Designing and Implementing a Data Science Solution on Azure

Please follow the steps to complete your e-attendance

        1. Click the Register with Training Key button
        2. Input your training key in the Register with a Training Key field
        3. Click Register
        4. This opens a registration page to create a user account. Input your registration information, and then click Save
        5. Saving your user registration opens your enrollment

Please launch a test lab to check for connectivity issues and read through the instructions in the lab interface to become familiar with using it. Once class starts Launch buttons will appear beside the lab modules.

Module 1: Introduction to Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools

Lab : Creating an Azure Machine Learning Workspace

Lab : Working with Azure Machine Learning Tools

After completing this module, you will be able to

  • Provision an Azure Machine Learning workspace
  • Use tools and code to work with Azure Machine Learning

Module 2: Visual Tools for Machine Learning

This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

Lessons

  • Training Models with Designer
  • Publishing Models with Designer

Lab : Creating a Training Pipeline with the Azure ML Designer

Lab : Deploying a Service with the Azure ML Designer

After completing this module, you will be able to

  • Use designer to train a machine learning model
  • Deploy a Designer pipeline as a service

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

Lessons

  • Introduction to Experiments
  • Training and Registering Models

Lab : Running Experiments

Lab : Training and Registering Models

After completing this module, you will be able to

  • Run code-based experiments in an Azure Machine Learning workspace
  • Train and register machine learning models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

Lessons

  • Working with Datastores
  • Working with Datasets

Lab : Working with Datastores

Lab : Working with Datasets

After completing this module, you will be able to

  • Create and consume datastores
  • Create and consume datasets

Module 5: Working with Compute

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you’ll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

Lessons

  • Working with Environments
  • Working with Compute Targets

Lab : Working with Environments

Lab : Working with Compute Targets

After completing this module, you will be able to

  • Create and use environments
  • Create and use compute targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it’s time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you’ll explore how to define and run them in this module.

Lessons

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Creating a Pipeline

Lab : Publishing a Pipeline

After completing this module, you will be able to

  • Create pipelines to automate machine learning workflows
  • Publish and run pipeline services

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they’re only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

Lessons

  • Real-time Inferencing
  • Batch Inferencing

Lab : Creating a Real-time Inferencing Service

Lab : Creating a Batch Inferencing Service

After completing this module, you will be able to

  • Publish a model as a real-time inference service
  • Publish a model as a batch inference service

Module 8: Training Optimal Models

By this stage of the course, you’ve learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you’ll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

Lessons

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Tuning Hyperparameters

Lab : Using Automated Machine Learning

After completing this module, you will be able to

  • Optimize hyperparameters for model training
  • Use automated machine learning to find the optimal model for your data

Module 9: Responsible Machine Learning

Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It’s increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model’s behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.

Lessons

  • Introduction to Model Interpretation
  • using Model Explainers

Lab : Reviewing Automated Machine Learning Explanations

Lab : Interpreting Models

After completing this module, you will be able to

  • Generate model explanations with automated machine learning
  • Use explainers to interpret machine learning models

Module 10: Monitoring Models

After a model has been deployed, it’s important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

Lessons

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitoring a Model with Application Insights

Lab : Monitoring Data Drift

After completing this module, you will be able to

  • Use Application Insights to monitor a published model
  • Monitor data drift

Azure Machine Learning

A set of services for training, testing and deploying your own Machine Learning models.

Machine Learning Services

What is it?

  • Simplify and accelerate the building, training, and deployment of your machine learning models. Use automated machine learning to identify suitable algorithms and tune hyperparameters faster. Improve productivity and reduce costs with autoscaling compute and DevOps for machine learning. Seamlessly deploy to the cloud and the edge with one click. Access all these capabilities from your favorite Python environment using the latest open-source frameworks, such as PyTorch, TensorFlow, and scikit-learn.

 

Who is it for?

  • Data Scientists, Machine Learning experts (code-first, Python-focused)

Learning Resources

Machine Learning Studio

What is it?

  • A fully-managed cloud service that enables you to easily build, deploy, and share predictive analytics solutions. Machine Learning Studio is a powerfully simple browser-based, visual drag-and-drop authoring environment where no coding is necessary. Go from idea to deployment in a matter of clicks.

Who is it for?

  • Data Scientists, Machine Learning experts, Developers (Low/No-Code)

Learning Resources

Azure Databricks

What is it?

  • Accelerate big data analytics and artificial intelligence (AI) solutions with Azure Databricks, a fast, easy and collaborative Apache Spark–based analytics service.
  • Set up your Spark environment in minutes and autoscale quickly and easily. Data scientists, data engineers, and business analysts can collaborate on shared projects in an interactive workspace. Apply your existing skills with support for Python, Scala, R, and SQL, as well as deep learning frameworks and libraries like TensorFlow, Pytorch, and Scikit-learn. Native integration with Azure Active Directory (Azure AD) and other Azure services enables you to build your modern data warehouse and machine learning and real-time analytics solutions.

Who is it for?

  • Apache Spark users, Data Scientists, Machine Learning experts

Learning Resources

 

Taxonomy

A taxonomy of the workspace is illustrated in the following diagram:

You can find all Lab Files and Instructions here

Github link for labfiles : https://github.com/MicrosoftLearning/mslearn-dp100

Ignite session: preparation for Microsoft Azure Data Scientist (DP-100) 

 

QnA Check

Mindmap

Checklist

Book

Documentation

AML Cheat Sheet

Data Concept

  • To know more about Data Concept you can click [this] link.

ML Performance Metrics:

Hyperparameter Tuning

Interpretable Machine Learning

Azure Machine Learning Notebooks

  • Different Notebooks are available for Different Services

Summary

For Microsoft Technical courses achievement code redemption, learners must click the FULL Redemption URL and they should not enter code directly into MS Learn.

As the Redemption URL contains our Partner ID that ties the student redemption to the partner.

In sample below, the highlighted number is our Partner ID and “xxxxxx” represents the achievement code.

Sample of Full Redemption URL:

https://learn.microsoft.com/en-us/users/me/achievements?WT.mc_id=ilt_partner_webpage_wwl&ocid=509890&redeem=5M5VXQ

Lastly, the achievement code redemption URL does not have expiry dates.

WRONG WAY TO REDEEM ACHIEVEMENT CODE

CORRECT WAY TO REDEEM ACHIEVEMENT CODE             

Microsoft Feedback :