

Module 2: Explore fundamentals of relational data in Azure

Explore relational data concepts

Agenda

Explore Azure services for relational data

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

Relational tables

Data is stored in tables

Tables consists of rows and columns

All rows have the same columns

Each column is assigned a datatype

Customer							
ID	FirstName	MiddleName	LastName	Email	Address	City	
1	Joe	David	Jones	joe@litware.com	1 Main St.	Seattle	
2	Samir		Nadoy	samir@northwind.com	123 Elm Pl.	New York	

Product					
ID	Name	Price			
123	Hammer	2.99			
162	Screwdriver	3.49			
201	Wrench	4.25			

Order						
OrderNo	OrderDate	Customer				
1000	1/1/2022	1				
1001	1/1/2022	2				

Lineltem						
OrderNo	ItemNo	ProductID	Quantity			
1000	1	123	1			
1000	2	201	2			
1001	1	123	2			

Normalization

Sales Data						
OrderNo	OrderDate	Customer	Product	Quantity		
1000	1/1/2022	Joe Jones, 1 Main St, Seattle	Hammer (\$2.99)	1		
1000	1/1/2022	Joe Jones- 1 Main St, Seattle	Screwdriver (\$3.49)	2		
1001	1/1/2022	Samir Nadoy, 123 Elm Pl, New York	Hammer (\$2.99)	2		

- Separate each *entity* into its own table
- Separate each discrete *attribute* into its own column
- Uniquely identify each entity instance (row) using a *primary key*
- Use *foreign key* columns to link related entities

Customer							
ID	FirstName	LastName	Address	City			
1	Joe	Jones	1 Main St.	Seattle			
2	Samir	Nadoy	123 Elm Pl.	New York			

Product				
ID	Name	Price		
123	Hammer	2.99		
162	Screwdriver	3.49		
201	Wrench	4.25		

OrderNo	OrderDate	Customer
1000	1/1/2022	1
1001	1/1/2022	2

Lineltem					
OrderNo	ltemNo	ProductID	Quantity		
1000	1	123	1		
1000	2	201	2		
1001	1	123	2		

Structured Query Language (SQL)

SQL is a standard language for use with relational databases

Standards are maintained by ANSI and ISO

Most RDBMS systems support proprietary extensions of standard SQL

Data Definition Language (DDL)	Data Control Language (DCL)			Data Manipulation Language (DML)	
CREATE, ALTER, DROP, RENAME	GRANT, DENY, REVOKE			INSERT, UPDATE, DELETE, SELECT	
CREATE TABLE Product (ProductID INT PRIMARY KEY,	GRANT SELECT, INSERT, UPDATE ON Product TO user1;		SELECT Name, Price FROM Product WHERE Price > 2.50		
Name VARCHAR(20) NOT NULL, Price DECIMAL NULL	Proc	luct		ORDER BY Price;	
);	ID	Name	Price	Results	
Product	123	Hammer	2.99	Name	Price
ID Name Price	162	Screwdriv	3.49	Hammer	2.99
	201	Wrench	4.25	Screwdriver	3.49
		· · · · · · · · · · · · · · · · · · ·		Wrench	4.25

Other common database objects

Views

Pre-defined SQL queries that behave as virtual tables

CREATE VIEW Deliveries AS SELECT o.OrderNo, o.OrderDate, c.Address, c.City FROM Order AS o JOIN Customer AS c ON o.Customer = c.ID;

Deliveries						
OrderNo	OrderDate	Address	City			
1000	1/1/2022	1 Main St.	Seattle			
1001	1/1/2022	123 Elm Pl.	New York			

Stored Procedures

Pre-defined SQL statements that can include parameters

CREATE PROCEDURE RenameProduct @ProductID INT, @NewName VARCHAR(20)

AS

UPDATE Product

SET Name = @NewName

WHERE ID = @ProductID;

•••

EXEC RenameProduct 201, 'Spanner';

Product					
ID	Name	Price			
201	Wrench Spanner	4.25			

Indexes

Tree-based structures that improve query performance

CREATE INDEX idx_ProductName
ON Product(Name);

Lesson 1: Knowledge check

Which one of the following statements is a characteristic of a relational database?

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- □ All columns in a table must be of the same data type
- A row in a table represents a single instance of an entity
- **D** Rows in the same table can contain different columns

Which SQL statement is used to query tables and return data?

- 🕤 SELECT

What is an index?

- Sector A structure that enables queries to locate rows in a table quickly
- □ A virtual table based on the results of a query
- □ A pre-defined SQL statement that modifies data

Lesson 2: Explore Azure services for relational data

 $\ensuremath{\mathbb{C}}$ Copyright Microsoft Corporation. All rights reserved.

C

Azure SQL

Family of SQL Server based cloud database services

SQL

SQL Server on Azure VMs

- Guaranteed compatibility to SQL
 Server on premises
- Customer manages everything OS upgrades, software upgrades, backups, replication
- Pay for the server VM running costs and software licensing, not per database
- Great for hybrid cloud or migrating complex on-premises database configurations

Azure SQL Managed Instance

- Near 100% compatibility with SQL Server on-premises
- Automatic backups, software patching, database monitoring, and other maintenance tasks
- Use a single instance with multiple databases, or multiple instances in a pool with shared resources
- Great for migrating most on-premises databases to the cloud

PaaS

Azure SQL Database

- Core database functionality compatibility with SQL Server
- Automatic backups, software patching, database monitoring, and other maintenance tasks
- *Single database* or *elastic pool* to dynamically share resources across multiple databases
- Great for new, cloud-based applications

laaS

Azure Database services for open-source

Azure managed solutions for common open-source RDBMSs

Azure Database for MySQL

- PaaS implementation of MySQL in the Azure cloud, based on the MySQL Community Edition
- Commonly used in Linux, Apache, MySQL, PHP (LAMP) application architectures

Azure Database for MariaDB

- An implementation of the MariaDB Community Edition database management system adapted to run in Azure
- Compatibility with Oracle
 Database

Azure Database for PostgreSQL

- Database service in the Microsoft cloud based on the PostgreSQL Community Edition database engine
- Hybrid relational and object storage

PaaS

Lab: Provision Azure relational database services

In this lab, you will provision, configure and query an Azure SQL Database.

- 1. Start the virtual machine for this lab or go to the exercise page at <u>https://aka.ms/dp900-sql-lab</u>
- 2. Follow the instructions to complete the exercise on Microsoft Learn Use the Azure subscription provided for this lab

Lesson 2: Knowledge check

Which deployment option offers the best compatibility when migrating an existing SQL Server on-premises solution?

- Azure SQL Database (single database)
- Azure SQL Database (elastic pool)
- Azure SQL Managed Instance

Which of the following statements is true about Azure SQL Database?

- Most database maintenance tasks are automated
- You must purchase a SQL Server license
- □ It can only support one database

Which database service is the simplest option for migrating a LAMP application to Azure?

- Azure SQL Managed Instance
- Azure Database for MySQL
- Azure Database for PostgreSQL

