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Correlation

In this section we'll discuss the concept of
correlation. We'll talk about how we can display
the correlation between two variables using
tables and graphs. First we'll look at categorical
variables and discuss contingency tables. In a
next step we look at how we can best display
the relationship between two quantitative

variables. Here we'll introduce the scatterplot.

In the second section we'll discuss the
Pearson's r - one of the most frequently used
measures of correlation. It is an appropriate
measure if the variables under analysis are
measured on a quantitative level and if they are
linearly related to each other. The Pearson's r
expresses the direction and strength of the
correlation. We'll learn how to interpret the

Pearson'’s r and how to compute it ourself.



Correlation

Many people like eating chocolate. Yet most people are somewhat
cautious with their chocolate consumption, because it might well be the

case that eating a lot of chocolate increases your weight.

In this section, we'll talk about how we can display a relationship
between two variables using tables and graphs. This can be very useful

to help you discover if two variables are correlated or not.
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Let us investigate the relationship between eating
chocolate and body weight further. Suppose | have

selected 200 female students at my university who are

all Tm70 tall.

This way height is a constant and cannot account for

differences in body weight (or chocolate consumption).

| asked the students to report their body weight and

their weekly chocolate consumption
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Correlation

They could choose between the categories ‘less than 50
kilograms’, ‘50 to 69 kilograms’, ‘70 to 89 kilograms’ and 90

kilograms or more’.

They could indicate their chocolate consumption by choosing
‘less than 50 grams per week’, ‘between 50 and 150 grams

per week’, and ‘more than 150 grams per week’.

Boc)y weight
Oless than SO kg
O S0-69 kg

O 70-¢9 ko

Q90 kg oc Mmoce

Choco consumption
(pec week)

O less than SO o

O 50-150 4
O moce than 150 9
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Here are the results. What you see here is a LT
contingency table. Qﬁs\) 5
contingency table

A contingency table enables you to display the

relationship between two ordinal or nominal
chocolate consumption

n grams pec week

¢S0 S0-150 > 150

variables.

It is similar to a frequency table. But the major
difference is that a frequency table always
concerns only one variable, whereas a contingency

table concerns two variables.
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Correlation

In previous table form does not tell you much yet

about the correlation between the two variables,

chocolate consumption

n gcams pec week

because the columns and rows contain different

numbers of cases. ¢S0 S0-150

It provides more insight when you compute
percentages. In this case we compute column

percentages.
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So what does this mean?

Of those who eat more than 150 grams of
chocolate per week, 56 percent weighs 90
kilograms or more. Of those who eat less than
50 grams of chocolate, only 5 percent weighs

90 kilograms or more.

Also, of those who eat less than 50 grams of
chocolate, 45 percent weighs less than 50
kilograms, while of those who eat more than 150
grams of chocolate only 2 percent weighs less

than 50 kilograms.

The percentages show that there is a correlation between chocolate consumption and body

weight.

chocolate consumption

n gcams pec week

¢ S0 S0-150 > 150
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A contingency table is useful for nominal and ordinal

variables, but not for quantitative variables.

For quantitative variables a scatterplot is more

appropriate.

Suppose that instead of providing categories, | asked
the 200 women to give me their exact body weight;
for instance 65 or /2 kilograms. Suppose | also asked
them to tell me how much chocolate they eat every
week. That could be, for instance, 64, or 99 grams
per week. Now | have much more precise information
than before. The best way to display the relationship
between the quantitative variables chocolate

consumption and weight is with a scatterplot.

nominal vaciables
ocdinal vaciables

contingency table *

scattecplot * quantitative vaciables
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To make a scatterplot we draw two lines, which we
call axes. We call the horizontal axis the x-axis;
here we display the independent variable. The
vertical axis is called the y-axis, which we use to

represent the dependent variable.

0

100 200 300 %400 S00 600 700




Correlation

The scatterplot shows at a glance that there is a
strong correlation between the two variables: the
more chocolate someone eats, the larger her

body weight.
But how strong is this correlation?

We will now turn to one of the most often used

measures of correlation: Pearson's r.
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PEARSON'S R
dicection and stcength of lineac coccelation with one number

One of the most important advantages of

' o positive coccelation

Pearson's r is that it expresses the direction LI

and strength of the linear correlation between 100
0 S'Vrumj coccelation
20

CONCLVSTION 70

two variables with a single number.

stcong positive 0
lineac S0
celationship

0
However, variables could also be correlated in

different ways.
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stcong positive x stcong negative weak positive
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A scatterplot helps us to broadly assess
whether a correlation is strong or weak, but
it does not tell us exactly how strong the

relationship is.

Pearson's r is a measure that can show us

exactly that.

More specifically, the Pearson’s r tells us
the direction and exact strength of the
linear relationship between two

quantitative variables.

PEARSON'S R

dicection
+ = positive
- = negative

HOW

stcong oc weak
coccelation?

stcength

-1 = pecfect neqgative
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COMPVUTE DEARSON'S R
®

So, how do we compute the Pearson’s r?

Imagine that the study on chocolate consumption
and body weight was not based on 200 but on

only 4 individuals.

This is the data matrix and the scatterplot.




Correlation — Compute Pearson’s R
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Correlation — Compute Pearson’s R

COMPVTE PEARSON'S R

What does this mean?
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impoctant note

check scattecplot
befocre you calculate

’
Peacson s ¢
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However, a recent study shows that it might

actually be a good idea to eat a lot of chocolate.

This scatterplot shows that a country’s annual
chocolate consumption per person (so, how much
chocolate someone eats in a year) is positively
related to the number of Nobel Prize winners per

10 million people in a country
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Regression

HOW TO FIND A REGRESSTON LTINE

The Pearson’'s r tells you how strong the linear

correlation between two continuous variables is.

This linear correlation can be displayed by a straight
line. In our case that’s this line. This is what we call the
regression line and in this section we ‘ll discuss how we

can find the regression line.

Imagine that you draw every possible straight line

through this scatterplot. imagine that you have

superhuman powers and that you are able to do it. Next,

w

-

o

£

£ @

2 &
)

s 3

-bo

o 5

e

C ) =

_oo—.
b3

> 4

ao

oﬂ

¢ 9

Y o

)

b3

2

2

you measure for every possible line the distances from

the line to every case (so, in this case to every flag in the Annoallchooalate cansartaFionlpecloecIon

scatterplot).




Regression

Let me give you an example based on a random HOW TO FIND A REGRESSTON LINE

line. You measure the vertical distance between

Japan and the line, the distance between Spain
and the line, and so on, until you know the

distance to the line of every case in your study.

Every distance is called a residual.
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Regression

You end up with positive residuals (the distances
from cases above the line to the line, displayed in
blue) and negative residuals (distances from

cases below the line to the line, displayed in red).

You measure these residuals for every possible

line through the scatterplot.
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Regression

HOW TO FIND A REGRESSTON LINE

So, not only for this line, but also for this line, this
line and this line. And for every other possible

line through the scatterplot.
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Regression

Eventually, you choose the line for which the sum
of the squared residuals is the smallest. That's

this one.

Why the squared residuals? Because positive and
negative residuals cancel each other out: the sum
of the length of the positive residuals (the blue
lines) is exactly as big as the sum of the length of

the negative residuals (the red lines).
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Regression

HOW TO FIND A REGRESSTON LINE

The best fitting line is called the regression line,

and

cegeession line

the name of the method of analysis is called

ordinary least squares (OLS) regression, which
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Regression

The regression line is the straight line that describes

HOW TO DESCRTIBE A REGRESSTON LINE?

the linear relationship between the two variables best.

But how can we describe what this line looks like? ™M o(‘{"a V\{' 9 oc:

This is an important question, because by describing

Communication

Pcediction

the line with a formula, we can easily communicate
our regression analysis to other people, predict the
number of Nobel Prize winners in other countries,

and identify countries that do not fit the pattern.

Tdentibication of unusual cases




Regression

Based on the regression line in this scatterplot we would
predict that a country with an annual chocolate
consumption of 6 kilograms per year per capita would

have about 11 Nobel prize winners per 10 million people.

Similarly, based on this same line we would predict that a
state with an annual chocolate consumption of 11
kilograms per year per capita would have about 25 prize
winners per 10 million people. For most countries this

prediction will not be completely correct.

After all, most countries are not exactly on the line.
However, it is the best prediction that we can make based

on the information that we have.
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Regression

There is one simple formula with which we can

describe the regression line, and that’s this one:
y =a + bx.

¥ is not the actual value of y, but it represents the

predicted value of y.
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Regression

‘a’ is what we call the intercept or the constant.
It is the predicted value of y when x equals O.

It is, in other words, the predicted value of y
where the regression line crosses the y-axis and x

thus equals O.

In our case that’s -5.63. Notice that this value has
no substantive meaning. It is impossible to have -
5.63 Nobel prize winners per 10 million people. It
only has a mathematical purpose, to describe the

regression line.
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Regression

‘b’ is what we call the regression coefficient or the

slope.

Vv =a -+ bx

5} pcedicted value of vy
(1 — nteccept =-5.63
o

cegcression coeflicient

It is the change in  when x increases with one

unit.

In our case we see that when x increases with one
unit (for example from 4 to 5), the predicted value

of y increases with 2.80 units. Because we have a

pec 10 million people
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same everywhere. So also if we look at what
2

happens when x increases from 8 to 9, ¥
Annual chocolate consumption

increases with 2.80 units.

The regression coefficient in our example is 2.80.
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inteccept =563

This leads to the following regression equation: cegcession coebficient =2 g0

A\

Y = 5.63+2.80

y equals -5.63 plus 2.80 times X.
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ceacession line

ceacession formula




Regression

cegcession focrmula m

Y = 5.63+2.80X

x =10.21
5 = -5.63+(2.20%10.21
V ( )

S
-5.63+(2.80%3.5)

S
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X = 10.21 f; = 22.9

<y X
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Regression

Usually the computer finds the regression line for

you, so you don’t have to compute it yourself.

However, when you know the means and standard
deviations of your wvariables and the
corresponding Pearson’s r correlation coefficient,
you can compute the regression equation by

means of two formulas.

COMPVTE REGRESSTON LINE

cegeession coeflicient

onstandacdized Deacson's 7T

a

—
—

y — b(x)
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COMPVTE REGRESSTON LINE
a=y—bx)
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COMPVTE REGRESSTON LINE
a=7y— b(x)

) a=1317-(2.79°¢.71)
= 555
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COMPVTE REGRESSTON LTINE

) a=1317-2.79%¢.71)
a = -5.55

v =a+ bx

A\

Vi— 5155 +2.79x
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Regression

In this section we will talk about the question how
we can assess how well a regression line fits your
data. The reason to look at how well a regression

line fits, is that researchers want to know:

how accurately a regression analysis predicts

the dependent variable in a study.

The extent to which a regression line fits the data

is expressed by means of the so-called r-squared.

How well does Fhe
cegceession line Fit
the Jdata?
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Regression

Imagine you're in a class together with 99 other students and you

have just finished a statistics exam.

Your professor already has the results for 20 randomly selected
students. The professor wants to share the grades of these 20
students, but she doesn’t want you to know who these 20 students

are.

Because the results are anonymous, you dont know which
student got which grade. Note that the worst grade you could get
is a 0 and the best grade is a 10.

Now, imagine you are asked to predict the grade of the student
sitting next to you in the statics class. What would be your

prediction?

That would, of course, be the mean of these grades. That is 6.8.

student 1
S{’uc)c,vd' 2
student 3
student Y
student S
student &
student 7
student 8
student 9
student 10
student 11

student 12
student 13

student 14
student 15
student 16
student 17
student 1%
student 19
student 20

gcade exam
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Regression

Now imagine that the professor also gives you the grades these gcade exam gcade prev. exam

twent tudent b revious statistics exam, again student 1 >4 2
wenty students got in a previou isti xam, ag sFodent 2 24 m
anongmized. student 3 '+‘+ (A
student Y i |
, L student S S.7 6.2
How would you now predict the grade of the student sitting next to skodent G (A 7
you? student 7 6.5 7
student 8 6.7 6.2
student 9 6.9 ¥ & §
Well, now you can make use of regression analysis. student 10 7.1 74 g
student 11 7 b - 7.9
Here you see the scatterplot with the regression line and the :::3::: i% ;é %-;7'
' ' ' ' student 14 7.8 6.
regression equation. You see that those with a high grade for the oot 15 g 75
previous exam also tend to have a high grade for the present student 16 2.2 2
exam. In fact, you can use the regression line and the ::::3::: i’; g% 70"1
corresponding equation to make a prediction. When you ask your student 11 15 76
. . . . student 20 1.9 2
neighbor what his previous grade was, you can use the regression mean =6 8

line to predict what most likely would be his present grade.
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Regression

What does this mean? When you have information about only one
variable, the predictions you make are much less accurate than

when you have information about two related variables.

R-squared is nothing more than a number that tells you how
much better a regression line predicts the value of a dependent

variable than the mean of that variable.

,),,2

tells you how much
better a
cegeession line predicts
the value of a
dependent vaciable
than the mean of the

vaciable
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ocediction eccor
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Exercise

Social scientists have shown that a leader’s
physical height is related to his or her success.
Suppose you want to test if you can replicate this
result. To do that, you look at the heights and the
average approval ratings of the four most recent

presidents of the United States.

ceplicate cesult
You employ this data matrix and your goal is to l

answer 4 related questions. hltq kfs an c)

approval catings

of presidents
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Sample and sampling

By now you know that we can do all kinds of
univariate analyses (e.g., compute modes, means,
and standard deviations) and bivariate analyses
(e.g., compute Pearson's r correlation coefficients
or do regression analyses). Usually, all these
analyses are fully based on your sample. In
general, the methods for analyzing sample data

are called methods of descriptive statistics.

Yet in real life we're often not so much interested
in samples but in populations. We therefore often
use data obtained from a sample to draw
conclusions  about an entire  underlying
population. If we employ sample data to draw
inferences about a population we are using
methods of inferential statistics. We use the
computed sample statistics to draw inferences

about the corresponding population parameters.



Sample and sampling

It is therefore of essential importance that you know how you should draw
samples. In this section we'll pay attention to good sampling methods as well
as some poor practices. We'll show you how you can draw a simple random
sample and we'll pay attention to various forms of bias you could encounter
along the way. We'll also discuss two alternatives to simple random sampling
that are almost as good: random multi-stage cluster sampling and

stratified random sampling.



Sample and sampling

Almost all statistical studies are based on samples. Imagine you
want to know to what extent students in London identify

themselves as Hipsters.

It is almost impossible to ask all students, so you decide to draw a
sample of, say, 200 respondents, and you assess to what extent

they see themselves as Hipsters.

The great thing about statistics is that it can help you to draw
conclusions about all students in London (which is the population),
based on an analysis of only these 200 respondents (which is the

sample)
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SAMPLE
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Sample and sampling

A sample is nothing more than a subset of a population. Yet, for
methods of inferential statistics, not every sample is appropriate.
What you want is a representative sample. A good way to achieve
that goal is to draw a simple random sample. That means that
you make sure that each subject in a population has the same

chance of being selected.

Imagine that there is an organization in London that has an
overview of all students, including their contact details. Moreover,
this organization is willing to share this list with you. You ask a
computer to randomly select 200 students out of this list. That’s

it. There you have your simple random sample.

SIMPLE RQANDOM SAMPLE

Dopu|0\Hov\
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Sample and sampling

The next step is to decide how you're going to approach your 200 Pace-to-Pace

respondents
Telephone

Selb-administeced

Respondents
— R




Sample and sampling

Along the way you will encounter various possible forms of bias.

The first one is undercoverage. This means that not everyone in

the population is included in the sampling frame.

There can also be sampling bias. This means that not every
person in your sampling frame is equally likely to be included in
the sample. This is what happens if you fail to draw a random
sample. This is the case if, for instance, you randomly approach

people on the street. This is what we call a convenience sample.

possible bias
Population
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Sample and sampling

Thirdly, once you have your sample, another possible form of bias
is nonresponse bias. Some selected subjects might refuse to
participate, or they might simply be unreachable. Some
respondents who have agreed to participate might not be willing

to respond to particular questions.

Finally, there can be response bias. In this case the actual given
responses are biased. This could for instance be due to an
interviewer asking leading questions or because respondents
think that some answers are socially unacceptable. For instance, a
student might identify as a Hipster but tell an interviewer that she
doesn’t because she thinks that the interviewer doesn’t like

Hipsters. |

possible bias
Population
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Sample and sampling

SIMPLE RANDOM SAMPLE

possible bias
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Sample and sampling

So, when drawing a sample, you should make sure that your sample is a simple

random sample and that you keep these forms of bias to a minimum.

However, many times it will be almost impossible to draw a simple random
sample. Luckily, there are two other ways of random sampling that are almost

as good.
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SIMPLE RQANDOM SAMPLE
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Sample and sampling

The first alternative is a random multi-stage cluster sample.
It works as follows.

First you identify a large number of clusters within your
population; for instance, the various educational programs in
London in which the students are enrolled. Every program is
represented by a bucket and you put the pieces of paper with the
names of students in the buckets of the programs in which they

are enrolled.

Next, you randomly pick a number of buckets. Say... 10. Then,
you select all pieces of paper within these buckets. That's your

sample.

A random multi-stage cluster sample is a good choice if you
don’t have a good sampling frame or if drawing a simple random

sample would be very expensive.

RQANDOM MULTTI-STAGE
CLVSTER SAMPLE

POPVLATTION
IN CLUSTERS

Cdativnal  cduabianal  tduiabional  cdwabiveal  tduabinal  tduiabional  chuabional  daabienal  cdwabionsl  deabenal  adviabional

;, candom selection

3

all pieces of paper within these buckets

SAMPLE



Sample and sampling

The second alternative is a stratified random sample.

STRATTIFIED
Now you divide the population in separate groups which you RANDOM SAMPLE

call “strata”. For instance, the various universities in London. POPVLATION

Every university is represented by a box and you put the O R EE T - M E .

pieces of papers with the names of the students in the box of - e = = == =R A o

the university where they are registered. Next, you select a
simple random sample of pieces of paper from each box. All

these pieces of paper together form your sample. : g g

SAMPLE

An advantage of this method is that you can make sure that

you have enough subjects from every stratum in your sample.
A disadvantage is that you need a sampling frame and that

you need to know to which stratum each respondent belongs.



Sample and sampling
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Sampling distribution of sample mean and central limit theorem

We've seen that researchers often use a sample to
draw conclusions about the population their
sample is from. To do so, they make use of a
probability distribution that is very important in

the world of statistics: the sampling distribution.

The sampling distribution of the sample mean is
the distribution that you get if you draw an infinite
number of samples from your population and
compute the mean of all the collected sample

means.

The central limit theorem says that, provided that
the sample size is sufficiently large, the sampling
distribution of the sample mean has an
approximately normal distribution. The mean of the
sampling distribution equals the population mean,
and the standard deviation of the sampling
distribution equals the standard deviation in the
population divided by the square root of the

sample size.
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Sample and sampling
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Sample and sampling
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Sample and sampling
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Sample and sampling

X = close to population mean
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Sample and sampling
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Sample and sampling
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Sample and sampling

bell-shaped population disteibution

number of samples

disteibution of sample means
is bell-shaped with a mean
equal to the population mean

sampling disteibution
of the sample mean




Sample and sampling

The central limit theorem says that provided that the
sample size is sufficiently large, the sampling distribution
of sample mean x bar has an approximately normal
distribution, even if the variable of interest is not normally

distributed in the population.

Isn't that cool? No matter how a variable is distributed in
the population, the sampling distribution of the sample
mean is always, always approximately normal, as long as

the sample size is large enough.

centeal [imit theocem

the sampling disteibution
of sample mean X
s approxXimately noemal
(pcovided that w is subPiciently lacge)
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Sample and sampling

impossible o deaw an
wmPinite number of samples

In practice, it is impossible to draw an infinite number of samples, but then, l

the good news is that drawing multiple samples is not required at all, to

determine the shape of the sampling distribution. l

Because if it's normal, you can describe its shape by just two parameters,

you can desceibe its shape
with just two pacametecrs

mean and standard deviation. So it is sufficient to estimate these two

parameters.

+ ¥

standacd
deviation




Sample and sampling

mean of sampling disteibution

-
The mean of the sampling distribution is equal to the mean of s

the population distribution.

population mean

We can display that as follows, mu x bar is equal to mu. Mu
stands for the population mean, and mu x bar stands for the

mean of the sampling distribution of the sample mean.




Sample and sampling

We are interested in the question how much time Hipsters in New York

have spent reading “On the Road”.

Here we will see about three distributions that are of importance to our
research project: the population distribution, the data or sample

distribution and the sampling distribution.

We will also show you how you can compute the probabilities of
selecting individuals with particular scores and samples with particular

sample means from this population

How much time Hipstees

in New Yock have spent
ceading Ow the Road ?

siMple
candom Sample

SAMPLE

» =200
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=20
S =188
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Sample and sampling

 Population disteibution Datalsample disteibution

all New Yock hipstecs 200 sampled cespondents
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Sample and sampling
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Sample and sampling

- Z-scoces

scoces

The very nice thing about normal distributions, is that we can find
probabilities by changing original scores into z scores. And by

then employing the z table.

Now, if we would like to know what the probabilities are, of Z {'Gble.
selecting random samples or subjects from a population, we can
apply this logic to sampling distributions and as long as they are

normally distributed to population distributions.

PROBABILITIES




Sample and sampling

Now image you select a random hipster from the population.
What is the probability that this hipster has a reading time of

1,000 minutes or more?

How many standacd Jdeviations
cemoved Peom Fhe mean?




Sample and sampling

1- 0.61 =0.39

Probability?

z Table

0.00

0.01 0.02 0.06 0.07 0.08 0.09

05319 05359
0.5714  0.5753
0.6103  0.6141

0.0 0.5000 05040 0.5080
0.1 05398 05438 05478
0.2 05763 05832 0.5871
0.3 06179 06217 06255 5 o 06480 06517
0.4 068554 06591 06628 06664 ).6700 086736 06808 06844 06879
0.5 06915 06950 06985 07019 07054 07088 07123 07157 07190 0.7224
0.6 07257 07201 07324 07357 07389 07422 07454 07486 07517 0.7549

05199

0.5279
0.5596 o

£

1000- 943
z = —=027
212




Sample and sampling

POPVLATTION
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What is the probability that the SAMPLE MEAN s 1000 minutes oc highee?




Sample and sampling

POPVLATION
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SAMPLE
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What is the peobability that the SAMPLE MEAN is 1000 minutes oc highec?

+

SAMPLTING Jdisteibution




Sample and sampling

What i3 the peobability that the SAMPLE MEAN is 1000 minutes oc highe? What is the peobability that the SAMPLE MEAN is 1000 minutes or highec? What is the probability that the SAMPLE MEAN is 1000 minutes oc L\'.z,ku-?

4

=
Z=7

X

1000 - 143
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Sample and sampling

That gives a z score of 3.8. If we look it up in our z
table, we find that the chance of drawing a sample
with the mean reading time of one thousand

minutes or more is 0.07 percent.

What is the pcobability that the SAMPLE MEAN s 1000 minutes oc h'\a,hcr?

Z-+taoble mp 0.01 peccent



Sample and sampling

selecting individual subjects

selecting samples




Exercise

As you might have noticed, hipsters often wear oversized glasses, yet
many hipsters don't really need glasses. The glasses only serve as a

celebration as their hipsterness.

Suppose you studied the strengths of the glasses of the hipsters in Italy.
You know that the variable strength of glasses has a population

distribution that is skewed to the left.

The peak will be around O because most glasses are fake glasses. But, of
course, not all glasses are fake because hipsters are generally relatively
young and young people are more often short sighted than long
sighted, there will be more hipsters who are short sighted than hipsters

who are long sighted.

celebration of

theie H'.psh,rv\ess

STRENGTH OF GLASSES
skewed to the left

peak acound zeco




Exercise

THINGS WE WANT TO KNOW:

And those who are long sighted have a positive score. 1. What does the population
disteibution look like?

Those who are short sighted have a negative score on strengths of glasses.

The mean in the population is -0.75 and that the standard deviation is 2.89.

We would like to know four things. 2 kAo tte sampling

First, what does the population distribution look like? We would like to see disteibution of the sample

‘lee ?
shape, mean and standard deviation. mean look like!

3. What does the sample

based on a sample size of n equals 30007 disteibution look like?

Second, what does the sampling distribution of the sample mean look like

Third, what does the sample or data distribution look like if you draw a t. What is the probability of
simple random sample of 3000 cases from this population? selecting a simple candom

sample Peom this population

And fourth, what is the probability of selecting such a sample from this with a sample mean betueen

population with a sample mean between -0.71 and -0.817 0.74 and -0.€147?




Exercise

Let’s start with the first question. The distribution would look something

like this.
The peak is around 0 and the distribution is skewed to the left.

The population mean is left of the population mode. We know that the
score of this parameter, symbolized by Mu, is -0.75. The population
standard deviation, symbolized by Sigma, is 2.809.

1. What does the population disteibution look like?

POPVLATTION DISTRIRVTION

MODE =0




Exercise

We know that when the sample size is sufficiently large (which is, with an
n of 3000, clearly the case in this example), the sampling distribution is

bell-shaped with a mean that equals the population mean.

The standard deviation of the sampling distribution, symbolized by
Sigma-X-bar, can easily be computed. It is the standard deviation in the

population divided by the square root of n.

2. What does the sampling disteibution of the sample

mean look like?

SAMPLING DISTRIBVTION




Exercise

Because we are dealing with a simple random sample with a fairly large
sample size, we can be pretty confident that the sample resembles the

population.

The shape of its distribution will be very similar to the shape of the
population distribution, and the sample mean, symbolized by X-bar, will

be close to the population mean of - 0.75.

The sample standard deviation, symbolized by s, will be close to the

population standard deviation of 2.89.

POPVLATION DISTRIBVTION

3. What does the sample disteibution look like?

SAMPLE DISTRTRVTION

Sisclose o0




Exercise

4. What is the pcobability of Sclcd"\v\q a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.817

SAMPLING DISTRIRVTION

-0.71-(-0.75)

Z:O;




Exercise

4. What is the probabil'\('y of Sc_|c.c{"'|v\c) a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.817

SAMPLING DISTRIBVTION

-0.81-(-0.75)

7=




Exercise

4. What is the peobability of selecting a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.817

SAMPLING DISTRIRVTION




Exercise

z=0.9

0.6
0.7
0.8
0.9

0.7257
0.7580

0.8159

Cumulative
;‘Z'l'f!.lfl'll'.'\

\-;

J.U .U .U J.04 J.U J.00 J.U J.U8 U.US
0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7611  0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
08186 0.8212 08238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389



Exercise

t. What is the peobability of selecting a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.817




Exercise

Z Table

Cumulative
probability

Standard normal cumulative probabilities
0.02 0.03 0.04 0.05 0.06 0.07 0.08




Exercise

t. What is the probability of selecting a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.817

SAMPLING DISTRIBVTION




Exercise




Exercise




Exercise

Y. What is the probab'\lﬂ'y of sclf.d"\v\q a SiMple candom

sample Peom this population with a sample mean between

-0.71 and -0.817
o x _lj'f
SAMPLING DISTRIRVTION Z — T
Y

67 peccent




Exercise

Conclusion, the probability of selecting a sample of n equals

3,000 with a sample mean between -0.71 and -0.81 is 67%.

%. What is the peobability of selecting a simple candom

sample Peom this population with a sample mean between

-0.71 and -0.81?
D
SAMPLING DISTRIRVTION Z — O
:

67 peccent




