

Module 1: Explore core data concepts

Mohammed Arif 10/03/2022

Explore core data concepts

Explore roles and responsibilities in the world of data (optional)

Agenda

Describe concepts of relational data

Explore concepts of non-relational data

Explore concepts of data analytics

Lesson 1: Explore core data concepts

© Copyright Microsoft Corporation. All rights reserved.

Identify how data is defined and stored

Identify characteristics of relational and non-relational data

Lesson 1

objectives

Describe and differentiate data workloads

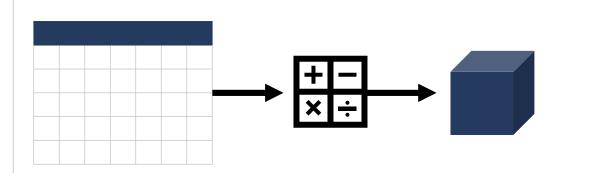
Describe and differentiate batch and streaming data

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

What is data?

Collection of facts, numbers, descriptions, objects, stored in a structured, semi-structured, unstructured way

Structured	Semi-structured	Unstructured	
	<pre>## Document 1 ## { "customerID": "103248", "name": { "first": "AAA", "last": "BBB" }, "address": { "street": "Main Street", "number": "101", "city": "Acity", "state": "NY" }, "ccOnFile": "yes", "firstOrder": "02/28/2003" } ## Document 2 ## { "customerID": "103249", "name": { "title": "Mr", "forename": "AAA", "lastname": "BBB" }, "address": { "street": "Another Street", "number": "202", "city": "Bcity", "country-region": "UK" }, "ccOnFile": "yes" }</pre>		

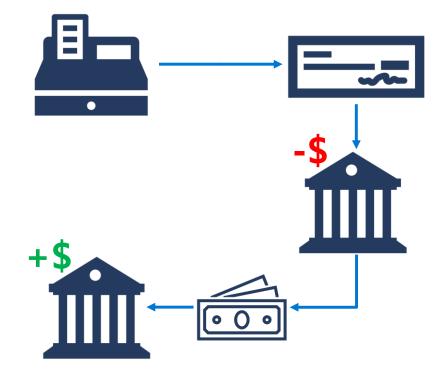

Transactional vs analytical data stores

Online Transactional Processing (OLTP)

Customer		
CustomerID	CustomerName	CustomerPhone
Orders		_
OrderID	CustomerID	OrderDate

Data is stored one transaction at a time

Online Analytical Processing (OLAP)



Data is periodically loaded, aggregated and stored in a cube

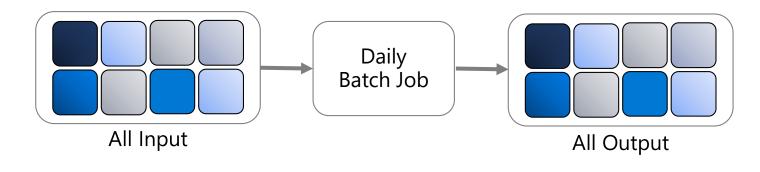
Transactional workloads

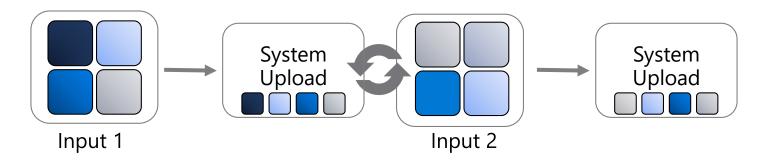
Transactional data is information that tracks the interactions related to an organization's activities.

- **Atomicity** each transaction is treated as a single unit, which success completely or fails completely.
- **Consistency** transactions can only take the data in the database from one valid state to another.
- **Isolation** concurrent execution of transactions leave the database in the same state.
- **Durability** once a transaction has been committed, it will remain committed.

Analytical Workloads

Analytical workloads are used for data analysis and decision making.


- Summaries
- Trends
- Business information


Data Processing

Data processing is the conversion of raw data to meaningful information through a process.

Batch Processing: data elements are collected into a group. The whole group is then processed at a future time as a batch

Stream Processing: each new piece of data is processed when it arrives.

Lesson 1: Knowledge check

How is data in a relational table organized?

- Rows and Columns
- Header and Footer
- □ Pages and Paragraphs

Which of the following is an example of unstructured data?

- □ An Employee table with columns Employee ID, Employee Name, and Employee Designation
- 🕤 Audio and Video files
- □ A table within SQL Server database

What of the following is an example of a streaming dataset?

- ☑ Data from sensor feeds
- Gales data for the past month
- □ List of employees working for a company

© Copyright Microsoft Corporation. All rights reserved.

Explore data job roles

Explore common tasks and tools for data job roles

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

Roles in data

Database Administrator

Database Management Implements Data Security Backups

User Access

Monitors performance

Data Engineer

Data Pipelines and processes Data Ingestion storage Prepare data for Analytics Prepare data for analytical processing

Data Analyst

Provides insights into the data Visual Reporting Modeling Data for Analysis Combines data for visualization and analysis

Common tools – Database administrator

Azure Data Studio

Graphical interface for managing on-premises and cloud-based data services

Runs on Windows, macOS, Linux

SQL Server Management Studio

Graphical interface for managing on-premises and cloud-based data services

Runs on Windows

Comprehensive Database Administration tool

Azure Portal/CLI

Tools for management and provisioning of Azure Data Services

Manual and automation of scripts using Azure Resource Manager or Command Line Interface scripting

Common tools – Data engineering

Azure Synapse Studio

Azure Portal integrated to manage Azure Synapse

Data Ingestion (Azure Data Factory)

Management of Azure Synapse assets (SQL Pools/Spark Pool) SQL Server Management Studio

Graphical interface for managing on-premises and cloud-based data services

Runs on Windows

Comprehensive Database Administration tool

Azure Portal/CLI

Tools for management and provisioning of Azure resources

Manual and automation of scripts using Azure Resource Manager or Command Line Interface scripting

Common tools – Data analyst

Power BI Desktop

Data Visualization tool

Model and Visualize Data

Management of Azure Synapse assets (SQL Pools/Spark Pool)

Power BI Portal/ Power BI Service

Authoring and management of Power BI reports

Authoring of Power BI dashboards

Share Reports/Datasets

Power BI Report Builder

Data Visualization tool for paginated reports

Model and Visualize paginated reports

Lesson 2: Knowledge check

Which one of the following tasks is a role of a database administrator?

- Sacking up and restoring databases
- □ Creating dashboards and reports
- Identifying data quality issues

Which of the following tools is a visualization and reporting tool?

- SQL Server Management Studio
- 🕤 Power Bl
- □ SQL

Which one of the following roles is not a data job role?

- 🕤 Systems Administrator
- Data Analyst
- Database Administrator

Lesson 3: Describe concepts of relational data

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

•

∢

Explore the characteristics of relational data

Lesson 3 objectives

Define tables, indexes, and views

Explore relational data workload services in Azure

Identify relational database use cases

IoT: Although typically considered for non-relational, the data from IoT devices could be structured and consistent

Online transaction processing:

For example order systems that perform many small transactional updates

Data warehousing:

Large amounts of data can be imported from multiple sources and structured to enable highperformance queries

Tables

Customers			-
CustomerID	CustomerName	CustomerPhone	L
100	Muisto Linna	XXX-XXX-XXXX	
101	Noam Maoz	XXX-XXX-XXXX	Т
102	Vanja Matkovic	XXX-XXX-XXXX	
103	Qamar Mounir	XXX-XXX-XXXX	
104	Zhenis Omar	XXX-XXX-XXXX	A
105	Claude Paulet	XXX-XXX-XXXX	
106	Alex Pettersen	XXX-XXX-XXXX	F
107	Francis Ribeiro	XXX-XXX-XXXX	L

Data is stored in a table

Table consists of rows and columns

All rows have same # of columns

Each column is defined by a datatype

Entities

Customers					
CustomerID	CustomerName	CustomerPhone			
100	Muisto Linna	XXX-XXX-XXXX			
101	Noam Maoz	XXX-XXX-XXXX			
102	Vanja Matkovic	XXX-XXX-XXXX			
103	Qamar Mounir	XXX-XXX-XXXX			
104	Zhenis Omar	XXX-XXX-XXXX			
105	Claude Paulet	XXX-XXX-XXXX			
106	Alex Pettersen	XXX-XXX-XXXX			

An entity is a representation of an item which can be physical (such as a customer or a product), or virtual (such as an order).

Entities are connected by relations enabling interaction. For example, a customer can place an order for a product

Normalization

Customers		Orders	Orders		
CustomerID	CustomerName	CustomerPhone	OrderID	CustomerName	CustomerPhone
100	Muisto Linna	XXX-XXX-XXXX	AD100	Noarthaoz	XXX-XXX-XXXX
101	Noam Maoz	XXX-XXX-XXXX	AD101	Noam	XXX-XXX-XXXX
102	Vanja Matkovic	XXX-XXX-XXXX	AD102	Noam Ma	XXX-XXX-XXXX
103	Qamar Mounir	XXX-XXX-XXXX	AX103	Qamar Maria	XXX-XXX-XXXX
104	Zhenis Omar	XXX-XXX-XXXX	AS104	Qan unir	XX-XXX-XXXX
105	Claude Paulet	XXX-XXX-XXXX	AR105	Claude Paulet	XXX-XXX-XXXX
106	Alex Pettersen	XXX-XXX-XXXX	MK106	Muisto Linna	XXX-XXX-XXXX

Data is no	ormalized to:
------------	---------------

Reduce storage	Avoid data duplication	Improve data quality
----------------	------------------------	----------------------

Relations

Customers			Orders		
CustomerID	CustomerName	CustomerPhone	OrderID	CustomerID	SalesPersonID
100	Muisto Linna	XXX-XXX-XXXX	AD100	101	200
101	Noam Maoz	XXX-XXX-XXXX	AD101	101	200
102	Vanja Matkovic	XXX-XXX-XXXX	AD102	101	_00
103	Qamar Mounir	XXX-XXX-XXXX	AX103	10	201
104	Zhenis Omar	XXX-XXX-XXXX	AS104	103	201
105	Claude Paulet	XXX-XXX-XXXX	AR105	105	200
106	Alex Pettersen	XXX-XXX-XXXX	MK106	105	201

	In a normalized database schema:	
Primary Keys and Foreign keys are used to define relationships	No data duplication exists (other than key values in 3 rd Normal Form (3NF)	Data is retrieved by joining tables together in a query

Indexes

Customers			IDX-CustomerRegion	
CustomerID	CustomerName	CustomerPhone	CustomerID	Region
100	Muisto Linna	XXX-XXX-XXXX	100	France
101	Noam Maoz	XXX-XXX-XXXX	101	Brazil
102	Vanja Matkovic	XXX-XXX-XXXX	102	Croatia
103	Qamar Mounir	XXX-XXX-XXXX	103	Jordan
104	Zhenis Omar	XXX-XXX-XXXX	104	Spain
105	Claude Paulet	XXX-XXX-XXXX	105	France
106	Alex Pettersen	XXX-XXX-XXXX	106	USA

	An index:	
Optimizes search queries for faster data retrieval	Reduces the amount of data pages that need to be read to retrieve the data in a SQL Statement	Data is retrieved by joining tables together in a query

View

Customers		Orders			
CustomerID	CustomerName	CustomerPhone	OrderID	CustomerID	SalesPersonID
100	Muisto Linna	XXX-XXX-XXXX	AD100	101	200
101	Noam Maoz	XXX-XXX-XXXX	AD101	101	200
102	Vanja Matkovic	XXX-XXX-XXXX	AD102	101	200
103	Qamar Mounir	XXX-XXX-XXXX	AX103	103	201
104	Zhenis Omar	XXX-XXX-XXXX	AS104	103	201
			AR105	105	200
105	Claude Paulet	XXX-XXX-XXXX	MK106	105	201
106	Alex Pettersen	XXX-XXX-XXXX	DB205	100	205

Create the definition of a view:

CREATE VIEW vw_customerorders AS

SELECT Customers.CustomerID, Customers.CustomerName, Orders.OrderID FROM Customers JOIN Orders on Customers.CustomerID = Orders.CustomerID

Retrieve the orders placed by customer 102 using the view:

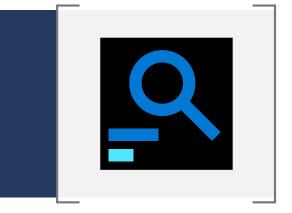
SELECT CustomerName, OrderID from vw_customerorders WHERE CustomerID=102

A view is a virtual table based on the result set of query:

Views are created to simplify the query

Combine relational data into a single pane view

Lesson 3: Knowledge check


Which one of the following statements is a characteristic of a relational database?

- □ All data must be stored as character strings
- d row in a table represents a single entity
- Different rows in the same table can contain different columns

What is an index?

- 🗹 A structure that enables you to locate rows in a table quickly, using an indexed value
- □ A virtual table based on the result set of a query
- □ A structure comprising rows and columns that you use for storing data

Lesson 4: Explore concepts of non-relational data

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

Explore the characteristics of non-relational data

Lesson 4 objectives

Define types of non-relational data

Describe NoSQL, and the types of non-relational databases

Explore characteristics of non-relational data

Entities

Non-relational collections can have:

Multiple entities in the same collection or container with different fields

Have a different, non-tabular schema Are often defined by labeling each field with the name it represents

Identify non-relational database use cases

IoT and Telematics:

Often require to ingest large amounts of data in frequent burst of activity, data is either semi structured or structured, often requires real time processing

Retail and Marketing:

Common scenarios for globally distributed data, document storage

Gaming:

In-game stats, social media integration, leaderboards, low-latency applications


Web and Mobile:

Commonly used with web click analytics, modern applications including bots

Types of non-relational data

What is semi-structured data?

Data structure is defined within the actual data by fields. Format/file types include:

What is unstructured data?

Does not naturally contain fields: *Examples: video, audio, media streams, documents*

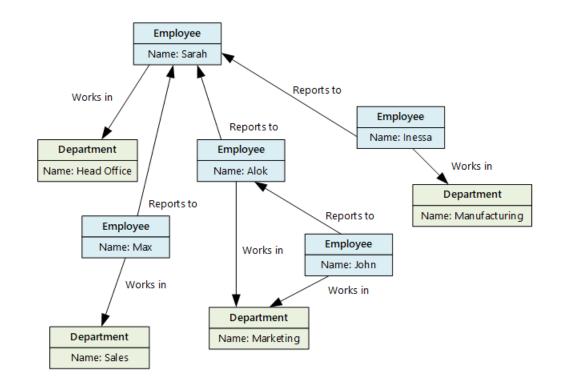
Often used to extract data organization and categorize or identify "structures"

Frequently used in combination with Machine Learning or Cognitive Services capabilities to "extract data" by using:

Text Analytics Sentiment Analysis with Cognitive APIs Vision API

What is NoSQL?

Loose term, to describe non-relational


What is a graph database?

Stores entities centric around relationships

Enables applications to perform queries traversing a network of nodes and edges

Lesson 4: Knowledge check

Which of the following services should you use to implement a non-relational database?

- 🗹 Azure Cosmos DB
- Azure SQL Database
- □ The Gremlin API

Which of the following is a characteristic of non-relational databases?

- Non-relational databases contain tables with flat fixed-column records
- Non-relational databases require you to use data normalization techniques to reduce data duplication
- 🛫 Non-relational databases are either schema free or have relaxed schemas

You are building a system that monitors the temperature throughout a set of office blocks, and sets the air conditioning in each room in each block to maintain a pleasant ambient temperature. Your system has to manage the air conditioning in several thousand buildings spread across the country or region, and each building typically contains at least 100 air-conditioned rooms. What type of NoSQL data store is most appropriate for capturing the temperature data to enable it to be processed quickly? A key-value store

- A column family database
- $\hfill\square$ Write the temperatures to a blob in Azure Blob storage

Lesson 5: Explore concepts of data analytics

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

Learn about data ingestion and processing

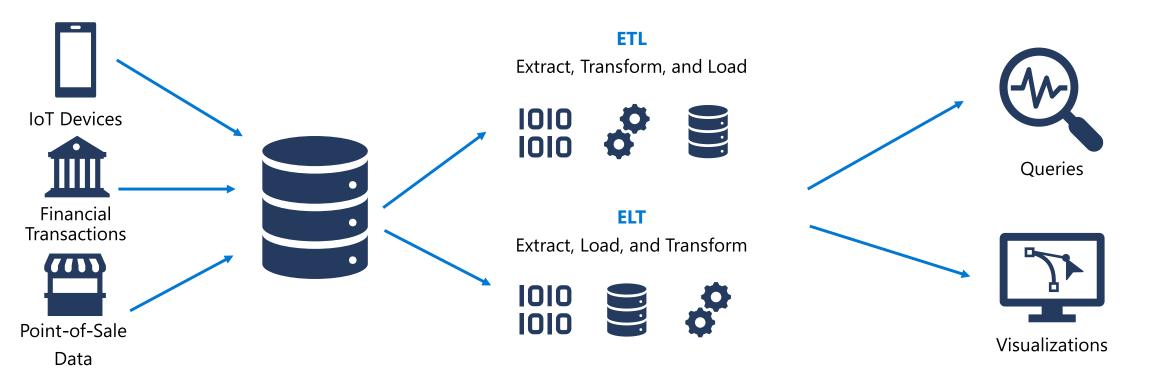
Lesson 5 objectives

Explore data visualization

Explore data analytics

The Data Journey

Data Ingestion


The process of obtaining and importing data for immediate use or storage in a database

Data Processing

Takes the data in its raw form, cleans it, and converts it into a more meaningful format

Data Visualization

Query the data and create graphical representations of information and data

Data visualization

A business model can contain an enormous amount of information – there are techniques to analyze and understand the information in your models

Reporting

Business intelligence (BI)

Data visualization

Explore data analytics

Lesson 5: Knowledge check

What is data ingestion?

- **□** The process of transforming raw data into models containing meaningful information
- Analyzing data for anomalies
- Capturing raw data streaming from various sources and storing it

Which one of the following visuals displays the major contributors to a selected result or value?

- 🗹 Key influencers
- Column and bar chart
- Matrix chart

Which type of analytics helps answer questions about what has happened in the past?

- Descriptive analytics
- Prescriptive analytics
- Predictive analytics

