
CASSANDRA
A distributed database with no single point of 

failure



Cassandra – NoSQL with a twist

■ Unlike HBase, there is no master node at all – every node runs exactly the 
same software and performs the same functions

■ Data model is similar to BigTable / Hbase

■ It’s non-relational, but has a limited CQL query language as its interface



Cassandra’s Design Choices

■ The CAP Theorem says you can only have 2 out of 3: consistency, availability, 
partition-tolerance

– And partition-tolerance is a requirement with “big data,” so you really 
only get to choose between consistency and availability

■ Cassandra favors availability over consistency

– It is “eventually consistent”

– But you can specify your consistency requirements as part of your 
requests. So really it’s “tunable consistency”



Where Cassandra Fits in CAP 
tradeoffs

Consistency Partition-Tolerance

Availability



Cassandra architecture

Node

Node

Node

Node

Node

Node



Cassandra and your cluster

■ Cassandra’s great for fast access to rows of information

■ Get the best of both worlds – replicate Cassandra to a another ring that is used 
for analytics and Spark integration

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node



CQL (Wait, I thought this was 
NoSQL!)

■ Cassandra’s API is CQL, which makes it easy to look like existing database 
drivers to applications.

■ CQL is like SQL, but with some big limitations!

– NO JOINS

■ Your data must be de-normalized

■ So, it’s still non-relational

– All queries must be on some primary key

■ Secondary indices are supported, but…

■ CQLSH can be used on the command line to create tables, etc.

■ All tables must be in a keyspace – keyspaces are like databases



Cassandra and Spark

■ DataStax offers a Spark-Cassandra connector

■ Allows you to read and write Cassandra tables as DataFrames

■ Is smart about passing queries on those DataFrames down to the appropriate 
level

■ Use cases:

– Use Spark for analytics on data stored in Cassandra

– Use Spark to transform data and store it into Cassandra for transactional 
use



Let’s Play

■ Install Cassandra on our virtual Hadoop node

■ Set up a table for MovieLens users

■ Write into that table and query it from Spark!


