## STATISTICS

FOR DATA ANALYSIS

## SESSION OUTLINE

## ( Why Statistics?

(2) Descriptive Statistics

3 Probability Distributions
4 Central Limit Theorem
5 Confidence Intervals
6 Hypothesis Tests
7 Regression Analysis

Discuss the role of statistics in the context of business intelligence and decision-making, and introduce the statistics workflow

Understand data using descriptive statistics, including frequency distributions and measures of central tendency \& variability

Model data with probability distributions, and use the normal distribution to calculate probabilities and make value estimates

Introduce the Central Limit Theorem, which leverages the normal distribution to make inferences on populations with any distribution

Make estimates with confidence intervals, which use sample statistics to define a range where an unknown population parameter likely lies

Draw conclusions with hypothesis tests, which let you evaluate assumptions about population parameters using sample statistics

## SETTING EXPECTATIONS

## This course is about introducing \& demystifying essential statistics concepts

- Our goal is to break down seemingly complex techniques using simple and intuitive explanations that will help you develop an intuition into when, why, and how to use them in the real world


## It's also about applying those concepts to real-world use cases

- As we introduce each topic, we'll use Microsoft Excel as a tool to apply them through hands-on demos \& assignments, and include additional projects to test your knowledge in different scenarios


## We'll be using Excel for Office 365 on a PC for the course demos

- What you see on your screen may not always match what you see on mine, especially if you are running a different operating system or following along with an older version of Excel

You do NOT need a math or stats background to take this course

- Although we will cover many statistical equations (and their equivalent Excel functions), the focus will be placed on the meaning behind them and not in the technical details or proof


## THE PROJECT

## THE SITUATION

You've just been hired as a Recruitment Analyst by Maven Business School, an online startup

THE BRIEF

THE OBJECTIVES
that's looking to disrupt the postgraduate programs offered by traditional universities

You have data from the first graduating class of their MBA program, including details \& scores from their application, the program itself, and their employment status 2 months later

Your goal is to leverage statistics to evaluate the results of this class, predict the performance of future classes, and propose changes in recruitment to improve graduate outcomes

- Understand the data with descriptive statistics
- Model the data with probability distributions
- Make estimates with confidence intervals
- Draw conclusions with hypothesis tests
- Make predictions with regression analysis


MAVEN BUSINESS SCHOOL

## THE MAVEN BUSINESS SCHOOL DATASET



## HELPFUL RESOURCES

## Learn

## Books

- Naked Statistics - Charles Wheelan
- The Art of Statistics - David Spiegelhalter


## Websites

- scribbr.com/category/statistics/


## YouTube

- youtube.com/c/Kozyrkov - Statistical Thinking
- youtube.com/user/ExcellsFun - Statistical Analysis


## Practice

## Data Playground

- mavenanalytics.io/data-playground


## Online Datasets

- kaggle.com/datasets
- data.world/datasets/open-data
- vincentarelbundock.github.io/Rdatasets/articles/data


## WHY STATISTICS?

## WHY STATISTICS FOR BUSINESS INTELLIGENCE?

In this section we'll discuss the role of statistics in the context of business intelligence and the decision-making process, review key terms, and introduce the statistics workflow

TOPICS WE'LL COVER:

Why Statistics?

Statistics Workflow

## GOALS FOR THIS SECTION:

- Identify scenarios when statistics helps use data to make smart decisions, and when it's not needed
- Understand the concepts of populations \& samples
- Review the statistics workflow and the concepts that will be covered throughout the course


## WHY STATISTICS?

Business intelligence is about using data to make smart decisions
Statistics is about evaluating those decisions under uncertain circumstances

Why Statistics?

Populations

Statistics Workflow

When do you need statistics?

1) You don't have all the data you're interested in

- You can only analyze some of the data you need to make your decision
- There's uncertainty involved

2) The decision you're making is important

- You don't want to make the wrong one based on your limited data
- There's something specific to evaluate


## POPULATION \& SAMPLES

Why Statistics?

Populations

Statistics Workflow

A population contains all the data you're interested in to make your decision

- It's the data you wish you had, but are unlikely to get
- Any figure that summarizes a population is called a parameter

A sample contains some of the data from the population

- It's the data you have (which should ideally represent the population)
- Any figure that summarizes a sample is called a statistic

Statistics lets you make reasonable estimates about parameters using statistics

## HEY THIS IS IMPORTANT!

Statistics can't create certainty out of uncertainty, it just helps you make controlled decisions under it!

## THE STATISTICS WORKFLOW

| Why Statistics? |  | ! | $\langle\mu \rightarrow$ |  | $\because \square^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Populations | Descriptive Statistics | Probability Distributions | Confidence Intervals | Hypothesis Tests | Regression Analysis |
| Statistics Workflow | Understand what your sample data looks like | If the sample data fits a probability distribution, use it as a model for the entire population | If the sample doesn't fit a distribution, use the central limit theorem to make estimates about population parameters | Continue to leverage the central limit theorem to draw conclusions about what a population looks like based on a sample | Use additional variables to increase the accuracy of your estimates and make predictions based on their relationships |

## HEY THIS IS IMPORTANT!

If you have all the population data, or simply need a bit of inspiration to make an "unimportant" decision, then descriptive statistics may be all you need!

## DESCRIPTIVE STATISTICS

## DESCRIPTIVE STATISTICS

In this section we'll cover understanding data with descriptive statistics, including frequency distributions, measures of central tendency, and measures of variability

TOPICS WE'LL COVER:


## GOALS FOR THIS SECTION:

- Identify the different types of variables in a dataset, along with their use cases
- Create frequency tables and plot the distributions of numerical variables using histograms
- Calculate the mean, median, mode, and standard deviation of a numerical variable
- Visualize the key descriptive statistics of a numerical variable using a box plot


## DESCRIPTIVE STATISTICS

The purpose of descriptive statistics is to summarize the characteristics of a variable

- They reduce a large array of numbers into a handful of figures that describe it accurately

| Statistics Basics |  |  |
| :---: | :---: | :---: |
|  | Student ID | MBA Grade |
| Distributions | 1 | 90.2 |
|  | 2 | 92.8 |
|  | 3 | 68.7 |
|  | 4 | 80.7 |
| Central Tendency | 5 | 74.9 |
|  | 6 | 80.7 |
|  | 7 | 83.3 |
|  | 8 | 88.7 |
| Variability | 9 | 75.4 |
|  | 10 | 82.1 |
|  | 11 | 87.5 |
|  | 12 | 66.9 |
|  | 13 | 71.3 |
|  | 14 | 76.8 |
|  | 15 | 72.3 |
|  | 16 | 72.4 |
|  | 17 | 72 |
|  | 18 | 81 |
|  | 19 | 96.1 |
|  | - 0 | - 75.7 |
|  | $n=95$ |  |

## TYPES OF VARIABLES

## There are two main types of variables in a dataset: Numerical \& Categorical

- Numerical variables represent numbers that are meant to be aggregated
- Categorical variables represent groups that can be used to filter numerical values

Statistics Basics


Central
Tendency

Variability

## NUMERICAL:

| Undergrad Grade MBA Grade | Employability (Before) | Employability (After) | Annual Salary |  |
| ---: | ---: | ---: | ---: | ---: |
| 68.4 | 90.2 | 252 | 276 | $\$ 111,000$ |
| 62.1 | 92.8 | 423 | 410 |  |
| 70.2 | 68.7 | 101 | 119 | $\$ 107,000$ |
| 75.1 | 80.7 | 288 | 334 |  |
| 60.9 | 74.9 | 248 | 252 |  |
| 74.5 | 80.7 | 145 | 209 |  |
| 76.4 | 83.3 | 401 | 462 | $\$ 109,000$ |
| 82.6 | 88.7 | 287 | 342 | $\$ 148,000$ |
| 76.9 | 75.4 | 275 | 347 | $\$ 255,500$ |
| 83.3 | 82.1 | 254 | 313 | $\$ 103,500$ |

Possible question:
"What's the mean annual salary by work experience?"

## CATEGORICAL:

| Student ID | Undergrad Degree | Work Experience | Status |
| :---: | :---: | :---: | :---: |
| 1 | Business | No | Placed |
| 2 | Business | No | Not Placed |
| 3 | Computer Science | Yes | Placed |
| 4 | Engineering | No | Not Placed |
| 5 | Finance | No | Not Placed |
| 6 | Computer Science | No | Not Placed |
| 7 | Finance | No | Placed |
| 8 | Business | No | Placed |
| 9 | Finance | No | Placed |
| 10 | Computer Science | No | Placed |
|  | Even though these are numbers, this is a categorical variable (they won't be aggregated) |  |  |

(they won't be aggregated)

## TYPES OF DESCRIPTIVE STATISTICS

There are 3 main types of descriptive statistics that can be applied to a variable:


Variability


Grade Distribution


## Central Tendency

Represents the middle of the values
Examples:

- Mean, Median, and Mode
- Skew
80.17


## Variability

Represents the dispersion of the values

## Examples:

- Min, Max, and Range
- Quartiles \& Interquartile Range
- Box \& Whisker Plots
- Variance \& Standard Deviation



## HEY THIS IS IMPORTANT!

Most measures of central tendency and variability can only be applied to numerical variables

## FREQUENCY DISTRIBUTIONS

A frequency distribution counts the observations of each possible value in a variable

- They are commonly depicted using frequency tables

| Statistics Basics |  |  |
| :---: | :---: | :---: |
|  | Undergrad Degree | Undergrad Grade |
| Distributions | Business | 78.9 |
|  | Business | 74 |
|  | Business | 74.6 |
| Central Tendency | Engineering | 79.3 |
|  | Engineering | 70.1 |
|  | Business | 88.8 |
|  | Business | 66 |
| Variability | Art | 82.9 |
|  | Business | 93.6 |
|  | Business | 75.6 |
|  | Finance | 67.5 |
|  | Computer Science | 68.7 |
|  | Business | 76 |
|  | Computer Science | 67.7 |
|  | Engineering | 75.3 |
|  | Engineering | 68.1 |
|  | Finance | 63.3 |

## FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

- They are commonly depicted using grouped frequency tables or histograms

\section*{Distributions <br> Central <br> Tendency <br> Variability <br> | Undergrad Degree Undergrad Grade |  |
| :--- | ---: |
|  | Business |
| Business | 78.9 |
| Business | 74 |
| Engineering | 74.6 |
| Engineering | 79.3 |
| Business | 70.1 |
| Business | 88.8 |
| Art | 66 |
| Business | 82.9 |
| Business | 93.6 |
| Finance | 75.6 |
| Computer Science | 67.5 |
| Business | 68.7 |
| Computer Science | 76 |
| Engineering | 67.7 |
| Engineering | 75.3 |
| Finance | 68.1 |}



FREQUENCY TABLE:
$\left.\begin{array}{|r|c|}\hline \text { Undergrad Grade } & \text { Frequency } \\ \hline 63.3 & 1 \\ \hline 66 & 1 \\ \hline 67.5 & 1 \\ \hline 67.7 & 1 \\ \hline 68.1 & 1 \\ \hline 68.7 & 1 \\ \hline 70.1 & 1 \\ \hline 74 & 1 \\ \hline 74.6 & 1 \\ \hline 75.3 & 1 \\ \hline 75.6 & 1 \\ \hline 76 & 1 \\ \hline 78.9 & 1 \\ \hline 79.3 & 1 \\ \hline 82.9 & 1 \\ \hline 88.8 & 1 \\ \hline 93.6 & 1 \\ \hline\end{array}\right\}$

## FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

Statistics Basics

- They are commonly depicted using grouped frequency tables or histograms

| Distributions | Undergrad Degree | Undergrad Grade |
| :---: | :---: | :---: |
|  | Business | 78.9 |
|  | Business | 74 |
| Central <br> Tendency | Business | 74.6 |
|  | Engineering | 79.3 |
|  | Engineering | 70.1 |
| Variability | Business | 88.8 |
|  | Business | 66 |
|  | Art | 82.9 |
|  | Business | 93.6 |
|  | Business | 75.6 |
|  | Finance | 67.5 |
|  | Computer Science | 68.7 |
|  | Business | 76 |
|  | Computer Science | 67.7 |
|  | Engineering | 75.3 |
|  | Engineering | 68.1 |
|  | Finance | 63.3 |

GROUPED FREQUENCY TABLE:
Undergrad Grade
Frequency Cumulative Relative Frequency
$60-65$
$65-70$
$70-75$

↔The cumulative relative frequency shows the running total of the relative frequencies

PRO TIP: Group the numerical values in a PivotTable or use the FREQUENCY() function with the upper limits to calculate frequencies for each bin in Excel

## HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

- They also provide a glimpse of the variable's central tendency and variability


Distributions

Central
Tendency

Variability

| Undergrad Degree |  |
| :--- | ---: |
|  | Business |
| Business | 78.9 |
| Business | 74 |
| Engineering | 74.6 |
| Engineering | 79.3 |
| Business | 70.1 |
| Business | 88.8 |
| Art | 66 |
| Business | 82.9 |
| Business | 93.6 |
| Finance | 75.6 |
| Computer Science | 67.5 |
| Business | 68.7 |
| Computer Science | 76 |
| Engineering | 67.7 |
| Engineering | 75.3 |
| Finance | 68.1 |

Histogram of Undergrad Grades for MBA Graduates


PRO TIP: Create a histogram by using a column chart to plot the variable's frequency table, instead of using Excel's native histogram chart type (not as customizable)

## HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

- They also provide a glimpse of the variable's central tendency and variability


| Distributions | Undergrad Degree Undergrad Grade |  |
| :---: | :---: | :---: |
|  | Business | 78.9 |
|  | Business | 74 |
|  | Business | 74.6 |
| Central | Engineering | 79.3 |
| Tendency | Engineering | 70.1 |
|  | Business | 88.8 |
|  | Business | 66 |
| Variability | Art | 82.9 |
|  | Business | 93.6 |
|  | Business | 75.6 |
|  | Finance | 67.5 |
|  | Computer Science | 68.7 |
|  | Business | 76 |
|  | Computer Science | 67.7 |
|  | Engineering | 75.3 |
|  | Engineering | 68.1 |
|  | F'nar re | 52.3 |
|  | $n=95$ |  |

Histogram of Undergrad Grades for MBA Graduates


PRO TIP: Bin size can significantly change the shape and "smoothness" of a histogram, so select a bin width that accurately shows the data distribution

## ASSIGNMENT: FREQUENCY DISTRIBUTIONS

NEW MESSAGE
October 1, 2022
From: Molly Mean (Director of Education)
Subject: First Graduate Class Results

Welcome to Maven Business School!
As you know, we just had our first ever batch of MBA graduates.
I've looked at their grades individually already, but I'm not getting much insight from them - too many numbers!

I really need to get a clear picture of their grade averages to see if I need to make any tweaks to the program's curriculum.

Do you think you could give me a hand?
Thanks!

1. Create a frequency table for the "MBA Grade" variable
2. Visualize the results using a histogram

## MEAN

## The mean is the calculated "average" value in a set on numbers

- It is calculated by dividing the sum of all values by the count of all observations
- It can only be applied to numerical variables (not categorical)


## Statistics Basics

## Distributions

Central Tendency

Variability

| Undergrad Degree |  |
| :--- | ---: | Undergrad Grade

$$
\begin{aligned}
\text { mean } & =\frac{\text { sum of all values }}{\text { count of observations }} \\
& =\frac{1,270.4}{17}=74.73
\end{aligned}
$$

PRO TIP: Use the AVERAGEIFS() function if you want to calculate the mean for values that meet a specified criteria (i.e., Mean by Undergrad Degree)

## LIMITATIONS OF THE MEAN

The main limitation of the mean is that it is sensitive to outliers (extreme values)

- "The average income in America is not the income of the average American"



## MEDIAN

## The median is the "middle value" in a sorted set of numbers

- Unlike the mean, the median is NOT sensitive to outliers
- When there are two middle-ranked values, the median is the average of the two

Statistics Basics

Distributions

Central Tendency

Variability


## MEDIAN

The median is the "middle value" in a sorted set of numbers

- Unlike the mean, the median is NOT sensitive to outliers
- When there are two middle-ranked values, the median is the average of the two

Statistics Basics


Central Tendency

Variability


Median = 74.3
(average of 74 and 74.6)

## MODE

The mode is the "most frequent" value in a variable

- It can be applied to both numerical and categorical variables


| Undergrad Degree | Undergrad Grade |
| :---: | :---: |
| Business | 78.9 |
| Business | 74 |
| Business | 74.6 |
| Engineering | 79.3 |
| Engineering | 70.1 |
| Business | 88.8 |
| Business | 66 |
| Art | 82.9 |
| Business | 93.6 |
| Business | 75.6 |
| Finance | 67.5 |
| Computer Science | 68.7 |
| Business | 76 |
| Computer Science | 67.7 |
| Engineering | 75.3 |
| Engineering | 68.1 |
| Finance | 63.3 |

Mode $=\mathrm{N} / \mathrm{A}$

## MODE

The modal class is the group with the highest frequency


## SKEW

Distributions

Central Tendency

Variability

## The skew represents the asymmetry of a distribution around its mean

- In a zero-skewed distribution, the mean and median are equal
- In a right-skewed (or positive) distribution, the mean is typically greater than the median
- In a left-skewed (or negative) distribution, the mean is typically smaller than the median



## ASSIGNMENT: MEASURES OF CENTRAL TENDENCY

NEW MESSAGE
October 1, 2022

From: Molly Mean (Director of Education)
Subject: RE: First Graduate Class Results

Thanks for visualizing those grades for me!
It's interesting to see that not many students scored above 90.
I wonder if, since this is a Masters in Business Administration, Business Undergrads tend to do better than others.

Could you give me a quick summary that shows the average MBA grades for Business Undergrads vs Other Undergrads?

I'd appreciate if you could interpret the results for me as well.
Thanks!

## Key Objectives

1. Calculate the mean, median, mode, and skew for the "MBA Grade" variable by "Undergrad Degree"

## RANGE

The range is the spread from the lowest (min) to the highest (max) value in a variable


## INTERQUARTILE RANGE

The interquartile range is the spread of the middle half of the values in a variable

- In other words, it's the spread from the first quartile to the third quartile



## BOX \& WHISKER PLOTS

Box \& whisker plots are used to visualize key descriptive statistics


## BOX \& WHISKER PLOTS

Box \& whisker plots are used to visualize key descriptive statistics

- They can be used to quickly compare statistical characteristics between categories

```
Statistics Basics
```

Distributions

Central
Tendency

Variability

| Undergrad Degree | Undergrad Grade |
| :--- | ---: |
| Business 78.9 <br> Business 74 <br> Business 74.6 <br> Engineering 79.3 <br> Engineering 70.1 <br> Business 88.8 <br> Business 66 <br> Art 82.9 <br> Business 96.3 <br> Business 75.6 <br> Finance 67.5 <br> Computer Science  <br> Business 68.7 <br> Engineering 76 <br> Engineering 75.3 <br> F:narre  <br> n=95  |  |

## STANDARD DEVIATION

The standard deviation measures, on average, how far each value lies from the mean

- The higher the standard deviation, the wider a distribution is (and vice versa)

```
Statistics Basics
```

Distributions

Central
Tendency

Variability


## VARIANCE

## The variance is the square of the standard deviation

- Since its units are on a larger scale than the variable it's based on, it's not intuitive to interpret

| Undergrad Degree | Undergrad Grade |
| :--- | ---: |
| Business | 78.9 |
| Business | 74 |
| Business | 74.6 |
| Engineering | 79.3 |
| Engineering | 70.1 |
| Business | 88.8 |
| Business | 66 |
| Art | 82.9 |
| Business | 96.3 |
| Business | 75.6 |
| Finance | 67.5 |
| Computer Science | 68.7 |
| Business | 76 |
| Engineering | 75.3 |
| Engineering | 68.1 |
| F:narse | $\mathbf{F 2 . 3}$ |
| n=95 |  |



## PRO TIP: COEFFICIENT OF VARIATION

The coefficient of variation measures the standard deviation relative to the mean

- It is used to compare the standard deviations of variables with significantly different means

```
Statistics Basics
```



Central Tendency

Variability

| Undergrad Grade Employability (Before) |  |
| ---: | ---: |
| 74 | 133 |
| 74.6 | 122 |
| 79.3 | 236 |
| 70.1 | 143 |
| 88.8 | 354 |
| 66 | 214 |
| 82.9 | 225 |
| 96.3 | 261 |
| 75.6 | 277 |
| 67.5 | 282 |
| 68.7 | 322 |
| 76 | 326 |
| 67.7 | 421 |
| 75.3 | 368 |
| 68.1 | 279 |
| 673 | 968 |

## ASSIGNMENT: MEASURES OF VARIABILITY

## NEW MESSAGE

October 1, 2022
From: Molly Mean (Director of Education)
Subject: RE: First Graduate Class Results

Interesting observation on the "skew" there - I hadn't even heard that word before!

So... if it looks like it's the Business Undergrads in our program that are getting the uncommonly high scores, could it be that their grades are just more dispersed altogether?

I would hate to make a wrong assumption here.
It would help if you could provide some sort of visual as well, especially if I'm going to end up taking this to the board.

Thanks again!

## Key Objectives

1. Calculate the range, interquartile range, and standard deviation for the "MBA Grade" variable by "Undergrad Degree"
2. Compare the "MBA Grade" by "Undergrad Degree" using a box plot

## KEY TAKEAWAYS: DESCRIPTIVE STATISTICS

There are two main types of variables: numerical \& categorical

- Numerical variables are meant to be aggregated, and categorical variables are used to create groups

The distribution represents the "shape" of a variable

- Histograms are a great way to visualize this "shape" by plotting the frequency of each value (or class)

The mean \& median locate the "center" of a distribution

- Don't focus on using one instead of the other, rather on using both to complement each other

The standard deviation measures the dispersion around the mean

- Use a box plot alongside the standard deviation to provide additional context on the variability and center


## MAVEN PIZZA PARLOR | PROJECT BRIEF

You are a BI Consultant that has just been approached by Maven Pizza Parlor, a new pizza place in New Jersey that needs help with their demand planning

Hi
We we're extract our daily pizza sales from our POS system, and we want to use this for planning, but none in the team is data savvy.

Is that something you could help us with?
We want to know how many pizza sales to expect every day, how much they typically vary, and if they fluctuate by day of the week.

Thank you!

Key Objectives

1. Summarize the daily pizza sales by using descriptive statistics

## PROBABILITY DISTRIBUTIONS

## PROBABILITY DISTRIBUTIONS

In this section we'll cover modeling data with probability distributions, and use the normal distribution to calculate probabilities and make estimates about normal populations

TOPICS WE'LL COVER:

## GOALS FOR THIS SECTION:

- Understand the concept of a probability distribution, and its relationship with frequency distributions
- Learn about the different types of probability distributions, and their main differences
- Identify the properties of the normal distribution
- Calculate probabilities, values, and z-scores from normal distributions using Excel functions


## PROBABILITY DISTRIBUTIONS

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

A probability distribution represents a variable's idealized frequency distribution It shows all the possible values a variable can take, and their chances of occurring

- Frequencies in a sample are based on the underlying probabilities of those values occurring


## EXAMPLE Results of rolling two dice

PROBABILITY DISTRIBUTION (Population):


FREQUENCY DISTRIBUTION (Sample):


In an infinite sample, a variable's relative frequency distribution is equal to its probability distribution!

This is known as a binomial distribution, and it can be used to calculate probabilities on the outcome of rolling two dice (without rolling them fifty thousand times!)

## TYPES OF PROBABILITY DISTRIBUTIONS

Distribution Basics

Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

There are two types of probability distributions: Discrete \& Continuous

1) Discrete probability distributions

Uniform

Binomial


Sum of Two Dice Rolls

Poisson

2) Continuous probability distributions



## THE NORMAL DISTRIBUTION

## Distribution

 Basics
## Distribution Types

Normal

Distribution

Z-Scores

## Probabilities

Value Estimates

Many numerical variables naturally follow a normal distribution, or "bell curve"

- Normal distributions are symmetrical around the mean and have no skew (mean = median), with most data concentrated around its center and flaring out in "tails" on both ends

EXAMPLE Olympic Basketball Player Heights



HEY THIS IS IMPORTANT!
Since they are so common, many statistical tests are designed for normally distributed populations, which is why we'll mostly focus on the normal distribution in the course

## THE NORMAL DISTRIBUTION

## Distribution

 Basics
## Distribution Types

Normal Distribution

Z-Scores

Probabilities

Value Estimates

The normal distribution is described by two values: the mean \& standard deviation


## THE NORMAL DISTRIBUTION

## Distribution Basics

## Distribution Types

Normal Distribution

## Z-Scores

## Probabilities

## Value Estimates

The normal distribution is described by two values: the mean \& standard deviation

- The mean determines the center of the distribution, and the standard deviation its width

$\qquad$

Changing the mean shifts the curve along the x axis


Changing the standard deviation squeezes or stretches the curve

## Z-SCORES

## Distribution

Basics

## Distribution <br> Types

Normal Distribution

## Z-Scores

## Probabilities

## Value Estimates

A z-score indicates how many standard deviations away from the mean a value lies

$$
\begin{aligned}
& \left.Z=\frac{\chi-\mu}{\sigma}\right\} \begin{array}{l}
\text { To calculate a } z \text {-score for a value, } \\
\text { simply subtract the mean and } \\
\text { divide by the standard deviation } \\
\text { (or use the STANDARDIZE function) }
\end{array} \\
& z=\frac{198-195.2}{10.26}=0.27
\end{aligned}
$$




This is known as the standard normal distribution, or z-distribution, and has a mean of 0 and a standard deviation of 1

## THE EMPIRICAL RULE

Distribution Basics

## Distribution <br> Types

Normal Distribution

Z-Scores

## Probabilities

## Value Estimates

The empirical rule outlines where most values fall in a normal distribution


1 $\boldsymbol{\sigma}$ away from the mean

$2 \boldsymbol{\sigma}$ away from the mean
~99.7\%

$3 \boldsymbol{\sigma}$ away from the mean

PRO TIP: Beyond using a histogram to determine whether your data is distributed normally, check if it follows the empirical rule

## ASSIGNMENT: NORMAL DISTRIBUTIONS

From: Nick Normal (Head of Student Placement)
Subject: Student Salaries

Hey, nice to meet you!
I just spoke to Molly, and she mentioned that you were going to be able to make some predictions on student grades since they were "normal", or something like that.

Could you do the same for graduate salaries?
It sounds like something that could be really beneficial for me.
Looking forward to hearing back from you,
Thanks!

## Key Objectives

1. Plot the distribution of "Annual Salary" to see if it resembles a bell curve
2. Check if the mean \& median are equal
3. Calculate the percentage of salaries that lie 1, 2, and 3 standard deviations from the mean to see if the variable follows the empirical rule

## EXCEL NORMAL DISTRIBUTION FUNCTIONS

Distribution Basics

These Excel functions help make calculations related to the normal distribution:

## Distribution Types

Normal
Distribution

Z-Scores

Probabilities

Value Estimates

| NORM.DIST() | Returns the cumulative probability or the probability density at an x value from a given normal distribution | $=$ NORM.DIST( $x, \mu, \sigma$, cumulative |
| :---: | :---: | :---: |
| NORM.INV() | Returns the $x$ value in a given normal distribution at a specified cumulative probability | =NORM.INV(probability, $\mu, \sigma$ ) |
| STANDARDIZE() | Returns the $z$-score for a specified $x$ value in a given normal distribution | $=$ STANDARDIZE $(\mathrm{x}, \mu, \sigma)$ |
| NORM.S.DIST() | Returns the cumulative probability or the probability density at a $z$-score from the standard normal distribution | =NORM.S.DIST(z, cumulative) |
| NORM.S.INV() | Returns the $z$-score in the standard normal distribution at a specified cumulative probability | =NORM.S.INV(probability) |

## CALCULATING PROBABILITIES

Distribution Basics

## Distribution Types

Norma Distribution

Z-Scores

## Probabilities

## Value Estimates

If a variable follows a normal distribution, you can calculate the probability of randomly obtaining a value within a specified range

- This is determined by the area under the curve in that range



## HEY THIS IS IMPORTANT!

You CANNOT calculate the probability of obtaining an $x$ value exactly - there's no area under a single point!

## THE NORM.DIST FUNCTION

Distribution
Basics

## Distribution <br> Types

Normal Distribution

Z-Scores

## NORM.DIST()

=NORM.DIST(x, mean, standard_dev, cumulative)


The value to calculate the probability for

The mean \& standard deviation for the normal distribution of the population

TRUE: The area under the curve FALSE: The height of the curve

Possible question:
"What's the probability of an Olympic Basketball Player being 2 meters tall or shorter?"


## THE NORM.DIST FUNCTION

Distribution
Basics

## Distribution

Types

Normal Distribution

Z-Scores

## NORM.DIST()

=NORM.DIST( x , mean, standard_dev, cumulative)


The value to calculate the probability for

The mean \& standard deviation for the normal distribution of the population

TRUE: The area under the curve FALSE: The height of the curve

Possible question:
"What's the probability of an Olympic Basketball Player being between 1.9 and 2 meters tall?"


## THE NORM.DIST FUNCTION

## Distribution

Basics

## Distribution <br> Types

Normal Distribution

Z-Scores

## NORM.DIST()

=NORM.DIST( x , mean, standard_dev, cumulative)


The value to calculate the probability for

The mean \& standard deviation for the normal distribution of the population

TRUE: The area under the curve FALSE: The height of the curve

Possible question
"What's the probability of an Olympic Basketball Player being at least 2 meters tall?"


## THE NORM.S.DIST FUNCTION

## Distribution

Basics

## Distribution <br> Types

Normal Distribution

Z-Scores

## NORM.S.DIST() <br> Returns the cumulative probability or the probability density at " $z$ " from the $z$-distribution

=NORM.S.DIST(z, cumulative)


The z -score to calculate
TRUE: The area under the curve the probability for FALSE: The height of the curve

Possible question:
"What's the probability of an Olympic Basketball Player being at least 1.5 standard deviations shorter than the mean?"


$$
\begin{aligned}
& =\text { NORM.S.DIST }(-1.5, \text { TRUE })=0.066 \\
& =\text { This is the } \\
& \text { probability! }
\end{aligned}
$$

## ASSIGNMENT: CALCULATING PROBABILITIES

NEW MESSAGE
October 8, 2022
From: Molly Mean (Director of Education)
Subject: Honor Students

## Hi again!

I keep thinking about the possibilities now that we know the grade averages for our graduates follow a normal distribution.

For example, I'd love to consider anyone that graduates with an average of 90 or higher an "honor student".

What would be the probability of someone getting that grade?
I'd hate for it to be more than $10 \%$ of students.
Thanks!

## Key Objectives

1. Use the NORM.DIST function to calculate the probability of getting an "MBA Grade" greater than or equal to 90

## ESTIMATING VALUES

## Distribution <br> Basics

## Distribution <br> Types

Norma Distribution

Z-Scores

If a variable follows a normal distribution, you can estimate the value of " $x$ " or " $z$ " at a specified cumulative probability


## THE NORM.INV FUNCTION

Distribution
Basics

## Distribution

Types

Normal Distribution

Z-Scores

## NORM.INV()

Returns the $x$ value in a normal distribution at a specified cumulative probability


Possible question:
"How tall do you need to be to be taller than 80\% of Olympic Basketball Players?"
$X \sim N(195.2,10.26)$
$=$ NORM.INV $(0.8,195.2,10.26)=203.8 \mathrm{~cm}$


## THE NORM.S.INV FUNCTION

Distribution
Basics

## Distribution

Types

Normal Distribution

Z-Scores

NORM.S.INV()
Returns the $z$-score in the standard normal distribution at a specified cumulative probability
=NORM.S.INV(probability)


The cumulative probability
for the $z$-score you want

Possible question:
"The top 5\% of Olympic Basketball Players are how many standard deviations taller than the mean?"


Remember that the cumulative probability starts from negative infinity, so for the "top 5\%" the probability is 95\% (1-5\%)

## ASSIGNMENT: ESTIMATING VALUES

$\xrightarrow{1}$
NEW MESSAGE
October 8, 2022
From: Molly Mean (Director of Education)
Subject: RE: Honor Students

Hi there, thanks again!
I'll stick with 90 as the threshold for honor students.
Just out of curiosity though... what grade would put students in the top $10 \%$ of the class?

And how many standard deviations away from the average student would that be?

Looking forward to hearing back from you.
P.S. You're crushing it!

## Key Objectives

1. Use the NORM.INV function to calculate the "MBA Grade" for the top 10\%
2. Use the NORM.S.INV function to calculate the $z$-score for the top $10 \%$

## KEY TAKEAWAYS: PROBABILITY DISTRIBUTIONS

## A probability distribution is an idealized frequency distribution

- It shows all the possible values the variable can take, and the probability of each value occurring


## Many variables naturally follow a normal distribution

- The data is symmetrical around its mean, and flares out in "tails" (the width depends on the standard deviation)

The probability in a normal distribution is the area under its curve

- It can only be calculated in intervals, not for exact values!

There are Excel functions to solve normal probability problems

- NORM.DIST and NORM.S.DIST let you calculate the probability of randomly obtaining values in specified ranges
- NORM.INV and NORM.S.INV let you estimate values or $z$-scores based on their cumulative probabilities


## MAVEN MEDICAL CENTER \| PROJECT BRIEF

You are a Data Analyst at the Maven Medical Center in Springfield, MA and just received a project request from the chief gynecologist
From: Betty Birth (Chief Gynecologist)
Subject: Need some probability figures
We've had over 30\% of the babies born this year weigh under 2.5kg,
which is considered low. The percentage itself seems a little high to
me though. Is there any way you could check what the probability of
a baby weighing under 2.5kg is with the data we have?
I could also use the number of births we've had so far in the top \&
bottom 1\% if possible.
Thank you!
Birth_Weights.xlsx

## Key Objectives

1. Check if the weights can be assumed to follow a normal distribution
2. If so, calculate the probability of a baby weighing 2.5 kg or less
3. Estimate the values at the $1 \%$ and $99 \%$ cumulative probabilities
4. Count the number of births under and over those thresholds

## THE CENTRAL LIMIT THEOREM

## THE CENTRAL LIMIT THEOREM

In this section we'll cover the central limit theorem (CLT), which will allow us to apply the concepts we learned on the normal distribution to populations that follow any distribution

TOPICS WE'LL COVER:

CLT Basics

Implications
Applications

## GOALS FOR THIS SECTION:

- Understand the concept of a sampling distribution, and its relationship with the central limit theorem
- Identify the impact of the sample size on the normality \& variability of the sampling distribution
- Calculate the standard error of a sampling distribution
- Review the implications \& applications of the CLT


## SAMPLING DISTRIBUTION OF THE MEAN

The sampling distribution of the mean is obtained by taking many samples from a population, calculating the mean for each, and plotting their frequencies


## THE CENTRAL LIMIT THEOREM

The central limit theorem states that the means of large enough samples of any population will be normally distributed around the population mean


EXAMPLE Daily Airbnb Rates in New York City

POPULATION DISTRIBUTION:


These are individual values ( $x$ )

SAMPLING DISTRIBUTION (100 samples, $n=50$ ):


These are sample means $(\bar{x})$

## THE CENTRAL LIMIT THEOREM

Central Limit Theorem Basics

Standard Error

Implications

Applications

The central limit theorem states that the means of large enough samples of any population will be normally distributed around the population mean

- A sample size of $\mathbf{3 0}$ or more is typically required ( $n>30$ )


## SAMPLING DISTRIBUTION (100 samples):



## HEY THIS IS IMPORTANT!

As sample size increases, the sampling distribution approximates a normal distribution

## STANDARD ERROR

Central Limit Theorem Basics

Standard Error

Implications

Applications

As you know, normal distributions are described by their mean \& standard deviation
For the normal distribution of the sample means, the mean is the same as its population's mean, but the standard deviation is known as the standard error

- The standard error is the standard deviation of the sample means around the population mean

$$
\left.\boldsymbol{S}=\frac{\boldsymbol{\sigma}}{\sqrt{n}}\right\} \begin{aligned}
& \text { To calculate the standard error, } \\
& \text { simply divide the standard deviation } \\
& \text { of the population by the square root } \\
& \text { of the sample size }
\end{aligned}
$$



## HEY THIS IS IMPORTANT!

As sample size increases, the standard error decreases

Population of Airbnb Prices in NYC
$\mu=172, \sigma=144$


$$
S E=\frac{144}{\sqrt{30}}=\mathbf{2 6 . 3}
$$

Sampling Distribution of the Mean ( $n=30$ )

$$
\bar{x}^{\sim} N(172,26.3)
$$



## IMPLICATIONS OF THE CENTRAL LIMIT THEOREM

Central Limit Theorem Basics

Standard Error

Implications

Applications

## The central limit theorem has these important implications:

1) If you have data on a population (mean \& standard deviation), you can make inferences about any sufficiently large sample from that population
2) If you have data on a population and a sufficiently large sample, you can infer whether the sample belongs to that population
3) If you have data on a sufficiently large sample, you can make inferences about the population from which the sample was drawn
4) If you have data on two sufficiently large samples, you can infer whether they belong to the same population

## HEY THIS IS IMPORTANT!

This is the basis for inferential statistics, which let you come to conclusions about a population from a sample!

## APPLICATIONS OF THE CENTRAL LIMIT THEOREM

The central limit theorem has two key applications we'll cover:

Central Limit Theorem Basics

Standard Error

Implications

Applications
(1) Making estimates with confidence intervals

- For example, you can use the mean \& standard deviation from a sample to estimate a range where the population mean likely lies

2 Drawing conclusions with hypothesis tests

- For example, you can use the mean \& standard deviation from a sample to conclude whether it was likely drawn from a population with a certain mean


## HEY THIS IS IMPORTANT!

This can all be done using the same theory we've learned on the normal distribution!

## KEY TAKEAWAYS: THE CENTRAL LIMIT THEOREM

夫
Sample means are normally distributed around their population mean, no matter the distribution of the population

- As the sample size increases, the normality increases (a sample size of at least 30 is required)

The standard error is the standard deviation of the sample means

- As the sample size increases, the standard error decreases

The Central Limit Theorem enables inferential statistics

- You can make inferences about unknown populations based on large enough samples!


## CONFIDENCE INTERVALS

## MAKING ESTIMATES WITH CONFIDENCE INTERVALS

In this section we'll cover making estimates with confidence intervals, which use sample statistics to define a range where an unknown population parameter likely lies

TOPICS WE'LL COVER:

## GOALS FOR THIS SECTION:

- Understand the main components of a confidence interval, the point estimate \& margin of error
- Identify the impact of the setting the confidence level on the margin of error
- Use the $t$ distribution for confidence intervals when the population standard deviation is unknown
- Calculate confidence intervals for the difference in mean and proportions between two populations


## CONFIDENCE INTERVALS

## A confidence interval is an estimate of an unknown population value using a sample

Estimation
Basics

| Types of Intervals | Employability (Before) |
| :---: | :---: |
|  | 252 |
| T Distribution | 423 |
|  | 101 |
|  | 288 |
| Proportions | 248 |
|  | 145 |
|  | 401 |
| Two | 287 |
| Populations | 275 |
|  | 254 |
|  | 182 |
|  | 117 |
|  | 130 |
|  | 219 |
|  | 152 |
|  |  |
|  | $n=95$ |

Estimating the population mean:

$$
\begin{aligned}
& \bar{x}=239.9 \\
& \mu=?
\end{aligned}
$$

Remember, the sample means are normally distributed around the population mean



## CONFIDENCE LEVEL

Estimation
Basics

## Types of

Intervals

The confidence level represents the probability that your confidence interval includes the population parameter

- This is established by alpha( $\boldsymbol{\alpha}$ ), which is 1 minus the confidence level
- Typical alpha values are $\mathbf{0 . 1}, \mathbf{0 . 0 5}$, and $\mathbf{0 . 0 1}$, but you can use any value you'd like!

$$
\alpha=0.1
$$


$\overline{\mathrm{x}}$

$$
\alpha=0.05
$$


$\overline{\mathrm{x}}$

$$
\alpha=0.01
$$


$\bar{x}$

## HEY THIS IS IMPORTANT!

As you increase the confidence level, the confidence interval also increases, so take time to establish an accepted probability of error ( $\alpha$ ) in favor of a narrower interval

## MARGIN OF ERROR

Estimation
Basics


T Distribution

Proportions

Two
Populations

The margin of error represents the value to add to each side of your sample statistic, or point estimate, to generate the confidence interval

- This is determined by the confidence level and the standard error

| Employability (Before) |
| ---: |
| 252 |
| 423 |
| 101 |
| 288 |
| 248 |
| 145 |
| 401 |
| 287 |

$$
\begin{aligned}
\bar{x} & =239.9 \\
n & =95 \\
\sigma & =90 \\
\alpha & =0.05
\end{aligned}
$$

We want to calculate the margin of error from this sample with a 95\% confidence level
NOTE: We're assuming that we know the standard deviation of the population, which won't always be the case; more on that later


$$
Z=\text { NORM.S.INV }(1-0.025)=1.96 \sigma
$$



## MARGIN OF ERROR

Estimation
Basics

## Types of

## Intervals

T Distribution

Proportions

Two
Population:

The margin of error represents the value to add to each side of your sample statistic, or point estimate, to generate the confidence interval

- This is determined by the confidence level and the standard error


$$
\begin{aligned}
& \bar{x}=239.9 \\
& n=95 \\
& \sigma=90 \\
& \alpha=0.05
\end{aligned}
$$

We want to calculate the margin of error from this sample with a 95\% confidence level
NOTE: We're assuming that we know the standard deviation of the population, which won't always be the case; more on that later

$$
\begin{aligned}
& C I=239,9+1,96 * \frac{\sigma}{\sqrt{n}} \\
& \text { This is the standard error, or standard } \\
& \text { deviation of the sample means }
\end{aligned}
$$

$S E=\frac{\sigma}{\sqrt{n}}=\frac{90}{\sqrt{95}}=9.23$
$C I=239.9 \pm 1.96 * 9.23$
$C I=239.9 \pm 18.09^{\sim}$ This s ste margin of errort

## THE CONFIDENCE.NORM FUNCTION

## CONFIDENCE.NORM()

Estimation
Basics

Types of
Intervals

I Distribution

## Proportions

Two
Populations
=CONFIDENCE.NORM(alpha, standard_dev, size)

The alpha ( $\alpha$ ) for the confidence level

The standard deviation of the population ( $\sigma$ ) and sample size (n) for the standard error

## Employability (Before)

252
423 101 288 248 145 401 287 275 254
$n=95$

$$
\begin{array}{ll}
\bar{x}=239.9 & \\
n=95 & =\text { CONFIDENCE.NORM }(0.05,90,95)=18.09 \\
\sigma=90 & C I=239.9 \pm 18.09 \\
\alpha=0.05 &
\end{array}
$$

## ASSIGNMENT: CONFIDENCE INTERVALS

NEW MESSAGE
October 13, 2022
From: Nick Normal (Head of Student Placement)
Subject: RE: Student Salaries

Hi again,
I know you said our salary data doesn't follow a normal distribution, but just wanted to try to see if you can produce some sort of expected annual salary from our graduates.

I just read a survey online where they found that the average salary for recent MBA graduates in the US is $\$ 101,000$.

The standard deviation is $\$ 76 \mathrm{k}$, if that means anything to you.
Hope you can come up with something,
Thanks!

## Key Objectives

1. Calculate the mean and sample size from the sample of graduates
2. Set a confidence level
3. Calculate the margin of error
4. Set the limits for the confidence interval

## TYPES OF CONFIDENCE INTERVALS

## There are two types of confidence intervals for estimating the mean:

Estimation
Basics

Types of Intervals

T Distribution

Proportions

Two
Populations

1 Z-intervals: the population standard deviation $(\sigma)$ is KNOWN

- These are uncommon in real life - if you don't know $\mu$, why would you know $\sigma$ ?
- The population standard deviation is used to calculate the standard error
- The standard normal distribution (z distribution) is used to calculate the critical value

2 T-intervals: the population standard deviation ( $\sigma$ ) is UNKNOWN

- These are more realistic - you only have data from the sample
- The sample standard deviation is used to calculate the standard error
- The student's $t$ distribution is used to calculate the critical value


## HEY THIS IS IMPORTANT!

Both require the original populations to be assumed normal, or the sample size to be greater than or equal to 30 (so that the central limit theorem applies)

## STUDENT'S T DISTRIBUTION

## Estimation

Basics

## Types of <br> Intervals

T Distribution

Proportions

Two
Populations

T distributions are like the standard normal distribution, but with "fatter tails"

- They are described by their degrees of freedom (sample size - 1 )



## HEY THIS IS IMPORTANT!

As the degrees of freedom increase, the $t$ distribution approximates the $z$ distribution
They are practically identical for samples of 100 or more observations

## More data at the tails!

In the Z Distribution, 99.7\% of the data lies within 3 $\sigma$ of the mean
In the T Distribution with 1 degree of freedom, only $79.5 \%$ does

## EXCEL T DISTRIBUTION FUNCTIONS

These Excel functions help make calculations related to the t distribution:

## Estimation <br> Basics

Types of
intervals

T Distribution

Proportions
CONFIDENCE.T()

Returns the margin of error for a specified confidence level and standard error $\begin{aligned} & \begin{array}{l}\text { Returns the cumulative probability or the probability } \\ \text { density at a t-score from a givent t distribution }\end{array}\end{aligned}=T . \mathrm{DIST}(\mathrm{t}, \mathrm{df}$, cumulative)

Returns the t-score from a given $t$ distribution at a specified cumulative probability
$=T . I N V$ (probability, df)
=CONFIDENCE.T( $\alpha$, std_dev, n)

## CONFIDENCE INTERVALS WITH THE T DISTRIBUTION

Estimating a confidence interval with the t distribution is like the z distribution

Estimation
Basics

Types of Intervals

T Distribution

## Proportions

Two
Populations

- You use the sample standard deviation (s) instead of the population standard deviation ( $\sigma$ )
- You use the $t$ distribution to calculate the critical value instead of the $z$ distribution

$$
C I=\bar{x} \pm Z_{\alpha / 2} * \frac{\sigma}{\sqrt{n}}
$$

$$
C I=\bar{x} \pm t_{\alpha / 2} * \frac{s}{\sqrt{n}}
$$

| Employability (Before) |
| :---: |
| 252 |
| 423 |
| 101 |
| 288 |
| 248 |
| 145 |
| 401 |
| 287 |
| 275 |
| - ${ }^{254}$ |
| $n=95$ |

$$
\begin{aligned}
& \bar{x}=239.9 \\
& s=85.9 \\
& n=95 \\
& d f=94 \\
& \alpha=0.05
\end{aligned}
$$

$$
\begin{aligned}
& C I=239.9 \pm \underbrace{t_{\alpha / 2}}_{\operatorname{T.INV}(1-0.025)=1.98 \sigma} * 8.81 \\
& C I=239.9 \pm 1.98 * 8.81 \\
& C I=239.9 \pm \mathbf{1 7 . 5}
\end{aligned}
$$

## CONFIDENCE INTERVALS WITH THE T DISTRIBUTION

Estimating a confidence interval with the $t$ distribution is like the $z$ distribution

Estimation
Basics

Types of Intervals

T Distribution

## Proportions

Two
Populations

- You use the sample standard deviation (s) instead of the population standard deviation ( $\sigma$ )
- You use the $t$ distribution to calculate the critical value instead of the $z$ distribution

$$
C I=\bar{x} \pm Z_{\alpha / 2} * \frac{\sigma}{\sqrt{n}}
$$

$$
C I=\bar{x} \pm t_{\alpha / 2} * \frac{s}{\sqrt{n}}
$$

| Employability (Before) |
| ---: |
|  |
|  |

$$
\begin{aligned}
& \bar{x}=239.9 \\
& s=85.9 \\
& n=95 \\
& d f=94 \\
& \alpha=0.05
\end{aligned}
$$

$$
C I=239.9 \pm t_{\alpha / 2} * \frac{s}{\sqrt{n}}
$$

$$
\text { =CONFIDENCE.T(0.05, 85.9, 95) = } 17.5
$$

$$
C I=239.9 \pm 17.5
$$

## ASSIGNMENT: CONFIDENCE INTERVALS (T DISTRIBUTION)



## NEW MESSAGE

October 14, 2022
From: Nick Normal (Head of Student Placement)
Subject: RE: RE: Student Salaries

Hey,
Thanks for getting me that estimate!
I'm curious though... do we need the data from the study?
I would think that with the amount of our graduates that have been placed already we could an estimate ourselves.

Think you're up for it?
Thanks again!

Key Objectives

1. Calculate the standard deviation from the sample of graduates
2. Set a confidence level
3. Calculate the margin of error
4. Set the limits for the confidence interval

## CONFIDENCE INTERVALS FOR PROPORTIONS

Estimation
Basics

## Types of

Intervals

T Distribution

## Proportions

Two
Population:

A proportion is a percentage of a population that meets a certain criteria You can use the $z$ distribution to calculate confidence intervals for proportions

- This is for categorical variables with two possible values (it meets the criteria, or it doesn't)



## HEY THIS IS IMPORTANT!

Both $\hat{\mathbf{p}}^{*} \mathbf{n}$ and $(\mathbf{1}-\hat{\mathbf{p}})^{*} \mathbf{n}$ must be greater than 5 for the central limit theorem to apply

## CONFIDENCE INTERVALS FOR PROPORTIONS

Estimation
Basics

Types of
Intervals

T Distribution

A proportion is a percentage of a population that has a certain property You can use the $z$ distribution to calculate confidence intervals for proportions

- This is for categorical variables with two possible values (it has the property, or it doesn't)

EXAMPLE Percentage of Graduates with Previous Work Experience

$$
\begin{aligned}
& \begin{array}{l}
\substack{\text { Work Experience } \\
\begin{array}{l}
\text { No } \\
\text { Nos } \\
\text { Yes } \\
\text { No }
\end{array}} \quad \Rightarrow \hat{p}=\frac{23}{95}=\mathbf{0 . 2 4 2} \Rightarrow C I=0.242 \pm \underbrace{Z_{\alpha / 2}} * \sqrt{\frac{0.242 *(0.758)}{95}}
\end{array} \\
& 1-\hat{p}=0.758 \\
& \alpha=\mathbf{0 . 1} \\
& \text { NORM.S.INV(1-0.05) }=1.64 \sigma \\
& C I=0.242 \pm 1.64 * 0.04 \\
& C I=0.242 \pm 0.07=(17 \%, 31 \%)
\end{aligned}
$$

## ASSIGNMENT: CONFIDENCE INTERVALS FOR PROPORTIONS

October 14, 2022
From: Nick Normal (Head of Student Placement)
Subject: Graduate Placement

Hey again,
Loved the work on the salary data, thank you!
The problem now is getting these students to land jobs.
We've had 53 placed so far, which is $55 \%$. That's not terrible, but I'd hate to be getting numbers under $50 \%$ in future classes.

Are you able to get me an estimate with the data we have?
I'd like to be $95 \%$ certain this time around.
Thanks

## Key Objectives

1. Calculate the sample proportion
2. Check if the central limit theorem applies
3. Calculate the margin of error
4. Set the limits for the confidence interval

## CONFIDENCE INTERVALS FOR TWO POPULATIONS

Estimation
Basics

Types of
Intervals

T Distribution

Proportions

Two
Populations

You can create confidence intervals for the difference between two population means
There are two possible scenarios for this:


## DEPENDENT SAMPLES

## Estimation

Basics


## ASSIGNMENT: DEPENDENT SAMPLES

## NEW MESSAGE

October 15, 2022
From: Nick Normal (Head of Student Placement)
Subject: Employability Scores

Hi ,
It's a shame that we can't be sure that at least $50 \%$ of students will be placed 2 months from graduation, so I'm trying to see what factors to dig into deeper.

Looking at the employability scores, it looks like on average our graduates are improving by 50 points on their results.

Can you get me a confidence interval with $90 \%$ confidence?
Thanks again!

## Key Objectives

1. Calculate the difference between the dependent samples
2. Calculate the sample mean and standard deviation from the difference
3. Calculate the margin of error
4. Set the limits for the confidence interval

## INDEPENDENT SAMPLES

Confidence intervals for independent samples have two key calculation differences:

## Estimation <br> Basics

Types of Intervals

1. The standard error uses the variance (and sample size) from both samples
2. The degrees of freedom for the $t$-score (critical value) also consider the sample variances


## INDEPENDENT SAMPLES

## Confidence intervals for independent samples have two key calculation differences:

## Estimation <br> Basics

## Types of

Intervals

T Distribution

Proportions

Two
Populations

1. The standard error uses the variance (and sample size) from both samples
2. The degrees of freedom for the $t$-score (critical value) also consider the sample variances

$$
\epsilon_{\alpha / 2}=T . I N V(\alpha / 2 \text {, degrees of freedom) } \leftarrow \text { For one population, or dependent samples, this is } n-1
$$

## HEY THIS IS IMPORTANT!

You might see independent samples divided into separate calculations if the population standard deviations can or can't be assumed to be equal, but this formula works for both!

## ASSIGNMENT: INDEPENDENT SAMPLES

## NEW MESSAGE

October 16, 2022
From: Nick Normal (Head of Student Placement)
Subject: RE: Employability Scores

Hey!
Thanks for the data on the employability improvement, I'm going to send that over to Tommy in Admissions so he can factor that into his process.

Final though though... can we find a positive difference in the employability scores for graduates that have been placed so far vs. those that haven't? That could be a good indicator for me.

I think sticking with the same $90 \%$ confidence should work.
Thanks in advance!

## Key Objectives

1. Calculate the mean and variance from both samples
2. Calculate the point estimate, or difference in sample means
3. Calculate the margin of error
4. Set the limits for the confidence interval

## PRO TIP: DIFFERENCE BETWEEN PROPORTIONS

You can also calculate confidence intervals for difference in population proportions

Estimation
Basics

Types of
Intervals

T Distribution

Proportions

Two Populations

This is the margin of error


## KEY TAKEAWAYS: CONFIDENCE INTERVALS

## Confidence intervals use samples to estimate population values

- The estimate is tied to a confidence level, which is the probability that the interval includes the population value


## The interval size is based on a critical value and a standard error

- The critical value defines the number of standard deviations the sample mean can be from the population mean
- The standard error is the standard deviation of the sample means


## Use the $t$ distribution when $\sigma$ is unknown

- In most real-life scenarios, you won't know the standard deviation of the population

The same concepts apply when comparing two populations

- Dependent samples can be converted into a single population
- Independent samples simply have different calculations for the critical value and standard error


## MAVEN PHARMA \| PROJECT BRIEF

You are the Lead Statistician at the Maven Pharma, a pharmaceutical company that is in the final testing stage for a new drug to treat arthritis

From: Patty Pill (Head of R\&D)
Subject: Treatment results

Hello!
We have the data from the trial on the new arthritis treatment we're developing. We had 84 subjects for the trial, 41 which did take the medication and 43 "placebos" which didn't.

Can you use a $99 \%$ confidence interval to see if the percentage of patients with "Marked" improvements is significantly higher for those that took the treatment (vs. the placebos)?

Thank you!

## Key Objectives

1. Check if the central limit theorem applies
2. Estimate the difference in population proportions with a $99 \%$ confidence level
3. Reach a conclusion from the results

## HYPOTHESIS TESTS

## DRAWING CONCLUSIONS WITH HYPOTHESIS TESTS

In this section we'll cover drawing conclusions with hypothesis tests, which let you evaluate assumptions about population parameters based on sample statistics

TOPICS WE'LL COVER:

Hypothesis Testing

Types of Tests

Two Populations

## GOALS FOR THIS SECTION:

- Understand the concepts of a null and alternative hypothesis, and how to frame them correctly
- Perform hypothesis tests for the mean \& proportions for one and two populations
- Review the two types of errors in a hypothesis test, and how you can influence them in their design
- Draw the correct conclusions from hypothesis tests


## HYPOTHESIS TESTS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

A hypothesis test lets you evaluate how well a sample supports an assumption

- More specifically, it is a process of evaluating whether a sample provides clear enough evidence that an initial assumption about a population was wrong


## Steps for a hypothesis test:

1) State your assumption
2) Define an accepted probability of error
3) Check how well the data supports your assumption
4) Translate that into a probability that it supports it
5) Is it worse than your accepted probability of error?
a) Yes - your assumption was wrong!
b) No - your assumption was right!*


## HYPOTHESIS TESTS

Hypothesis
Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

A hypothesis test lets you evaluate how well a sample supports an assumption

- More specifically, it is a process of evaluating whether a sample provides clear enough evidence that an initial assumption about a population was wrong

Steps for a hypothesis test:

1) State the null and alternative hypotheses
2) Set a significance level
3) Calculate the test statistic for the sample
4) Calculate the $\boldsymbol{p}$-value
5) Draw a conclusion from the test
a) Reject the null hypothesis
b) Fail to reject the null hypothesis


## NULL \& ALTERNATIVE HYPOTHESIS

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The null hypothesis $\left(\mathbf{H}_{\mathbf{o}}\right)$ is the assumption about a population you'd like to evaluate The alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$ is any scenario in which that assumption is wrong

- The null hypothesis should be tied to a decision you'd be most comfortable making (the "status quo")
- That way, if the test "proves" the null hypothesis wrong, you'll be more comfortable NOT making it


## EXAMPLE Evaluating the need for a new soda filling machine

$\mathbf{H}_{\mathrm{o}} \quad \boldsymbol{\mu}=355$ (our machine fills each can with 355 ml on average - we don't need a new one)
$\mathrm{H}_{\mathrm{a}} \quad \boldsymbol{\mu} \neq 355 \quad$ (our machine doesn't fill each can with 355 ml on average - we need a new one)


## HEY THIS IS IMPORTANT

You're not proving either of the hypotheses right, you're only testing to see if the sample data makes the null hypothesis look wrong enough to make you feel comfortable taking the alternative action

## SIGNIFICANCE LEVEL

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The significance level is the threshold you set to determine when the evidence against your null hypothesis is considered "strong enough" to prove it wrong

- This is set by alpha ( $\boldsymbol{\alpha}$ ), which is the accepted probability of error



## TEST STATISTIC

The test statistic is your sample's t-score from the hypothesized sampling distribution

Hypothesis
Testing
Types of Enrors

Types of Tests

Proportions

Two
Population

- It's the standard deviations between what your sample is and what you're saying it should be



## HEY THIS IS IMPORTANT!

This is assuming that the population standard deviation ( $\sigma$ ) is unknown, since it's more common, but you can use the $z$-score if it is known and swap out " $s$ " for " $\sigma$ "

## TEST STATISTIC

The test statistic is your sample's t-score from the hypothesized sampling distribution

Hypothesis
Testing

## Types of Errors

Types of Tests

Proportions

Two
Populations

- It's the standard deviations between what your sample is and what you're saying it should be



## P-VALUE

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

The $\mathbf{p}$-value is the probability that your sample supports the null hypothesis
More specifically, it's the probability of obtaining a test statistic at least as large as the one from your sample (negative or positive) if your null hypothesis is true


## HEY THIS IS IMPORTANT!

The $p$-value in itself is meaningless, it's the significance level that puts it into context!

## CONCLUSIONS

## There are two possible conclusions in a hypothesis test:

Hypothesis
Testing

## Types of Errors

Types of Tests

Proportions

Two
Populations

- If $\mathbf{p}>\boldsymbol{\alpha}$, then you fail to reject the null hypothesis (not enough evidence!)
- If $\mathbf{p} \leq \boldsymbol{\alpha}$, then you reject the null hypothesis (strong enough evidence!)



## Conclusion:

Since $p>\alpha$, we don't have sufficient evidence to reject our null hypothesis In other words, assuming the machine fills $355 \mathrm{~m} /$ on average doesn't seem wrong - let's keep using it!

## CONCLUSIONS

## There are two possible conclusions in a hypothesis test:

Hypothesis
Testing

## Types of Errors

Types of Tests

Proportions

Two
Population

- If $\mathbf{p}>\boldsymbol{\alpha}$, then you fail to reject the null hypothesis (not enough evidence!)
- If $\mathbf{p} \leq \boldsymbol{\alpha}$, then you reject the null hypothesis (strong enough evidence!)



## ASSIGNMENT: HYPOTHESIS TESTS

NEW MESSAGE
October 18, 2022
From: Molly Mean (Director of Education)
Subject: Curriculum Planning

## Hi again!

We planned the "difficulty" of our curriculum so that our students would graduate with an average grade of 80 .

It looks like that was the case this time around, we had an average of 80.2 , but I don't want to leave it to random chance.

I'd say that if there's less than a $20 \%$ chance of 80 being the real average with the current curriculum, we need to make some modifications to it.

Thank you!

## Key Objectives

1. State the null \& alternative hypotheses
2. Set a significance level
3. Calculate the test statistic for the sample
4. Calculate the p-value
5. Draw a conclusion from the test

## RELATIONSHIP WITH CONFIDENCE INTERVALS

## Hypothesis tests have a direct relationship with confidence intervals

Hypothesis
Testing


## Types of Tests

## Proportions

Two
Populations mean when failing to reject the null hypothesis, and WON'T include it when rejecting it


## TYPE I \& TYPE II ERRORS

There are two errors you can make in hypothesis tests: Type I \& Type II errors

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

1) Type I: rejecting a true null hypothesis
2) Type II: failing to reject a false null hypothesis

| Null hypothesis is... | True | False |
| :---: | :---: | :---: |
| Rejected | Type I Error | Correct Conclusion |
| Not Rejected | Correct Conclusion | Type II Error |

## HEY THIS IS IMPORTANT!

The significance level $(\alpha)$ is the probability of making a type I error, so the lower it is the less likely you are to make it - but the more likely you are to make a type II error!

## TYPE I \& TYPE II ERRORS

There are two errors you can make in hypothesis tests: Type I \& Type II errors

Hypothesis Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

1) Type I: rejecting a true null hypothesis
2) Type II: failing to reject a false null hypothesis

## EXAMPLE Evaluating the need for a new soda filling machine

$\mathrm{H}_{\mathrm{o}} \quad$ The machine works as expected
$\mathrm{H}_{\mathrm{a}} \quad$ The machine doesn't work as expected

What type of error is worse?
I. Buying a new machine when you didn't need one
II. Not buying a new machine when you needed it

## TYPE I \& TYPE II ERRORS

There are two errors you can make in hypothesis tests: Type I \& Type II errors

Hypothesis
Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

1) Type I: rejecting a true null hypothesis
2) Type II: failing to reject a false null hypothesis

## EXAMPLE Evaluating if an email you received is spam

$\mathbf{H}_{\mathrm{o}} \quad$ The email isn't spam
$\mathbf{H}_{\mathrm{a}}$ The email is spam

What type of error is worse?
I. Screening an email that isn't spam
II. Getting a spam email in your inbox


## TYPES OF HYPOTHESIS TESTS

There are 3 types of hypothesis tests that you can make:

## Hypothesis <br> Testing

Types of Errors

Types of Tests

Proportions

Two
Populations


Excel p-value formulas:
$=$ T.DIST ( $\mathrm{t}_{\text {lower }}$, df, TRUE) $)^{*} 2$
$=$ T.DIST. $2 \mathrm{~T}\left(\mathrm{t}_{\text {upper }}, \mathrm{df}\right)$


One Tail to the Right

$$
\begin{aligned}
& H_{0}: \mu \leq \mu_{0} \\
& H_{0}: \mu>\mu_{0}
\end{aligned}
$$



Excel p-value formulas:
$=1-$ T.DIST(t, df, TRUE)
$=T . D I S T . R T(t, d f)$

## HYPOTHESIS TESTS FOR PROPORTIONS

## You can use the $z$ distribution to calculate hypothesis tests for proportions

Hypothesis Testing

Types of Errors

Types of Tests

Two
Populations

- The only thing that changes is the standard error calculation in the test statistic

This is the test statistic for your sample


## HEY THIS IS IMPORTANT!



## ASSIGNMENT: PROPORTIONS

$\sim 1$NEW MESSAGE
October 25, 2022
From: Nick Normal (Head of Student Placement)
Subject: RE: RE: Student Salaries

Hi again,
I keep thinking about the confidence interval for our graduate salaries you sent me estimating the mean to be between \$111,000 and \$127,000.

Are you able to check if more than half of our placed graduates earn at least $\$ 100,000$ ?

That could be a huge promotional piece to publish!
I think a $5 \%$ risk of publishing if it turns out to be false is fine.
Looking forward to hearing from you!

1. Calculate the proportion of placed graduates that earn at least $\$ 100,000$
2. Check if the central limit theorem applies
3. Select the right type of hypothesis test
4. State the null \& alternative hypotheses
5. Set the significance level
6. Calculate the test statistic for the sample
7. Calculate the p-value
8. Draw a conclusion from the test

## DEPENDENT SAMPLES

Hypothesis Testing

You can make hypothesis tests for dependent samples by calculating the difference from each pair in the samples, and then treating the difference as one population


## ASSIGNMENT: DEPENDENT SAMPLES



$\sim 1$
NEW MESSAGE
October 26, 2022
From: Tommy Test (Head of Admissions)
Subject: Employability Improvements

Hi ,
I spoke with Nick, and he mentioned that he's confident we can build in a " 50 -point improvement" on employability scores into our recruitment process, and I just want to double check that it's not an incorrect assumption to make.

Do you think you could run a quick test?
Honestly, it's not a HUGE deal so unless you're really confident that's not the case, I'll just stick to his number.

Thanks - and nice to finally speak to you!

## Key Objectives

1. Calculate the difference between the dependent samples
2. Calculate the sample mean and standard deviation from the difference
3. State the null \& alternative hypotheses
4. Set the significance level
5. Calculate the test statistic for the sample
6. Calculate the p-value
7. Draw a conclusion from the test

## INDEPENDENT SAMPLES

## Hypothesis Testing

## Types of Errors

Types of Tests

Proportions

Two Populations

Hypothesis tests for independent samples have two key calculation differences:

1. The standard error in the test statistic uses the variance (and sample size) from both samples
2. The degrees of freedom for the $p$-value also consider the sample variances


## INDEPENDENT SAMPLES

Hypothesis tests for independent samples have two key calculation differences:

## Hypothesis

Testing

Types of Errors

Types of Tests

Proportions

Two
Populations

1. The standard error in the test statistic uses the variance (and sample size) from both samples
2. The degrees of freedom for the $p$-value also consider the sample variances

$$
\mathrm{p} \text {-value }=\mathrm{T} . \operatorname{DIST}\left(\mathrm{t} \text {, degrees of freedom, 1) } \leftarrow \begin{array}{c}
\text { For one population, or dependener samples, } \\
\text { the cegerees offreedom are } n-1
\end{array}\right.
$$



$$
\left.d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1}-1}+\frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}-1}}\right\}
$$

Remember that we already used this for the
confidence intervals of independent samples!

## ASSIGNMENT: INDEPENDENT SAMPLES

From: Tommy Test (Head of Admissions)
Subject: Prior Work Experience

Hi again,
I took a quick look at the salary data for our first batch of graduates, and it looks like those with previous work experience are earning a bit more on average.

Can we assume that this will always be the case? If so, we may have to start screening some applicants based on this.

I don't want to potentially impact our student numbers on a hunch though, so lets only take a $1 \%$ risk.

Thanks!

1. Calculate the mean and variance from both samples
2. Calculate the difference in sample means
3. State the null \& alternative hypotheses
4. Set the significance level
5. Calculate the test statistic for the sample
6. Calculate the degrees of freedom
7. Calculate the p-value
8. Draw a conclusion from the test

## Hypothesis tests let you evaluate assumptions about a population

- The null hypothesis is the assumption to evaluate, and the alternative hypothesis is any other possibility
- You're not looking to confirm this assumption (it's already the status quo), just testing to see if it's wrong


## The significance level sets the threshold for "sufficient" evidence

- It draws a "probability line" that says, if a sample is at least this improbable, then the assumption is wrong
- The lower the significance level, the lower the chance of a Type I error, but the higher the chance of a Type II


## The $\mathbf{p}$-value is the probability of the sample fitting the assumption

- If it's greater than the significance level, the you don't have sufficient evidence to reject the assumption
- If it's less than the significance level, then you reject the assumption (null hypothesis)


## MAVEN SAFETY COUNCIL \| PROJECT BRIEF

You are a freelance Data Scientist working on a project for the Maven Safety Council, an initiative looking to educate the public on safe driving practices

1. Identify the type of test needed

Hi

We put up a sign asking drivers to slow down and warning of the dangers of speeding and took three sets of measurements. We recorded the speed of 100 cars before putting up the sign, 100 more shortly after putting up the sign, and a final 100 after the sign had been in place for a longer period.

Could you check if the sign significantly reduced the average speed?
Thank you!

## REGRESSION ANALYSIS

## MAKING PREDICTIONS WITH REGRESSION ANALYSIS

In this section we'll cover making predictions with regression analysis, which helps estimate the values of a dependent variable by leveraging its relationship with independent variables

TOPICS WE'LL COVER:


## GOALS FOR THIS SECTION:

- Identify linear relationships between variables
- Understand the difference between correlation and causation, and its implications on regression analysis
- Create linear regression models in Excel and use them to make predictions for dependent variables
- Evaluate the accuracy of linear regression models


## LINEAR RELATIONSHIPS

It's common for numerical variables to have linear relationships between them

- When one variable changes, so does the other (they co-variate!)
- This relationship is commonly visualized with a scatterplot



## LINEAR RELATIONSHIPS

There are two possible linear relationships: positive \& negative

- Variables can also have no relationship

Regression
Basics

Mode Evaluation

Multiple Linear Regression

Positive Relationship


As one changes, the other changes in the same direction

Negative Relationship


As one changes, the other changes in the opposite direction

No Relationship


No association can be found between the changes in one variable and the other

## CORRELATION

The correlation ( $\mathbf{r}$ ) measures the strength \& direction of a linear relationship (-1 to 1)

- $\mathbf{- 1}$ is a perfect negative correlation, $\mathbf{0}$ is no correlation, and $\mathbf{1}$ is a perfect positive correlation

Linear Relationships

$$
r=0.858
$$



Strong positive correlation

$$
r=-0.499
$$



Moderate negative correlation


No correlation

[^0]
## CORRELATION \& CAUSATION

Correlation between variables means that there is a relationship between them
Causation means that changes in one variable cause the other one to change

Linear Relationships

Regression Basics

Mode Evaluation

Multiple Linear Regression


These two variables are clearly correlated, but...
Do ice cream cones CAUSE people to drown?
Do drowning deaths CAUSE a surge in ice cream sales?
of course not!

## HEY THIS IS IMPORTANT!

Correlation does NOT imply causation!
Keep in mind that variables can be related without causing a change in one another

## ASSIGNMENT: LINEAR RELATIONSHIPS

1
NEW MESSAGE
October 31, 2022
From: Nick Normal (Head of Student Placement)
Subject: RE: RE: Student Salaries

Hey!
The article on student salaries is crushing, thanks again!
I was wondering if there's something we can do to estimate the potential salaries for the students that haven't gotten jobs yet.

Could you check if the annual salaries for our placed graduates have any relationship with the other data we have on them?

If so, any way you could visualize it for me?
Thanks

Key Objectives

1. Calculate the correlation between "Annual Salary" and each of the other numerical variables
2. Create a scatterplot to visualize the relationship for the variables with the highest correlation

## REGRESSION

The goal of regression is to predict a dependent variable using independent variables

- This is achieved by fitting a line through the sample data points that models the population

Linear
Relationship
Regression Basics

Mode Evaluation

Multiple Linear Regression

EXAMPLE Predicting Site Traffic based on Advertising Spend


## LINEAR REGRESSION MODEL

The linear regression model is an equation that best describes a linear relationship

Linear
Relationships

Regression Basics

Mode Evaluation

## Multiple Linear

Regression

This is the predicted value for the dependent variable


This is the $\boldsymbol{y}$-intercept

This is the value for the

This is the slope, or size of the relationship


This is the real value for the dependent variable

$$
2 \text { ? }
$$

## LEAST SQUARED ERROR

The least squared error method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

Linear
Relationships
Regression Basics

Mode Evaluation

Multiple Linear Regression

- NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!



## LEAST SQUARED ERROR

The least squared error method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

Linear
Relationships

Regression Basics

Mode Evaluation

Multiple Linear Regression

- NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!



## LEAST SQUARED ERROR

The least squared error method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

Linear
Relationships

Regression Basics

Mode Evaluation

Multiple Linear Regression

- NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!


| $\mathbf{x}$ | $\mathbf{y}$ | $\hat{\mathbf{y}}$ |
| :---: | :---: | :---: |
| 10 | 10 | 15 |
| 20 | 25 | 20 |
| 30 | 20 | 25 |
| 35 | 30 | 27.5 |
| 40 | 40 | 30 |
| 50 | 15 | 35 |
| 60 | 40 | 40 |
| 65 | 30 | 42.5 |
| 70 | 50 | 45 |
| 80 | 40 | 50 |

## LEAST SQUARED ERROR

The least squared error method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

Linear
Relationships

Regression Basics

Mode Evaluation

Multiple Linear Regression

- NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!


| $\mathbf{x}$ | $\mathbf{y}$ | $\hat{\mathbf{y}}$ | $\boldsymbol{\varepsilon}$ | $\boldsymbol{\varepsilon}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 15 | 5 | $\mathbf{2 5}$ |
| 20 | 25 | 20 | -5 | $\mathbf{2 5}$ |
| 30 | 20 | 25 | 5 | $\mathbf{2 5}$ |
| 35 | 30 | 27.5 | -2.5 | $\mathbf{6 . 2 5}$ |
| 40 | 40 | 30 | -10 | $\mathbf{1 0 0}$ |
| 50 | 15 | 35 | 20 | $\mathbf{4 0 0}$ |
| 60 | 40 | 40 | 0 | $\mathbf{0}$ |
| 65 | 30 | 42.5 | 12.5 | $\mathbf{1 5 6 . 2 5}$ |
| 70 | 50 | 45 | -5 | $\mathbf{2 5}$ |
| 80 | 40 | 50 | 10 | $\mathbf{1 0 0}$ |

## LEAST SQUARED ERROR

The least squared error method finds the line that best fits through the sample points It works by squaring the residuals, adding them up, and minimizing that sum

Linear
Relationships


- NOTE: Squaring the residuals removes the negatives, but also gives more weight to outliers!


| $\mathbf{x}$ | $\mathbf{y}$ | $\hat{\mathbf{y}}$ | $\boldsymbol{\varepsilon}$ | $\boldsymbol{\varepsilon}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 16 | 6 | 36 |
| 20 | 25 | 20 | -5 | $\mathbf{2 5}$ |
| 30 | 20 | 24 | 4 | $\mathbf{1 6}$ |
| 35 | 30 | 26 | -4 | $\mathbf{1 6}$ |
| 40 | 40 | 28 | -12 | $\mathbf{1 4 4}$ |
| 50 | 15 | 32 | 17 | $\mathbf{2 8 9}$ |
| 60 | 40 | 36 | -4 | $\mathbf{1 6}$ |
| 65 | 30 | 38 | 8 | $\mathbf{6 4}$ |
| 70 | 50 | 40 | -10 | $\mathbf{1 0 0}$ |
| 80 | 40 | 44 | 4 | $\mathbf{1 6}$ |
|  |  |  |  | $\boldsymbol{I I}$ |

sum of squared error: 722

## EXCEL’S LINEAR REGRESSION FUNCTIONS

These Excel functions help make calculations related to linear regression:


| CORREL() | Returns the coefficient of correlation (r) between two numeric variables | =CORREL(array1, array2) |
| :---: | :---: | :---: |
| INTERCEPT() | Returns the $y$-intercept $\left(B_{0}\right)$ from a linear regression given a dependent \& independent variable | =INTERCEPT(known_ys, known_xs) |
| SLOPE() | Returns the slope $\left(B_{1}\right)$ from a linear regression given a dependent \& independent variable | =SLOPE(known_ys, known_xs) |
| FORECAST() | Returns the predicted value ( $\hat{y}$ ) at " $x$ " from a linear regression given a dependent \& independent variable | =FORECAST(x, known_ys, known_xs) |
| RSQ() | Returns the coefficient of determination ( $r^{2}$ ) between a dependent \& independent variable | =RSQ(known_ys, known_xs) |
| STEYX() | Returns the standard error of the linear regression model given a dependent \& independent variable | =STEYX(known_ys, known_xs) |

## ASSIGNMENT: SIMPLE LINEAR REGRESSION

## NEW MESSAGE

November 5, 2022
From: Nick Normal (Head of Student Placement)
Subject: Employability Improvement

Hi ,
By now we know that our program improves student's employability scores by 50 on average.

But could there be another variable that explains by how much we can expect each individual student to improve by?

That would be huge!
Looking forward to hearing back about this,
Thanks

## Key Objectives

1. Calculate the correlation between "Employability Improvement" and any relevant numerical variables
2. Create a scatterplot to visualize the relationship for the variables with the highest correlation
3. If applicable, build a regression model to predict "Employability Improvement"

## R-SQUARED

R-Squared, or coefficient of determination, measures how much better the regression model is at estimating " $y$ " values than the previous best estimate (the mean)

Linear Relationship

- The higher R-Squared is (0-1), the more confident you can be in the accuracy of your predictions

Regression
Basics
Model Evaluation

## Multiple Linear

 Regression$$
R^{2}=0.736
$$



Digital Ad Spend

Digital Ad Spend explains 73\% of the variation in Site Traffic, so it can be used to predict it
$R^{2}=0.249$


Digital Ad Spend only explains 25\% of the variation in Offline Ad Spend, so it likely won't predict it very well


Digital Ad Spend doesn't explain any of the variation in Site Load Time, and shouldn't be used to predict it

## R-SQUARED

R-Squared, or coefficient of determination, measures how much better the regression model is at estimating " $y$ " values than the previous best estimate (the mean)

Linear Relationship

Regression Basics

Model Evaluation

## Multiple Linear Regression

- The higher R-Squared is (0-1), the more confident you can be in the accuracy of your predictions



## STANDARD ERROR

Linear
In regression, the standard error is the average distance between the line and the data

- It is the standard deviation of the sample values around the regression line
- This is a good, intuitive measure of how well your model predicts

Regression
Basics

Model Evaluation

## Multiple Linear

 RegressionThis is the standard error

$$
S=\sqrt{M S E}
$$

SSE - prsthesemos sumeresers

$$
M S E=\frac{}{n-q-1}
$$ (squared distance between values \& line)

(squared distance between values \& line)

This is the \# of independent variables

## HOMOSKEDASTICITY

Homoskedasticity simply means that the "scatter" is the same along the entire line

- This is necessary in order to make accurate predictions across the full range of " $x$ " values

Regression Basics

Model Evaluation

Multiple Linear Regression

Homoskedasticity


The "scatter" is consistent over the entire " $x$ " range

Heteroskedasticity


The "scatter" spreads out as " $x$ " increases

## HOMOSKEDASTICITY

Homoskedasticity simply means that the "scatter" is the same along the entire line

- This is necessary in order to make accurate predictions across the full range of " $x$ " values

Linear
Relationships

Regression Basics

Model Evaluation

## Multiple Linear Regression



## HYPOTHESIS TEST

Regressions include an implied hypothesis test in which the null hypothesis states that no relationship exists between the dependent and independent variables

Linear
Relationships

Regression Basics

Model
Evaluation

Multiple Linear
Regression

- In other words, you are trying to find significant evidence that your regression model isn't useless

Steps for a hypothesis test:
$\square$ 1) State the null and alternative hypotheses
(2) Set a significance level
3) Calculate the test statistic for the sample
4) Calculate the p-value
$\square$ 5) Draw a conclusion from the test
a) If $\mathrm{p} \leq \alpha$, reject the null hypothesis (you're confident the model isn't useless - use it!)
b) If $\mathrm{p}>\alpha$, don't reject it (you can't confirm the model isn't useless - don't use it)

## TEST STATISTIC

## The test statistic is the f-score for your sample in your regression model

- It's the standard deviations between your model and the hypothesized "useless" model

Linear

- More specifically, it's the ratio of the variability that your model explains vs the variability it doesn't


## P-VALUE

In regression, the p-value is the probability that your model is useless

- In other words, the likelihood that you got a relationship this "strong" when no relationship exists

Linear Relationships

- The lower the p-value, the stronger the evidence that there is a relationship between the variables


## Regression

 BasicsModel Evaluation

## Multiple linear

 Regression
## HEY THIS IS IMPORTANT!

Remember to set the significance level ( $\alpha$ ) before calculating the $p$-value!

## ASSIGNMENT: MODEL EVALUATION

1NEW MESSAGE
November 11, 2023
From: Nick Normal (Head of Student Placement)
Subject: RE: Employability Improvement

Hi!
I can't believe what I'm seeing here - Tommy will be thrilled!
Can we trust really trust this?
We did all sorts of confidence intervals and hypothesis tests on the mean, and I just want to be confident here as well.

Is there any way you can check that with $95 \%$ confidence?
Great work once again,
Thanks!

## Key Objectives

1. Calculate the $\mathbf{r}$-squared value
2. Calculate the standard error
3. Confirm the homoskedasticity
4. Run a hypothesis test
5. Draw a conclusion on the accuracy of the regression model's predictions

## PRO TIP: MULTIPLE LINEAR REGRESSION

Multiple linear regression is used for predicting a single dependent variable based on multiple independent variables

Linear Relationships

## Regression

Basics

Mode
Evaluation
Multiple Linear Regression

- In other words, it's the same linear regression model, but with additional " $x$ " variables


## SIMPLE LINEAR REGRESSION MODEL:

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

MULTIPLE LINEAR REGRESSION MODEL:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{n} x_{n}+\epsilon
$$

## PRO TIP: MULTIPLE LINEAR REGRESSION

To visualize how multiple linear regression works with 2 independent variables, imagine fitting a plane (instead of a line) through a 3D scatterplot:

## Linear <br> Relationships

```
Regression Basics
```

Model Evaluation

Multiple Linear Regression


## PRO TIP: MULTIPLE LINEAR REGRESSION

The multiple linear regression model has two additional metrics to evaluate:

- The Adjusted R-Squared "penalizes" the R-Squared value based on the number of variables

Linear
Relationship:

Regression
Basics
Model
Evaluation
Multiple Linear Regression

- The Coefficient P-Values show the probability that each independent variable is meaningless

EXAMPLE Predicting Employability (After) based on Undergrad Grade \& Employability (Before)


## KEY TAKEAWAYS: REGRESSION ANALYSIS

## Numerical variables commonly have linear relationships

- The correlation (r) measures the strength and direction of the relationship, but does NOT imply causation!


## Regression lets you predict " $y$ " values for any given " $x$ " values

- Correlation should exist between the variables, and causality should be logically possible

The regression model is the line that best fits through the data

- It's described by an equation with a $y$-intercept, slope coefficients for each " $x$ " value, and a residual (error)


## You can evaluate the accuracy of the model with several metrics

- The $R^{2}$ value measures how well the line fits the data, the standard error measures the average distance between the line and the data, and the p-value helps you confirm that the model can be used for prediction


## MAVEN AIRLINES | PROJECT BRIEF

You are a BI Analyst at Maven Airlines and were just put in charge of a major project that could potentially get you promoted to Senior BI Analyst

From: Peter Plane (Senior BI Analyst)
Subject: Cost Formula

Hey there!
We managed to get our hands on some data that could help us forecast our annual costs. It includes the fuel price, load factor (what percentage of seats are filled on average), and an index for the output (revenue per passenger mile), which we have forecasts for.

Could you use that to produce a reliable formula we could use?
Thank you!

Forward

Key Objectives

1. Check if a linear relationship exists between the variables
2. Build a simple linear regression model for the variable with the best correlation
3. Build a multiple linear regression model using all the variables
4. Compare the models' performance
5. Select the best model for the forecast

[^0]:    PRO TIP: Use CORREL() or PEARSON() to calculate the correlation between variables in Excel

