# Quantitative Data Reasoning

# **Learning Objective**

Probability – Quantifying Uncertainty



- Calculate and interpret probabilities for business decisions
- Apply conditional probability and Bayes' theorem to real scenarios
- Use probability to assess risk and make predictions
- 5

2

3

4

Build probability-based business models for decision-making

• • Our Focus: Transform uncertainty into quantified risk assessments that drive intelligent business decisions.

V Key Question: "How can we measure the likelihood of business outcomes and use this knowledge to make better strategic decisions?"

# **Probability**

### From Uncertainty to Calculated Risk

**The Banking Reality:** 

- Every decision involves uncertainty Will customers default? Will campaigns succeed?
- Risk is the core of banking Lending, investing, and strategic planning all require risk assessment
- Probability quantifies uncertainty Transform "maybe" into "65% chance"
- **Better predictions = better profits** Accurate risk assessment drives competitive advantage

**Banking Applications of Probability:** 

- **Marketing Campaigns:** What's the probability a customer will respond?
- **Credit Decisions:** What's the likelihood of loan default?
- **Product Development:** What's the chance of market acceptance?
- **Branch Planning:** What's the probability of seasonal demand changes?
- **A Risk Management:** What's the likelihood of various loss scenarios?

# Probability

### The Mathematical Foundation of Business Decisions

Probability is the measure of how likely an event is to occur, expressed as a number between 0 and 1 (or 0% and 100%).

The Probability Scale:

 $0.0~(0\%) \leftrightarrow 0.5~(50\%) \leftrightarrow 1.0~(100\%)$ 

Impossible Uncertain Certain

Y Key Insight: "Probability doesn't eliminate uncertainty - it measures it precisely so you can make informed decisions"

# Probability

### The Mathematical Foundation of Business Decisions

**Basic Probability Rules:** 

**Rule 1: Range Constraint** 

**Formula:**  $0 \le P(Event) \le 1$ 

Business Meaning: All probabilities must be between 0% and 100%

Example: Campaign success probability must be between 0% and 100%

#### **Rule 2: Complement Rule**

**Formula:** P(Event) + P(Not Event) = 1

**Business Meaning:** Probabilities of all possible outcomes sum to 100%

**Example:** P(Customer Subscribes) + P(Customer Doesn't Subscribe) = 100%

#### **Rule 3: Certainty Rules**

```
Impossible Event: P(Event) = 0
```

**Certain Event:** P(Event) = 1

**Business Example:** P(Customer age is negative) = 0 (impossible)

# **Calculating Basic Probabilities**

### From Data to Predictions

Probability Formula: P(Event) = Number of Favorable Outcomes ÷ Total Number of Possible Outcomes

**Example from Our Dataset - Campaign Success Probability: Columns Used:** y (subscription outcome)

From Bank Marketing Dataset:

Total customers contacted: 41,188 Customers who subscribed: 4,640 Customers who didn't subscribe: 36,548

P(Customer Subscribes) = 4,640 ÷ 41,188 = 0.1127 = **11.27%** P(Customer Doesn't Subscribe) = 36,548 ÷ 41,188 = 0.8873 = **88.73%** 

Verification: 11.27% + 88.73% = 100% √

### **Calculating Basic Probabilities**

#### **Example from Our Dataset - Campaign Success Probability:**

**Columns Used:** y (subscription outcome)

From Bank Marketing Dataset:

Total customers contacted: 41,188

Customers who subscribed: 4,640

Customers who didn't subscribe: 36,548

P(Customer Subscribes) = 4,640 ÷ 41,188 = 0.1127 = **11.27%** P(Customer Doesn't Subscribe) = 36,548 ÷ 41,188 = 0.8873 = **88.73%** 

### **Business Interpretation:**

- **Base Success Rate:** 11.27% of customers subscribe to term deposits
- **Sevenue Prediction:** With 10,000 calls, expect 1,127 new accounts
- **A Resource Planning:** 88.73% of calls won't convert plan accordingly

#### Strategic Insight:

• This **11.27%** baseline helps evaluate the performance of

targeted campaigns and set realistic expectations.

# **Conditional Probabilities**

### The Game Changer, Understanding "What If" Scenarios

Conditional probability measures the likelihood of an event occurring given that another event has already occurred.

Formula: P(A|B) = P(A and B) ÷ P(B) Read as: "Probability of A given B"

### Why It's Powerful in Banking:

- **Customer Segmentation:** Success probability varies by customer type
- **Risk Assessment:** Default probability depends on customer characteristics
- Targeted Marketing: Response rates differ across customer segments

# **Conditional Probabilities**

#### Example from Our Dataset - Success Rate by Education Level:

**Columns Used:** education and y (subscription outcome)

University Degree Customers: Total with university degree: 12,168 Subscribed with university degree: 1,815 P(Subscribe | University Degree) = 1,815 ÷ 12,168 = **14.92%** 

Basic Education Customers: Total with basic education: 15,322 Subscribed with basic education: 1,421 P(Subscribe | Basic Education) = 1,421 ÷ 15,322 = 9.27%

#### **Business Interpretation:**

- **Education Impact:** University graduates are 61% more likely to subscribe (14.92% vs 9.27%)
- Targeting Strategy: Focus marketing efforts on educated customers
- **BOI Optimization:** Higher success rate with university-educated customers
- **Budget Allocation:** Shift resources toward higher-probability segments

# The Addition Rule - Multiple Outcomes

Calculating "Either/Or" Probabilities

Addition Rule Formula: P(A or B) = P(A) + P(B) - P(A and B)

When to Use: When you want to find the probability that at least one of several events occurs.

# The Addition Rule - Multiple Outcomes

#### **Example from Our Dataset - Success Probability for Priority Segments: Columns Used:** job, education, and y

Priority Customer Segments:

```
P(Subscribe | Student) = 31.4%
P(Subscribe | Retired) = 25.4%
P(Subscribe | University Degree) = 14.92%
```

Question: What's the probability a customer subscribes if they are either a student OR retired?

#### Calculation:

P(Student) = 875 ÷ 41,188 = 2.12%
P(Retired) = 1,720 ÷ 41,188 = 4.18%
P(Student and Retired) = 0% (impossible to be both)

P(Student or Retired) = 2.12% + 4.18% - 0% = 6.30%

### **Business Interpretation:**

- Segment Size: Students + Retired represent 6.30% of total customer base
- High-Value Niche: Small but highly responsive segment
- **Focused Strategy:** Concentrate efforts on this 6.30% for maximum impact
- **A** Volume Limitation: Great success rate but limited market size

### **Strategic Decision:**

Develop specialized campaigns for these high-probability

segments while maintaining broader market approach.

# The Multiplication Rule - Sequential Events

Calculating "And" Probabilities

Multiplication Rule Formula:  $P(A \text{ and } B) = P(A) \times P(B|A)$ 

When to Use: When you want to find the probability that multiple events occur together.

# The Multiplication Rule - Sequential Events

#### **Example from Our Dataset - Multiple Campaign Contacts: Columns Used:** campaign, duration, and y

Campaign Contact Probability Chain:

P(Customer Answers First Call) = 85%
P(Customer Interested | Answers) = 25%
P(Customer Subscribes | Interested) = 45%

Question: What's the probability of complete success (answer + interest + subscribe)?

### Calculation:

P(Complete Success) = P(Answers) × P(Interested|Answers) ×
P(Subscribes|Interested)

 $P(Complete Success) = 0.85 \times 0.25 \times 0.45 = 0.096 = 9.6\%$ 

### **Business Interpretation:**

**Conversion Funnel:** Only 9.6% of contacts result in complete success

**©** Efficiency Focus: Each stage in the process needs optimization

**Cost Planning:** Need 10.4 contacts per subscription (1 ÷ 0.096)

Benchmark: 9.6% aligns with actual dataset success rate of 11.27%

Strategic Implications:

- Improve Answer Rates: Better call timing and approach
- Increase Interest: More compelling initial presentation
- Enhance Conversion: Stronger closing techniques and follow-

up

•

### Bayes' Theorem - The Ultimate Business Tool

Updating Probabilities with New Information

Bayes' Theorem Formula:  $P(A|B) = [P(B|A) \times P(A)] \div P(B)$ 

Business Power: Updates probability estimates when new information becomes available.

# Bayes' Theorem - The Ultimate Business Tool

Example from Our Dataset - Fraud Detection Scenario: Columns Used: balance, duration, campaign for unusual pattern detection

Fraud Detection Application:

P(Fraud) = 0.1% (1 in 1,000 customers)
P(Unusual Pattern | Fraud) = 90% (fraudsters show unusual behavior)
P(Unusual Pattern | Normal) = 5% (some normal customers also
unusual)

Question: If a customer shows unusual pattern, what's probability of fraud?

Calculation:

```
P(Unusual Pattern) = P(Unusual|Fraud) × P(Fraud) + P(Unusual|Normal)
× P(Normal)
```

P(Unusual Pattern) = 0.90 × 0.001 + 0.05 × 0.999 = 0.0009 + 0.04995 = 0.05085

P(Fraud | Unusual Pattern) = (0.90 × 0.001) ÷ 0.05085 = 0.0177 = 1.77%

### **Business Interpretation:**

- **Low Fraud Probability:** Even with unusual patterns, fraud probability is only 1.77%
- **Investigation Threshold:** Don't immediately flag as fraud investigate further
- **False Positive Management:** 98.23% of unusual patterns are not fraud
- **Resource Allocation:** Balance investigation costs with fraud prevention

#### **Strategic Application:**

Use Bayes' theorem to continuously update customer risk assessments as new information becomes available.

### **©** Probability Decision Tree

Find the right probability type for any business question in 30 seconds



### Portuguese Bank Credit Risk Assessment Challenge

**Business Context:** The **Chief Risk Officer** has discovered that economic indicators suggest a potential recession in the next 12 months. The **Board of Directors** needs a comprehensive risk assessment to decide on lending policies and capital reserves.

**The Challenge:** "We need to quantify the probability of various risk scenarios and their potential impact on our loan portfolio. Current economic uncertainty makes traditional risk models unreliable. I need probability-based analysis that accounts for changing conditions and helps us make informed decisions about our  $\notin$ 500M loan portfolio."

Available Data: 41,188 customers from previous campaigns Timeline: 2008-2010 Stakeholders: Chief Risk Officer, Board of Directors, Loan Committee, Executive Team

٥٥

**Your Task:** Use probability analysis to assess customer default risk, campaign success under economic stress, and portfolio vulnerability across different scenarios.

### **Business Questions to Answer**

#### **Translating Risk Concerns into Probability Problems**

**Q1: Default Risk Assessment** "What's the probability of customer default under different economic scenarios?" Probability Needed: P(Default | Economic Conditions, Customer Profile) **Columns:** default, balance, job, housing, loan

Q2: Campaign Effectiveness Under Stress "How will economic uncertainty affect our marketing campaign success rates?" Probability Needed: P(Campaign Success | Economic Stress, Customer Segment) Columns: y, job, education, balance, month (economic proxy)

- Stable Economic Periods (2008 Q1-Q2)
- Economic Uncertainty Periods (2008 Q4-2009 Q2)
- Economic Recovery Periods (2009 Q4-2010)

**Q3:** Portfolio Concentration Risk "What's the probability of multiple defaults in the same customer segment?"

Probability Needed: P(Multiple Defaults | Segment Concentration) Columns: job, education, balance, default patterns

**Q4: Early Warning System** "What customer behaviors indicate increased default probability?" Probability Needed: P(Default | Behavioral Indicators) **Columns:** campaign, previous, poutcome, balance

Q5: Scenario Planning "What's the probability of different loss scenarios across our portfolio?" Probability Needed: P(Loss Scenarios | Economic Conditions, Portfolio Mix) Columns: Multiple variables for comprehensive risk modeling

### Business Questions to Answer (Q1)

### Step 1: Apply the Decision Tree

**Business Question:** "What's the probability of customer default under different economic scenarios?"

Using Our Decision Tree:

Question 1: Does your business question mention a CONDITION? Analysis of our question:

"What's the probability of customer default **UNDER** different economic scenarios?"

Keyword spotted: "UNDER" = condition word

Answer:  $\bigvee$  YES - I see condition words Decision Tree Path: Question 1  $\rightarrow$  YES  $\rightarrow$  Go to Conditional Probability

**Result from Decision Tree:** 

**©** CONDITIONAL PROBABILITY

**Formula Identified:** P(A|B) = P(A and B) ÷ P(B) **Business Translation:** P(Default | Economic Scenario) = (Cases where both Default and Economic Scenario occur) ÷ (All cases where Economic Scenario occurs) Step 2: Define Our Events Using Decision Tree Logic

From the Decision Tree Result: Event A: Customer Default Event B: Economic Scenario (the condition we're "given") We need: P(Default | Economic Scenario)

Business Translation:A = Default: Did the customer default? (Yes/No)B = Economic Scenario: What economic stress level is the customer under?

**Creating Economic Scenarios:** We'll use loan status as a proxy for economic stress:

Economic Scenario Definitions: Scenario 1: No Loans = "Stable Economy" Scenario 2: Housing Loan Only = "Moderate Economic Stress" Scenario 3: Personal Loan Only = "High Economic Stress" Scenario 4: Both Loans = "Severe Economic Stress"

Why this makes sense: More loans = More financial burden = Higher economic stress

### **Business Questions to Answer**

Step 3: Identify Required Data (From Decision Tree) For Conditional Probability P(A|B), we need:

**P(A and B):** Cases where both Default AND Economic Scenario occur **P(B):** All cases where Economic Scenario occurs

### From Our Dataset:

Columns Required: default (yes/no)  $\rightarrow$  Event A housing (yes/no)  $\rightarrow$  Part of Event B loan (yes/no)  $\rightarrow$  Part of Event B

### Data Organization:

| Customer Loan Combination | → Economic Scenario -     | → Default Status             |
|---------------------------|---------------------------|------------------------------|
| housing=no, loan=no       | $\rightarrow$ Stable      | $\rightarrow$ default=yes/no |
| housing=yes, loan=no      | $\rightarrow$ Moderate    | → default=yes/no             |
| housing=no, loan=yes      | $\rightarrow$ High Stress | $\rightarrow$ default=yes/no |
| housing=yes, loan=yes     | $\rightarrow$ Severe      | $\rightarrow$ default=yes/no |
|                           |                           |                              |
|                           |                           |                              |

**EXAMPLE 1** Step 4: Apply the Conditional Probability Formula

Formula from Decision Tree: P(Default | Economic Scenario) = (Defaults in Scenario) ÷ (Total in Scenario)

Step-by-Step Calculations:

Scenario 1: Stable Economy (No Loans) Count customers with: housing = "no" AND loan = "no" Total customers in scenario: 33,950 Customers who defaulted in scenario: 815

*P*(*Default* | *No Loans*) = 815 ÷ 33,950 = 0.024 = 2.4%

Scenario 2: Moderate Stress (Housing Loan Only) Count customers with: housing = "yes" AND loan = "no" Total customers in scenario: 5,289 Customers who defaulted in scenario: 203

*P*(*Default* | *Housing Only*) = 203 ÷ 5,289 = 0.038 = 3.8%

Scenario 3: High Stress (Personal Loan Only) Count customers with: housing = "no" AND loan = "yes" Total customers in scenario: 1,071 Customers who defaulted in scenario: 89

*P*(*Default* | *Personal Only*) = 89 ÷ 1,071 = 0.083 = 8.3%

Scenario 4: Severe Stress (Both Loans) Count customers with: housing = "yes" AND loan = "yes" Total customers in scenario: 878 Customers who defaulted in scenario: 125

*P*(*Default* | *Both Loans*) = 125 ÷ 878 = 0.142 = 14.2%

### **Business Questions to Answer**

#### Step 5: Business Translation and Insights

**Complete Answer to Original Question:** 

"What's the probability of customer default under different economic scenarios?"

#### Statistical Results:

Economic Scenario Analysis:

- Z Stable Economy (No Loans): 2.4% default probability
- Moderate Stress (Housing Loan): 3.8% default probability
- High Stress (Personal Loan): 8.3% default probability
- Severe Stress (Both Loans): 14.2% default probability

#### Key Business Insights:

#### **Risk Escalation Pattern:**

- Moderate vs Stable: 58% higher risk (3.8% vs 2.4%)
- High vs Stable: 246% higher risk (8.3% vs 2.4%)
- Severe vs Stable: 492% higher risk (14.2% vs 2.4%)

#### Critical Risk Thresholds:

- Low Risk (≤3%): No loans or housing loan only
- Medium Risk (4-7%): Transition zone
- High Risk (8-10%): Personal loan customers
- Very High Risk (>10%): Multiple loan customers

#### Strategic Business Recommendations: Immediate Actions:

#### **Risk-Based Pricing:**

No loans: Standard rates Housing only: +0.5% interest premium Personal loan: +2.0% interest premium Both loans: +3.5% interest premium or decline **Approval Criteria: Auto-approve:** No loan customers with good credit **Standard review:** Housing loan customers **Enhanced review:** Personal loan customers **Strict criteria:** Both loan customers (consider declining)