
© Copyright Microsoft Corporation. All rights reserved.

AZ-220T01
Module 11:
Develop with Azure Digital
Twins

Lesson 1: Learning objectives

Module 11 – Learning objectives

Describe the working components of an Azure Digital Twins (ADT) solution

Explain how to create and configure an ADT instance

Explain how to create, query, and manage the ADT graph

Explain how to implement ADT data ingress from IoT hub and data egress

from ADT for downstream business analysis

Describe how to monitor and troubleshoot ADT

Lesson 2: Introduction to Azure Digital Twins

Get started with Azure Digital Twins

Azure Digital Twins is a

platform as a service (PaaS)

offering that enables the

creation of knowledge graphs

The knowledge graph is

composed of interconnected

digital entities that combine to

represent a larger, interactive

digital environment

Examine an ADT solution

Azure Digital Twins is typically

used together with other services

to create flexible, connected

solutions that use your data in a

variety of workflows

Azure Digital Twins can receive

data (Input) from upstream

services such as IoT Hub or Logic

Apps, which are used to deliver

telemetry and notifications

Azure Digital Twins can also route

data (Output) to downstream

services, such as Time Series

Insights or Azure Maps, for

storage, workflow integration,

analytics, and more

Examine an ADT solution

Design and implementation scenario

Evaluation: Azure Digital Twins supports the ability to aggregate and combine data from

multiple sources in a single, securely accessible location.

Design Flexibility: Azure Digital Twins supports any industry vertical investing in IoT and has

the flexibility to connect the inputs and outputs that an individual company requires.

Implementation: Azure Digital Twins uses a robust event system to build dynamic business

logic and data processing.

Results: Azure Digital Twins integration with analytics and AI services help you to track the
past and predict the future.

Get started with digital twin models

Property - Properties are data fields that represent the state of an entity (like the properties

in many object-oriented programming languages)

Telemetry - Telemetry fields represent measurements or events, and are often used to

describe device sensor readings.

Component - Components allow you to build your model interface as an assembly of other

interfaces.

Relationship - Relationships let you represent how a digital twin can be involved with other

digital twins.

The top-level of a model definition is called an Interface. The Interface encapsulates the entire model, and

may contain zero, one, or many of each of the following fields:

Examine the Digital Twins Definition Language

Fields Description

@id
An identifier for the model. Must be in the following format:

dtmi:<domain>:<unique model identifier>;<model version number>

@type
Identifies the kind of information being described: Interface, Property, Telemetry,

Relationship, or Component.

@context
Sets the context for the JSON document. Models should use the following:

dtmi:dtdl:context;2

displayName (optional) Allows you to give the model a friendly name if desired.

contents

All remaining interface (model) data is placed here, as an array of attribute definitions.

Each attribute must provide an @type to identify the type of interface information it

describes, and then a set of properties that define the actual attribute

Models for Azure Digital Twins are defined using the Digital Twins Definition language (DTDL), which is

based on JSON-LD. The model contains the following fields.

Examine the Digital Twins Definition Language

[
{
"@id": "dtmi:com:contoso:Planet;1",
"@type": "Interface",
"@context": "dtmi:dtdl:context;2",
"displayName": "Planet",
"contents": [

{
"@type": "Property",
"name": "name",
"schema": "string"

},
{
"@type": "Property",
"name": "mass",
"schema": "double"

},
{
"@type": "Telemetry",
"name": "Temperature",
"schema": "double"

},
{
"@type": "Relationship",
"name": "satellites",
"target": "dtmi:com:contoso:Moon;1"

},
{
"@type": "Component",
"name": "deepestCrater",
"schema": "dtmi:com:contoso:Crater;1"

}
]

},

{
"@id": "dtmi:com:contoso:Crater;1",
"@type": "Interface",
"@context": "dtmi:dtdl:context;2"

},
{
"@id": "dtmi:com:contoso:Moon;1",
"@type": "Interface",
"@context": "dtmi:dtdl:context;2"

}
]

The following DTDL example for a Planet includes properties and telemetry as well as a relationship and component

Examine digital twins and graph construction

The first step in adding a

digital twin to ADT is to

upload a model type to your

ADT instance

After creating and uploading a

model, you can create one or

more instances of the model

type; your digital twins

Digital twins are connected

into a twin graph by their

relationships (which must be

defined as part of the model)

Lesson 3: Introduction to ADT solution development

Get started with the ADT service and tools

ADT Solution Stage/Area
Azure

Portal

Azure

CLI

SDKs

(VSCode

)

DTDL

Validator

ADT-

explorer

CSV

(Excel)

Azure

Functions

REST APIs

(Postman)

Create/Configure ADT instance x x x x

Develop DTDL Model files x x

Build Graph Environment x x x x x

Query/Manage Graph Environment x x x x

Manage Data Ingress (upstream) x x

Manage Data Egress (downstream) x x

Note: The list of tools above is not intended to be a complete list of the tools that can be used to develop an ADT solution.

The Azure Digital Twins service comes equipped with APIs for managing your ADT instance and its elements. Multi-

purpose and ADT-specific tools are available for various stages of solution develop.

Examine ADT service configuration

To create an ADT instance, you must specify an Azure subscription, a resource

group, a location, and a resource name.

Access control permissions must be configured for an ADT instance. The Azure

Digital Twins Data Owner role is required for a user or app to access ADT data.

Event routes specify which events generated by Azure Digital Twins are delivered to

which endpoints. A routing filter is used to restrict the types of events being sent.

Endpoints are used to make ADT event data available to downstream services. An

ADT instance supports the following Endpoint types: Event Grid, Event Hubs, and

Service Bus.

Get started with model management

Validate and upload - validate your models offline before uploading them
• Validation tools: DTDL Validator, DTDL Editor for Visual Studio Code

• Upload options: APIs, Azure CLI, SDKs, ADT-Explorer, ADT Model Uploader

Update and version - models uploaded to ADT cannot be edited
• You must upload a newer version to replace an older model

• The old model version(s) are used by existing digital twins until the twins are updated (patched)

• New digital twins can be created using any available version of a model

Removal – unused models can be removed (decommissioned or deleted)
• Twins that were created from a model that has been decommissioned can still be updated.

• Twins that were created from a model that has been deleted cannot be updated until they are

assigned to another model. Twins can still be queried even after their model is deleted.

Explore the ADT APIs and Postman

Control Plane APIs: used to manage

your Azure Digital Twins instance.

API categories:

• Check Name Availability

• Digital Twins Instance

• Endpoints

• Operations

• Private Endpoints

Data Plane APIs: used to manage

elements of the ADT instance. API

categories:

• Event Routes

• Models

• Query

• Twins

Azure Digital Twins API reference documentation

Explore the ADT APIs and Postman

Step 1: authorize

Postman to make

requests against the

ADT APIs with a bearer

token

Step 2: set up (or

import) a collection of

Postman requests for

ADT

Step 3: edit the details

of a request in the

Postman collection run

the request with the

Send button

Three steps to using Postman

Get started with Azure CLI for ADT

The Azure CLI command set

for ADT is part of the Azure

IoT extension for Azure CLI

Azure CLI commands can be

used for:

• Managing an ADT instance

• Managing models

• Managing digital twins

• Managing twin relationships

• Configuring endpoints

• Managing routes

• Configuring security via Azure

role-based access control

(Azure RBAC)

Examine the ADT SDKs

ADT SDKs cover Control plane and

Data plane APIs with language support

as follows:
• Control plane: .NET (C#), Java, JavaScript,

Python, Go

• Data plane: .NET (C#), Java, JavaScript,

Python

ADT SDKs can be used to:
• Instantiate the client

• Create, get, and remove models

• Create, query, and delete a digital twin

• Get and update components for a digital twin

• Create, get, and delete digital twin

relationships

• Create, get, and delete event routes

• Publish telemetry messages to a digital twin

and digital twin component

Manage digital twins in the graph

You can manage twins in code using system client methods and helper functions

To create a twin, use the CreateOrReplaceDigitalTwinAsync() method:
await client.CreateOrReplaceDigitalTwinAsync<BasicDigitalTwin>(twinId, initData);

To access twin data, use the GetDigitalTwin() method:
Response<BasicDigitalTwin> twinResponse = await client.GetDigitalTwinAsync<BasicDigitalTwin>(twinId);
twin = twinResponse.Value;

To update a digital twin, pass a JSON Patch document into an UpdateDigitalTwin() method:
await client.UpdateDigitalTwinAsync(twinId, updateTwinData);

To update a digital twin's model, apply a patch using the UpdateDigitalTwin() method:
await client.UpdateDigitalTwinAsync(twinId, updateTwinData);

To delete a digital twin, use the `DeleteDigitalTwin()` method:
await client.DeleteDigitalTwinAsync(twinId);

Manage digital twin relationships in the graph

To create a relationship, use the CreateOrReplaceRelationshipAsync() method:
await client.CreateOrReplaceRelationshipAsync<BasicRelationship>(srcId, relId, relationship);

To list relationships, use GetRelationshipsAsync() or GetIncomingRelationshipsAsync():
AsyncPageable<BasicRelationship> rels = client.GetRelationshipsAsync<BasicRelationship>(dtId);
AsyncPageable<IncomingRelationship> incomingRels = client.GetIncomingRelationshipsAsync(dtId);

To update a relationship, use the UpdateRelationship() method:
await client.UpdateRelationshipAsync(srcId, relId, patchDocument);

To delete a relationship, use :
await client.DeleteRelationshipAsync(srcId, relId);

Get started with ADT queries

ADT query language:
- a custom SQL-like query language

- similar to the IoT hub query

language

Queries can be based on:
- properties of the twin

- models

- relationships

- properties of a relationship

Query limitations include:
- Up to 10 second delay between

graph updates and query results

- No subqueries within FROM

- No support for OUTER JOIN

- No more than 5 JOIN levels

- Relationships can't be queried as

independent entities

Get started with Azure functions for ADT

Use the following process to implement an Azure function

Create an Azure Functions project

Write the function code:

• Add authentication code to the function (for accessing ADT)
• Add code that will interact with ADT (and other Azure resources)

Publish the function app to Azure

Configure security access for the function app in Azure

The Azure function will interact with either upstream or downstream Azure services. Azure resource

configuration before and/or after creating the Azure function will be required.

Examine ADT event data

Event notification types

Examine ADT event data

Digital twin change notifications

Digital twin change

notifications are triggered

when a digital twin is

updated:

• When property values

or metadata changes

• When digital twin or

component metadata

changes

The body for the

Twin.Update notification is

a JSON Patch document

containing the update to

the digital twin

Examine data ingress and egress processes

Data ingress – ingesting data from upstream resources

Data egress – using ADT data for in-service updates

Data egress – providing ADT data to downstream resources

An Azure Digital Twins solution relies on external resources for data inputs as well as analysis and storage

of data outputs. ADT workflows fall into three main categories:

Examine data ingress and egress processes

Data Ingress (data ingestion from an upstream resource)

Examine data ingress and egress processes

Data Egress (in-service update – update parent twin property)

ADT uses digital twin change notification

events as a trigger to route data to an

ADT endpoint.

An Azure Function extracts data from the

notification header and body and uses

that data to get additional information

from ADT, such as finding a parent digital

twin. The function then performs the

required action.

An Event Grid endpoint is used to transfer

the digital twin change notification

message, such as a twin update, to an

Azure Function.

Examine data ingress and egress processes

Data Egress (downstream service support – Time Series Insights)

ADT streams data to downstream services

by routing events through an Event Hubs

Namespace

The Event Hubs Namespace will include

an Event Hub that receives events from

ADT and an Event Hub that feeds events

to the downstream service. An Azure

Function is used to prepare message data

and apply event formatting that is

appropriate for the downstream service

A downstream service, such as Time

Series Insights, consumes the events from

the second Event Hub

Lesson 4: Monitor and troubleshoot ADT

Examine the Azure Digital Twins metrics

Metrics for tracking service limits

can be used, for example, when

you're approaching a published

service limit for some aspect of

your solution

Metrics for tracking data ingress

can be used, for example, when

you need to monitor the number

of incoming telemetry events

Metrics for tracking routing

operations can be used, for

example, when you need to

monitor the number of messages

routed to an endpoint

Examine the Azure Digital Twins diagnostic settings

View and query logs

Enable alerts

Understand ADT resource health

Lesson 5: Module Labs

Module 11 Lab

Lab 19: Develop Azure Digital Twins solutions:

Design and develop digital twin models

Create and configure digital twins

Implement ADT graph interactions

Integrate ADT with upstream and downstream systems

Lesson 6: Module 11 review questions

Module review: Question 11.1

What is the name of the coding format used to define Azure Digital Twins models?

Answer A:

Extensible Application Markup

Language.

Answer B:

Azure Digital Twins Modeling

Language.

Answer C:

Digital Twins Definition Language.

Module review: Question 11.2

What is the relationship between an Azure Digital Twins model and a digital twin?

Answer A:

An ADT model is an instance of a

digital twin.

Answer B:

A digital twin is an instance of an ADT

model.

Answer C:

An ADT model contains the digital

twins for your ADT environment.

Module review: Question 11.3

What happens to the associated digital twins when a developer deletes a model?

Answer A:

The digital twins are automatically

removed from the environment.

Answer B:

The properties of the digital twins can

no longer be queried.

Answer C:

The properties of the digital twins can

no longer be updated.

Module review: Question 11.4

In order to manage the Azure Digital Twins service and its data, what role assignment must

be configured?

Answer A:

Azure Digital Twins Data Reader

Answer B:

Azure Digital Twins Data Owner

Answer C:

Owner

Module review: Question 11.5

Which of the following choices describes why a developer would query the Azure Digital

Twins diagnostics logs?

Answer A:

To troubleshoot Azure Digital Twins

service issues and generate insights.

Answer B:

To manage the Azure Digital Twins

environment, including models and

twins.

Answer C:

To troubleshoot upstream and

downstream service issues.

Module review: Question 11.6

Which of the following choices describes the purpose of Azure Digital Twins metrics?

Answer A:

They provide access to properties of

the Azure Digital Twins services and

the properties of connected upstream

and downstream resources.

Answer B:

They provide access to properties of

the Azure Digital Twins services and

the properties of the connected digital

twins.

Answer C:

They provide an overview of the health

of your service instance.

Module review: Question 11.7

Which Azure service should be used to ingest telemetry from the upstream IoT hub?

Answer A:

Azure Device Provisioning Service

Answer B:

Azure Function

Answer C:

Azure Digital Twins Explorer

Module review: Question 11.8

Assuming that the query runs as expected, what results are returned?

Answer A:

The "cave" digital twins that have a

"rel_has_caves" relationship to the

"factory" digital twin with an ID of

"factory_1".

Answer B:

The "factory_1" digital twin and all

digital twins that are related to it.

Answer C:

The "factory_1" digital twin and all of

the digital twins that have a

"rel_has_caves" relationship to it.

