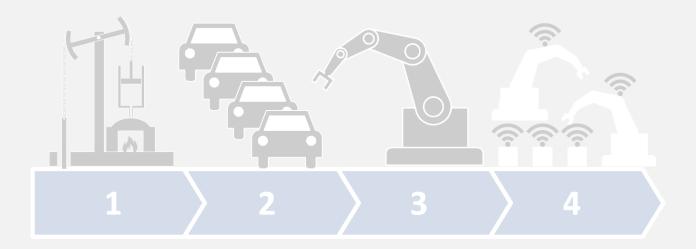
Analytics in Industry 4.0

IR 4.0 and Key Technologies (Pillars)

Industrial Revolution


IR 4.0

A collective term for technologies and concepts of value chain organization. Based on the technological concepts of **cyber-physical systems**, the Internet of Things and the Internet of Services, it facilitates the vision of the NextGen Transformation.

IR 4.0

Americans prefer to call this concept- smart factory and Europeans call it-Industry 4.0 (Germans came up with the term). So don't be baffled when you hear terms like smart factory and Industrial IOT. They all refer to Industry 4.0 as there is no consensus about how we call it.

It refers to the current and developing environment in which digital technologies are changing the way we live

and work. More commonly used in industrial and operational context.

First programmable logic controller (PLC) – Modicon 084 1969 Ubiquitous connectivity of people, machines and real time data *Today*

IR4.0 – Digital-Physical Systems Use of cyber physical technologies

First production line, slaughter-houses in Cincinnati 1870

IR3.0 - Automation

Use of electronics and IT to further automate the production

First mechanical loom

IR2.0 - Electrification

Introduction of mass production based on the division of labor and help of electrical energy

IR1.0 - Mechanization

1784

Start of mechanical production facilities using water and steam power

End of 18th century Beginning of 20th century

Beginning of the Seventies

21st Century

Key drivers

Maturation of new cyber physical technologies (artificial intelligence, 3-D printing, robotics)

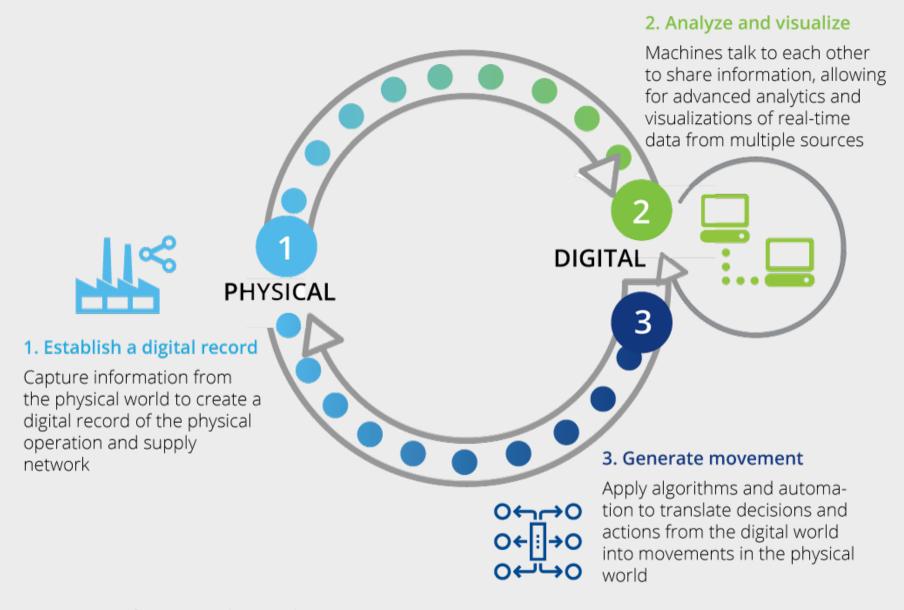
Pervasive sensing and actuation

Data analytics driving efficacy and effectiveness and new business models

Unprecedented levels of data and increased computing powers

Time to reach 100 Million Customers

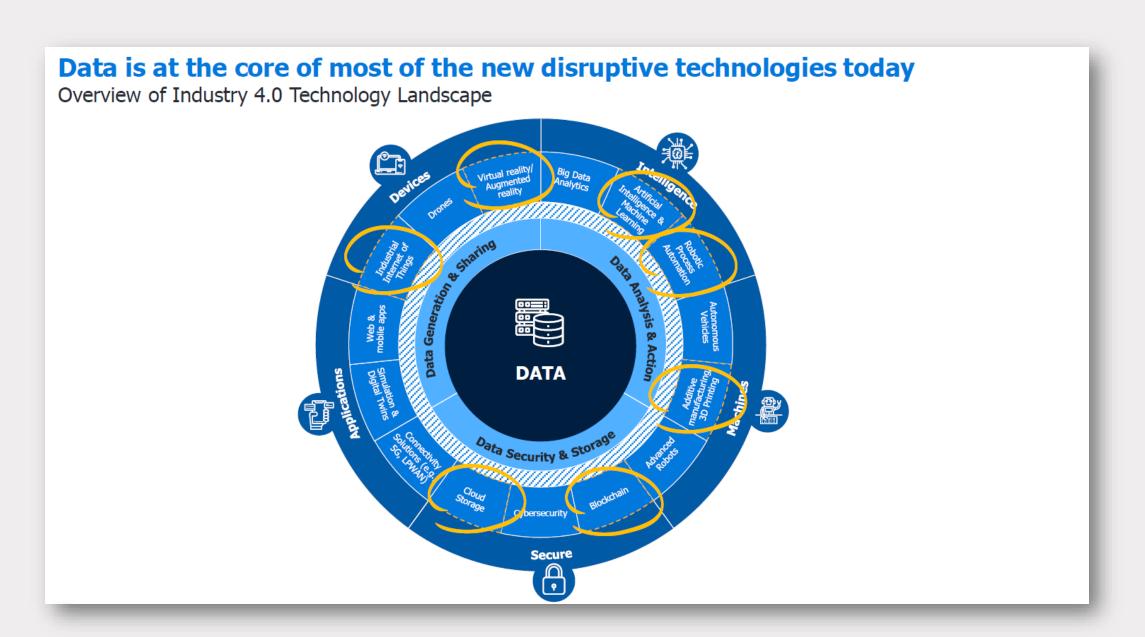
Telephone	75 Years
Web	7 Years
Facebook (Meta)	4 Years
Instagram	2 years
Pokémon Go	1 month



Why?

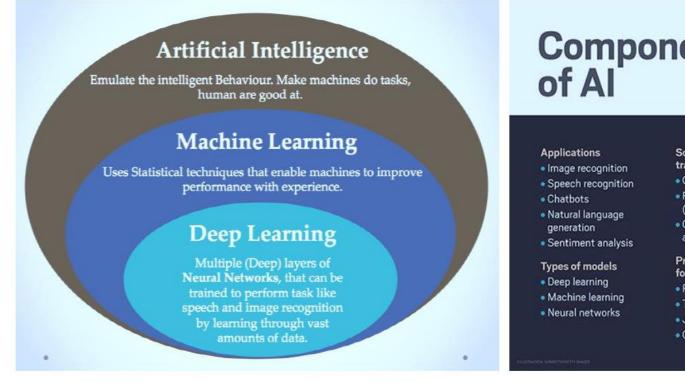
CPS

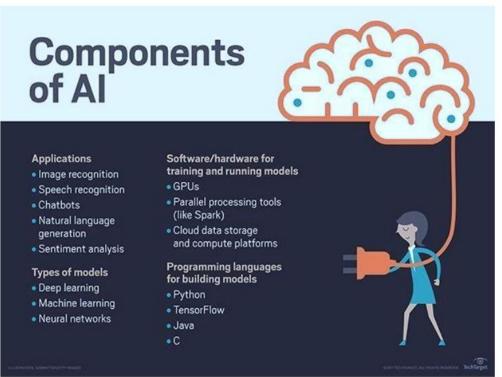
A cyber-physical system (CPS) is a system of collaborating computational elements controlling physical entities.



Source: Center for Integrated Research.

Deloitte University Press | dupress.deloitte.com


The Pillars of Industry 4.0



1. Artificial Intelligence and Machine Learning

AI is the simulation of human intelligence processes (e.g., learning, reasoning) by machines, especially computer systems. Growth propelled by advanced in computing power & storage and explosion of data.

1. Artificial Intelligence and Machine Learning

There is value in having the Best of Both

Humans are better in...

• Displaying empathy and humor

- Flexible, adapting skills to different situations
- · Understanding context, picking up cues
- Critical thinking, defining problems and creative pursuits
- · Refine motor skills and dexterity

- · Performing repetitive work
- Working in predictable, structured environments
- · Processing huge data with speed and accuracy
- Working 24/7 without breaks or distractions
- Gross motor skills, doing dangerous work such as underwater rescue or bomb disposal

>80%

<20%

Degree of automation

Providers/Counsellors

Hairstylist

· Data entry, Accounting

· Warehouse Stockist

• Bomb Disposal

1. Artificial Intelligence and Big Data Analytics

Four kinds of applications for Artificial Intelligence and Machine Learning

Descriptive What happened?

Integrating and processing structured and unstructured data from disparate sources

- Statistical analysis and modeling
- Data visualization and dashboards

Diagnostic Why did it happen?

- Root-cause-analysis
- Find hidden correlations
- · Identify characteristic patterns
- · Segmenting Customers and Employees

Predictive What will happen?

- · Predictive models for forecasting and preemptive failure diagnosis
- · Learning algorithms can adapt to new data and conditions
- · Categorizing based on behavior, Forecasting Demand/Sales

Prescriptive What to do about it?

- Optimization models to improve operation and performance
- Data-driven recommendations on actions and strategies
- · Product Recommendation, Route Optimization

Data wrangling

Extraction, scrapping, aggregation, cleaning, transformation, filtering

Feature engineering Statistical analysis, feature extraction and selection, image processing, dimensionality reduction

Data visualization

Clustering

K-Means, mixture models, densitybased spatial, hierarchical

Pattern recognition Kalman filter, dynamic time warping, hidden Markov, graph based

Probabilistic modeling Bayesian, ANOVA, stochastic correlation Classification

Naïve Baves, SVM, kNN, random forest, neural networks, deep learning

Regression

Time series modeling, linear / logistic / multivariate regression, decision tree

Bagging, boosting, ensemble learning

Optimization

Stochastic gradient descent, simulated annealing, evolutionary algorithms

Simulation

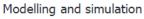
Markov models, agent-based, Monte Carlo, DES, PDES, fuzzy logic

Recommender systems Collaborative filtering, graph based

Big data and cloud infrastructure

Spark

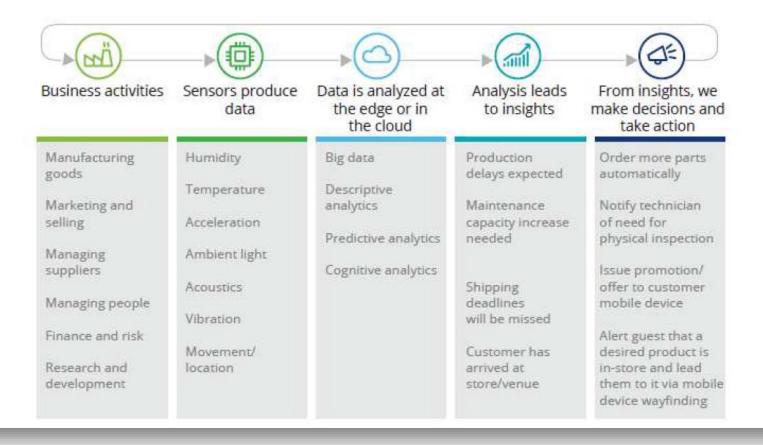
Graphana



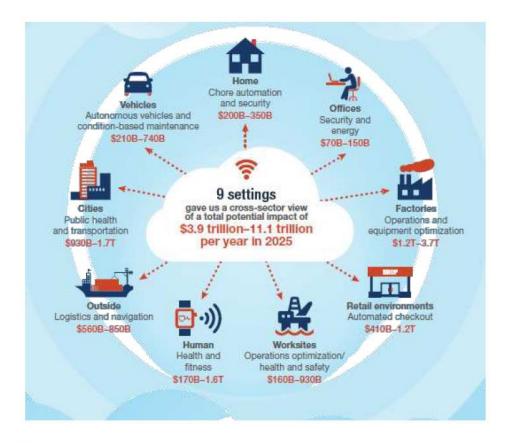
Data analysis and Machine Learning

Visualization and interfaces

React



2. Internet of Things (IoT)


IoT offers the ability for physical objects or humans to generate and communicate meaningful data (e.g., about their condition, position) for analysis and subsequent action

2. Internet of Things (IoT)

Major use cases and applications

Setting		Description	Examples
<u>_</u> →"))	Human	Devices attached to or inside the human body	Devices (wearables and ingestibles) to monitor and maintain human health and wellness; disease management, increased fitness, higher productivity
4	Home	Buildings where people live	Home controllers and security systems
	Retail environments	Spaces where consumers engage in commerce	Stores, banks, restaurants, arenas—anywhere consumers consider and buy; self-checkout, in-store offers, inventory optimization
الم	Offices	Spaces where knowledge workers work	Energy management and security in office buildings; improved productivity, including for mobile employees
	Factories	Standardized production environments	Places with repetitive work routines, including hospitals and farms; operating efficiencies, optimizing equipment use and inventory
K	Worksites	Custom production environments	Mining, oil and gas, construction; operating efficiencies, predictive maintenance, health and safety
	Vehicles	Systems inside moving vehicles	Vehicles including cars, trucks, ships, aircraft, and trains; condition based maintenance, usage-based design, pre-sales analytics
	Cities	Urban environments	Public spaces and infrastructure in urban settings; adaptive traffic control, smart meters, environmental monitoring, resource management
تصا	Outside	Between urban environments (and outside other settings)	Outside uses include railroad tracks, autonomous vehicles (outside urban locations), and flight navigation; real-time routing, connected navigation, shipment tracking

3. Augmented and Virtual Reality

AR is an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information

1. Source of the data

- SensorsCameras
- Internet of Things

Environment

- 3. Interacting with, and using, the data
 - Gestures
 - Voice commands
 - Gaze and attention

Presentation of the data

- Visual overlay
- Auditory cues
- Live video

Worker

tablets and handheld devices: Most AR is

consumed via smartphone apps

Smartphones,

- AR games (e.g., Pokémon Go, Real Strike, Harry Potter Wizards Unite)
- Social media apps (Snapchat and Facebook)
- Third-party AR platforms and apps (Thyng, Blippar, Zappar, HP Reveal)
- GPS and navigation apps (Sygic, AR City) and branded apps (Ikea, Sephora)

Systems at the point-of-sale:

AR accessed in a variety of locations via kiosks, mirrors and special screens to help users learn about products and try things out

COMMON DEVICES

- Lego AR kiosks shows in-store shoppers how the completed project would look
- Uniqlo, Neiman Marcus and Rebecca Minkoff have offered fitting rooms with ARenabled mirrors that let shoppers learn, view different combinations and instantly place orders

Headmounted displays

glasses:
 Snapchat
 Spectacles
 camera
 sunglasses,
 Glass

(HMDs) &

- Glass
 Enterprise
 Edition
 (formerly
 Google
 Glass),
- Microsoft HoloLens,
- Epson Moverio
- The Vuzix
 Blade AR
 and
- The Magic Leap One

Head-up displays:

 Transparent displays augment users' realworld views with useful data about what's in front of them

Web-based AR:

Enables
 users to load
 and view AR
 experiences
 across
 different
 mobile and
 desktop
 browsers

3. Augmented and Virtual Reality

Use case and applications

Connect

Collaborate without colocation – connect people remotely, communicate and enable individuals to view/interact with the same data/viewpoint

Know

Augment data and resources to give professionals, engineers, and designers a new way to do their jobs

Learn

Immerse in training, analytics, and research, lowering time, risk and cost required

Explore

Bring consumers on a journey of exploration across time and geography

Play

Deliver Digital Reality experiences through content creation, enablement and consumption

Think

Evaluate solutions, devise best practices, build business cases and determine a long term vision

See-What-I-See

Holo-presence

Field Services

Repair & Diagnostics

Equipment Installation

Architecture

Maintenance

Design

Medical

Analytics

Safety & Compliance

Qualification

Gamification

Behavioral Analytics

Augmented Shopping

Travel & Hospitality

Events & Conferences

In-Store Experiences

Augmented Catalogs

Enhance physical products

Immersive Mobility

Story Telling

Live Events

Location Based

Gaming

360

Strategy & Vision

Vendor Assessment

Use Case Scoring

Business Case

Ecosystems

3. Augmented and Virtual Reality

Use case and applications

RETAIL

- Augmented Shopping
- Live Events
- · Behavioral Analytics
- In-Store Experiences
- Augmented Catalogs
- Immersive Training
- Enhance physical products

CONSTRUCTION

- Architecture
- · Location Based visualization
- 360 degree experiences

MANUFACTURING

- Immersive Training
- · Enhance physical products
- Maintenance
- See-What-I-See
- Field Services
- Repair & Diagnostics
- Equipment Installation

EDUCATION

- · Immersive Training
- · Storytelling
- Gamification

HEALTHCARE

- · Immersive Training
- Safety & Compliance
- Treatment

GOVERNMENT

- · Immersive Training
- Maintenance
- See-What-I-See
- Field Services
- Repair & Diagnostics

PHARMA

- Immersive Training
- Safety & Compliance
- Maintenance
- Visualization

REAL ESTATE

Visualization

4. Robotic Process Automation

Software based automation tool that automates routine tasks. Robot has a user ID just like an employee and can perform rules-based tasks such as accessing email and systems, performing calculations, creating documents and reports, and checking files

4. Robotic Process Automation

Use case and applications

FINANCE

- Accounts Receivable / Pavable processing
- Account / Bank Reconciliations
- Financial Planning and Analysis
- Financial review preparation

CALL CENTERS

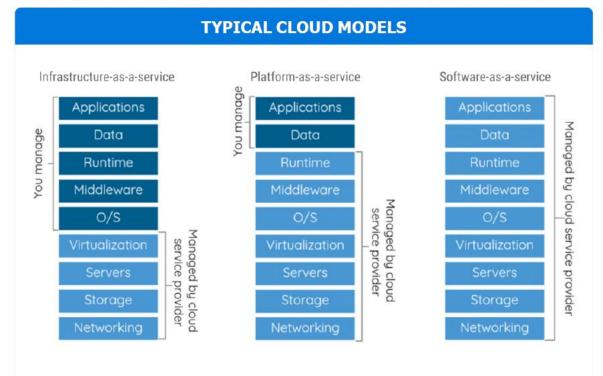
- Customer set up and maintenance
- · Call Center reporting
- Customer reporting
- · Ongoing customer engagement

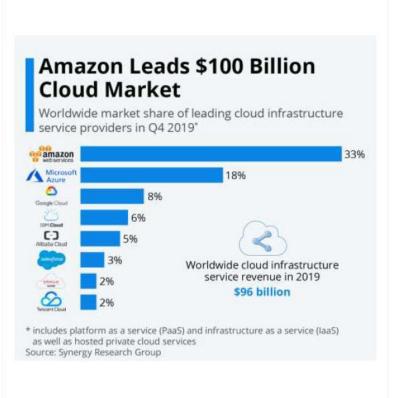
IT

- Software installation
- Application Testing
- Ongoing Server application monitoring
- Automated Reporting

SUPPLY CHAIN

- Supplier Risk Management
- Procurement Data Management
- · Requisition to Pay
- Strategic Sourcing

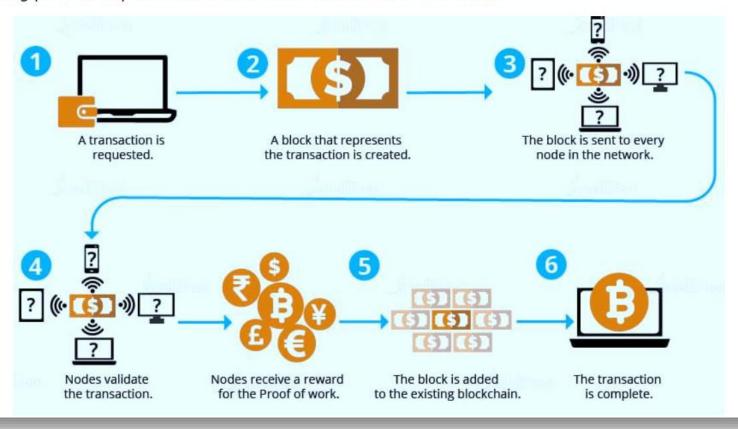



HR

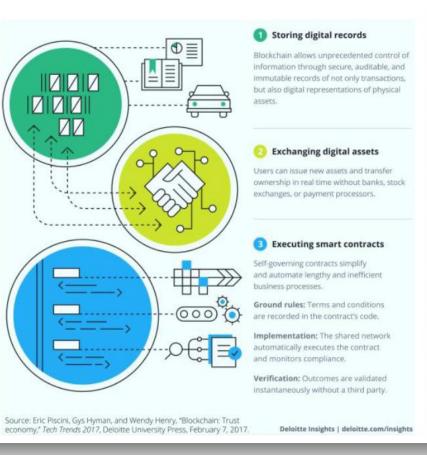
- On Boarding
- · Payroll batch import & validation
- Employee Master Data
- HR Spend Analytics & Reporting

5. Cloud Storage

Accessing computing resources —including servers, storage, databases, networking, software, analytics, and intelligence—over the Internet and offering real time interaction. Can be private or public.

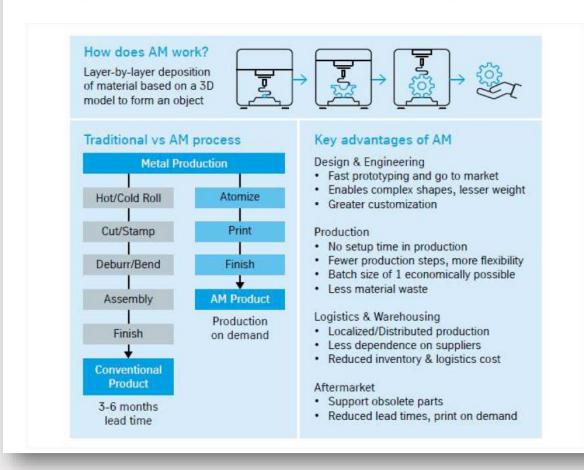


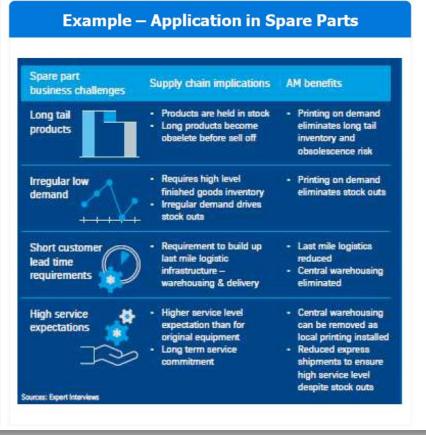
6. Blockchain

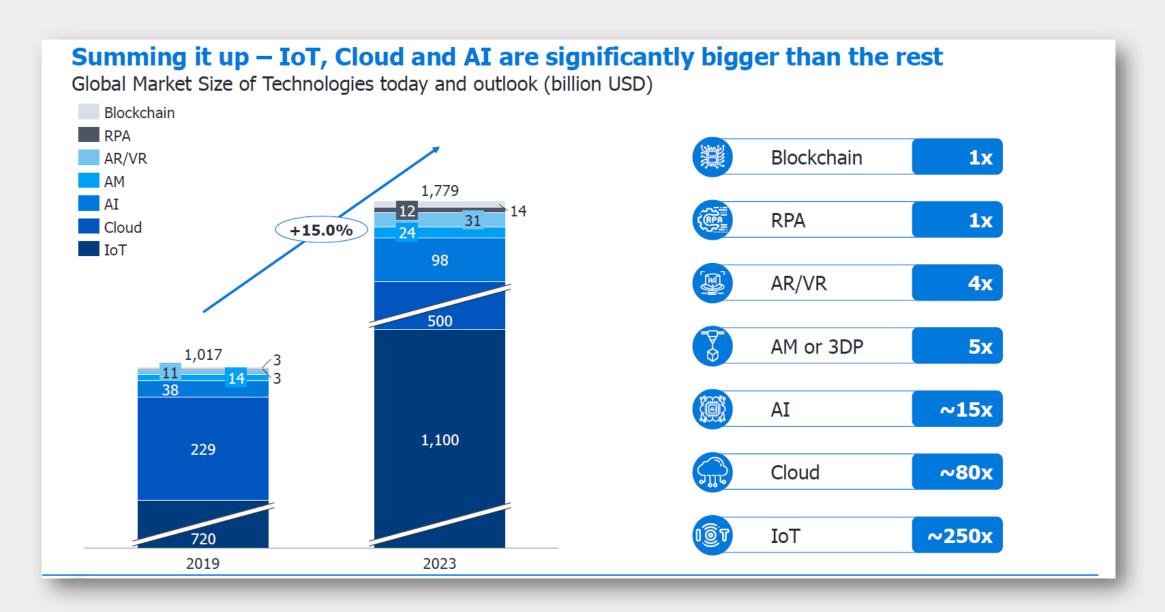

Blockchain is a digital and distributed ledger of transactions, recorded and replicated in real time across a network of computers or nodes. Every transaction must be cryptographically validated via a consensus mechanism executed by the nodes before being permanently added as a new "block" at the end of the "chain."

6. Blockchain

Use case and applications




Industry	Blockchain-based applications		
	 International payments in a faster, cheaper, and more secure way with lower counterparty risk¹⁷ 		
Financial services	Registry for better Know Your Customer (KYC) checks and compliance Trade finance blockchain platform to improve and accelerate the financing of		
	international trade		
Health care	 Ability to share clinical trial launches and enrollments in real time to better match patients and prevent double enrollments 		
	 Smart contracts to connect different parties—such as providers, insurers, vendors and auditors—and automate transactions¹⁹ 		
Public sector	Registry to manage the digital identity of people and the ownership and transaction information on different assets such as real property and vehicles to		
	increase efficiency and reduce fraud ²⁰		
	Enhanced security and transparency of voting in public election ²¹		
Energy and resources	 Smart contracts for more efficient and faster execution of energy trades and payments²² 		
	 Managing and recording oil and gas transactions and connecting suppliers, shippers, contractors, and authorities via blockchain to improve supply chain processes²³ 		
Technology, media, and telecom	 Storing cryptographic hash of original music, linked to digital identities of owners, and using smart contracts to facilitate compensation for music²⁴ 		
	 Supporting data storage and interaction among a large number of IoT devices in a cryptographic format to help mitigate security concerns²⁵ 		
Consumer and industrial products	Better management of loyalty points programs in retail and travel and hospitality		
	 Streamlining the vehicle buying and leasing process with less documentation and automated payments²⁷ 		
	 Enhanced supply chain management, especially traceability across products from its inception at manufacturer to usage by end customer²⁸ 		


7. Additive Manufacturing (or 3D Printing)

Layer by layer deposition of material to make desired object with often complex and intricate design on demand

Core Technologies – For Banking

A.B.C.D
AI, Blockchain, Cloud, Data Analytics