
Conditional Expressions
and Operators

● Section Overview

○ CASE

○ COALESCE

○ NULLIF

○ CAST

○ Views

○ Import and Export Functionality

● These keywords and functions will allow us to add logic to our commands and

workflows in SQL.

Let’s get started!

CASE

● We can use the CASE statement to only execute SQL code when certain

conditions are met.

● This is very similar to IF/ELSE statements in other programming languages.

● There are two main ways to use a CASE statement, either a general CASE or a

CASE expression.

● Both methods can lead to the same results.

● Let’s first show the syntax for a “general” CASE.

● General Syntax

○ CASE

WHEN condition1 THEN result1

WHEN condition2 THEN result2

ELSE some_other_result

END

● Simple Example

○ SELECT a,

CASE WHEN a = 1 THEN ‘one’

WHEN a = 2 THEN ‘two’

ELSE ‘other’

a

1

2

● Simple Example

○ SELECT a,

CASE WHEN a = 1 THEN ‘one’

WHEN a = 2 THEN ‘two’

ELSE ‘other’ AS label

END

FROM test;

a label

1 one

2 two

The CASE expression syntax first evaluates an expression then compares the result with

each value in the WHEN clauses sequentially.

● CASE Expression Syntax

○ CASE expression

WHEN value1 THEN result1

WHEN value2 THEN result2

ELSE some_other_result

END

● Rewriting our previous example:

○ SELECT a,

CASE a

WHEN 1 THEN 'one'

WHEN 2 THEN 'two'

ELSE 'other'

END

FROM test; a label

1 one

2 two

-- Simple CASE statement
SELECT customer_id, first_name, last_name,

CASE
WHEN age(date_of_birth) >= INTERVAL '65 years' THEN 'Senior'
WHEN age(date_of_birth) >= INTERVAL '25 years' THEN 'Adult'
ELSE 'Young Adult'

END AS age_group
FROM customers;

-- CASE with aggregation
SELECT account_type,

COUNT(*) AS total_accounts,
SUM(CASE WHEN balance > 50000 THEN 1 ELSE 0 END) AS high_balance_count,
SUM(CASE WHEN balance <= 1000 THEN 1 ELSE 0 END) AS low_balance_count,
AVG(CASE WHEN balance > 0 THEN balance ELSE NULL END) AS avg_positive_balance

FROM accounts
GROUP BY account_type;

COALESCE

● The COALESCE function accepts an unlimited number of arguments. It returns the first

argument that is not null. If all arguments are null, the COALESCE function will return

null.

○ COALESCE (arg_1,arg_2,...,arg_n)

● Example○ SELECT COALESCE (1, 2)
■ 1○ SELECT COALESCE(NULL, 2, 3)
■ 2

The COALESCE function becomes useful when querying a table that contains null values and

substituting it with another value.

Let’s see a simple example.

● Table of Products

○ What is the final price?

Item Price Discount

A 100 20

B 300 null

C 200 10

● SELECT item,(price - discount) AS final

FROM table

Item final

A 80

B null

C 190

● SELECT item,(price - discount) AS final

FROM table

● Doesn’t work for item B, should be 300.

Item final

A 80

B null

C 190

SELECT item,(price - COALESCE(discount,0)) AS final

FROM table

Item final

A 80

B 300

C 190

Keep the COALESCE function in mind in case you encounter a table with null values that you

want to perform operations on!

CAST

● The CAST operator let’s you convert from one data type into another.

● Keep in mind not every instance of a data type can be CAST to another data type, it must

be reasonable to convert the data, for example ‘5’ to an integer will work, ‘five’ to an

integer will not.

● Syntax for CAST function

○ SELECT CAST(‘5’ AS INTEGER)

● PostgreSQL CAST operator

○ SELECT ‘5’::INTEGER

● Keep in mind you can then use this in a SELECT query with a column name instead of a

single instance.

○ SELECT CAST(date AS TIMESTAMP)

FROM table

NULLIF

● The NULLIF function takes in 2 inputs and returns NULL if both are equal, otherwise it

returns the first argument passed.

○ NULLIF(arg1,arg2)

● Example
○ NULLIF(10,12)

■ Returns 10
○ NULLIF(10,10)

■ Returns NULL

VIEWS

● Often there are specific combinations of tables and conditions that you find yourself using

quite often for a project.

● Instead of having to perform the same query over and over again as a starting point, you

can create a VIEW to quickly see this query with a simple call.

● A view is a database object that is of a stored query.

● A view can be accessed as a virtual table in PostgreSQL.

● Notice that a view does not store data physically, it simply stores the query.

● You can also update and alter existing views.

-- Simple view for customer summary

CREATE VIEW customer_summary AS

SELECT c.customer_id, c.first_name, c.last_name, c.email,

COUNT(a.account_id) AS account_count,

COALESCE(SUM(a.balance), 0) AS total_balance,

MAX(a.date_opened) AS latest_account_date

FROM customers c

LEFT JOIN accounts a ON c.customer_id = a.customer_id

GROUP BY c.customer_id, c.first_name, c.last_name, c.email;

-- Using views in queries

SELECT * FROM customer_summary WHERE total_balance > 50000;

SELECT customer_tier, COUNT(*) FROM high_value_customers GROUP BY customer_tier;

-- Updating views (if updatable)

UPDATE customer_public_info SET first_name = 'John' WHERE customer_id = 1;

-- Drop view

DROP VIEW IF EXISTS customer_public_info;

Challenge!

1. Challenge
Department: Customer Segmentation

Request: "Create a customer classification report using conditional logic. We need to categorize
customers based on their annual income levels and credit scores for our marketing campaigns.

Expected Answer
Customer classification with income categories and credit score ratings using CASE statements.

Hints
● Use customers table
● Use CASE statement for income categorization
● Use COALESCE to handle NULL income values
● Use CASE for credit score ratings (Excellent: ≥750, Good: 650-749, Fair: 550-649, Poor: <550)
● Handle NULL credit scores appropriately

1. Challenge
Specific Requirements:

Income Categories: Create an 'income_category' column
with these exact conditions:

● 'High Income' for customers with annual_income ≥ $100,000

● 'Middle Income' for customers with annual_income between

$50,000 and $99,999

● 'Low Income' for customers with annual_income < $50,000

● 'Unknown' for customers where annual_income is NULL or
missing

Credit Score Ratings: Create a 'credit_rating' column with
these exact conditions:

● 'Excellent' for credit_score ≥ 750

● 'Good' for credit_score between 650 and 749

● 'Fair' for credit_score between 550 and 649

● 'Poor' for credit_score < 550

● 'Not Rated' for credit_score that is NULL or missing

1. Challenge
Specific Requirements:

● Contact Information:

Create a 'primary_contact' column that shows:

Email address if available Phone number if email is not available but phone exists

'No Contact Info' if both email and phone are missing or NULL

● Output Columns: customer_number, first_name, last_name, annual_income, income_category, credit_score,

credit_rating, primary_contact

● Sort: By annual_income in descending order, with NULL values appearing last"

2. Challenge
Department: Account Management

Request: "Create a comprehensive account status report with data cleansing and transformation. Our
operations team needs clean data for their monthly account review process.”

Expected Answer
Account report with data cleansing, type conversions, and risk categorization.

Hints
● Use accounts table
● Use COALESCE to handle NULL minimum_balance values
● Use CAST to convert balance to integer
● Use date functions with CASE for account age categories
● Create risk categories based on balance vs minimum balance ratio
● Use NULLIF to handle edge cases in calculations

2. Challenge
Specific Requirements:

● Balance Conversion: Convert the balance column to INTEGER
(whole numbers) for reporting purposes - name it 'balance_rounded’

● Minimum Balance Handling: Create a 'min_balance_clean' column
where:

- Use the actual minimum_balance if it exists
- Use 0 if minimum_balance is NULL or missing

● Account Age Calculation: Create an 'account_age_years' column
showing the account age in whole years from date_opened to current
date

● Account Age Categories: Create an 'account_age_category' column
with these conditions:

- 'New' for accounts less than 1 year old
- 'Established' for accounts between 1 year and less than 3 years old
- 'Mature' for accounts 3 years or older

● Balance Risk Assessment: Create a 'balance_risk_category' column
with these conditions:
- 'No Minimum' if the cleaned minimum balance equals 0

- 'Well Above Minimum' if balance is 5 times or more than minimum balance

- 'Above Minimum' if balance is 2 times or more than minimum balance (but

less than 5 times)

- 'Meets Minimum' if balance is equal to or greater than minimum balance (but

less than 2 times)

- 'Below Minimum' if balance is less than minimum balance

● Status Data Cleaning: Create a 'status_clean' column that removes
any empty strings (convert empty strings to NULL)

● Output Columns: account_number, account_type, balance_rounded,
min_balance_clean, account_age_years, account_age_category,
balance_risk_category, status_clean

● Sort: By balance in descending order"

3. Challenge
Department: Transaction Analysis

Request: "Create a VIEW called 'transaction_summary_view' that provides basic transaction analysis with some
conditional formatting. This view will be used by business users for simple transaction monitoring."

Expected Answer
A view creation with comprehensive transaction analysis and conditional logic.

Hints
● Create a VIEW using only the transactions table

● Use CASE for amount categories

● Use simple CASE for positive/negative amounts

● Use EXTRACT(HOUR) with simple CASE for business hours

● Use COALESCE for description handling

3. Challenge
Specific Requirements:

● Base Data: Include transaction_id, account_id, transaction_date, and
amount from transactions table

● Transaction Amount Categories: Create an 'amount_category'
column based on absolute value of amount:

- 'Large' for amounts ≥ $10,000
- 'Medium' for amounts ≥ $1,000 but < $10,000
- 'Small' for amounts < $1,000

● Transaction Type: Create a 'transaction_flow' column:
- 'Money In' for positive amounts (amount > 0)
- 'Money Out' for negative amounts (amount < 0)
- 'Zero' for zero amounts (amount = 0)

● Business Hours Check: Create a 'business_hours' column based on
the hour of transaction_date:

- 'Business Hours' for hours 9 AM to 5 PM (hours 9, 10, 11,
12, 13, 14, 15, 16, 17)

- 'After Hours' for all other hours

● Description Handling: Create a 'description_clean' column:
- Use the original description if it exists and is not NULL
- Use 'No Description' if description is NULL

