ANOVA:
Analysis of Variation

The basic ANOVA situation

Two variables: 1 Categorical, 1 Quantitative
Main Question: Do the (means of) the quantitative variables depend on which group (given by categorical variable) the individual is in?

If categorical variable has only 2 values:

- 2-sample t-test

ANOVA allows for 3 or more groups

An example ANOVA situation

Subjects: 25 patients with blisters
Treatments: Treatment A, Treatment B, Placebo
Measurement: \# of days until blisters heal
Data [and means]:

- A: 5,6,6,7,7,8,9,10
[7.25]
- B: 7,7,8,9,9,10,10,11
[8.875]
- P: 7,9,9,10,10,10,11,12,13
[10.11]

Are these differences significant?

Informal Investigation

Graphical investigation:

- side-by-side box plots
- multiple histograms

Whether the differences between the groups are significant depends on

- the difference in the means
- the standard deviations of each group
- the sample sizes

ANOVA determines P-value from the F statistic

Side by Side Boxplots

What does ANOVA do?

At its simplest (there are extensions) ANOVA tests the following hypotheses:
H_{0} : The means of all the groups are equal.
H_{a} : Not all the means are equal

- doesn't say how or which ones differ.
- Can follow up with "multiple comparisons"

Note: we usually refer to the sub-populations as "groups" when doing ANOVA.

Assumptions of ANOVA

- each group is approximately normal © check this by looking at histograms and/or normal quantile plots, or use assumptions
@ can handle some nonnormality, but not severe outliers
- standard deviations of each group are approximately equal
- rule of thumb: ratio of largest to smallest sample st. dev. must be less than 2:1

Normality Check

We should check for normality using:

- assumptions about population
- histograms for each group
- normal quantile plot for each group

With such small data sets, there really isn't a really good way to check normality from data, but we make the common assumption that physical measurements of people tend to be normally distributed.

Standard Deviation Check

Variable	treatment	N	Mean	Median	StDev
days	A	8	7.250	7.000	1.669
	B	8	8.875	9.000	1.458
	P	9	10.111	10.000	1.764

Compare largest and smallest standard deviations:

- largest: 1.764
- smallest: 1.458
- $1.458 \times 2=2.916>1.764$

Note: variance ratio of 4:1 is equivalent.

Notation for ANOVA

- $n=$ number of individuals all together
- $I=$ number of groups
- $\bar{X}=$ mean for entire data set is

Group i has

- $n_{i}=\#$ of individuals in group i
- $x_{i i}=$ value for individual j in group i
- $\bar{X}_{i}=$ mean for group i
- $s_{i}=$ standard deviation for group i

How ANOVA works (outline)

ANOVA measures two sources of variation in the data and compares their relative sizes

- variation BETWEEN groups
- for each data value look at the difference between its group mean and the overall mean

- variation WITHIN groups
- for each data value we look at the difference between that value and the mean of its group

The ANOVA F-statistic is a ratio of the Between Group Variaton divided by the Within Group Variation:

A large F is evidence against H_{0}, since it indicates that there is more difference between groups than within groups.

Minitab ANOVA Output

Analysis of Variance for days					
Source	DF	SS	MS	F	P
treatment	2	34.74	17.37	6.45	0.006
Error	22	59.26	2.69		
Total	24	94.00			

How are these computations made?

We want to measure the amount of variation due to BETWEEN group variation and WITHIN group variation

For each data value, we calculate its contribution to:

- BETWEEN group variation:

- WITHIN group variation:

$$
\left(X_{i j}-\bar{X}_{i}\right)^{2}
$$

An even smaller example

Suppose we have three groups

- Group 1: 5.3, 6.0, 6.7
- Group 2: 5.5, 6.2, 6.4, 5.7
- Group 3: 7.5, 7.2, 7.9

We get the following statistics:

SUUMMARY				
Groups	Count	Sum	Average	Variance
Column 1	3	18	6	0.49
Coumn2	4	23.8	5.95	0.176667
Coumn3	3	22.6	7.5333333	0.123333

Excel ANOVA Output

Computing ANOVA F statistic

| | | | WITHIN
 difference: | | | BETWEEN
 difference | |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |

overall mean: 6.44
$F=2.5528 / 0.25025=10.21575$

Minitab ANOVA Output

Minitab ANOVA Output

| Analysis of Variance for days | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| treatment | 2 | 34.74 | 17.37 | 6.45 | 0.006 |
| Error | 22 | 59.26 | 2.69 | | |
| Total | 24 | 94.00 | | | |

$$
\sum_{o b s}\left(\bar{x}_{i}-\bar{x}\right)^{2}
$$

SS stands for sum of squares - ANOVA splits this into 3 parts

Minitab ANOVA Output

(P-values for the F statistic are in Table E)

So How big is F ?

Since F is
Mean Square Between / Mean Square Within
= MSG / MSE

A large value of F indicates relatively more difference between groups than within groups (evidence against H_{0})

To get the P-value, we compare to $F(I-1, n-I)$-distribution - I-1 degrees of freedom in numerator (\# groups -1)

- $n-l$ degrees of freedom in denominator (rest of df)

Connections between SST, MST, and standard deviation

If ignore the groups for a moment and just compute the standard deviation of the entire data set, we see

$$
s^{2}=\frac{\sum\left(x_{i j}-\bar{x}\right)^{2}}{n-1}=\frac{S S T}{D F T}=M S T
$$

So $S S T=(n-1) s^{2}$, and $M S T=s^{2}$. That is, SST and MST measure the TOTAL variation in the data set.

Connections between SSE, MSE, and standard deviation

Remember: $s_{i}^{2}=\frac{\sum\left(x_{i j}-\bar{x}_{i}\right)^{2}}{n_{i}-1}=\frac{S}{\text { So SS[Within Group } i]=\left(s_{i}^{2}\right)\left(d f_{i}\right)}$
This means that we can compute SSE from the standard deviations and sizes (df) of each group:

$$
\begin{aligned}
\text { SSE } & \left.=\text { SS[Within }]=\sum \text { SS[Within Group } i\right] \\
& =\sum s_{i}^{2}\left(n_{i}-1\right)=\sum s_{i}^{2}\left(d f_{i}\right)
\end{aligned}
$$

Pooled estimate for st. dev

One of the ANOVA assumptions is that all groups have the same standard deviation. We can estimate this with a weighted average:

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{l}-1\right) s_{l}^{2}}{n-l}
$$

$$
s_{p}^{2}=\frac{\left(d f_{1}\right) s_{1}^{2}+\left(d f_{2}\right) s_{2}^{2}+\cdots+\left(d f_{l}\right) s_{l}^{2}}{d f_{1}+d f_{2}+\cdots+d f_{l}}
$$

$$
s_{p}^{2}=\frac{S S E}{D F E}=M S E
$$

so MSE is the pooled estimate of variance

In Summary

$$
\begin{aligned}
& \text { SST }=\sum_{\text {obs }}\left(x_{i j}-\bar{x}\right)^{2}=s^{2}(D F T) \\
& \text { SSE }=\sum_{\text {obs }}\left(x_{i j}-\overline{x_{i}}\right)^{2}=\sum_{\text {groups }} s_{i}^{2}\left(d f_{i}\right) \\
& \text { SSG }=\sum_{\text {obs }}\left(\bar{x}_{i}-\bar{x}\right)^{2}=\sum_{\text {groups }} n_{i}\left(\overline{x_{i}}-\bar{x}\right)^{2} \\
& \text { SSE }+ \text { SSG }=S S T ; M S=\frac{S S}{D F} ; F=\frac{M S G}{M S E}
\end{aligned}
$$

R^{2} Statistic

R^{2} gives the percent of variance due to between group variation

$$
R^{2}=\frac{S S[\text { Between }]}{S S[\text { Total }]}=\frac{S S G}{S S T}
$$

This is very much like the R^{2} statistic that we computed back when we did regression.

Where's the Difference?

Once ANOVA indicates that the groups do not all appear to have the same means, what do we do?

Clearest difference: P is worse than A (Cl's don't overlap)

Multiple Comparisons

Once ANOVA indicates that the groups do not all have the same means, we can compare them two by two using the 2-sample t test

- We need to adjust our p-value threshold because we are doing multiple tests with the same data.
-There are several methods for doing this.
- If we really just want to test the difference between one pair of treatments, we should set the study up that way.

Tuckey's Pairwise Comparisons

Tukey's pairwise comparisons
Family error rate $=0.0500$
Individual error rate $=0.0199$
Critical value $=3.55$
Intervals for (column level mean) - (row level mean)

	A	в	
в	-3.685		These give 98.01\% Cl's for each pairwise difference.
	0.435		
P	-4.863	-3.238	
	-0.859	0.766	Only P vs A is significant (both values have same sign)
	is $(-0$.	86)	

Fisher's Pairwise Comparisons

```
Fisher's pairwise comparisons
    Family error rate = 0.119
Individual error rate = 0.0500
Critical value = 2.074
Intervals for (column level mean) - (row level mean)
A B
B -3.327
    0.077
P
    -4.515 -2.890
the overall error rate.
95% confidence on each
corresponds to 88.1% confidence overall
```

A
B

```
\begin{tabular}{lrr} 
B & -3.327 & \\
& 0.077 & \\
& & \\
P & -4.515 & -2.890 \\
& -1.207 & 0.418
\end{tabular}
```

Now we set the individual
error rate (alpha) and see

