Associate Rule Learning

Presenter

Mohammed Arif has more than twelve (13) years of working experience in Information Communication and Technology (ICT) industry. The highlights of his career are more than six (7) years of holding various senior management and/or C-Level and had five (5) years of international ICT consultancy exposure in various countries (APAC and Australia), specially on Big Data, Data Engineering, Machine Learning and AI arena.

He is also Certified Trainer for Microsoft.

Agenda

- What is Data Science
- Data
- Components of Data Science
- Machine Learning
- Types of Machine Learning
- Steps to do Machine Learning

Agenda

- Recommender System
- Recommender System Solutions
- Association Rule
- Association Rule Performance Measure
- Association Rule Generation Apriori Algorithm
- Hands-on Problem Solving (Using Python & Azure ML)

Resource Link

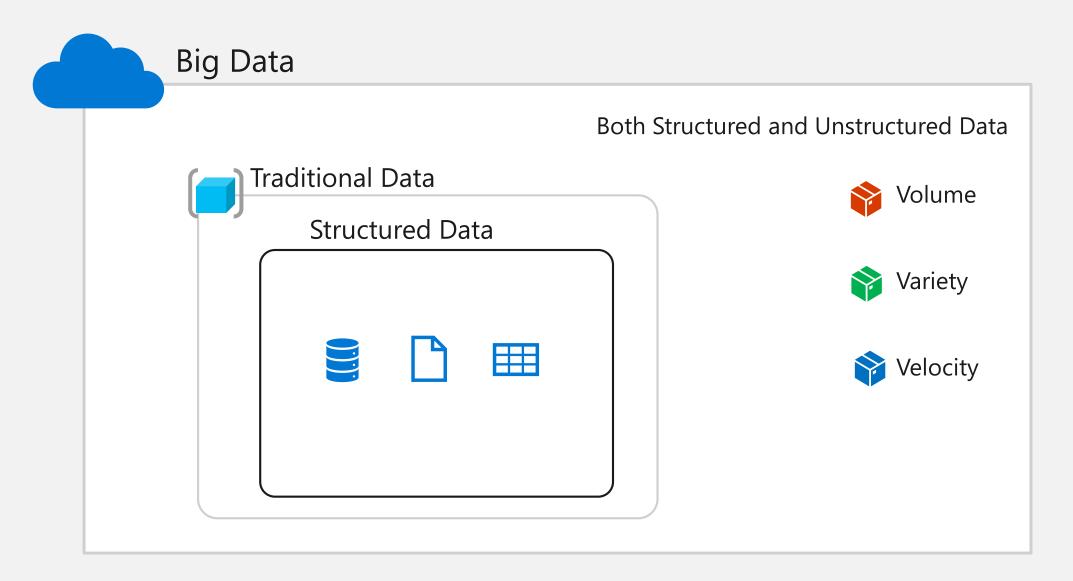
http://arif.works/mltaylor/

Resource Link http://arif.works/mltaylor/

What is Data Science?

Apply Scientific Methods to extract Knowledge from Data.

Data



Scientific Methods

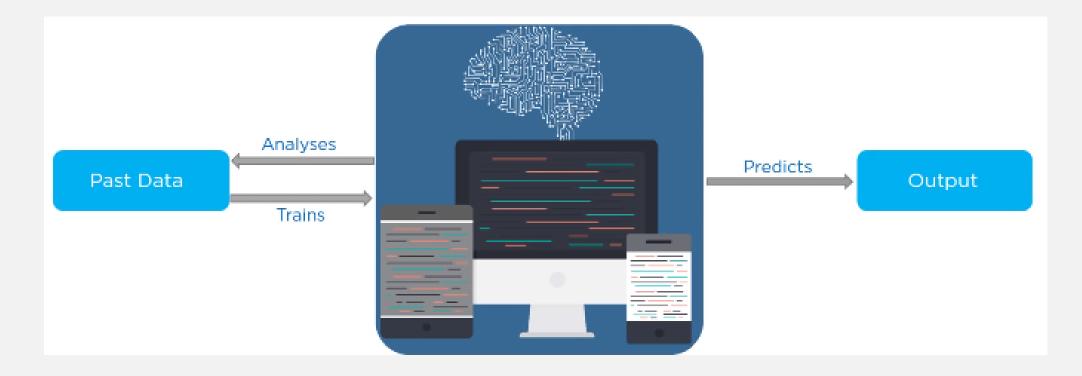
Statistics

Designed for inference about the relationships between variables

Designed to make the most accurate predictions possible

Designed to mimic human behavior using ML and Deep Learning

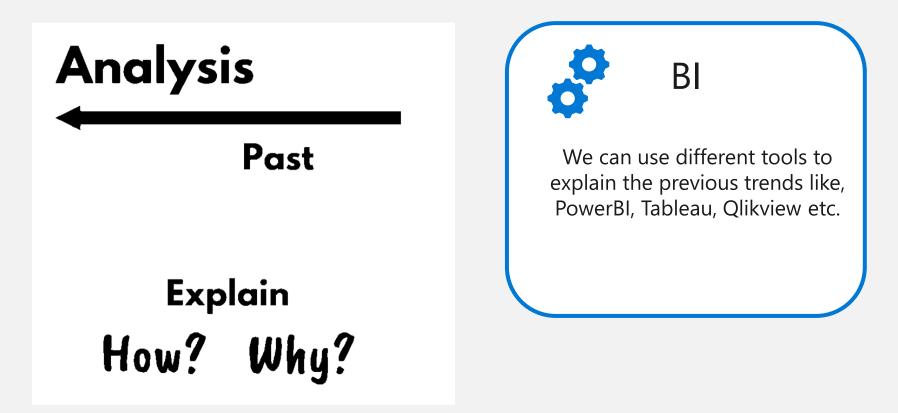
Machine (computer) tries to find the pattern (self-learn) from the data without being explicitly programmed.



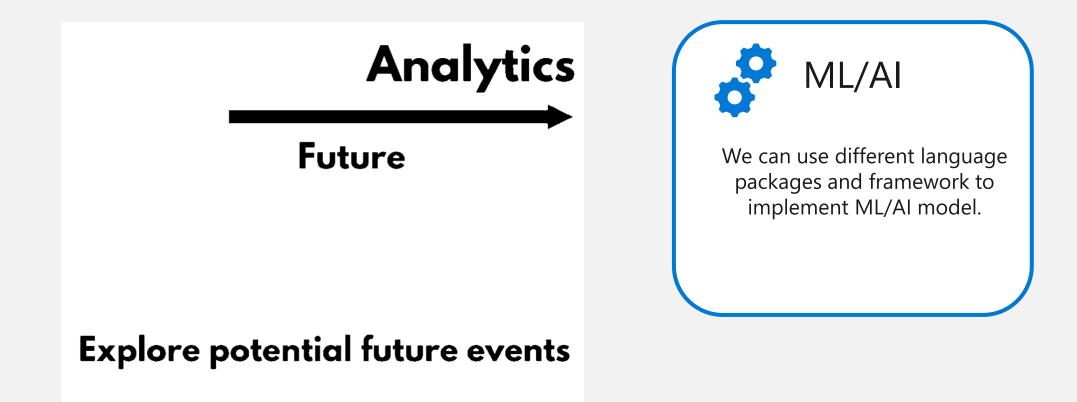
When we need to apply Machine Learning

Analysis 🚊 Analytics

When we need to apply Machine Learning

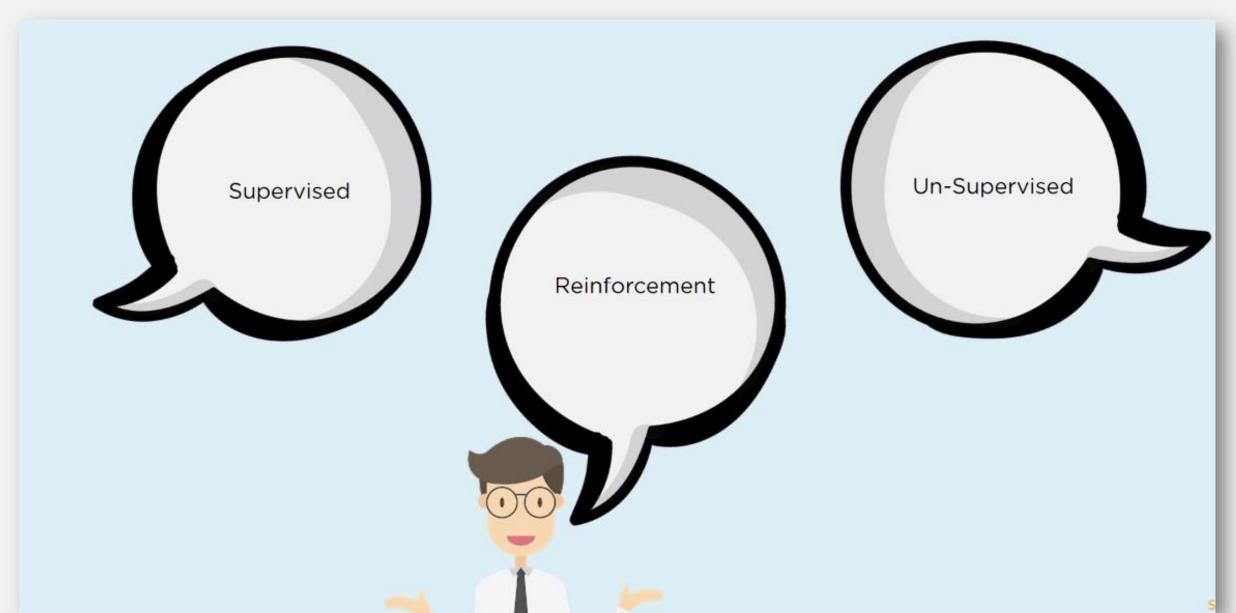


When we need to apply Machine Learning

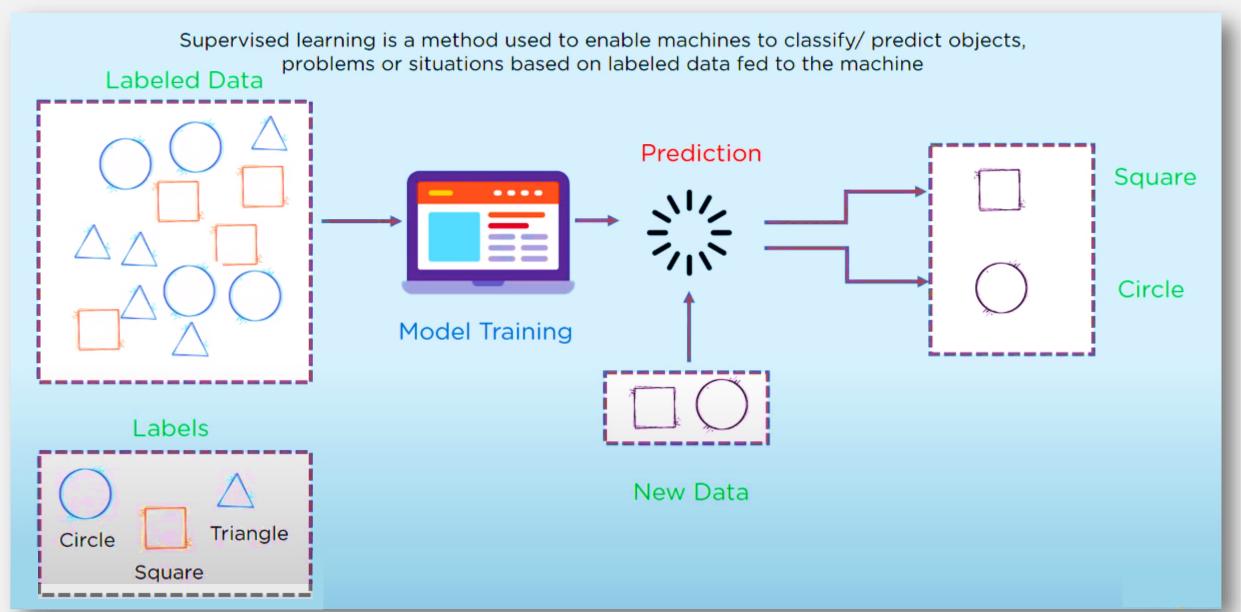


Business Analytics

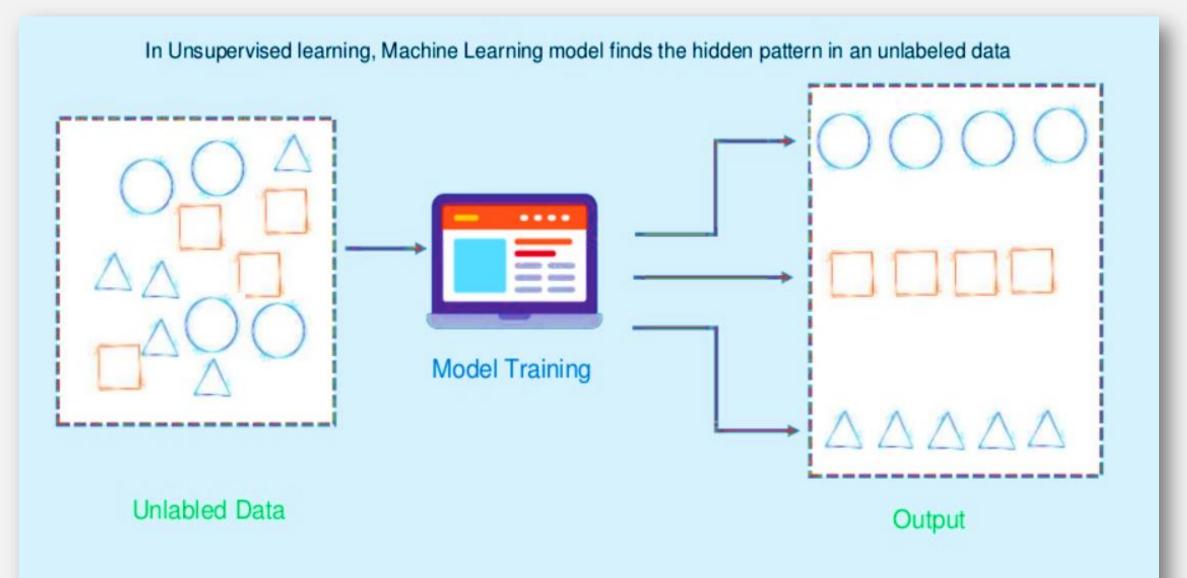
Business Analytics



Supervised Learning

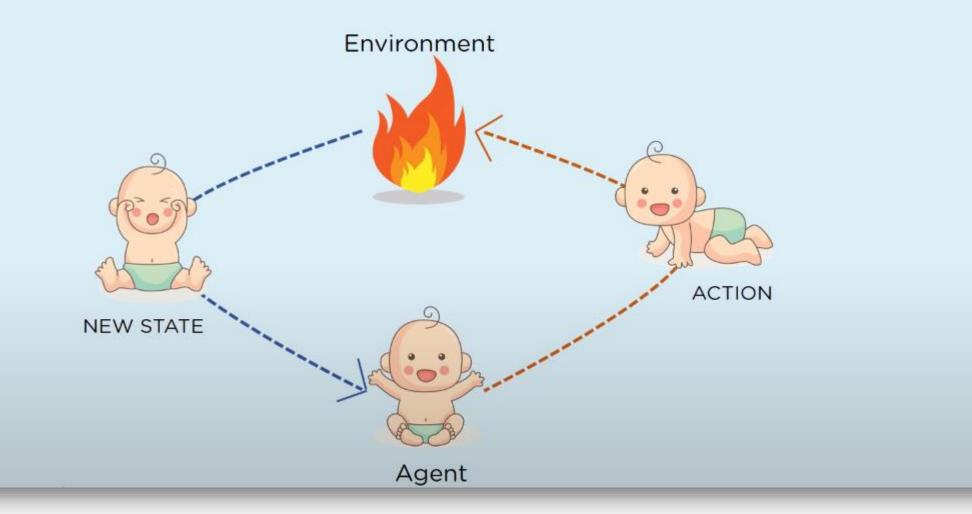


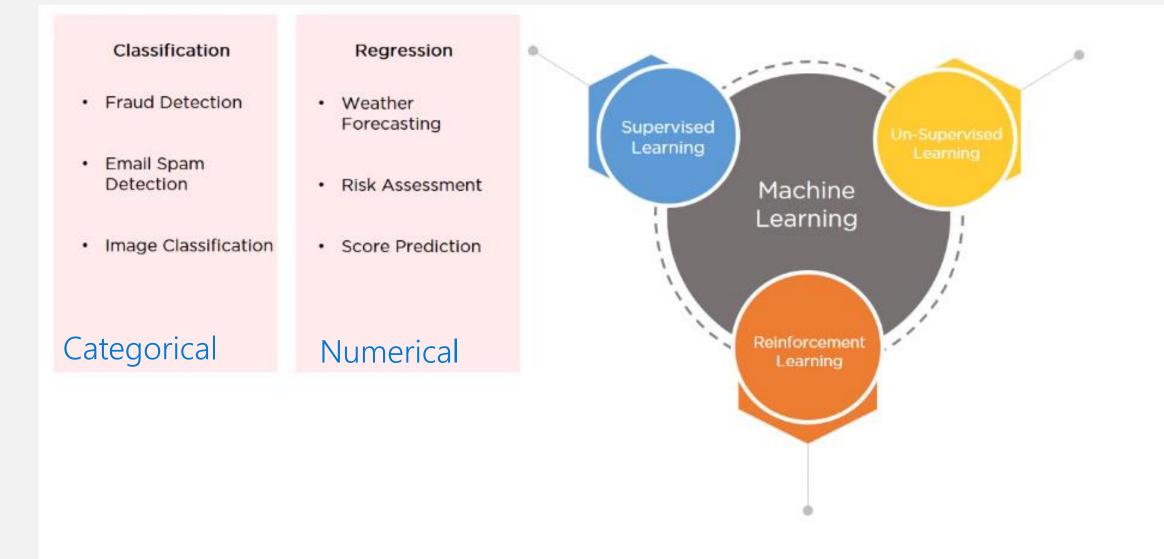
Unsupervised Learning



Reinforcement Learning

Reinforcement learning is an important type of Machine Learning where an agent learns how to behave in an environment by performing actions and seeing the results





Supervised learning, algorithms are trained using marked data, where the input and the output are known.

1	Class	Mit	NormNucl	BlandChrom	BareNuc	SingEpiSize	MargAdh	UnifShape	UnifSize	Clump	ID
	benign	1	1	3	1	2	1	1	1	5	1000025
	benign	1	2	3	10	7	5	4	4	5	1002945
	malignant	1	1	3	2	2	1	1	1	3	1015425
0.000	benign	1	7	3	4	3	1	8	8	6	1016277
labe	benign	1	1	3	1	2	3	1	1	4	1017023
	malignant	1	7		10	7	8	10	10	8	1017122
1	benign	1	1	3	10	2	1	1	1	1	1018099
	benign	1	1	3	1	2	н	2	1	2	1018561
	benign	5	1	1	1	2	1	1	1	2	1033078
	benign	1	1	2	1	2	1	1	2	4	1033078

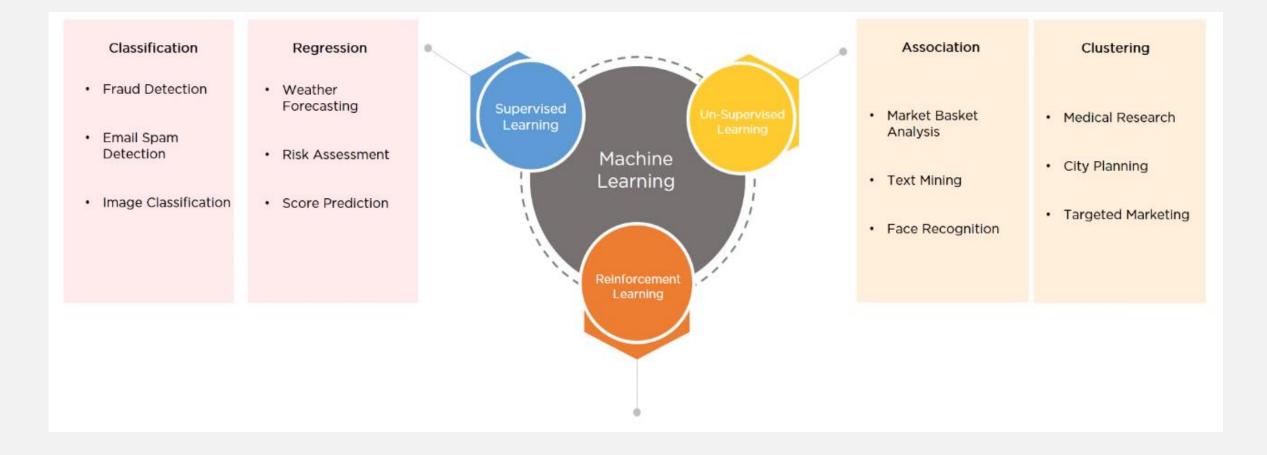
Set of inputs ~ [Features] / [Independent Variables] / [X]

Outputs ~ [Labels] / [Dependent Variables] / [Y]

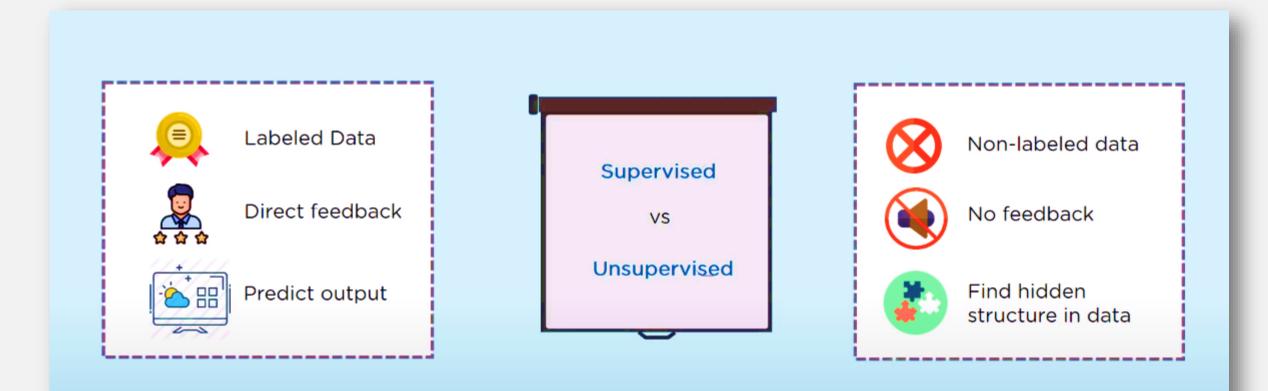
User ID	Gender	Age	Salary	Purchased	Temperature	Pressure	Relative Humidity	Wind Direction	Wind Speed
15624510	Male	19	19000	0	10.69261758	986.882019	54.19337313	195.7150879	3.278597116
15810944	Male	35	20000	1	13.59184184	987.8729248	48.0648859	189.2951202	2.909167767
15668575	Female	26	43000	0	17.70494885	988.1119385	39.11965597	192.9273834	2.973036289
15603246	Female	27	57000	0	20.95430404	987.8500366	30.66273218	202.0752869	2.965289593
15804002	Male	19	76000	1	22.9278274	987.2833862	26.06723423	210.6589203	2.798230886
15728773	Male	27	58000	1	24.04233986	986.2907104	23.46918024	221.1188507	2.627005816
15598044	Female	27	84000	0	24.41475295	985.2338867	22.25082295	233.7911987	2.448749781
15694829	Female	32	150000	1	23.93361956				2.454271793
15600575	Male	25	33000	1	22.68800023	984.8461304			
15727311	Female	35	65000	0	20.56425726	984.8380737			2.318677425
15570769	Female	26	80000	1	17.76400389				
15606274	Female	26	52000	0		985.4262085			2.343950987
15746139	Male	20	86000	1	11.25680746				1.650191426
15704987	Male	32	18000	0	14.37810685	989.6819458	40.70884681	72.62069702	1.553469896
15628972	Male	18	82000	0	18.45114201	990.2960205	30.85038484	71.70604706	1.005017161
15697686	Male	29	80000		22.54895853	989.9562988	22.81738811	44.66042709	0.264133632
15733883		47	25000		24.23155922	988.796875	19.74790765	318.3214111	0.329656571

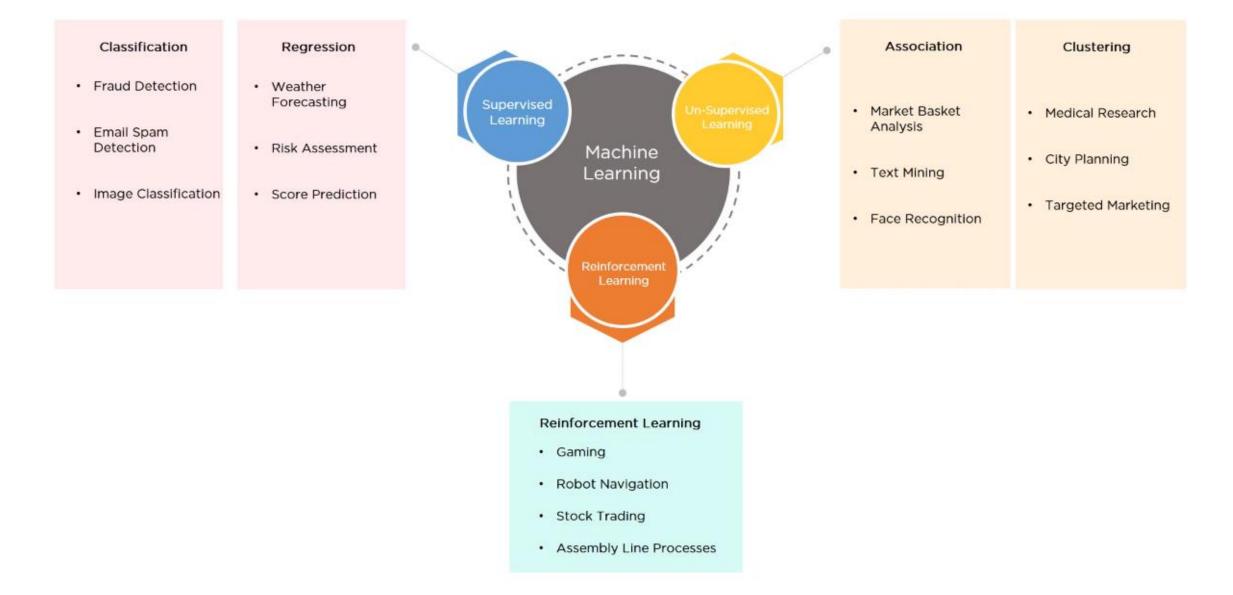
Figure A: CLASSIFICATION

Figure B: REGRESSION

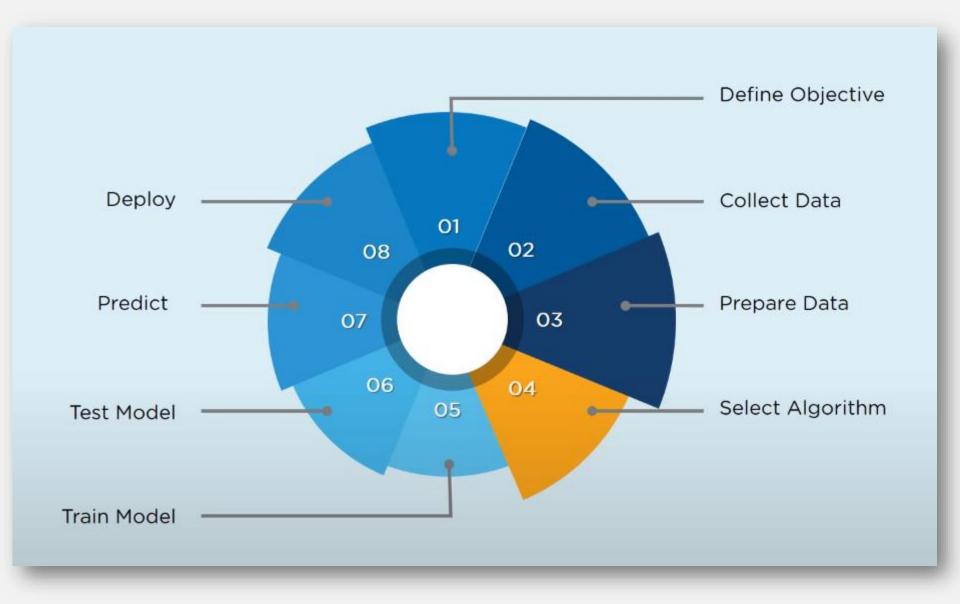


	DebtIncomeRatio	Address	Other Debt	Card Debt	Income	Years Employed	Edu	Age	Customer Id
	6.3	NBA001	1.073	0.124	19	6	2	41	1
	12.8	NBA021	8.218	4.582	100	26	1	47	2
	20.9	NBA013	5.802	6.111	57	10	2	33	3
	6.3	NBA009	0.516	0.681	19	4	2	29	4
	7.2	NBA008	8.908	9.308	253	31	1	47	5
unlabeled	10.9	NBA016	7.831	0.998	81	23	1	40	6
	1.6	NBA013	0.454	0.442	56	4	2	38	7
	6.6	NBA009	3.945	0.279	64	0	3	42	8
~	15.5	NBA006	2.215	0.575	18	5	1	26	9
	4	NBA011	3.947	0.653	115	23	3	47	10
	6.1	NBA010	5.083	0.285	88	8	3	44	11
	1.6	NBA003	0.266	0.374	40	9	2	34	12





Processing Steps for Machine Learning

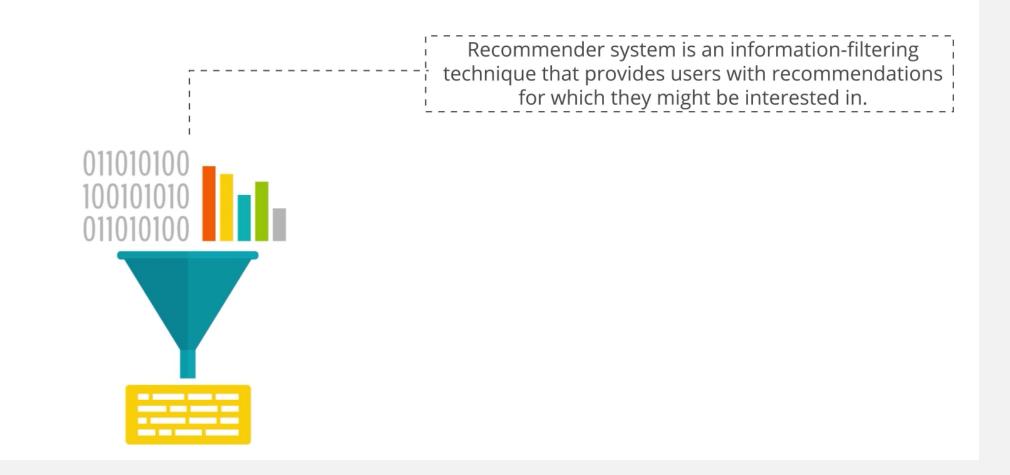


Recommender System

A recommender system predicts users' interests and recommends products that the users may be interested in.

Recommender System (Gather Data)

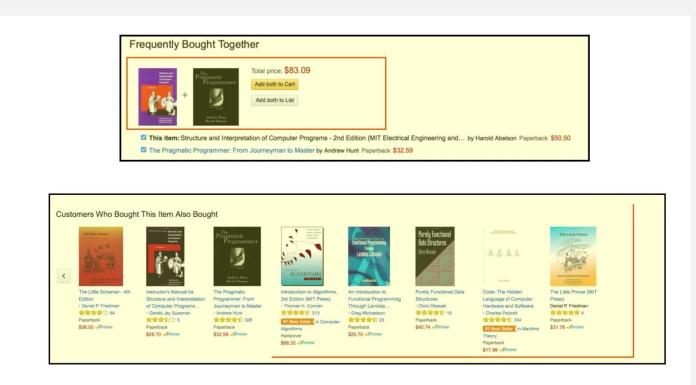
Recommender System



Recommender System

Recommender System : Solutions

Recommender System



Association Rule Mining

Association rule mining uses machine learning models to analyze data for patterns or co-occurrence in a database

Each transaction is considered to be a list of items.

Association rule finds all rules that correlate the presence of one set of items with that of another set of items.

It identifies frequent patterns.

It is most commonly used for market basket analysis.

Association Rule (How to create)

Association Rule (Performance Measure)

- Indicates how frequently the items appear in the data
- Provides fraction of transactions that contain X and Y

N

• Formula = No. of times item X occurred / Total number of transactions = P (X \cup Y)) = $\sigma(x \cup y)$

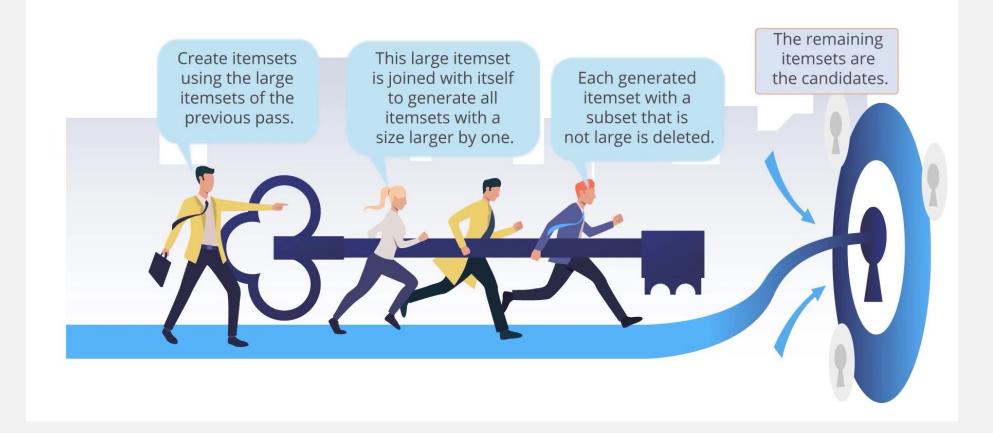
Association Rule (Performance Measure)

- Indicates the number of times the if-then statements are found true
- Indicates how often X and Y occur together, given the no. of times X occurs
- Formula = No. of times X and Y occurred / Total occurrence of X = Pr (Y | X) = $\frac{\sigma(x \cup y)}{\sigma(x)}$

Association Rule (Performance Measure)

- Compare the actual confidence with the expected confidence
- Indicates the strength of a rule over the random co-occurrence of X and Y
- Formula = No. of times item X and Y occurred / Total occurrence of X multiplied by Total occurrence of Y = $\sigma(x \cup y)$ $\overline{\sigma(x) \times \sigma(y)}$

Association Rule (Apriori Algorithm)



Association Rule (Apriori Algorithm)

Uses frequent itemsets to generate association rules

Support value of frequent itemsets is greater than the threshold value

The algorithm reduces the number of candidates being considered by only exploring the itemsets whose support count is greater than the minimum support count.

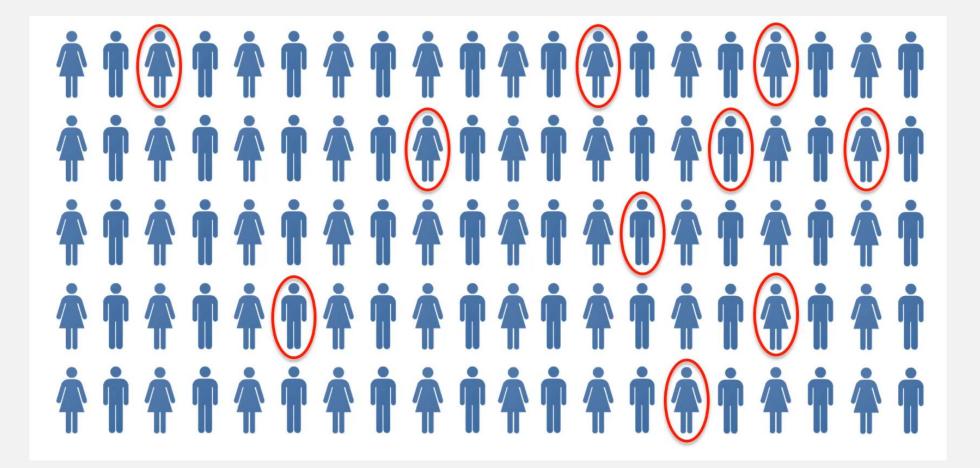
User ID		Movies liked
46578		Movie1, Movie2, Movie3, Movie4
98989		Movie1, Movie2
71527		Movie1, Movie2, Movie4
78981		Movie1, Movie2
89192		Movie2, Movie4
61557		Movie1, Movie3
	Movie1	Movie2
Potential Rules:	Movie2 🗖	Movie4
	Movie1	Movie3

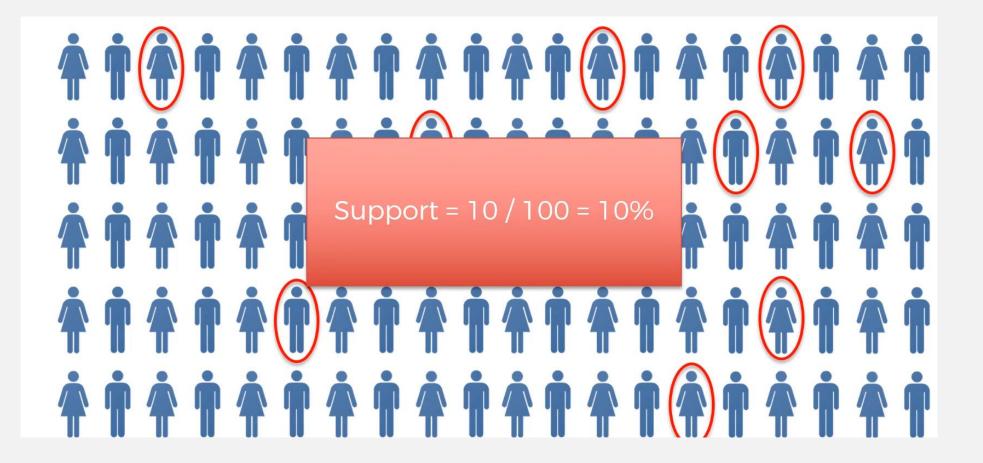
ARL

Transaction ID	Products purchased		
46578	Burgers, French Fries, Vegetables		
98989	Burgers, French Fries, Ketchup		
71527	Vegetables, Fruits		
78981	Pasta, Fruits, Butter, Vegetables		
89192	Burgers, Pasta, French Fries		
61557	Fruits, Orange Juice, Vegetables		
87923	Burgers, French Fries, Ketchup, Mayo		
Burgers 🗾 🔶 French Fries			
Potential Rules: Vegetables	Fruits		
Burgers, French Fries 🔂 Ketchup			

Movie Recommendation: support(M) = $\frac{\# \text{ user watchlists containing } M}{\# \text{ user watchlists}}$

Market Basket Optimisation: support(I) = $\frac{\# \text{ transactions containing } I}{\# \text{ transactions}}$

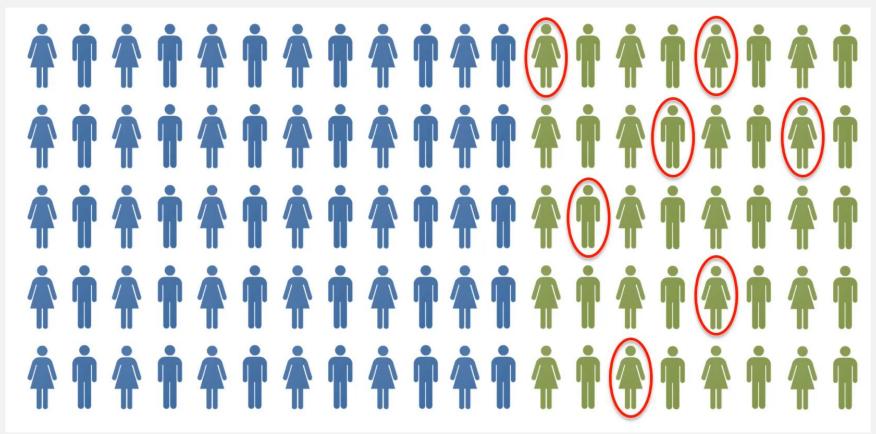




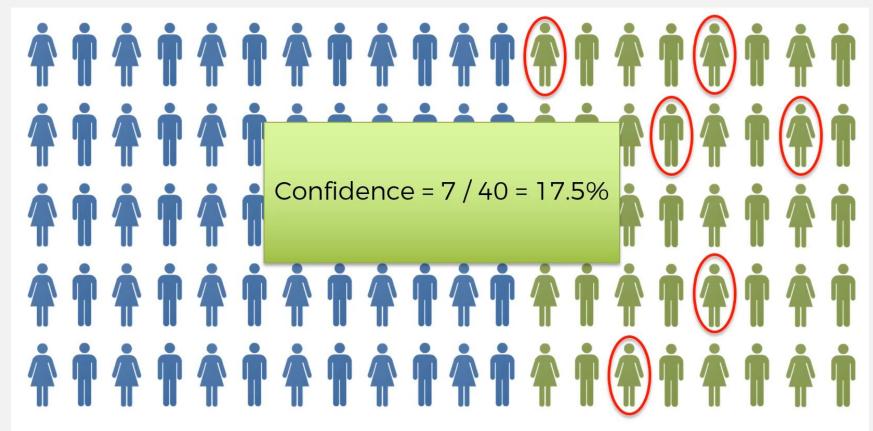
Movie Recommendation: confidence $(M_1 \rightarrow M_2) = \frac{\# \text{ user watchlists containing } M_1 \text{ and } M_2}{\# \text{ user watchlists containing } M_1}$ Market Basket Optimisation: confidence $(I_1 \rightarrow I_2) = \frac{\# \text{ transactions containing } I_1 \text{ and } I_2}{\# \text{ transactions containing } I_1}$

Green Color people Seen Movie Interstellar

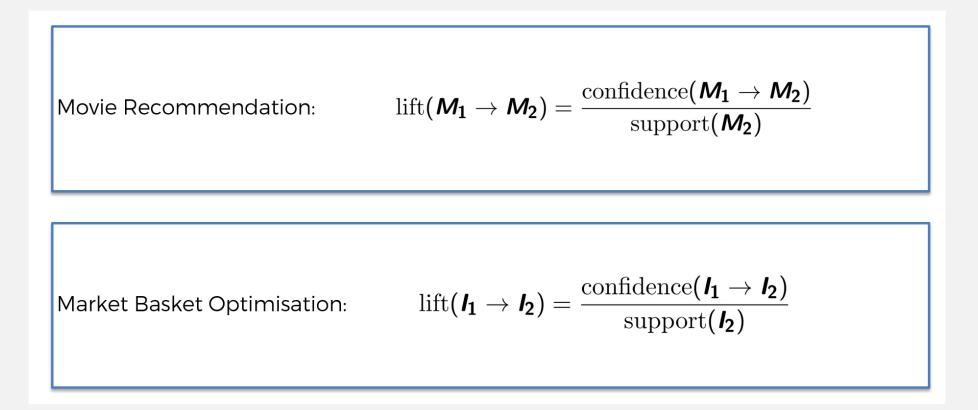
Green Color people Seen Movie Interstellar. Out of 40, seven (7) people also see Ex Machina



Green Color people Seen Movie Interstellar. Out of 40, seven (7) people also see Ex Machina



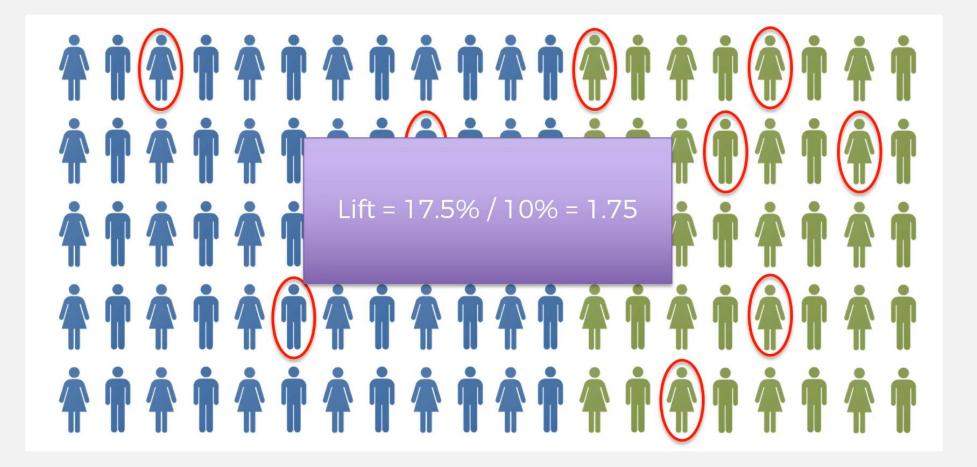
How Apriori Algorithm Works - Lift



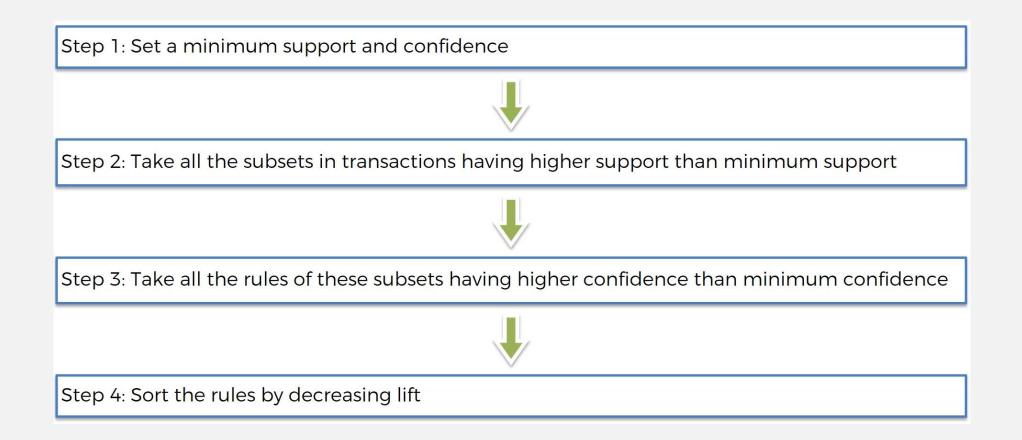
How Apriori Algorithm Works - Lift

*** † * † * † * † *** † *** † † † † † † † Ť Ť Ť Ť Ť Ť Ť** 0 -

How Apriori Algorithm Works - Lift



How Apriori Algorithm Works



Major ML supported Languages

Python / R / Java / Scala / Spark / Julia / No Code

These language provide all necessary ML packages

Hands-on