Data Engineering

Powered by

A

python’

Presenter

Microsoft
CERTIFIED

AZURE
DATA ENGINEER
* *

Microsoft
CERTIFIED

AZURE
DATA SCIENTIST

Mohammed Arif, phD
Lead Data Scientist

Big Data | Machine Learning | Al

ASSOCIATE ASSOCIATE

Mohammed Arif has more than nineteen (19+) years of working experience
in Information Communication and Technology (ICT) industry. The highlights
of his career are more than seven (7) years of holding various senior
management and/or C-Level and had five (5) years of international ICT
consultancy exposure in various countries (APAC and Australia), specially on
Big Data, Data Engineering, Machine Learning and Al arena.

He is also Certified Trainer for Microsoft & Cloudera.

SPARK & HADOOP
DEVELOPER

<
o

S
‘é’ | LEVH ft fz
[@ Microsof 2
= m

= =

MCT

Trainer

2023 . p02%

Related Resources

https://arif.works/de

https://arif.works/de
https://arif.works/de

Disclaimer

o Data Engineering is a vast domain

o Emphasize on Practical / Industry Implementation

o Take it as Experience Sharing Session

What is data engineering?

SQL Python
Data ingestion ML/AI
Data modeling Data quality
Data observability Data versioning

ETL

DataOps

Data governance

Data cleaning

Data warehouse

Cloud infra

Security

Optimizations

What is data engineering? pata > “Flow”

Upstream

Data producers

amazon

Buy now

[Website]

Data manipulated
(Data engineers)

order_id amount

1 1000

[Order]

Downstream

Data consumers

Many producers and consumers

@ . mongo

PostgreSQl

22 Dropbox

Google
7= KLAVIYO
mailchimp

() shopify

stripe 5" slack

1[zendesk @

Data engineering

Senior exec team
Finance team
Marketing team
Business analysts
Data analysts
Data scientists
ML engineers
Web app
Mobile app
Reverse ETL

Website

Payment
Processor

CRM

Data sources

stripe

salesforce

J

Example - Business analytics (or Bl)

Data engineering

customers

orders

PK

FK
FK
FK

id
order_date
amount
customer_id
product_id
payment_id

< PK

id
first_name
last_name
address

products

= PK

id
variation
size

payments

PK

lid

status
processor

Data analysts

642

® Live Information :

o N oW Mn L . u

C I N I]

.
-m
T
' 'l <+
RN " Wi 2148

Example - Real-time

Delivery person

~—
~

r

GraoFood

L £ -_ R
A

Happy Noodle Shop

Accept order

\

Real-time
GPS
Coordinates

\s

Data engineering

§€ kafka
éFlink

Event Processing &
Streaming System

Real-time
processed
events

\’

Mobile app

(

-— \
GraoFood

Why is it important?
Explosion of data sources

mailchimp 32 Dropbox Ll . mongo @ 2% zendesk

PostgreSQL

coode stripe s:slack > kiavivo [} shopify

Analytics

Why is it important?

Explosion of data uses
Demand
Yinstacart Forecasting Al

i o N . 642

 Uive informanen [+ H

ee— 4

Bell Pepper Trio Sliced

11b container

I = Uikely outof stock

[Data Pipeline]

[Undercurrent]

End-to-end data pipeline

Generation

Orchestration

Data engineering

Ingestion Transformation

Storage

Data
Security DataOps
governance

Analytics

Serving ML/AI

Reverse ETL

Software

Data quality Engineering

End-to-end data pipeline

Data engineering > Analytics
[Source System] Generation — Ingestion —~> Transformation —> Serving =*=== ML/AI
Storage

S Reverse ETL

1 A stripe
L e & 72 KLAVIYO

i

Website events

End-to-end data pipeline

Data engineering Analytics
Generation Ingestion Transformation Serving ML/AI
Storage

Reverse ETL

MQSQRL PostSQl_ - AWS S3

Compute vs Storage

Compute

-

Storage

s~
=y
< >,
[)

Lit.woeks

Undercurrents

N—2
ALie.woeks

[Historical Context: Data Engineering]

1980-2000: Data warehouses

Data warehouses
+

Scalable analytics (BI)

MPP:
Massively Parallel Processing

Bl engineer
ETL developer
Data warehouse engineer

On-prem (vs the Cloud)
Monolithic data stores

2000s: The beginning of “Big Data”

The birth of the Cloud

Internet + Google, Amazon, etc. . .
g (built on cheap, commodity hardware)

AWS 2003 Google publishes a paper on
starting with S3 and EC2 MapReduce - Hadoop

2000s-2010s: Big Data engineering

Hadoop Ecosystem:

Big Data = Hadoo
9 P Hadoop, YARN, HDFS

» A lot of work to manage
» Requires a specialized engineering
team

2020s: Modern Data Stack

Data engineering

Data producers Ingestion Transformation v Serving _ Data consumers
Storage
[Compose together Lego-like 47) Airbyte Ay meltano dltHub R dbt Core

modular components]
Al iiwow ®dagster P PREFECT I Flyte

,,,,,, W4 i
[No single tech stack that Spor‘l’g 2 trino U} "" ClickHouse
makes up the entire pipeline]

Sfsnowfloke ICEBERGRJ) L)\ DELTA LAKE Wrivon

mifiow @ FEAST (& %taun dHCORE [

Data maturity : determines the complexity of your data pipeline.

Typical use case

Data volume

Team size

Tech maturity

Start

Start

Data analytics

Small

Small team

Very basic
(e.g. monolithic DB)

Scale

Scale

+ Data products

Medium to large

Bigger team

Proper data practices
(e.g. automation,
DevOps)

Lead

Lead

+ Real-time, ML/AI

Large to huge

+ Data science team

ML/AI features
Enterprise features

Data engineer’s place within the data team

Data producers Data consumers

[Bridge]
Software engineers Data scientists

Data engineers

DevOps engineers Data analysts

Responsibilities - business & technical

Business responsibilities

Communicate with both technical
and non-technical people

Understand how to scope and
manage a data project

Minimize cost and work within budget

Create a good data architecture

Build and manage a reliable and
performant data pipelines

Security, data governance,
automation, observability, etc.

Data Engineers:

Required technical skills

Basic DevOps
SQL Pyth Bash
< ython (e.g. Docker) as

F o
“,.‘ L

£ 5
ST T] Ll
: “ & el T

r)
Yy

Generation [source systems]

Generation

—

Ingestion

~> Transformation

Storage

%

Serving

>

e

S

Analytics

ML/AI

Reverse ETL

Structured vs unstructured data

Structured data Unstructured data
order_id user_id amount 2 LOQS or events
+ Images
1 3 $20 » Audio
» Video
2 61 $25

Free-form text

3 33 $10

SQL Deep Learning

Bl, Classical ML (small # of features) Neural networks (large # of features)

Types of databases

Non-relational
database Key-value store
(NoSQL)

Relational database
(RDBMS)

Relational database (RDBMS)

MySaL: PostgreSQL

order_id

amount

$20 & order id i
custamer_id im

$25 product_id i
qty im
amount float

$10

-

CuUstomers

| o customer_id
name varchar
emnail varchar
city varchar
state varchar

| ¢ productid
productname varchar
category varchar
price float

supplier varchar

NoSQL database

Relational databases NoSQL databases
Tabular structure JSON structure
Strict schema Flexible schema
Normalized De-normalized
Single-machine Distributed
|
customer_id name
1 John Doe .
2 Jane Doe

3 Alan Smith

Key-value store

’m

Pink Gorilla
$30

Add to cart

Memory-based

Caching application data
Very fast lookup / High concurrency
Data not persisted

Persisted

Fast performance
Simple / Single table
Easy to use (store anything in value)
Highly scalable

Third-party systems via API

REST AP 32 Dropbox 4”. zendesk
| Sosde. () shopify @

Analytics
7Z=> KLAVIYO stripe Etsy
gRPC mailchimp 3" slack HubSpHit

GraphQL

Event streams

Event producers

Event consumers

Event broker

Event streams

Delivery person

~—
-~

4 = 3
GranoFood

7 MO
e »'3’,}11"

oA

Happy Noodle Shop

Real-time
GPS
Coordinates

\S

Event broker

Mobile app

f

GraoFood

\

Event streams

Microservices Microservices
Cart service Cart service
Payment service Payment service

Event broker

Fulfillment service Fulfillment service

...100s more ...100s more

Messages arriving in the wrong order

Mixed order Properly sorted

1 |6 4 S5 [3 2 Event broker 6 5 4 3 2 1

Exactly-once vs at-least-once delivery

Exactly-once delivery

i 151 N B B3 B2 Event broker

At-least-once delivery

'® BB B B Event broker 6

8 B &4 B 2

Event “1” is duplicated

S 4 3 2 1

1

1

[Insert : Not Idempotent]

[Merge : Idempotent]

Idempotency

INSERT operation

id row_id

100

MERGE operation

id row_id

100

[An operations is “idempotent” when the same result comes out no

matter how many times you run it.]

INSERT row_id = 123

id row_id

100

101 123

MERGE row_id = 123

id row_id

100

101 123

INSERT row_id = 123

id row_id
1

100

101 123
102 123

MERGE row_id = 123

id row_id

100

101 123

Why is idempotency so important?

Event “1” is duplicated
At-least-once delivery

B B B B B > Event broker <1 B B B B R R

(INSERT row_id = 123

Internet connection problem - RETRY

Popular event streaming platforms

Amazon
AWS SQS Kinesis RabbitMQ Kafka Pulsar Spark

E & ZXPULSAR Spor

ar

€

Caveats

Do NOT consider the source systems as someone else’s problem

Upstream source system 2 Downstream data pipeline

Validation and testing Communicate with your data producers

Storage

Storage hardware

HDD (Hard Disk Drive) SSD (Solid State Drive)

Memory (RAM or Random Access Memory)

Storage formats - serialization

: Turning data into byte streams to easily save or transport it
File

Byte stream
Data Serializer Data store

Memory

|:5| pandas Serializer % Parquet

We serialize the data into standard format which is sent around and
deserialized on the receiving end

Storage formats - serialization

Row-based serialization

file formats

« XML
 JSON
« CSV

- Fast lookup of
individual rows

Row-based databases

Column-based serialization
file formats

Parquet
ORC
Avro

Arrow
- Aggregation by Column

Columnar databases

Compression and caching

Compression Caching
e Reduce the amount of data stored » Some storages are faster to access
o Faster query (less to search) « Memory is 1,000x faster than SSDs and
» Faster transport (less data to move) CPU caches are orders of magnitude

faster than memory
» Faster storage is more limited and
expensive

Single machine vs distributed storage

Vertical scaling Horizontal scaling

5vCPU 5 vCPU

10TB 10TB

5 VCPU 20 vCPU 5 VCPU
10TB 40TB 10TB

5 vCPU 5 vCPU

10TB 10TB
Distributed Distributed

Storage T Compute

...... J‘Z WA b o
1 556K K trino Imezn seronion

Strong vs eventual consistency

Strong consistency

order_id: 2
amount: $20
order_id amount
1 $10 DB server 1
2 $20

Client 1 Client 2 Client 3

Eventual consistency

order_id: 3
amount: $30

order_id amount \f L l order_id amount

1 $10 1 $10
 — DB server 1 DB server 2 —
2 $20 2 $20
VN AN
3 $30 3 $30
. .

Client1 Client2 Client3 Client4 Client5 Client6

ACID vs BASE

Single-machine
transactional
database

ACID

» Atomicity

» Consistency
« Isolation

e Durability

Distributed
database

BASE

» Basically Available

» Soft-state

» Eventual consistency

Type of storage systems

File Block Object
storage storage storage
e Localfs « HDD/SSD e AWS S3
e NAS « AWS EBS
e Cloud fs

Cache
storage

« RAM
e Memcached
e Redis

Streaming
storage

 Buffering

» Often
ephemeral,
but can be
persisted

File storage vs object storage

Scale Structure Latency Updates

File <= Millions File = Tree File = Fast File = Mutable
Object = oo Object = Flat Object = Slow Object = Immutable

OLTP vs OLAP (or Row vs columnar)

order_id customer_id order_date amount
1 a Jan 29 1000
2 f Jan 30 1250
100 d Mar 10 3500

v' Specific row, Single transactions
v Online Transaction Processing (OLTP) : row-based database

OLTP (row-based database) in memory: (e.q. PostgresQL, MongoDR)

1 a Jan 29 1000 2 f Jan 30 1250 100 d Mar 10 3500

. v Analytics use case (aggregating total Orders, total customers etc.)
OLAP (column-based database) in memory: . online Analytical Processing (OLAP) : column-based database

1 2 100 a f d Jan29 Jan 30 Mar 10 1000 1250 3500

OLTP vs OLAP (or Row vs columnar)

HDD (Hard Disk Drive) SSD (Solid State Drive)

OLAP (columnar) databases OLTP (row-based) databases

Volumes are important Speed is important

Data warehouse, lake, lakehouse

Data warehouse

e« OLTP - OLAP
» Well organized

Data lakehouse

ICEBERGRY Mhiidi

A\ DELTA LAKE

. amazon i) Google
REDSHIFT

Big Query

. Data lake ‘ AWS S3
X snowflake

» Inexpensive object storage
e Structured & unstructured
» Easily becomes “data swamps”

Object storage Open table format
b Aws s3 + ICEBERG{J
« OLAP

» Advantage of the warehouse + lake
» Good integration with external query engines

Separation of compute from storage

Pulls data
Compute

St
orage (query engine)

Scales independently

..
.AWS S3 + ICEBERGAY 2 trino

Data storage lifecycle - hot, warm, cold

High data access frequency Low data access frequency

Hot Warm Cold

‘ AWS S3 . AWS S3 . * AWS Glacier .

Infrequence access tier
Azure Data Lake Azure Data Lake
Storage Storage

» Accessed often » Accessed infrequently » Rarely accessed
e Expensive e Inexpensive « Very cheap
o Fast

Azure Data Lake
Storage

g Data Ingestion

Ingestion

Analytics

Generation Ingestion Transformation Serving ML/AI

Storage
Reverse ETL

Ingestion

Ingestion = Source systems ——> Storage system

Frequency of ingestion: batch, micro-batch, streaming

Batch Micro-batch Streaming
 Daily or hourly e Minutes to seconds e Seconds to sub-seconds
e Ex. Tax reporting e Ex. Near real-time e Ex. Uber

analytics

ETL vs ELT

ETL

Data sources

ELT

Data sources

Extract

Extract

Transform

Load

Load

Storage

Storage

Transform

Scalability and schema changes

Scalability Schema changes
» Make sure your system can scale up e Upstream changes to fixed schema will
and down automatically based on break the ingestion pipeline
workload » Schema migration features help, but not
» For streaming data, add a sufficient perfect - frequently communicate with

buffer for fluctuating event volumes upstream teams

Ways to ingest data

DB connection JDBC
cDC 0% AN

PostgreSQL. MySClL

Ways to ingest data - CDC

Customers table
customer_id Address
COPY (first time)
1 123 Disney St Data Lakehouse
customer_id Address
1 123 Disney St COPY (second time)

Data Lakehouse
2 7 Another St

Customers table Customers table log
{

customer_id Address customer_id Address op: “update”,
field: "address”,
before: “123 Disney St”,

123 Di —| 1 456 Pi
1 23 Disney St | 96 Pixar Way after: “456 Pixar Way"

Ways to ingest data

APIs | S, 2 wxavivo

Managed

connectors \'Fivetran 3) Airbyte 4y meltano

Streaming g Amazon Kinesis §8 kafka ﬁ PULSAR

@ Data Transformation

P0000TOT00T007494:900090703 080100
010101010

1010101001010000000000]11101010101000000000000000?010
0101

0101010101111170101111 101074 10109090:110101000101 10010101010
0100000001110101070T010T0T0T00000000000COROTON &
1111 T111107010107010101014107070700030101010

H00001010010101111110001010101010%

00001110101010101010101000000000000FRTU1U
01011101010100010¥0 1010101

Transformations

Analytics

Generation Ingestion Transformation Serving ML/AI

Storage
Reverse ETL

Queries

order_id amount

1 1250 - SELECT * FROM orders WHERE order_id=1

ALTER TABLE orders ADD shipping_amount INT

98292 2000

Queries - DDL, DML, DCL

DDL CREATE table customers

(Data definition language)

DML SELECT * FROM orders WHERE order_id=1

(Data manipulation language)

DCL GRANT SELECT ON main_db TO user_name Dave

(Data control language)

What happens when you run a query?

Query issued Parsing Query planning Optimization Execution

Improving the query performance

Reduce the search space (prune, filter, etc)
Use “EXPLAIN" SQL statement

Pre-join frequently joined tables

Vacuum dead records

Leverage caching

Querying streaming data

Windowing Enrichment (stream + other data)
Stream
- Session Window Enriched data
- Fixed Time Window)
- Sliding Window Datain S3

Stream-to-stream joining

Stream buffer

Join processor

Stream buffer

Data modeling

A data model is a simplified version of real-world business activities

Conceptual Logical Physical

Data modeling

Conceptual
customers
o first_name
I™ last_rnarmm
ander_datn pidress
omoune
»
prodactjd i
paymantd Em— vananon
size
. L
ot
Logical
cuslomens
= PK |
onders fesrame
PE | bast_rame
aeder_data address
amourt
PX | custamen s b products
FK |prodect_jd K
FX | payment_d H— veration
e
— P
s
| |proceaser
Physical
OIS _LUTIMS K id
P onder s string 'I’“‘ Aroname
L3 o (string Instname
ackdrens
coders | ordersproducs products
PE snng o = wnng Xl Ny
weder_date | P (product . |string vattion |awng
ot nteger aqe g
FX |papmentd |string
PK
e — o ST | YN
ing

Why do we need data modeling?

Easier to understand how different Allows you to have consistent
business data are connected definitions

Ingredients of successful data modeling

Communicate with the data Model the data at the lowest
consumers from the beginning granularity possible

Normalization

Data modeling with no duplicates DRY Principle - “Don’t Repeat Yourself”

Normalization example

Denormalized “orders” table

id

order_date

Feb 12,2024

Feb 17,2024

Mar 4, 2024

Apr 20, 2024

“orders” table

order_date

Feb 12, 2024

Feb 17,2024

Mar 4, 2024

Apr 20,2024

order_items
MacBook, iPhone
iPhone, iPad
MacBook

Vision Pro

J

order_items
1,3

3,4

customer_email

seungchan@test.com

nami@xyz.com

nami@xyz.com

nami@test.com

customer_id amount
1 350000
2 250000
2 250000
2 300000

customer_name

Seungchan Lee

Nami Kim

Nami Kim

Nami Kim

amount

350000

250000

250000

300000

weight

25

Normalized tables example

“orders” table “products” table

id order_date order_items customer_id amount id name price weight

1 Feb12, 2024 13 1 350000 1 MacBook 250000 5

2 Feb 17,2024 3,4 2 250000 2 Vision Pro 300000 2

3 Mar 4, 2024 1 2 250000 3 iPhone 100000 1

& Apr 20,2024 2 2 300000 4 iPad 150000 1.5
“customers” table

id email full_name

1 seungchan@test.com Seungchan Lee

2 nami@xyz.com Nami Kim

Normalized tables - ER diagram

orders

PK

FK
FK

id
order_date
amount
customer_id
product_id

string
datetime
integer
string
string

customers
= PK |id string
email string

ful_name string

products
= PK |id string
name string

price integer

Different modeling techniques

Inmon Kimball Data vault Wide tables
Highly Normalized Data Flexible and faster iteration Hubs: Core business concept Join many related tables into a
- Star Schema Links: relationship between hubs single highly denormalized table

Satellite : store information about
hubs

Wide tables

“orders” table “products” table

id order_date order_items customer_id amount id name price weight

1 Feb 12,2024 13 1 350000 1 MacBook 250000 5

2 Feb 17,2024 3,4 2 250000 2 Vision Pro 300000 2

3 Mar 4, 2024 1 2 250000 3 iPhone 100000 1

& Apr 20,2024 2 2 300000 4 iPad 150000 1.5
“customers” table

id email full_name

1 seungchan@deepintuitions.com Seungchan Lee

2 nami@deepintuitions.com Nami Kim

Wide tables - denormalized order items

id order_id order_date

1 1 Feb 12,2024
2 1 Feb 12, 2024
3 2 Feb 17,2024
4 2 Feb 17,2024
5 3 Mar 4, 2024
6 4 Apr 20,2024

- Faster Analytical Queries

order_item_id

order_item

MacBook

iPhone

iPhone

iPad

MacBook

Vision Pro

customer_email

seungchan@test.com

seungchan@test.com

nami@test.com

nami@test.com

nami@test.com

nami@test.com

customer_name

Seungchan Lee

Seungchan Lee

Nami Kim

Nami Kim

Nami Kim

Nami Kim

amount

250000

100000

100000

150000

250000

300000

weight

15

Transformations

select id as order_id from orders
_l/
select count(order_id) as number_of_orders from orders

left join customer_orders on customers.customer_id = customer_orders.customer_id

\'.

Source-conformed Business-conformed
X dbt Core
Data Data

g dagster Orchestration SQL vs Code?

Views and materializations
Tables

Stored in physical storage
Retrieved from storage
Requires less compute

Data could be stale

Views (~virtual tables)

Not stored in physical storage
Re-computed every time
Requires more compute
Data is always fresh

Materialization is a process of persisting the query in physical storage

Events vs states

Events States
Immutable Mutable
Event State
Birthday Age

You can derive age from birthday

Streaming vs batch

Streaming Batch

Serving

o
R e R
= Y

Analytics (Bl or Business Intelligence)

Dashboards
Reports

Ad hoc analysis

6 Looker m Power Bl
ﬂ&} +ableau

OO0 Superset

Think backward :
Why this metrics are useful?

FudCme mmer)

6.19K

ACCOUNLs

Trust :
Trust is very hard to gain but easy to lose

ML

CSV

Data lakehouse

Jupyter
Notebook

Feature
store

Object storage
(S3)

Data science
team

Data science
team

@ FEAST T22T0N

Deep Learning

ML Deep Learning
Structured (tabular) data Unstructured data - e.g. images
Limited # of features (100-1,000s) Large # of features (millions)
Smaller datasets Much larger datasets

Relatively small compute (CPUs) Requires lots of compute (GPUs)

Reverse ETL

Ingestion (or ETL/ELT) Reverse ETL

Source systems Storage Storage Source systems

i

DataOps

DevOps DataOps (~DevOps for data)
Build/manage cloud infra Build/manage cloud infra for data tools
Observability of cloud infra Observability of data systems

Build automated CI/CD pipeline Automation (including CI/CD)

Observability and monitoring

Data fails silently!

Automation

Cron jobs
EC2
Cron jobs
Orchestration
Job
Job
Job

EC2

Cron jobs

EC2 failure

Failed cron job

< Requires manual fixing

/) Job
Job

Job
Job

Job

>) Job

Automation - CI/CD pipeline
Most small teams overlook DataOps Learn from software engineering

Example CI/CD pipeline

{ A

Write code ; Automated ; Build ; Container ; Kubernetes ; QA ; Kubernetes

testing registry (Staging) (Production)
Vol
Slack olume Slack

testing

Orchestration

Orchestration layer

Analytics

Generation Ingestion Transformation Serving ML/AI

Storage
Reverse ETL

Orchestration - DAG

Job

Job

Job

Job

Job
Job
ERROR
Job
Job

Job

Job

Job

Job

Why is orchestration so important?

Improve efficiency: Complex dependency Improve reliability:
Parallel executions management Retries and timeouts
Retry
Error Job
Job Job
Job Job Job
Job Job

Job Job

Job

Automation

Job

Why is orchestration so important?

End-to-end visibility

Analytics

Generation Ingestion Transformation Serving ML/AI

Storage
Reverse ETL

Why is orchestration so important?

Data lineage
Job Job Job
Job Job
Job Job
Job Job
Job Job Job

Job

Job

Orchestration tools

A Kiiow P PREFECT @) dagster 2 Flyte

Other undercurrents

Security Privacy
e Authentication e Coming into focus
o Authorization or “Access Control” e High profile breaches

 Principle of least privilege « Personally identifiable information (PII)

Data quality

More nuanced , : Validation
It's all about Data fails ,
than : Testing
)) TRUST! silently .
it seems at first Observability

Data quality

Software problems only happen when
you deploy software, but data problems
can happen independently from code

Data testing is different from software
testing - it’s trickier

Development workflow

Benefits
Development e Fast iteration
(local laptop) « Isolation (safe to tinker without affecting prod env)

e Cost reduction (use local laptop for dev)

Challenges
Production o Sampling a large dataset is not always easy
(AWS) e Dev/prod environment parity not always possible

e Cloud tools not always available locally

i

What is a good data architecture?

Performance Scalability Reliability Expect failure

Security Modularity Cost-effectiveness Flexibility

Lambda & Kappa architectures

Lambda

Source
systems

Kappa

Event stream
source

Stream processing

Stream processing

Stream processing

Streaming

Batch

Serving

Queries

Queries

Modern data stack

Ingestion

Cloud data store Bl/Viz
connectors

Data sources

What factors should you consider when designing your
data architecture?

Speed Size of the team Integration

Start with tools central to the pipeline One caveat:
and that are hard to change Be skeptical of benchmarks

Bl Stack

Data sources

Data analysts

. - 642

Data engineering

® Live infermation :

Stl’ipe —_ Ingest —> Transform —> Serve —

® B O M OB M T W ® W N T

; -m

Lelibiditn iz
salesforce wso aw W wws

© < (3] @®

Bl stack v1 - Data warehouse

@ dagster
X dbt Core
- ‘S‘ meltano ‘ AWS S3 + Stgsnowflake OO0 Superset
sources from areh XK
Production

Development

DuckDB

Central storage

Data .
AY meltano
sources
Production

Development

@ dagster
X dbt Core
‘ AWS S3 + i:o:? snowflake ©0 Superset
Alternatives: . amazon o PG°(°9'f
o « Can your data fit in your laptop?

DuckDB « If not, can you sample your data?

Orchestrator

Alternatives: Airflow
® dagster
X dbt Core
Data — 6‘ meltano > ‘ AWS S3 + 3vzsnowflake > OO Superset
sources e "
/N
Production

Development
N4

o

DuckDB

Orchestrator - Airflow vs Dagster

No local env setup

Dependency management issues

Complex to deploy and manage

@ dagster

Local dev env
Cloud-native, easy deployment, CI/CD

Declarative (rather than imperative)

Imperative vs declarative

Imperative Declarative
The “how” The “what”
Spell out the exact steps Specify the desired outcome

ReactJS kubernetes

Ingestion

@) dagster
X dbt Core
Data . ‘3‘ meltano - AWS S3 + 3Y<snowflake —> €0 Superset
sources fomereh f o |
Alternatives: \\ Fivetran |FH
Production %) Airbyte
Development

DuckDB

Ingestion tool comparison

\\\\‘ Fivetran lf}) Airbyte

Open-source? X v
Ul or code-first Ul Ul
of connectors 100s 100s
Embedded? X X

Ay meltano
v
Code
100s

X

dlk

Code

<20

Transform

@) dagster

» Super-charged SQL
» Code-like powers

2 dbt Core

Data .
? ‘S meltano — . AWS S3 + i"o:ésnowfloke —> OO Superset
SOU rceS fromarch

/N

e Write SQL inside Snowflake

i Fully managed
Production

Development

) 4

o

DuckDB

Visualization

@ dagster
X dbt Core
Data . | W
sources ‘S me"ﬂﬂg — 7 ‘ AWS S3 + 3czsnowflake
Production

Development

o

DuckDB

©0 Superset

Alternatives:
;T} +ableau m Power Bl () Looker

Bl stack v2 - Data lakehouse

® dagster
|
¥ dbtcore <X trino

Data
sources

Ay meltano ‘ + ICEBERG{J

Production

Development

43 + ICEBERG{J

OO0 Superset

Apache Iceberg

Object storage Open table format Works like a d]
‘AWSS3 + ICEBERG (P = Works like a data warehouse
Cannot query it Can query it like a
like a database database with SQL
e.g. via SQL e.g. “CREATE TABLE”
ACID compliant OLAP data store Open table format

Large data volumes Cost efficient

ML stack

® dagster
M dbtCore 4 trino SporﬁZ ML pipeline
Data " o
— meltano + ICEBERG —> FEAST upyter — B
sources o — ' i 7 ~ JUPY
Production Feature store Model training Model inference

Development

4? + ICEBERGA)

Model training

Experiment Data lineage /

Model trainin
9 tracking Data versioning

~ Jupyter o%»RAY mlflow Weights & Biases @ dagster ICEBERGAY

Model serving

Online inference

One it Trained One
a:: ﬂ::: = maodel s prediction
$2,999,000

1222 Fulton St, Palo Alto, CA 94301

Est.: $18,338/mo / Get pre-qualified

i Single Family Residence S Buitin 1926

£ $3.073.200 Zesumate® s, $1,726/5qf1

/[\

Price prediction

Batch inference
Many items ; Trained : Many
atatime model predictions
4 2 1738 _
beds baths sqft Tools:
B BentoML
& 5274t ot
€5 s HOA

Labeling

For training the Al model

Input

Al model

?

Dataset (human labeled)

id img_url label
OUtpUt Label 1 s3://john.jpg True
? T/F 2 s3://lisa.jpg False

10000 s3://blah.jpg True

Deep Learning stack

Data
sources

Production

Development

&5 meltano

®) dagster

L/
X dbtCore & trino Spar

I'] Label Studio I8 +icesercY

Labeling

;? +ICEBERG{J

) orAY —]

Model training Model serving

LLMs?

&) OpenAl

Retrieval Augmented Generation Vector databases

Other considerations

Data validations

e Type validation
e Constraint validation
o Code validation

® dagster M dbtCore () Snateations

Observability

Monitoring, alert, notifications
Upstream schema changes
Detailed logs and stack traces
ALWAYS expect failures

Observe infra, not just data pipeline

Testing

» Unit testing
« Statistical testing

@ dagster

Cl/CD

» Automate CI/CD process
« Automation = more frequent releases

8 . : . .
=’Terraform t2¢ Pulumi OGlthub Actions

Great ! We’ve just finished the overview of

Data Engineering

|
|
|
! .
| :
-
)
s {
_ .
—~ : &
) Y
- F
' i o~ .
’
: L ;
% ‘. >
7 5
¢ i
N

