
JOINS

Welcome to this section on JOINS !

JOINS will allow us to combine information from

multiple tables!

● Section Overview

○ Creating an alias with the AS clause

○ Understanding different kinds of JOINs

■ INNER JOINS

■ OUTER JOINS

■ FULL JOINS

■ UNIONS

○ Challenge Tasks

AS

● Before we learn about JOINs , let’s quickly cover the AS clause which allows us

to create an “alias” for a column or result.

● Syntax
SELECT column AS new_name
FROM table

● SELECT SUM(column) AS new_name
FROM table

● Example

● Example

● Example

● The AS operator gets executed at the very end of a query, meaning that we

can not use the ALIAS inside a WHERE operator.

INNER JOIN

● There are several types of JOINs, in this lecture we will go through the simplest

JOIN type, which is an INNER JOIN

What is a JOIN operation?

● JOINs allow us to combine multiple tables together.

● The main reason for the different JOIN types is to decide how to deal with information only

present in one of the joined tables.

Let’s imagine a simple example.

● Our company is holding a conference for people in the movie rental industry.

● We’ll have people register online beforehand and then login the day of the

conference.

● After the conference we have these tables

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● The respective id columns indicate what order they registered or logged in on

site.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● For the sake of simplicity, we will assume the names are unique.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● To help you keep track, Registrations names’ first letters go A,B,C,D

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● An INNER JOIN will result with the set of records that match in both tables.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● An INNER JOIN will result with the set of records that match in both tables.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM TableA
INNER JOIN TableB
ON TableA.col_match = TableB.col_match

● SELECT * FROM TableA
INNER JOIN TableB
ON TableA.col_match = TableB.col_match

● SELECT * FROM TableB
INNER JOIN TableA
ON TableA.col_match = TableB.col_match

● SELECT * FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

● SELECT reg_id,Logins.name,log_id
FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

RESULTS

reg_id name log_id

1 Andrew 2

2 Bob 4

● SELECT reg_id,Logins.name,log_id
FROM Registrations
INNER JOIN Logins
ON Registrations.name = Logins.name

RESULTS

reg_id name log_id

1 Andrew 2

2 Bob 4

● Remember that table order won’t matter in an INNER JOIN

● Also if you see just JOIN without the INNER, PostgreSQL will treat it as an

INNER JOIN.

OUTER JOINS

● There are few different types of OUTER JOINs

● They will allow us to specify how to deal with values only present in one of the

tables being joined.

● These are the more complex JOINs, take your time when trying to understand

them!

● In these lectures we will explain:

○ FULL OUTER JOIN

■ Clarifying WHERE null

○ LEFT OUTER JOIN

■ Clarifying WHERE null

○ RIGHT OUTER JOIN

■ Clarifying WHERE null

FULL OUTER JOIN

● Let’s review our two example tables from the previous lectures.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● We know we would join these tables together on the name column

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● Recall we match Andrew and Bob in both tables

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● But we have names that only appear in one table!

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● Let’s see how the different OUTER JOINs deal with this discrepancy.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

We will first take a look at the simplest, which is a FULL OUTER JOIN

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM TableA

FULL OUTER JOIN TableB

ON TableA.col_match = TableB.col_match

● SELECT * FROM TableB

FULL OUTER JOIN TableA

ON TableA.col_match = TableB.col_match

● SELECT * FROM Registrations
FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew

2 Bob

3 Charlie

4 David

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie

4 David

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

null null 1 Xavier

null null 3 Yolanda

FULL OUTER JOIN
with WHERE

Get rows unique to either table
(rows not found in both tables)

● SELECT * FROM TableA
FULL OUTER JOIN TableB
ON TableA.col_match = TableB.col_match
WHERE TableA.id IS null OR
TableB.id IS null

● SELECT * FROM TableB
FULL OUTER JOIN TableA
ON TableA.col_match = TableB.col_match
WHERE TableA.id IS null OR
TableB.id IS null

SELECT * FROM Registrations FULL OUTER JOIN Logins

ON Registrations.name = Logins.name

WHERE Registrations.reg_id IS null OR

Logins.log_id IS null

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

null null 1 Xavier

null null 3 Yolanda

● SELECT * FROM Registrations FULL OUTER JOIN Logins
ON Registrations.name = Logins.name
WHERE Registrations.reg_id IS null OR
Logins.log_id IS null

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

3 Charlie null null

4 David null null

null null 1 Xavier

null null 3 Yolanda

LEFT OUTER JOIN

● A LEFT OUTER JOIN results in the set of records that are in the left table, if

there is no match with the right table, the results are null.

● Later on we will learn how to add WHERE statements to further modify a LEFT

OUTER JOIN

● SELECT * FROM TableA
LEFT OUTER JOIN TableB
ON TableA.col_match = TableB.col_match

● SELECT * FROM TableA
LEFT JOIN TableB
ON TableA.col_match = TableB.col_match

● SELECT * FROM TableA

LEFT OUTER JOIN TableB

ON TableA.col_match = TableB.col_match

ORDER
MATTERS FOR

LEFT OUTER JOIN!

Let’s explore a LEFT OUTER JOIN with our two example tables.

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations
LEFT OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

● SELECT * FROM Registrations
LEFT OUTER JOIN Logins
ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

● SELECT * FROM Registrations

LEFT OUTER JOIN Logins

ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

LEFT OUTER JOIN
With WHERE
Get rows unique to left table

● What if we only wanted entries unique to Table A? Those rows found in Table

A and not found in Table B.

● SELECT * FROM TableA

LEFT OUTER JOIN TableB

ON TableA.col_match = TableB.col_match

WHERE TableB.id IS null

● SELECT * FROM Registrations

LEFT OUTER JOIN Logins

ON Registrations.name = Logins.name

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

1 Andrew 2 Andrew

2 Bob 4 Bob

3 Charlie null null

4 David null null

SELECT * FROM Registrations

LEFT OUTER JOIN Logins

ON Registrations.name = Logins.name

WHERE Logins.log_id IS null

REGISTRATIONS

reg_id name

1 Andrew

2 Bob

3 Charlie

4 David

LOGINS

log_id name

1 Xavier

2 Andrew

3 Yolanda

4 Bob

RESULTS

reg_id name log_id name

3 Charlie null null

4 David null null

RIGHT JOINS

● A RIGHT JOIN is essentially the same as a LEFT JOIN, except the tables are

switched.

● This would be the same as switching the table order in a LEFT OUTER JOIN.

● Let’s quickly see some examples of a RIGHT JOIN.

● SELECT * FROM TableA

RIGHT OUTER JOIN TableB

ON TableA.col_match = TableB.col_match

Table A Table B

● SELECT * FROM TableA

RIGHT OUTER JOIN TableB

ON TableA.col_match = TableB.col_match

WHERE TableA.id IS null

Table A Table B

● It is up to you and how you have the tables organized “in your mind” when it

comes to choosing a LEFT vs RIGHT join, since depending on the table order

you specify in the JOIN, you can perform duplicate JOINs with either method.

UNIONS

● The UNION operator is used to combine the result-set of two or more SELECT

statements.

● It basically serves to directly concatenate two results together, essentially

“pasting” them together.

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

Let’s explore a UNION with two example tables.

Sales2021_Q1

name amount

David 100

Claire 50

Sales2021_Q2

name amount

David 200

Claire 100

● SELECT * FROM Sales2021_Q1

UNION

SELECT * FROM Sales2021_Q2;

name amount

David 100

Claire 50

David 200

Claire 100

JOIN
Challenges

● California sales tax laws have changed and we need to alert our customers to

this through email.

● What are the emails of the customers who live in California?

● Expected Results

● Hints

○ You will need to use the address and customer tables.

○ Look at the district column

SELECT district,email FROM address

INNER JOIN customer ON

address.address_id = customer.address_id

WHERE district = 'California'

● A customer walks in and is a huge fan of the actor “Nick Wahlberg” and wants

to know which movies he is in.

● Get a list of all the movies “Nick Wahlberg” has been in.

● Expected Results

……………...

● HINTS

○ You will need to do 2 JOINs in a row to do this in a single query.

○ Try using the online documentation or a simple google search to see how

this is done.

○ Tables to use: actor, film, film_actor

SELECT title,first_name,last_name

FROM film_actor INNER JOIN actor

ON film_actor.actor_id = actor.actor_id

INNER JOIN film

ON film_actor.film_id = film.film_id

WHERE first_name = 'Nick'

AND last_name = 'Wahlberg'

Challenge!

Department: Customer Service

Request: "We need a complete customer directory showing each customer's name, email, phone, and
their branch information. Show customer details along with branch name and city."

Expected Answer
Customer information combined with their branch details showing names, contact info, and branch
location.

Hints
● Use customers and branches tables
● Use accounts table to connect customers to branches
● Use INNER JOINs to connect the three tables
● Include customer contact info and branch details

Department: Account Management

Request: "Show all customers with their account details. Include customer name, account number,
account type, balance, and date opened. Sort by customer last name, then by balance (highest first)."

Expected Answer
Combined customer and account information showing personal details with account specifics.

Hints
● Use customers and accounts tables
● Use INNER JOIN to connect customers with their accounts
● Include customer names and all requested account details
● Sort by multiple criteria

Department: Transaction Analysis

Request: "Find all transactions over $5,000 with customer and account information. Show customer name,
account number, transaction date, amount, and description. Sort by transaction amount (highest first)."

Expected Answer
High-value transactions with associated customer and account details.

Hints
● Use customers, accounts, and transactions tables
● Use INNER JOINs to connect all three tables
● Filter transactions by amount in WHERE clause
● Include customer names and transaction details

Department: Loan Management

Request: "Show all customers who have loans along with their loan details and branch information.
Include customer name, loan type, loan amount, balance remaining, and the branch where the loan was
issued."

Expected Answer
Customer loan information combined with branch details for all customers with loans.

Hints
● Use customers, loans, and branches tables
● Use INNER JOINs to connect customers to loans and loans to branches
● Include customer names, loan details, and branch information
● Only include customers who have loans

Department: Marketing Analytics

Request: "Find customers who DON'T have any accounts. We need to identify potential data issues or
inactive customers. Show customer number, name, email, and phone."

Expected Answer
Customers without accounts using appropriate JOIN to find missing relationships.

Hints
● Use customers and accounts tables
● Use LEFT JOIN to include all customers
● Use WHERE clause to find customers without accounts (NULL values)
● Check for NULL account information to identify customers without accounts

