

Module 1: Explore fundamentals of data

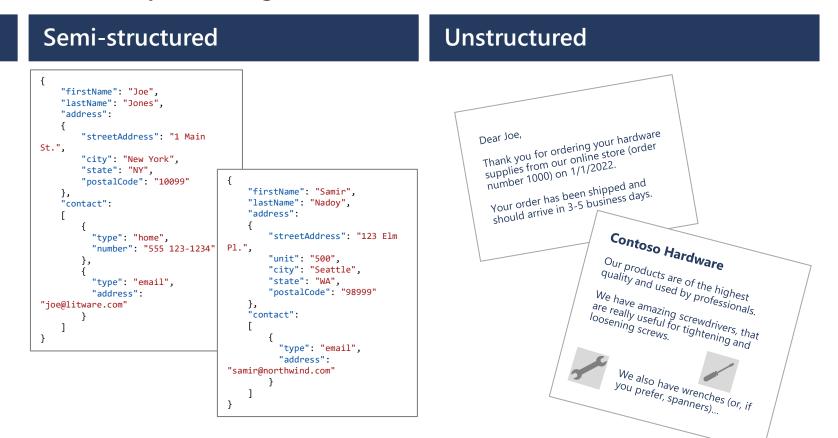
Agenda

Data roles and services

Core data concepts

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.


What is data?

Values used to record information – often representing *entities* that have one or more *attributes*

Structured

Customer										
ID	FirstName	LastName Email		Address						
1	Joe	Jones	joe@litware.com	1 Main St.						
2	Samir	Nadoy	samir@northwind.com	123 Elm Pl.						

Produc	Product							
ID	Name	Price						
123	Hammer	2.99						
162	Screwdriver	3.49						
201	Wrench	4.25						

How is data stored?

Files

Delimited Text

FirstName,LastName,Email

Joe, Jones, joe@litware.com

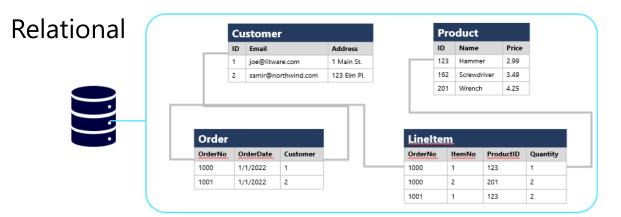
Samir, Nadoy, samir@northwind.com

JavaScript Object Notation (JSON)

```
{
    "customers":
    [
        { "firstName": "Joe", "lastName": "Jones"},
        { "firstName": "Samir", "lastName": "Nadoy"}
]
}
```

Extensible Markup Language (XML)

<Customer firstName="Joe" lastName="Jones"/>

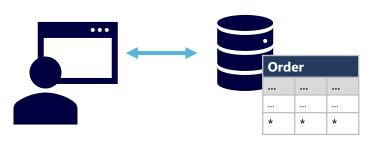

Binary Large Object (BLOB)

1011010110101010010...

Optimized formats:

• Avro, ORC, Parquet

Databases



Non-relational

Products				Key	Customer		Product		
Key	Value	C			Name	Address	Name	Price	
123	"Hammer (\$2.99)"	Cus	stomers	1000	Joe Jones	1 Main St.	Hammer	2.99	
162	"Screwdriver (\$3.49)"	Key	Document	1001	Samir Nadoy	123 Elm Pl.	Wrench	4.25	
201	"Wrench (\$4.25)"	1	{ "name": "Joe Jones		Column Family				
Key-Value			}	,	•				
		2	{ "name": "Samir <u>Na</u> }	reports to Sue Sue					
			Document		works in Hardw				
						Ben	Graph		

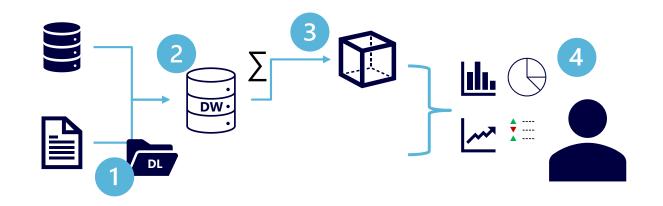
Orders

Transactional data workloads

Data is stored in a database that is optimized for *online transactional processing* (OLTP) operations that support applications

A mix of *read* and *write* activity

For example:


- Read the *Product* table to display a catalog
- Write to the Order table to record a purchase

Data is stored using transactions

Transactions are "ACID" based:

- Atomicity each transaction is treated as a single unit of work, which succeeds completely or fails completely
- **Consistency** transactions can only take the data in the database from one valid state to another
- **Isolation** concurrent transactions cannot interfere with one another
- **Durability** when a transaction has succeeded, the data changes are persisted in the database

Analytical data workloads

- 1. Data files may be stored in a central *data lake* for analysis
- 2. An extract, transform, and load (ETL) process copies data from files and OLTP databases into a *data warehouse* that is optimized for *read* activity
- 3. Data in the data warehouse may be aggregated and loaded into an online analytical processing (OLAP) model, or *cube*
- 4. The data in the data lake, data warehouse, and analytical model can be queried to produce reports and dashboards

Lesson 1: Knowledge check

How is data in a relational table organized?

Trows and Columns

- Header and Footer
- Pages and Paragraphs

Which of the following is an example of unstructured data?

□ A comma-delimited text file with *EmployeeID*, *EmployeeName*, and *EmployeeDesignation* fields

- 🕤 Audio and Video files
- □ A table within relational database

What is a data warehouse?

- □ A non-relational database optimized for read and write operations
- ✓ A relational database optimized for read operations
- □ A storage location for unstructured data files

Lesson 2: Data roles and services

© Copyright Microsoft Corporation. All rights reserved.

Data professional roles

Database provisioning, configuration and management

Database security and user access

Database backups and resiliency

Database performance monitoring and optimization

Data integration pipelines and ETL processes

Data cleansing and transformation

Analytical data store schemas and data loads

Analytical modeling

Data reporting and summarization

Data visualization

Microsoft cloud services for data

Data stores

Azure SQL

Family of SQL Server based relational database services

Azure Database for open-source

Maria DB, MySQL, PostgreSQL

Azure Cosmos DB

Highly scalable non-relational database system

Azure Storage

- File, blob, and table storage
- Hierarchical namespace for data lake storage

Azure Data Factory

Data pipelines

Azure Synapse Analytics

- Integrated, end-to-end analytics
- Pipelines, SQL, Apache Spark, Data Explorer ...

Azure Databricks

Apache Spark analytics and data processing

Azure HDInsight

Apache open-source platform

Data engineering and analytics

Azure Stream Analytics

Real-time data processing for IoT solutions

Azure Data Explorer

Real-time data analysis for logs and telemetry

Microsoft Purview

- Enterprise data governance
- Data mapping and discoverability

Microsoft Power BI

- Analytical data modeling
- Interactive data visualization

others...

© Copyright Microsoft Corporation. All rights reserved.

Lesson 2: Knowledge check

Which one of the following tasks is the responsibility of a database administrator?

- **¹** Backing up and restoring databases
- Creating dashboards and reports
- Creating pipelines to process data in a data lake

Which role is most likely to use Azure Data Factory to define a data pipeline for an ETL process?
Database Administrator

- 🕤 Data Engineer
- Data Analyst

Which single service would you use to implement data pipelines, SQL analytics, and Spark analytics? Azure SQL Database

Microsoft Power BI

d Azure Synapse Analytics

