest 5-star movies




ratings = LOAD '/user/maria dev/ml-100k/u.data' AS
(userID:int, movieID:int, rating:int, ratingTime:int);

This creates a relation named “ratings” with a given schema.

(660,229,2,891406212)
(421,498,4,892241344)
(495,1091,4,888637503)
(806,421,4,882388897)
(676,538,4,892685437)
(721,262,3,877137285)




Use PigStorage if you need a
different delimiter.

metadata = LOAD '/user/maria dev/ml-100k/u.item' USING
PigStorage('|')AS (movieID:int, movieTitle:chararray,
releaseDate:chararray, videoRelease:chararray,
imdbLink:chararray) ;

DUMP metadata;

(1,Toy Story (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?Toy%20Story%20(1995))
(2,GoldenEye (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?GoldenEye%20(1995))
(3,Four Rooms (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995))
(4,Get Shorty (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995))
(5,Copycat (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?Copycat%20(1995))



Creating a relation from another
relation; FOREACH / GENERATE

metadata = LOAD '/user/maria dev/ml-100k/u.item' USING PigStorage('|')
AS (movieID:int, movieTitle:chararray, releaseDate:chararray,
videoRelease:chararray, imdbLink:chararray) ;

nameLookup = FOREACH metadata GENERATE movieID, movieTitle,

(1,Toy Story (1995),01-Jan-1995,,http://us.imdb.com/M/title-exact?Toy%20Story%20(1995))

(1,Toy Story (1995),788918400)




Group By

ratingsByMovie = GROUP ratings BY movielID;

DUMP ratingsByMovie;

(1,{(807,1,4,892528231),(554,1,3,876231938),(49,1,2,888068651), ... }
(2,{(429,2,3,882387599),(551,2,2,892784780),(774,2,1,888557383), ... }




ratingsByMovie: {group: int,ratings: {(userID: int,movielD: int,rating: int,ratingTime: int)}}

avgRatings FOREACH ratingsByMovie GENERATE group AS movielD,
AVG (ratings.rating) AS avgRating;

DUMP avgRatings;

(1,3.8783185840707963)
(2,3.2061068702290076)
(3,3.033333333333333)
(4,3.550239234449761)
(5,3.302325581395349)

DESCRIBE ratings;
DESCRIBE ratingsByMovie;
DESCRIBE avgRatings;

ratings: {userID: int,movielD: int,rating: int,ratingTime: int}
ratingsByMovie: {group: int,ratings: {(userlID: int,movielD: int,rating: int,ratingTime: int)}}

avgRatings: {movielD: int,avgRating: double}




FILTER

fiveStarMovies = FILTER avgRatings BY avgRating > 4.0;

(12,4.385767790262173)
(22,4.151515151515151)
(23,4.1208791208791204)
(45,4.05)




JOIN

DESCRIBE fiveStarMovies;

DESCRIBE nameLookup;

fiveStarsWithData = JOIN fiveStarMovies BY movieID, nameLookup BY movielD;
DESCRIBE fiveStarsWithData;

DUMP fiveStarsWithData;

fiveStarMovies: {movielD: int,avgRating: double}
nameLookup: {movielD: int,movieTitle: chararray,releaseTime: long}

fiveStarsWithData: {fiveStarMovies::movielD: int,fiveStarMovies::avgRating: double,
namelLookup::movielD: int,nameLookup::movieTitle: chararray,nameLookup::releaseTime: long}

(12,4.385767790262173,12,Usual Suspects, The (1995),808358400)
(22,4.151515151515151,22,Braveheart (1995),824428800)
(23,4.1208791208791204,23,Taxi Driver (1976),824428800)




ORDER BY

oldestFiveStarMovies = ORDER fiveStarsWithData BY
namelookup: : releaseTime;

DUMP oldestFiveStarMovies;

(493,4.15,493,Thin Man, The (1934),-1136073600)
(604,4.012345679012346,604,It Happened One Night (1934),-1136073600)
(615,4.0508474576271185,615,39 Steps, The (1935),-1104537600)
(1203,4.0476190476190474,1203,Top Hat (1935),-1104537600)




Putting it all together

ratings = LOAD 'Juser/maria dev/ml-186k/u.data’ AS (userID:int, movieID:int, rating:int, ratingTime:int);

metadata = LOAD '/fuser/maria_dev/ml-1@@k/u.item’ USING PigStorage('|")
AS (movielID:int, movieTitle:chararray, releaseDate:chararray, videoRelease:chararray, imdbLink:chararray);

namelLookup = FOREACH metadata GEMNERATE movieID, movieTitle,
ToUnixTime(ToDate(releaseDate, "dd-MaM-yyyy')) AS releaseTime;

ratingsByMovie = GROUP ratings BY movielD;

avgRatings = FOREACH ratingsByMovie GEMNERATE group AS movieID, AVG(ratings.rating) AS avgRating;
fiveStarMovies = FILTER avgRatings BY avgRating > 4.8;

tiveStarsWithData = J0IN fiveStarMovies BY movielD, namelLookup BY movielD;

oldestFiveStarMovies = ORDER fiveStarsWithData BY nameLookup::releaseTime;

DUMP oldestFiveStarMovies;




Let’s run it




Pig Latin: Diving Deeper
Things you can do to a relation

m LOAD STORE DUMP
- STORE ratings INTO ‘outRatings’ USING PigStorage(‘:’);

m FILTER DISTINCT FOREACH/GENERATE MAPREDUCE STREAM SAMPLE
m JOIN COGROUP GROUP CROSS CUBE

m ORDER RANK LIMIT

m UNION SPLIT




Diagnostics

m DESCRIBE
m EXPLAIN
m |LLUSTRATE




UDF’s

m REGISTER
m DEFINE
m |IMPORT




Some other functions and loaders

m AVG CONCAT COUNT MAX MIN SIZE SUM

m PigStorage

m TextLoader

m JsonlLoader

m AvroStorage

m ParquetlLoader
m OrcStorage

m HBaseStorage




Learning more

O'REILLY’

DATAFLOW SCRIPTING
WITH HADOOP




PIG CHALLENGE




Defining the problem

m Find all movies with an average rating less than 2.0

m Sort them by the total number of ratings




Hint

m We used everything you need in our earlier example of finding old movies with
ratings greater than 4.0

m Only new thing you need is COUNT(). This lets you count up the number of
items in a bag.

- So just like you can say AVG(ratings.rating) to get the average rating
from a bag of ratings,

- You can say COUNT (ratings.rating) to get the total number of ratings for
a given group’s bag.




